
A OpenXLand Components419

Figure 6: Left: An example OpenXLand environment. In this environment, the agent receives
reward when the orange sphere makes contact with the blue pyramid. We see that the orange sphere
is elevated, and therefore the agent must find it and use the ramps to access it. As to the blue pyramid,
we do not see it because it is not there: the agent must first get the orange sphere near the black
rounded cube first to spawn one. This environment also contains a grey pyramid that serves as a
distraction. Importantly, if the agent brings the grey pyramid near the black rounded cube, both will
disappear, making it impossible for the agent to spawn a blue pyramid and subsequently obtain its
reward. Right: The agent’s perspective at initialization. The agent does not see the orange sphere,
and so will have to search for it. However, the agent does see the grey pyramid, which could act
as a distraction. As pointed out in [21], solving tasks in OpenXLand requires many skill such as
navigation, exploration, experimentation, and avoiding irreversible transitions. However, since the
innumerable tasks are composed of a small number of components, the agent can learn to reuse
previously acquired knowledge to improve performance.

OpenXLand is an open-source implementation of the environment frameworks known as XLand [22]420

and XLand 2.0 [21]. OpenXLand generates 3D worlds from building blocks known as metatiles. In421

the world, agents are expected to solve tasks defined by production rules, which trigger based on the422

state of the agent and objects in the environment. Figure 6 shows an example of such a world and423

task.424

Below, we go over specific details of the metatiles and the production rules.425

A.1 Metatiles426

Figure 7: Three examples of metatiles. On the left, we see a platform with a rounded corner. The
middle contains a square platform. The right contains a ramp, which the agent can use to traverse
multi-level floor topologies.

The OpenXLand framework uses procedural generation to create diverse environments from sim-427

ple building blocks we call metatiles. During generation, the environment is filled with metatiles.428

These metatiles are designed to create interesting multi-level floor topologies: agents can use429

ramps to access platforms (see Figure 7). Metatiles for OpenXLand can be found in the Re-430

sources/GameObjects/XLand/MetaTiles subfolder of the Unity asset folder. There are 13 total431

13



Name Description Sampling Weight
RampInset 2 tile wide ramp with tiles on both sides 1500

Ramp1Edge 2 tile wide ramp with tiles on one side 750
RampNoEdge 2 tile wide ramp with no tiles the sides 750

Corner 4 tile platform with one corner rounded 1000
PlatformNoEdge 4 tile platform with no internal edges 100
Platform1Edge 4 tile platform with a single internal edge 100
Platform2Edge 4 tile platform with a two internal edges at the corner 100
Platform4Edge 4 tile platform with a four internal edges 100

AirPocket 4 empty tiles 100
SmallRamp A minimal 1 tile wide ramp 450

Air A empty tile 45
WhiteTile A single tile 4
AirHelper A tile that allows an empty tile to connect to internal edges 0.0004

Table 1: Metatiles used in OpenXLand. The sampling weight is used to calculate how likely a tile is
to be sampled. U3 makes it possible to easily adjust these weights to enrich environment generation
dynamics.

metatiles distributed across two pools: a medium pool with a weight of 10, and a small pool with432

a weight of 1. This means that the procedural generation algorithm will attempt to place medium433

metatiles much more frequently than small metatiles. A full list of metatiles and their relative weights434

can be found in Table 1 However, the small metatiles still serve an important role as they can fill in435

gaps where medium metatiles no longer fit. Note that AirHelper is meant to be used only when no436

other tiles are available.437

A.1.1 The Face Matching Matrix438

The logic for how metatiles fit together is defined by the face matching matrix. This adjacency matrix439

allows users to define which faces can be placed next to other faces, and with what weight. U3 will440

attempt to place metatiles at frequencies that respect both the face matching matrix frequencies and441

the metatile pool weights, however, due to the complexity of the generation process there is a fair442

amount of variance in the actual number of each metatile and face-face pairs placed.443

OpenXLand uses 7 face types. Bedrock denotes the bottom of tiles, so Air and ramps cannot be444

placed below it. Similarly, Surface denotes the top of a tile and can match with any type of face, but445

attempts to avoid Air (0.05 weight). Air and Ground are generic face types of empty and solid faces446

respectively. InsideEdge attempts to connect to other InsideEdge faces, to create larger platforms.447

RampTop and RampBottom attempt to connect in a mutually exclusive manner to make sure that448

multiple ramps can chain together in the correct way.449

A.1.2 Wave Function Collapse Algorithm450

U3 implements a 3D wave function collapse algorithm with a several optimizations. The original451

wave function collapse algorithm tracks all possible configurations of each world voxel to calculate452

the entropy of the voxels. We simplifi453

the entropy of all world voxels simultaneously. In our modified version we only consider the number454

of metatile configurations (entropy)455

A.2 Production Rules456

A key element of XLand 2.0 is production rules, which define compositional tasks that agents457

are meant to complete. Agents 1) manipulate production rule objects 2) to satisfy production rule458

conditions, which 3) trigger production rule actions that transition the state. The goal of the agent is to459

trigger these production rules until the environment reaches a goal state and the agent receives reward.460

14



Face Types
Air

Ground

Bedrock

Surface
InsideEdge
RampTop
RampBottom

Figure 8: Left: The face matching matrix between face types in OpenXLand. Right: The face types
in the adjacency matrix. Each metatile is made of tiles, which have faces, and the adjacency matrix
determines which faces can be neighbors. The adjacency matrix constrains the set of permissible
metatiles that can be placed at a given location during the environment generation process.

In Table 2, we outline the production rule objects by shape and color, as well as the production461

conditions and the production rule actions. Naturally, each set can be extended.462

Object Shapes Object Colors Conditions Actions
Cube red NEAR SPAWN

Sphere green CONTACT SWAP

Pyramid blue HOLD REMOVE

Cylinder purple PICKUP REWARD

Cone yellow THROW

Rounded Box grey DROP

Rounded Rectangle white

etc.
Table 2: A table containing the main components of OpenXLand’s production rule system. Our set of
objects, which is specified by shape and color, is similar in nature to that of XLand 2.0 [21], though
with 7 objects and over 20 colors. As for the conditions We extend those in Team et al. [21] with the
new conditions “drop”, “pickup” and “throw”. Also, whereas in XLand 2.0, objects that are part of
production rule conditions disappear when the condition is fulfilled, we include the possibility of
objects remaining in the environment. The “spawn” action creates a new object, the “swap” action
swaps the production rule condition’s subject, object or both for a new object, the “remove” action
simply removes an item from the environment, and the “reward” action gives reward to the agent.
Therefore, our production rules go beyond forcibly removing the condition’s objects or swapping
them for new ones.

A.2.1 Production Rule Objects463

Our production rule objects are quite similar to those of Team et al. [21]: as us, they use cubes,464

spheres and pyramids (not counting walls), but we also include other objects such as cylinders, cones,465

and rounded boxes and rectangles. Team et al. [21] uses three colors: black, purple and yellow. We466

see no reason a priori why there shouldn’t be more colors, so we include over 20 colors, a few of467

15



which can be found in 2. This raises the unique number of object-shape pairs from 9 to over 150.468

Naturally, we can restrict or extend the set of colors. Furthermore, although OpenXLand’s objects are469

identified with simple colors and shapes, it is possible to use U3 to identify objects with different470

characteristics.471

A.2.2 Production Rule Conditions472

We implement the following conditions from Team et al. [21]: “near”, “contact” and “hold“. We plan473

on implementing the final condition, “see” in future work. On top of this, we implement three new474

conditions: “pickup”, “throw” and “drop”, which we implement as callback functions that trigger475

based on the agent’s behaviour. The agent can only hold (and therefore pickup, throw and drop) one476

object at a time.477

A.2.3 Production Rule Actions478

In Team et al. [21], production rules and goal states are represented as separate concepts. We find479

it more amenable to represent them as instances of the same concept by turning goal states into480

production rules that reward the agent as an action. This allows us to represent production rules481

and goal states as part of the same language. We also include in our production rule actions the482

possibility of preserving the objects present in the production rule conditions, which can allow for483

distinct production rules that repeatedly depend on the same object.484

B Implementing MemoryMaze: A Walkthrough485

MemoryMaze [18] differs from OpenXLand in a few keys ways: First, the world is flat, so we only486

need a height of 1. Second, production rules are not procedurally generated, but are instead attached487

to "goal" objects spawned throughout the world. Third, only 1 "goal" is active at a time. Fourth, there488

is a UI element that displays the current "goal".489

To illustrate the ability of U3 to render more naturalistic worlds, we use a low polygon forest pack490

from the Unity asset store. Thus, we modify the original MemoryMaze by replacing the walls with491

rocks, and the goals with forest mushrooms of various colors.492

Our MemoryMaze starts by procedurally generating the flat world using the same metatile system as493

OpenXLand. We want goals to be spread out and only spawn in small clearings. Thus, we define a494

new class (ProductionRuleSpawn) that defines locations where goals can spawn, and add it to the495

Clearing metatile itself. By adding a script into the metatile we are able to use the existing procedural496

generation system to add structured randomness to this new spawning logic. We also include custom497

spawn logic in the script to spawn only up to 5 goals, and make sure that each goal is a minimum498

distance from the previously spawned goals.499

Further, we add logic to ProductionRuleSpawn such that a new production rule is created for each500

spawned goal. These rules all use a new NEAR condition that triggers when the agent is near the501

production rule’s subject (in this case, the goal object). Because of the modular design of U3, this502

new condition can now be used in any newly generated OpenXLand environments as well. We also503

create a new REWARD_TOGGLE action that is a compound action of a REWARD plus new logic504

that deactivates the current production rule, and activates a different production rule at random. To505

implement this logic we also add a new flag to production rules that allows them to be turned on and506

off at run-time. In this way, as new environments are added to the U3 ecosystem, we expect that new507

and more powerful features will also be added to the base OpenXLand environments.508

The final missing piece of the MemoryMaze environment is the UI element that shows the current509

goal. We adopt the same UI as the original with a colored border around the image. Unity is a510

powerful 3D game engine with native support for 3D rendering, UI, sprites, materials, etc, so creating511

this UI took only 1 function call into Unity’s API (GUI.DrawTexture).512

16



Figure 9: MemoryMaze environment observation. Our version of MemoryMaze uses naturalistic
assets. We hope that harnessing the variety of assets available will help to increase agents’ overall
adaptability.

C Dataset Details513

In this section, we go over the details of the datasets. We split the datasets into 6 world datasets 3,514

and 6 production rule datasets 4. We design the datasets with overlapping parameters to facilitate515

smooth curriculum learning. We filter the world datasets to include only those worlds that have a516

largest accessible area of over 50% of the total number of tiles in the X-Z plane.517

We find the largest accessible area by first constructing a local, directed connectivity graph using518

the specific configuration of each voxel. For simplicity, we consider only the cardinal connections519

between voxels, and only connections in the width-length plane (we ignore connections within a520

single column of voxels). Two voxels are connected bi-directionally if they are at the same terrain521

height and higher voxels are connected unidirectionally to lower tiles - representing the agent’s ability522

to fall to the lower level. Ramps serve as the sole method for connections from a lower layer to the523

next highest layer. Once the connectivity graph is constructed, the largest accessible area is found by524

computing the largest strongly connected sub-component.525

Distractors’ positions in the production rule chains heavily influence their impact. For example, if the526

agent has already completed the step that requires a Yellow Cube, then removing the Yellow Cube is527

merely a distraction. However, if the Yellow Cube is still required, then its removal creates a dead528

end. Due to this complexity, we do not directly consider distractors vs dead ends in our difficulty529

measure, but note that as more distractors are added the probability of dead ends also increases.530

D Training Results531

To demonstrate the learnability of our environment, we randomly select a task from the easy dataset532

and applied the Soft Actor-Critic (SAC) [11] method. Image observations are processed using a533

convolutional neural network for both the actor and Q networks, each comprising approximately 2534

million parameters. The SAC agent is trained for 75 million environment steps, utilizing a replay535

buffer that stored 1 million transitions. While these parameter choices may appear modest compared536

to those in the Ada paper [21] and may not fully exploit emergent meta-learning capabilities, our537

primary aim is to underscore the learnability of our environment, not to recreate their agent.538

17



Name Width and Length Height
x̄ σ x̄ σ

easy_low 5 2 1 1
easy_high 5 2 3 2

medium_low 10 3 1 1
medium_high 10 3 3 2

hard_low 15 5 1 1
hard_high 15 5 3 2

Table 3: World Datasets. These values were used to define Gaussian distributions used to sample
parameters during dataset construction. We note that the harder we consider environments to be, the
bigger they are.

Name Chain Length and Initial Objects Distractors
x̄ σ x̄ σ

short_few 1 1 0 1
short_many 1 1 1 0.5
middle_few 3 1.5 0 1

middle_many 3 1.5 2 1.5
long_few 5 3 0 1

long_many 5 3 3 2.5
Table 4: Production Rule Datasets. These values were used to define the Gaussian distribution used
to sample parameters during dataset construction. Since we sample the production rule chain lengths
from distributions, the datasets of shorter chains will still contain long chains, although the dataset
will be dominated by shorter, less complicated tasks. As the average length of chains increases
throughout the datasets, the number of distractors also increases.

Figure 10: Episodic return during single environment training of the SAC agent compared to a
random agent. We train the SAC agent for 75 million environment steps. This required approximately
48 hours on a single A100 GPU, a small fraction of the 53760 TPUv3 device hours it took to
train Ada [21]. The episodic return for the SAC agent shows significant fluctuations but generally
demonstrates a higher return compared to the random agent baseline, represented by the red dashed
line.

18



Figure 10 illustrates that the episodic return of our learning agent increases throughout training,539

surpassing a random agent baseline’s performance. We also extend our evaluation to the entire easy540

dataset, conducting 8 trials per episode on different tasks. Interestingly, our learning agent exhibits541

minimal improvement over random agents in this broader context, indicating the limitations of542

conventional methods. We observe similar outcomes when applying the method to medium datasets,543

where random agents fail to accrue any rewards, underscoring the challenge of reward collection544

within these datasets.545

Figure 11: Episodic return during training using SAC on the whole dataset with 8 trials per episode
and changing the task each episode. Collecting reward on the medium dataset is hard showing the
limitations of the conventional methods. Collecting reward on easy dataset is easier, but meta-learning
requires more advanced methodologies.

E Resources546

Most of the resources for this project were spent on implementing the baselines. The CPU compute547

spent to generate the envs amounts to 200 hours. The GPU compute spent to train the baselines548

amounts to around 140 hours of NVIDIA A100-SXM4-80GB.549

F URL to Dataset and Metadata550

Datasets: https://huggingface.co/datasets/cerc-aai/u3_datasets551

U3 source code: https://github.com/CERC-AAI/u3/552

Croissant Metadata: https://huggingface.co/api/datasets/cerc-aai/u3_datasets/553

croissant554

We plan to fully open-source the code for U3, including the Unity environment framework, the555

python training code and the pipeline. Using U3 still requires installing Unity, which impinges on556

reproducibility. As stated in Section 7, we plan on containerizing the environment to democratize557

access to U3.558

19

https://huggingface.co/datasets/cerc-aai/u3_datasets
https://github.com/CERC-AAI/u3/
https://huggingface.co/api/datasets/cerc-aai/u3_datasets/croissant
https://huggingface.co/api/datasets/cerc-aai/u3_datasets/croissant
https://huggingface.co/api/datasets/cerc-aai/u3_datasets/croissant


G Datasheet559

G.1 Motivation560

1. For what purpose was the dataset created? U3 and its associated OpenXLand datasets561

were created to promote the open development of foundation models for RL and meta-RL.562

2. Who created the dataset and on behalf of which entity? U3 and its datasets were created563

by the researchers listed in the author list.564

3. Who funded the creation of the dataset? The main funding bodies include the Canada565

Excellence Research Chairs Program, as well as the resources of the INCITE program566

award “Scalable Foundation Models for Transferable Generalist AI” provided by Oak567

Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is568

supported by the Office of Science of the U.S. Department of Energy under Contract No.569

DE-AC05-00OR22725570

G.2 Distribution571

1. Will the dataset be distributed to third parties outside of the entity (e.g., company,572

institution, organization) on behalf of which the dataset was created? The U3 framework573

and its datasets will be publicly available.574

2. How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The datasets575

will be distributed through Hugging Face, while the code will be made available on Github.576

3. Have any third parties imposed IP-based or other restrictions on the data associated577

with the instances? No.578

4. Do any export controls or other regulatory restrictions apply to the dataset or to579

individual instances? No.580

G.3 Maintenance581

1. Who will be supporting/hosting/maintaining the dataset? The CERC-AAI Lab at Univer-582

sité de Montréal will maintain the U3 framework and its datasets.583

2. How can the owner/curator/manager of the dataset be contacted (e.g., email ad-584

dress)? The managers of the dataset can be contacted at connor.brennan@mila.quebec,585

andrew.williams@mila.quebec and irina.rish@gmail.com586

3. Is there an erratum? No. We will release one in the future if necessary.587

4. Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete588

instances)? Yes, the datasets will be updated if necessary.589

5. If the dataset relates to people, are there applicable limits on the retention of the data590

associated with the instances (e.g., were the individuals in question told that their data591

would be retained for a fixed period of time and then deleted?) N/A592

6. Will older versions of the dataset continue to be supported/hosted/maintained? N/A593

7. If others want to extend/augment/build on/contribute to the dataset, is there a mecha-594

nism for them to do so? U3 welcomes contributors on GitHub. Should the need arise to595

extend the datasets on Hugging Face, we will establish a procedure for doing so.596

G.4 Composition597

1. What do the instances that comprise the dataset represent (e.g., documents, photos, people,598

countries?) The instances that comprise the datasets are JSON datafiles that describe the599

necessary information to instantiate RL environments in Unity.600

2. How many instances are there in total (of each type, if appropriate)? Six files of one601

million environment instances, six files of one million production rule instances, for a total602

of twelve million instances spread across 12 files.603

20



3. Does the dataset contain all possible instances or is it a sample of instances from a604

larger set? Is it a subset of the effectively infinite number of instances that U3 can generate.605

4. Is there a label or target associated with each instance? Each instance contains the label606

information necessary to instantiate a Unity environment.607

5. Is any information missing from individual instances? No.608

6. Are there recommended data splits (e.g., training, development/validation, testing)?609

No.610

7. Are there any errors, sources of noise, or redundancies in the dataset? The instances611

are sampled with replacement from a procedural generation process, so yes there can be612

redundancies.613

8. Is the dataset self-contained, or does it link to or otherwise rely on external resources614

(e.g., websites, tweets, other datasets)? The datasets rely on access to a Unity instance615

9. Does the dataset contain data that might be considered confidential? No.616

10. Does the dataset contain data that, if viewed directly, might be offensive, insulting,617

threatening, or might otherwise cause anxiety? No.618

G.5 Collection Process619

1. How was the data associated with each instance acquired? We procedurally generated620

environments in Unity and collected the necessary information to recreate them using the621

U3 framework.622

2. What mechanisms or procedures were used to collect the data (e.g., hardware apparatus623

or sensor, manual human curation, software program, software API)? We used the624

Unity Engine and Python, as well as GPUs for training RL baselines.625

3. Who was involved in the data collection process (e.g., students, crowdworkers, con-626

tractors) and how were they compensated (e.g., how much were crowdworkers paid)?627

Students, paid through the funding sources described above.628

4. Does the dataset relate to people? No.629

5. Did you collect the data from the individuals in question directly, or obtain it via third630

parties or other sources (e.g., websites)? N/A631

G.6 Uses632

1. Has the dataset been used for any tasks already? No, the data has not been used, other633

than for running baselines.634

2. What (other) tasks could the dataset be used for? The datasets could be used for635

RL-related tasks as standalone or as part of a blended dataset636

3. Is there anything about the composition of the dataset or the way it was collected and637

preprocessed/cleaned/labeled that might impact future uses? The use of U3 and its638

datasets relies on access to the Unity Engine.639

4. Are there tasks for which the dataset should not be used? No.640

H Author statement641

We bear all responsibility in case of violation of rights.642

We use the MIT License for our data.643

21


	OpenXLand Components
	Metatiles
	The Face Matching Matrix
	Wave Function Collapse Algorithm

	Production Rules
	Production Rule Objects
	Production Rule Conditions
	Production Rule Actions


	Implementing MemoryMaze: A Walkthrough
	Dataset Details
	Training Results
	Resources
	URL to Dataset and Metadata
	Datasheet
	Motivation
	Distribution
	Maintenance
	Composition
	Collection Process
	Uses

	Author statement

