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VeCAF: Vision-language Collaborative Active Finetuning with
Training Objective Awareness

Anonymous Authors

ABSTRACT
Finetuning a pretrained vision model (PVM) is a common tech-
nique for learning downstream vision tasks. However, the conven-
tional finetuning process with randomly sampled data points results
in diminished training efficiency. To address this drawback, we
propose a novel approach, Vision-language Collaborative Active
Finetuning (VeCAF). With the emerging availability of labels and
natural language annotations of images through web-scale crawling
or controlled generation, VeCAF makes use of these information to
perform parametric data selection for PVM finetuning. VeCAF incor-
porates the finetuning objective to select significant data points that
effectively guide the PVM towards faster convergence to meet the
performance goal. This process is assisted by the inherent semantic
richness of the text embedding space which we use to augment image
features. Furthermore, the flexibility of text-domain augmentation
allows VeCAF to handle out-of-distribution scenarios without exter-
nal data. Extensive experiments show the leading performance and
high computational efficiency of VeCAF that is superior to baselines
in both in-distribution and out-of-distribution image classification
tasks. On ImageNet, VeCAF uses up to 3.3× less training batches
to reach the target performance compared to full finetuning, and
achieves an accuracy improvement of 2.7% over the state-of-the-art
active finetuning method with the same number of batches.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
active learning, vision-language models, finetuning

1 INTRODUCTION
Deep learning has made significant progress in the field of computer
vision that is typically attributed to the use of large-scale models
and datasets [8, 26]. Hence, training such models from scratch is a
time-consuming process and demands extensive amount of data. To
address this, the pretraining-finetuning [9, 33, 39] paradigm has been
recognized as a favorable approach for both vision and language
tasks. For vision tasks, a model can be first trained on abundant
supervised or unsupervised data and be saved as a pretrained vision
model (PVM) [2, 6, 28]. Then, the PVM is finetuned on a labeled
dataset for a specific downstream task. By capitalizing on ample
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Figure 1: (a) Motivation of VeCAF. We select the optimal subset
from a large labeled training set for efficient finetuning (FT)
towards a user-specified objective. (b) Training curve compar-
ison on ImageNet-1K validation set. All baselines select 1% of
data in each FT loop with the exception of a conventional setup
with full-data FT. VeCAF achieves the target accuracy faster
with significantly fewer training batches and achieves higher
accuracy with the same training cost.

pretraining data and conserving valuable training resources during
the finetuning stage, this paradigm has archived remarkable adoption
in practical applications.

In the real-world deployments, practitioners aim to adapt deep
learning models to a certain scenario or tune a model towards a
specific performance target with minimal efforts for data selection
and with quick training. Training with all available downstream task
data can be not only costly but also can lead to a biased or degraded
performance in case of improperly collected data. This motivates the
proposal of a data selection framework that can actively select the
optimal data subset for finetuning. Previous work on active learn-
ing [4, 41] has shown the feasibility of PVM finetuning with only
a small subset (e.g., less than 5%) of training data while achieving
high performance metrics in downstream tasks. However, this line
of work is often limited by the setting of low label availability which
hinders its effectiveness to meet the user-specified objectives.

With the growing feasibility to gather large amounts of images
with labels and natural language captions in the target domain
through web-scale data crawling [35] or controlled generation [25],
we find it is practical to explore a novel setting of active finetuning
using annotated data. Then, we aim to select an optimal subset of

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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training data for finetuning while having faster convergence and/or
higher performance metrics as shown in Figure 1. The selection
can further be performed in a loop to accommodate the changing
model performance during the finetuning process. To this end, we
propose to perform an Objective-aware Data Selection (ODS) using
a parameterized data selection model. This ODS model reweighs
training data distribution according to the downstream objective and
selects a subset that is both diverse and representative to the task.

The pursuit of objective-awareness brings new challenges to the
data selection. Intuitively, images with misleading object appear-
ances and complicated backgrounds, as illustrated in Figure 2, often
provide more informative supervision. However, the image features
extracted by the PVM may not fully capture all the semantic infor-
mation present in the image. Therefore, PVM image features may
miss useful information for the data selection and finetuning process
as in previous ActiveFT [41] work. To address this limitation, we
propose to leverage semantically rich language embedding spaces of
the text encoders (e.g., CLIP [33], mT5 [42], BERT [9] etc.) in our
novel Vision-language Collaborative Active Fine-tuning (VeCAF)
approach. Specifically, we extract the text embeddings of the cap-
tions associated with each image. These captions may be sourced
directly from original datasets such as COCO-Caption or alterna-
tively generated by a multimodal Large Language Model (LLM)
e.g., BLIP-2 [22]. Then, we propose a Cross-attentive Embedding
Augmentation (CEA) to augment the image features extracted by the
PVM such that the augmented features can focus more on the rich
semantic information of the training samples. Therefore, the CEA
facilitates both the active data selection and the finetuning process.

Empirically, we demonstrate improved efficiency and perfor-
mance across different scenarios. VeCAF is evaluated on three image
classification datasets including CIFAR-10 [19], Caltech101 [12],
and ImageNet-1K [8] with the pretraining-finetuning paradigm where
base models are pretrained on ImageNet-1K. Results on ImageNet
demonstrate that VeCAF can significantly accelerate the PVM con-
vergence speed to the target performance and saves up to 3.3×
computational cost when compared to finetuning with all training
set. Importantly, VeCAF also addresses out-of-distribution (OOD)
scenarios, where we augment image features by target-domain text
embeddings derived from the generated image captions. By lever-
aging the alignment between text and images embeddings, VeCAF
increases the likelihood of selecting images that possess the char-
acteristic features of the target domain from the training dataset as
shown in Figure 3. In addition, we verify the OOD generalization
ability on the corrupted ImageNet-C dataset where VeCAF improves
accuracy by over 6% when compared to state-of-the-art active learn-
ing methods. Our main contributions are summarized as follows:

• We propose a novel framework, VeCAF, to improve computa-
tional efficiency of PVM finetuning using both the training
objective and the language-embedded knowledge.
• We propose the Objective-aware Data Selection (ODS), where

a parameterized data selection model is optimized for the user-
specified objectives and selects a subset that contributes to
faster convergence and higher performance metrics.
• We further employ pretrained language encoders with the

proposed Cross-attentive Embedding Augmentation (CEA) to

enrich semantic information in image features and to provide
explicit semantic guidance for data selection and finetuning.

2 RELATED WORK
2.1 Active Learning
The learning algorithm in active learning is allowed to choose the
data from which it learns. There are two main selection criteria:
uncertainty [3, 27, 44, 46] and diversity [1, 5, 40]. Uncertainty of
the model can aid selection of the most difficult unlabeled data.
Early works estimate the uncertainty with various heuristics such
as posterior probability [21, 45], entropy [17, 29] and classifica-
tion margin [37]. Previous works [13, 31, 36] also formulate active
learning as an optimization problem. They typically operate in a
discrete space that trivially matches the sample distribution of a
dataset [10, 15]. However, discrete optimization is harder to solve
than the one in continuous space. Also, most previous methods
are designed for a from-scratch training without the pretraining
stage. Bengar et al. [4] reveals drawbacks of such setting without un-
supervised pretraining. Xie et al. [41] addresses both shortcomings
with the proposed continuous-space ActiveFT method that applies
selected samples to the finetuning of the pretrained model in a single
pass. VeCAF extends ActiveFT to the practical setting of data selec-
tion from a large labeled dataset. VeCAF framework enhances the
training efficiency with a training objective-aware data selection and
achieves optimal finetuning results with minimal training batches.

2.2 Exploiting Language in Vision Model Training
Recent developments in language models, especially vision-language
models [22, 23] demonstrate their effectiveness in aligning the em-
bedding space of vision and language to achieve cross-modal gen-
eralization. For example, BLIP-2 [22] addresses the modality gap
using a lightweight Querying Transformer, while Shikra [7] handles
spatial coordinate inputs and outputs in natural language and excels
in referential dialogue and general vision-language tasks. Many prior
work exploit the connection between the image and text modalities,
where they explore the use of language in training better vision
models. For example, Ma et al. [30] leverage pretrained language
models to design a distribution alignment objective. This objective
guides the vision model to learn linguistic representations specific to
the task under a semi-supervised setting. Similarly, Fahes et al. [11]
utilize CLIP to optimize affine transformations of source domain
features. This optimization aligns these features with the target text
embeddings while preserving their content and semantics. In our
work, we use the language embeddings of image captions to perform
text-space augmentations, achieving better sample selection quality
in active learning setting.

3 PROPOSED METHOD
This section introduces the details of the proposed VeCAF frame-
work. As illustrated in Figure 2, we start by selecting a subset of
training data with the PVM image feature space using the proposed
ODS method, as introduced in Section 3.1. Then, the selected sam-
ples pass through pretrained language model to get semantically-rich
text embeddings, which augment the image features with our pro-
posed CEA technique, as formulated in Section 3.2. The augmented
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Figure 2: The overall framework of VeCAF. In each data selection loop, VeCAF performs an Objective-aware Data Selection (ODS) to
select more informative images for finetuning. Cross-attentive Embedding Augmentation (CEA) is performed on the selected images to
further enrich the semantic information captured by the image embeddings by incorporating language knowledge of the caption.

image features are used for PVM finetuning as candidates in future
rounds of data selection. Finally, we show that VeCAF can overcome
challenges of out-of-distribution data in Section 3.3.

3.1 Training Objective-Aware Data Selection
Consider a PVM 𝑓 (·;𝑤) with𝑤 weights and a user-defined finetun-
ing objective L. Given a labeled training setD : {X,Y}, whereX is
the set of image 𝑥 andY is the set of corresponding label 𝑦. The goal
of our active data selection is to find a subset S : {X𝑆 ,Y𝑆 } ⊂ D,
such that PVM finetuning with this subset for a fixed number of
iterations leads to the largest reduction of the training objective. For-
mally, we formulate the optimization problem of our objective-aware
data selection (ODS) process as

S𝑜𝑝𝑡 = argmin
S
E𝑥,𝑦∈D [L (𝑓 (𝑥 ;𝑤 − 𝛽𝛿S), 𝑦)] , (1)

where 𝛿S = ∇𝑤E𝑥𝑠 ,𝑦𝑠 ∈S [L (𝑓 (𝑥𝑠 ;𝑤), 𝑦𝑠 )] is the gradient accumu-
lated by finetuning with S and 𝛽 is the learning rate.

In a practical setting, we cannot compute ∇𝑤L (𝑓 (𝑥 ;𝑤), 𝑦) for
each training example (𝑥,𝑦) before the data selection, as the gradient
computation cost almost equals to the cost of full finetuning, which
contradicts the purpose of active data selection. In this sense, we
make an assumption that a data point with a larger loss contributes
more to the convergence speed of the model.

Intuitively, this assumption leads a naive data selection policy
of selecting the data points with Top-𝐾 training losses. However,
previous active learning work [41] has discovered that the diversity
of the selected data is also important in order to cover corner cases
in the dataset and to avoid overfitting. Therefore, we design the ODS
algorithm with the following principles: 1) data point with a larger
loss L (𝑓 (𝑥 ;𝑤), 𝑦) shall be selected with a higher probability; and 2)
maintaining the diversity of data points selected in S. Analytically,

we formulate our ODS objective as

S𝑜𝑝𝑡 = argmin
S
𝐷𝐾𝐿 (𝑝L (D)| |𝑝𝑆 (S)) − 𝜆𝑅(𝑝𝑆 (S)), (2)

where 𝐷𝐾𝐿 (·| |·) is the KL divergence, 𝑅(·) is a diversity metric, and
𝜆 is a tradeoff factor. 𝑝L (D) is the distribution of the full training
set that guides data selection. To follow our first principle, we assign
the probability of each data point (𝑥,𝑦) in 𝑝L (D) according to the
finetuning objective L scaled by a 𝑍 normalization factor as

𝑝L (𝑥,𝑦) = L (𝑓 (𝑥 ;𝑤), 𝑦) /𝑍 . (3)

The distribution of the selected data 𝑝𝑆 (S) is determined by the
data selection model. As a sanity check, the naive “Top-𝐾 train-
ing losses” serves as the optimal solution for Equation 2 without
considering diversity when 𝜆 = 0.

To enable continuous optimization, we optimize Equation 2 us-
ing a parameterized data selection model 𝜃𝑆 . For the simplicity, we
follow previous work [41] to model the data selection distribution
𝑝𝑆 (S) in the lower-dimension image embedding space, where em-
bedding 𝑒 is produced by the PVM from the input 𝑥 at a hidden
layer. 𝜃𝑆 consists of 𝐾 centroids in the image embedding space, each
selecting the nearest data point. We define the probability of a data
point 𝑥𝑖 with the corresponding embedding 𝑒𝑖 being selected as

𝑝𝑆 (𝑥𝑖 ) = exp(⟨𝑒𝑖 , 𝜃𝑐𝑖𝑆 ⟩)/
∑︁

𝑥 𝑗 ∈D
exp(⟨𝑒 𝑗 , 𝜃

𝑐 𝑗
𝑆
⟩), (4)

where ⟨·, ·⟩ denotes the cosine distance, and 𝜃𝑐𝑖
𝑆

is the closest cen-
troid in 𝜃𝑆 to 𝑒𝑖 . We derive the parameterized distribution distance
𝐷 (𝜃𝑆 ) := 𝐷𝐾𝐿 (𝑝L | |𝑝𝑆 ) for optimization objective Equation 2 using
Equation 3 and 4 as
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𝐷 (𝜃𝑆 ) =
∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

𝑝L (𝑥𝑖 , 𝑦𝑖 ) log
𝑝L (𝑥𝑖 , 𝑦𝑖 )
𝑝𝑆 (𝑥𝑖 )

= E𝑝L [log𝑝L (𝑥𝑖 , 𝑦𝑖 )] − E𝑝L [log 𝑝𝑆 (𝑥𝑖 )]

= 𝐶 − 𝛼
∑︁

(𝑥𝑖 ,𝑦𝑖 ) ∈D
L (𝑓 (𝑥𝑖 ;𝑤), 𝑦𝑖 ) ⟨𝑒𝑖 , 𝜃𝑐𝑖𝑆 ⟩,

(5)

where 𝐶 and 𝛼 are the constants omitted in the formulation.
For the diversity metric 𝑅(·), we follow the diversity regulariza-

tion term proposed in [41] as

𝑅(𝜃𝑆 ) = −
∑︁

𝜃𝑖
𝑆

[
log

∑︁
𝜃
𝑗

𝑆
, 𝑗≠𝑖

exp(⟨𝜃𝑖𝑆 , 𝜃
𝑗

𝑆
⟩)
]
. (6)

By substituting Equation 5 and Equation 6 into Equation 2 and
by removing constant terms, our final objective in terms of 𝜃𝑆 pa-
rameters can be written as

𝜃∗𝑆 = argmin
𝜃𝑆
−

∑︁
(𝑥𝑖 ,𝑦𝑖 ) ∈D

L (𝑓 (𝑥𝑖 ;𝑤), 𝑦𝑖 ) ⟨𝑒𝑖 , 𝜃𝑐𝑖𝑆 ⟩

+ 𝜆
∑︁
𝜃𝑖
𝑆

log
∑︁
𝜃
𝑗

𝑆
, 𝑗≠𝑖

exp(⟨𝜃𝑖𝑆 , 𝜃
𝑗

𝑆
⟩)
 .

(7)

The optimization on 𝜃𝑆 is conducted via gradient descent. To fur-
ther resolve the dependency of the optimized data selection model to
its initialization as observed in [41], we consider an independently-
initialized data selection model ensemble[], denoted as {𝜃𝑒 }𝐸𝑒=1, in
the optimization. We empirically set 𝐸 = 5 to balance the performance-
cost tradeoff. After optimizing each data selection model 𝜃𝑒 inde-
pendently using Equation 7, we can then remove the bias in the ini-
tialization by utilizing the mean 𝜇 and covariance Σ calculated on 𝜃∗𝑒 .
Specifically, given an optimized data selection model 𝜃∗1 , we achieve
the final unbiased data selection model as 𝜃∗

𝑆
= 𝜃∗1 − Σ

−1 (𝜃∗1 − 𝜇).
The optimization in Equation (7) is performed before each fine-

tuning “loop” with the current model weights𝑤 . The training data
with the closest embedding to each 𝜃𝑆 centroid is selected to form a
”finetuning set” with 𝐾 elements. Then, this set is used to finetune
the PVM until the next loop starts. We update ODS weights𝑤 after
a predetermined number of training batches.

3.2 Cross-Attentive Embedding Augmentation
We empirically find that samples selected by the ODS process tend
to consist of multiple objects in both foreground and background,
which is a result of coarse image embeddings produced by the
PVM. To further improve quality of image embeddings for both data
selection and finetuning, we propose Cross-attentive Embedding
Augmentation (CEA). Given a training image, CEA leverages a pre-
trained text encoder transfer the image caption to the corresponding
text embedding. Then, the text embedding is used to augment the
image embedding with attention-based method.

Given selected sample {𝑥𝑆𝑖 }𝐾𝑖=1 in the previous ODS run, the cor-
responding image caption can be denoted as {𝑐𝑆𝑖 }𝐾𝑖=1. Then we feed
the caption into a frozen text encoder, e.g. BERT [9], to convert the
captions into the text embeddings {𝑡𝑖 }𝐾𝑖=1. We use text embeddings
with the same dimensions as image embeddings for easier fusion.

Inspired by [16], CEA is conducted as mapping the image embed-
ding 𝑒𝑖 towards the corresponding text embedding 𝑡𝑖 . To decide the

Algorithm 1: Vision-language Collaborative Active Fine-
tuning (VeCAF)

input :Objective-aware data selection𝑂𝐷𝑆 (·;𝜃 ), labeled data
pool (X,Y), image caption pool 𝐶𝑎𝑝, PVM 𝑓 (·;𝑤),
pretrained language encoder 𝐿𝑀 (·), data selection
loop number 𝐿, batch number 𝐵 for each loop

output :Finetuned vision model 𝑓 (·;𝑤𝐹𝑇 )
1 for loop ∈ [𝐿] do
2 Obtain data selection model 𝜃∗𝑠 for 𝑓 (·;𝑤) with Equ. (7) ;
3 Obtained the selected sample pool

S𝑜𝑝𝑡 = 𝑂𝐷𝑆 ((X,Y);𝜃∗𝑠 ) ;
4 Get the corresponding image caption 𝐶𝑎𝑝𝑖 for 𝑠𝑖 ∈ S𝑜𝑝𝑡 ;
5 Transfer the image caption to text embedding as

𝑡𝑖 = 𝐿𝑀 (𝐶𝑎𝑝𝑖 ) ;
/* Cross-attentive embedding

augmentation (CEA) */

6 CEA attention score computation

𝛼𝑖 = Softmax( 𝑒 𝑗 ·𝑡 𝑗
∥𝑒 𝑗 ∥2 ∥𝑡 𝑗 ∥2 ) ;

7 Image embedding 𝑒𝑖 augmentation
𝑒
𝑎𝑢𝑔

𝑖
= 𝑒𝑖 − 𝜂 · 𝛼𝑖 (𝑒𝑖 − 𝑡𝑖 ) ;

/* PVM finetuning with S𝑜𝑝𝑡 */

8 for batch ∈ [𝐵] do
9 Sample next batch from S𝑜𝑝𝑡 ;

10 Calculate the loss with the classifier ;
11 Optimize 𝑓 (·;𝑤𝐹𝑇 ) via gradient descent ;
12 end
13 𝑓 (·;𝑤) ← 𝑓 (·;𝑤𝐹𝑇 )
14 end
15 Return the finetuned vision model 𝑓 (·;𝑤𝐹𝑇 )

magnitude of the augmentation, we compute a sample-wise attention
score {𝛼𝑖 }𝐾𝑖=1 with the cosine distance between 𝑒𝑖 and 𝑡𝑖 as

𝛼𝑖 = Softmax(
𝑒 𝑗 · 𝑡 𝑗

∥𝑒 𝑗 ∥2 ∥𝑡 𝑗 ∥2
) =

exp
(

𝑒𝑖 ·𝑡𝑖
∥𝑒𝑖 ∥2 ∥𝑡𝑖 ∥2

)
∑𝐾
𝑗=1 exp

(
𝑒 𝑗 ·𝑡 𝑗

∥𝑒 𝑗 ∥2 ∥𝑡 𝑗 ∥2

) . (8)

The attention score 𝛼𝑖 helps to derive the augmented embedding
𝑒
𝑎𝑢𝑔

𝑖
using the image embedding 𝑒𝑖 and the corresponding text em-

bedding 𝑡𝑖 as
𝑒
𝑎𝑢𝑔

𝑖
= 𝑒𝑖 − 𝜂𝛼𝑖 (𝑒𝑖 − 𝑡𝑖 ), (9)

where 𝜂 is the fixed step size. The proposed CEA method enriches
the semantic information and improves performance after finetuning
as shown in experiments. We further present the pseudo code of
VeCAF in Algorithm 1, which specifies the complete procedure
of the proposed Vision-language Collaborative Active Finetuning
(VeCAF) framework.

3.3 Improving Out-of-Distribution Scenarios
In addition to achieving more efficient finetuning on in-distribution
(ID) tasks, one of the additional benefits of introducing the text
modality is the ability to artificially modify the corresponding image
captions as a semantic augmentation. By leveraging the strong lan-
guage capability provided by the text encoder, we can implicitly alter
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Figure 3: The selected samples of ActiveFT [41] and VeCAF.
With the caption augmented: “It is a {𝑠𝑛𝑜𝑤𝑦/𝑟𝑎𝑖𝑛𝑦} day!”, Ve-
CAF can select images that correspond to the target domain.

our requirements for the selected data. This capability enables us
to facilitate domain transfer to out-of-distribution (OOD) scenarios
with only ID data.

For example, leveraging the CEA technique, we can add descrip-
tive phrases like “It’s a {target_domain} day!” to the image captions.
This modification shifts the PVM image embedding towards the
“snow” distribution while highlighting the ID sample images that
have snowflakes or similar patterns during the data selection process,
as demonstrated in Figure 3. By incorporating such textual cues,
we can guide the selection process toward images that possess spe-
cific characteristics or attributes, so the finetuned model can better
generalize in out-of-distribution scenarios.

4 EXPERIMENTS
In this section, we present results of conducted experiments on mul-
tiple image classification tasks. First, we introduce the experiment
setup and evaluation protocols in Sec. 4.1. Main results in Sec. 4.2
show the effectiveness and efficiency of the proposed VeCAF when
compared to other sample selection methods. Particularly, we demon-
strate advantages of the proposed VeCAF in both in-distribution and
out-of-distribution scenarios where it improves the finetuning ef-
ficiency by up to 3.3× and 2.7% accuracy on ImageNet-1K. In
Sec. 4.3, we present further analysis including ablation studies, Ve-
CAF generality and qualitative results.

4.1 Experiment Setup
Datasets. For model training, we conduct experiments using three

image classification datasets: CIFAR-10 [19], class-unbalanced Cal-
tech101 [12], and ImageNet-1K [8]. Details of the dataset can be
found in Appendix A. For out-of-distribution evaluation, we eval-
uate on ImageNet-C [14] which consists of various synthetically
generated corruptions applied to the ImageNet validation set.

Implementation details. In our main experiments, we use the
DeiT-B model [38] pretrained with DINO [6] on ImageNet-1K [8]
as the PVM for finetuning. Additionally, we present experiments
for different PVM architectures and model sizes in Section 4.3 to
demonstrate VeCAF generalizability. For all experiments, we resize
input images to 224×224 to ensure consistency during both the data
selection and the finetuning. In the ODS process, we optimize the

data selection model parameters 𝜃 using the Adam optimizer with a
learning rate of 0.001 until convergence.

We adopt the standard protocols outlined in [38] to finetune the
DeiT-B model. We use the SGD optimizer for supervised finetuning
with the following hyperparameters: 5e-4 learning rate (lr), 1e-4
weight decay and 0.9 momentum. The total number of finetuning
batches for CIFAR-10, Caltech101 and ImageNet is set to be 750,
1500 and 12500, respectively. The total batch numbers are set such
that baseline active learning methods can converge to a reasonable
performance on each dataset. All experiments are conducted on
two Tesla-A100 GPUs with a batch size of 256. We finetune the
model following the settings provided in the official DeiT code1,
with cosine learning rate decay applied.

Evaluation protocol. We primarily focus on an efficient training,
where all baselines are allowed to have the same batch size and the
same number of batches. Convergence results with unlimited batches
are in Appendix C.3. We use a multi-run data selection as the default
setting for VeCAF and all other baselines. Multi-run selection is
the setting where we select a set of training data at the beginning
of each selection loop and use this set for PVM finetuning during
the whole loop. Having multiple loops of selection helps active
learning methods as it allows the data selection model to follow the
training dynamic of the PVM more closely. To balance the benefit of
multi-run selection with an additional overhead of running the data
selection model, we empirically set to perform 3 data selection loops
in all the main experiments. Each loop divides the total number of
training batches uniformly and, hence, contains 1/3-rd of the total
number of training batches. This setting enables the overhead of data
selection to be negligible compared to the overall training time in
each data selection loop, as analyzed in Appendix C.2.

Baselines. We compare VeCAF with three active learning base-
lines LearnLoss [43], TA-VAAL [18], ALFA-Mix [32], ActiveFT [41]
and the conventional approach of full data finetuning. The details of
the baselines are summarized as follows:

• LearnLoss [43] predicts target losses for unlabeled inputs to
select data points with potential incorrect predictions.
• TA-VAAL [18] selects data based on an estimation of the data

distribution of labeled and unlabeled pools, which is further
enhances by incorporating a loss prediction ranking.
• ALFA-Mix [32] employs interpolations between labeled and

unlabeled instances to uncover unrecognized features, which
leads to an efficient data selection policy with a closed-form
solution to identify the optimal interpolation that induces
changes in predictions.
• ActiveFT [41] performs data selection in the embedding space

of a pretrained model, where the selection is converted to a
continuous optimization to match the distribution of the data
pool while maintaining diversity within selected subsets.
• Full Data finetuning (FT) randomly samples all data points

from the training set to perform finetuning of the pretrained
vision models following the conventional paradigm.

1https://github.com/facebookresearch/deit

https://github.com/facebookresearch/deit


581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Classification accuracy with the fixed training cost: all methods for each dataset are trained using the fixed number of batches.
The percentage value on top reports the ratio of data selected during each loop. Some results marked as N/A (“-”) as explained in
Appendix B. Top-1 accuracy with a standard error of 3 repetitions is reported, %.

Method Loop
CIFAR-10 Caltech101 ImageNet-1K

1% 2% 5% 2% 5% 10% 1% 2% 4%

LearnLoss [43]
single-run 85.93±0.05 91.22±0.08 93.89±0.07 46.47±0.16 43.74±0.13 65.59±0.05 49.37±0.09 57.86±0.07 63.46±0.11

multi-run 87.53±0.14 92.53±0.17 94.43±0.22 47.36±0.13 44.27±0.19 66.27±0.14 49.89±0.16 58.22±0.17 64.18±0.13

TA-VAAL [18]
single-run 85.46±0.10 92.65±0.06 94.85±0.10 59.26±0.05 58.11±0.08 66.94±0.08 - - 63.86±0.13

multi-run 87.74±0.17 93.77±0.19 96.01±0.12 60.57±0.18 59.25±0.15 67.32±0.21 - - 64.32±0.16

ALFA-Mix [32]
single-run 86.69±0.07 92.87±0.06 95.14±0.08 59.73±0.05 58.74±0.09 67.36±0.08 - - 64.03±0.07

multi-run 88.14±0.13 93.26±0.13 95.75±0.11 60.74±0.16 60.47±0.14 68.25±0.15 - - 64.69±0.19

ActiveFT [41]
single-run 90.91±0.12 93.80±0.09 95.39±0.08 62.86±0.05 60.55±0.09 69.34±0.06 53.96±0.07 60.33±0.09 64.72±0.10

multi-run 92.79±0.11 94.17±0.16 95.92±0.14 64.43±0.12 61.97±0.17 71.42±0.14 55.67±0.13 61.86±0.21 65.18±0.17

Full Data FT single-run 93.64±0.02 62.08±0.02 57.53±0.01

VeCAF (ours) multi-run 93.57±0.02 95.27±0.04 96.24±0.02 66.33±0.04 65.15±0.03 72.21±0.03 58.31±0.04 63.76±0.03 66.57±0.02

Table 2: 1-vs.-all accuracy for certain categories on CIFAR-10.
DINO-S [18] is used as PVM with 2% of data in each loop.

Methods Airplane Bird Cat Deer

ActiveFT [41] 89.50±0.01 82.70±0.03 83.00±0.02 87.50±0.04

Top-𝐾 Loss 82.18±0.05 81.88±0.01 75.72±0.04 84.64±0.03

VeCAF (ours) 91.24±0.02 88.80±0.04 86.41±0.02 89.12±0.03

4.2 Main Results
In-distribution performance. We present the image classification

results in Table 1. The results demonstrate the effectiveness of the
proposed VeCAF method when compared to other active learning ap-
proaches. Under the fair comparison of the multi-run setting, VeCAF
consistently outperforms other methods across all three datasets,
irrespective of the employed sampling ratios. Remarkably, even with
low data sampling ratios, our method excels in selecting highly rep-
resentative samples. When compared to full data finetuning with
limited training batches, VeCAF achieves higher accuracy even with
only 1% of the data being used for finetuning in each epoch. Ad-
ditionally, it is noteworthy that the performance gain brought by
VeCAF over previous active learning methods increases with the
training set being more complex. For example, VeCAF gains 2.7%
accuracy over ActiveFT on ImageNet-1K compared to less than 1%
on CIFAR-10, which proves that the VeCAF is suitable for more
complex learning tasks. In summary, these results demonstrate Ve-
CAF to be more effective with the pretraining-finetuning paradigm
when compared to previous active learning methods.

Finegrained objective-aware training. The proposed ODS method
offers additional flexibility to accommodate finegrained training ob-
jectives. For verification, we evaluate VeCAF under 1-vs.-all fine-
tuning objective on multiple CIFAR-10 classes. Specifically, given
a target class, we set the loss as a binary classification, with target

Table 3: OOD generalization ability. Models are trained with
1% data subset per loop using the uncorrupted ImageNet. Eval-
uation results are for the distorted ImageNet-C validation set.

Source Target (eval.) Method Top-1 Acc.

ImageNet

Prompt: It’s a snowy day.

ImageNet-C
Snowy

Full Data FT 38.89±0.20

CLIPStyler 40.71±0.41

ActiveFT 36.36±0.11

VeCAF 42.33±0.03

Prompt: It’s a foggy day.

ImageNet-C
Foggy

Full Data FT 45.55±0.27

CLIPStyler 46.25±0.36

ActiveFT 42.45±0.08

VeCAF 47.71±0.03

class being positive and all others being negative. The modified loss
is used in ODS optimization as in Equation (7). A naive objective-
aware baseline of selecting samples with the largest loss is also
included in the comparison. Results in Table 2 show that VeCAF
performs better with the finegrained objectives for target categories,
and the naive addition of top-𝐾 loss is the inadequate approach for
data selection with finegrained objectives.

Out-of-distribution generalization. We further conduct experi-
ments using ImageNet-C validation set to verify the capability of
VeCAF on helping a model finetuned only on the source domain to
generalize towards out-of-distribution (OOD) scenarios. Specifically,
we consider the domain adaptation scenarios of clear→snowy and
clear→foggy. The results are presented in Table 3.

In these experiments, we finetune a PVM classifier using only
uncorrupted (source) ImageNet data points. The only exception is
CLIPstyler [20] which is the state-of-the-art domain transfer frame-
work. It generates stylized images of the target domain from source
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Figure 4: Training loss curve of VeCAF and other baselines including ActiveFT, ALFA-Mix, and Full data FT on Caltech-101 (left) and
ImageNet-1K (right) with 5% and 1% data, respectively.
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Figure 5: Comparison of training efficiency. VeCAF requires
significantly fewer training batches to reach the target accuracy
(B2A) compared with other baselines and full-data finetuning.
Note that the y-axis has an exponential scale.

domain images by leveraging the knowledge of pretrained CLIP
models. Finetuning settings are the same in the previous experi-
ments on ImageNet with 1% of the training data being used in each
finetuning loop for ActiveFT and VeCAF. We can see from Table
3 that VeCAF consistently outperforms three baselines by up to
4.2%. CLIPstyler helps OOD generalization when compared to Full
Data FT, but the presence of artifacts in the stylized images limits
its performance. Despite that ActiveFT has good performance on
in-distribution data, it underperforms in the OOD setting. This is
a result of overfitting because ActiveFT selects data only based on
the source domain distribution. On the other hand, the proposed
domain-specific text embedding augmentation in VeCAF allows the
source domain data that resembles the target domain style to be
selected in the finetuning process (see Figure 3). This leads to better
generalization in OOD scenarios.

Efficiency analysis. To provide a deeper understanding of the
potential training efficiency improvement introduced by VeCAF, we
illustrate the required batch numbers to achieve the target accuracy
(B2A) for different approaches on the three datasets. Specifically,
we report training batches needed for each method with B2A@45,50

Table 4: FLOPs analysis for VeCAF and Full-FT

Method
Training Total FLOPs (G, all batches)
batches CEA ODS/DS FT ALL

VeCAF 3×103 9.53×103 1.5×102 2.11×105 2.21×105
Full-FT 10×103 - - 7.01×105 7.01×105

(i.e., top-1 accuracy of 45% and 50%) for ImageNet, B2A@65
for Caltech101, and B2A@90 for CIFAR-10, respectively. Figure 5
highlights the efficiency of VeCAF in comparison to other methods
using such batch numbers. On ImageNet, VeCAF achieves 3.3×
acceleration over full data finetuning (3075 v.s. 10250 batches) and
outperforms other baselines with less batches as the target accuracy
grows. Additionally, we plot the training loss as a function of the
batch number for different approaches during the finetuning process
in Figure 4. This visualization further highlights the faster conver-
gence and performance of VeCAF when compared to other methods.
These figures provide a comprehensive view of the performance
and efficiency of VeCAF, emphasizing its enhanced efficiency in
achieving the desired accuracy levels.

To verify that the amount of training batches serve as a good
proxy for the overall computational cost of the finetuning process,
we further analyze the overhead of using language encoder and
performing data selection in each data selection loop in Table 4.
We follow the descriptions in the PyTorch report [24] to estimate
the computational cost of training and inference. The CLIP-ViT-L
text encoder model we use in the experiments requires about 11×
the FLOPs of the DeiT model being finetuned, but only needs to
be inferenced once in each data selection loop. This leads to the
FLOPs overhead of CEA to be approximately 4.5% of the total
finetuning cost. The resulting reduction ratio of total FLOPs brought
by VeCAF (7.01/2.21 = 3.17×) is therefore similar to the batch
number reduction ratio (10/3 = 3.33×). Note that this analysis is
consistent across datasets as all data are resized to 224×224 for ViT
inference. This result verifies the computational efficiency of VeCAF
as shown by the batch number reduction in previous experiments.
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Table 5: Top-1 accuracy of VeCAF with different types and sizes
of PVM backbones, and choices of pretrained language encoders.
ImageNet-1K results are reported with 1% data.

PVM
LM

CLIP BERT-L mT5-L GPT2-L

DeiT-S 53.51±0.02 53.64±0.03 53.82±0.03 53.96±0.03

DeiT-B 58.31±0.04 58.63±0.04 58.71±0.03 58.87±0.01

SwinT-S 53.66±0.03 53.71±0.03 53.89±0.02 54.01±0.02

SwinT-B 56.76±0.01 56.87±0.03 56.98±0.03 57.13±0.02

XciT-M 58.48±0.04 58.70±0.03 58.77±0.03 58.95±0.03

XciT-L 61.13±0.01 61.37±0.01 61.56±0.03 61.78±0.03

Table 6: Ablation study for the proposed techniques in VeCAF.
Data selection ratio is set to 1% for CIFAR-10, 5% for Cal-
tech101, and 1% for ImageNet-1K in each loop.

ODS CEA CIFAR-10 Caltech-101 ImageNet-1K

- - 92.79±0.12 60.55±0.10 55.67±0.13

! - 93.27±0.03 64.11±0.04 57.73±0.04

- ! 93.15±0.05 63.04±0.06 56.13±0.05

! ! 93.57±0.02 65.15±0.03 58.31±0.04

4.3 Results Analysis
Generality of VeCAF. The proposed VeCAF framework can be

used to finetune various PVMs with the help of different language
encoders (LMs). Table 5 reports results on ImageNet-1K using var-
ious pairs of PVMs (DeiT-S/B [38], Swin-Transformer-S/B [28],
and XciT-M/L [2]) and LMs (BERT-L [9], mT5-L [42], and GPT2-
L [34]). VeCAF demonstrates its ability to adapt to different PVM
model architectures and the flexibility to be used with various text
encoder models. These results prove VeCAF to be a general active
data selection method for efficient PVM finetuning.

Embedding visualization. In Figure 6, we present the image em-
bedding visualization of the CIFAR-10 training set using UMAP
dimension reduction. With each method selecting 1% of data from
the training set, black dots represent the samples selected by both
ActiveFT and VeCAF, red stars denote samples only selected by
VeCAF, and blue stars denote samples only selected by ActiveFT.
While maintaining the diversity of data selection, samples chosen
by VeCAF appear to be closer to the boundaries compared to those
selected by ActiveFT. This confirms that the proposed ODS helps to
select important samples around the decision boundaries. This is a
result of our selection strategy that incorporates training objective
and, therefore, helps the PVM to learn the subtle differences between
categories more efficiently during the finetuning phase.

Ablation study. We first verify the importance of proposed ODS
and CEA techniques in Table 6. Specifically, ODS can be disabled
by removing the L term in Equation (7). ODS significantly improves
classification accuracy, especially with limited data, and expedites

Figure 6: UMAP visualization of training image embeddings.
Each background color represents one class. For selected sam-
ples, ⋆ suggests being selected by VeCAF only, ⋆ suggests by
ActiveFT [41] only, and • suggests by both.

Table 7: Ablation study of the number of data selection loops on
the CIFAR-10 dataset with 5% data selection.

# Loops 2 3 4 5

CIFAR 95.89±0.02 96.01±0.02 96.14±0.03 96.24±0.03

the finetuning process. CEA further improves classification accu-
racy by integrating rich semantic information from text embeddings
which leads to an enhanced model generalization by capturing un-
derlying semantics in images.

Table 7 presents a study on the impact of the loop count in the
multi-run selection setting using CIFAR-10 dataset. The total number
of training batches is the same in all experiments with uniform
division by the loop count. It is clear that the model performance
is enhanced with the increase in the number of loops. However,
performing additional loops of data selection leads to overhead in
the total finetuning time. Therefore, we set the number of loops to
three throughout our experiments to balance the trade-off between
the model performance and the finetuning time.

5 CONCLUSIONS
In this paper, we proposed novel active data selection framework
called VeCAF that improves the efficiency of model finetuning with
two major components. First, VeCAF finds a subset of training data
that leads to faster convergence using the objective-aware selection
model. Second, it utilizes the text-domain knowledge in pretrained
language encoders to augment image embeddings during selection.

Extensive experiments demonstrated advantages of the proposed
approach such as more accurate in-distribution classification, robust-
ness to out-of-distribution data and high computational efficiency.
In future, we envision VeCAF can be extended to other multime-
dia domains with the potential of text-domain augmentation and by
controllable active data generation for additional improvements.
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