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In the supplementary material, we provide additional information
for the main paper. We start by providing details on the methodology
of reproducing the previous active learning baselines in Appendix B,
and explain the missing results indicated by “-” in the experiment
section of the paper. Next, the insights about loss convergence on
the CIFAR dataset are meticulously documented in Appendix C.1.
We delve into the efficiency of our approach in Appendix C.2, where
we provide compelling reasons for the VeCAF usage. Lastly, an
extensive evaluation of the model’s accuracy with unrestricted count
of training batches is detailed in Appendix C which solidify the
robustness of our experimental findings.

We also include the source code of VeCAF in the supplementary
material. Please check the README file for details.

A DATASETS
CIFAR-10 [5] consists of 60,000 images with a resolution of 32×32
pixels divided into 10 categories. The training set contains 50,000
images while the test set has 10,000 images. The Caltech101 [2]
dataset consists of images from 101 object categories with 40 to 800
images per category. Most classes have around 50 images, and the
image resolution is approximately 300×200 pixels. ImageNet-1K [1]
is a larger dataset with 1,331,167 images belonging to 1,000 classes.
The training set consists of 1,281,167 images while the validation
set contains 50,000 images. All the training sets from these datasets
are considered candidate pools for selection. We also leverage the
ImageNet-C [3] as an OOD test set to evaluate our VeCAF under out-
of-distribution scenarios. ImageNet-C consists of algorithmically
generated corruptions such as blur and noise which are applied to
the ImageNet test set. It is used for evaluating the robustness and
generalization capabilities of computer vision models.

B ACTIVE LEARNING BASELINES
In our study, we incorporate three well-established active learning
baselines (LearnLoss [8], TA-VAAL [4], and ALFA-Mix [6]) within
the pretraining-finetuning paradigm for image classification task.
To ensure a systematic and consistent evaluation, all three methods
employ a batch selection strategy for sample acquisition during the
active learning process.

In Table 1 of our paper, the presence of “-” is attributed to the
nature of traditional active learning methods, which require a small
initial set randomly sampled at the beginning of the process. It
is important to note that the performance of these active learning
algorithms on this initial set is comparable to random sampling.
Therefore, to avoid redundancy, we have omitted reporting duplicate
results for these random initial sets. For instance, we exclude report-
ing CIFAR-10 results for the sampling ratio of 0.5% and Caltech101
results for the sampling ratio of 1%. Moreover, the ImageNet-1K
results with sampling ratios of 1% and 2% are omitted as the size
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Figure 7: Training curve of VeCAF and baselines including Ac-
tiveFT, ALFA-Mix and Full Data FT with 5% of CIFAR-100.

of the initial set is 2.5% according to the reported setting of the
corresponding papers. By excluding duplicate results for random
initial sets in the smaller sampling ratios, we aim to present clear
and concise information in Table 1 and to focus on the most relevant
and informative performance metrics for the active learning methods
applied in our study.

C ADDITIONAL EXPERIMENT RESULTS
C.1 Loss Convergence Analysis
The training loss on CIFAR-10 converges rapidly for each baseline
and, thus, cannot effectively highlight the advantages of the proposed
VeCAF. Instead, we present the loss convergence on CIFAR-100,
which possesses similar to CIFAR-10 domain characteristics as
illustrated in Figure 7. Then, Figure 7 exhibits a comparable to
the Figure 4 of the main paper trend in training loss convergence,
where the VeCAF not only converges faster but also to a lower
loss value in comparison to other baselines. This demonstrates the
improved behavior of VeCAF convergence both in terms of speed
and performance.

C.2 Time Complexity of Data Selection
Efficiency is a crucial aspect of the VeCAF and it is desirable to
operate in a time-efficient manner to reduce the overhead of data
selection in each training loop. In our study, we evaluate the time
required to select various proportions of training samples from Cal-
tech101 with selection ratio 2% and 10% as shown in Table 9. Here
we consider the image captions of each training data point are read-
ily available as they can be generated offline and only once, while
the time for performing ODS, text embedding generation and CEA
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Table 8: Classification accuracy with the unlimited number of batches. The percentage value on top reports the ratio of data selected
during each loop. Top-1 accuracy with a standard error of 3 repetitions is reported, %.

Method Loop
CIFAR-10 Caltech101 ImageNet-1K

1% 2% 5% 2% 5% 10% 1% 2% 4%

Full Data FT single-run 99.31±0.01 88.24±0.02 82.76±0.01

LearnLoss [8]
single-run 90.07±0.02 93.67±0.03 95.99±0.02 62.88±0.02 73.09±0.03 83.04±0.04 52.97±0.03 60.14±0.03 61.93±0.03

multi-run 90.25±0.03 94.21±0.03 96.32±0.04 63.74±0.02 73.25±0.03 83.31±0.03 53.66±0.05 60.49±0.03 62.32±0.04

ActiveFT [7]
single-run 92.31±0.02 95.46±0.02 98.18±0.04 73.69±0.02 81.33±0.03 86.78±0.02 56.87±0.04 63.19±0.03 66.01±0.03

multi-run 92.95±0.01 95.87±0.03 98.54±0.02 74.22±0.02 81.88±0.03 87.04±0.02 57.11±0.03 63.46±0.03 66.21±0.02

VeCAF (ours) multi-run 93.87±0.02 96.47±0.01 98.97±0.01 75.36±0.01 83.62±0.02 87.72±0.01 59.41±0.02 65.64±0.01 68.52±0.02

Table 9: Running time to select various percentages of samples
from the Caltech101 training set for each data selection loop.

Sel. ratio ALFA-Mix LearnLoss ActiveFT VeCAF

2% 6m45s 1m42s 12.02s 16.38s
10% 52m31s 23m17s 13.36s 18.87s

are included in the reported estimates. Conventional active learning
algorithms such as LearnLoss [8] and ALFA-Mix [6] require multi-
ple trial model updates to gradually adjust the selected data, where
these trial updates constitute the majority of the time in the data
selection process which make them relatively inefficient. In contrast,
ActiveFT and VeCAF perform sample selection in a single pass
at the beginning of each data selection loop which eliminates the
need to perform trial model updates. This results in significant time
savings compared to conventional approaches. The minor increase
in time of VeCAF over ActiveFT is caused by the text embedding
CEA process. Considering the > 150s model training time in each
loop, the 4-5 second additional time overhead (3%) is negligible and
also justifiable due to the advantanges introduced by VeCAF.

C.3 Accuracy with Unlimited Training Batches
This work focuses on an efficient training paradigm, and accord-
ingly, we have presented most of our experimental outcomes in the
main paper using the fixed training cost (i.e., number of batches).
This approach inherently benefits methodologies that enable quicker
convergence. To thoroughly assess VeCAF’s convergence efficacy,
we have lifted the constraints on the number of training batches in
this section and conducted a comparative analysis of VeCAF’s final
convergence metrics against established active learning baselines.
The results in Table 8 demonstrate that VeCAF not only achieves
expedited convergence but also surpasses previous active learning
methods in terms of final performance metrics. Remarkably, VeCAF
attains performance on par with comprehensive finetuning by uti-
lizing only 5% of the data for CIFAR-10 and 10% for Caltech101.
These findings suggest that VeCAF is capable of significantly en-
hancing both computational and data efficiency throughout the PVM
finetuning procedure.
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