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1 Implementation Details1

We provide implementation details for our framework and finetuning/generation regime.2

Runtime. We use the Stable Diffusion [8] model that was additionally finetuned on the inpainted3

task to perform inpainting. We use DDIM scheduler [9] with 50 sampling steps for each generated4

frame. Synthesizing 50 frame-long videos with our full method takes approximately 2.5 hours on an5

NVIDIA TeslaV100 GPU. Specifically, Table 3 reports runtime required for each frame.6

Rendering Inpainting Depth model finetuning Decoder finetuning

~40 sec ~5 sec ~40 sec ~60 sec

Table 3: Runtime per-frame. Number of seconds required for each step of the framework. Note that
Rendering includes antialiasing and floating artifacts fix steps.

Depth prediction model and LDM decoder finetuning. We use MiDaS-DPT Large [6] as our7

depth prediction model. For each generated frame, we finetune it for 300 epochs, using Adam8

optimizer [2] with a learning rate of 1e − 7. Additionally, we revert the weights of the depth9

prediction model to the initial state, as discussed in Sec. 3.3. We finetune the LDM decoder for 10010

epochs on each generation step using Adam optimizer with a learning rate of 1e− 4.11

Camera path. Our camera follows a rotational motion combined with translation in the negative12

depth direction. Starting from a simple translation for k frames, every n frames we randomly13

sample a new rotation direction in the x-z plane (panning), that camera follows for n frames. In our14

experiments, we set k = 5 and n = 5. We use PyTorch3D [7] to render and update our unified 3D15

representation.16

Mask handling. We observed that the scene’s geometry sometimes induces out-of-distribution17

inpainting masks for the Stable Diffusion inpainting model. To address this issue, we perform a18

morphological open operation on the inpainting mask: MO = Open(M) with kernel size 3. Then19

we inpaint the mask difference M −MO using Telea [11], while the inpainting model operates on20

MO afterward.21

1.1 Mesh update.22

As discussed in Sec. 3.5 in the paper, we update the mesh as follows: given an image It+1, a mask of23

pixels to unproject M , a corresponding depth map Dt+1 and a camera pose Ct+1, we unproject the24
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(a) No antialiasing (a) With antialiasing (c) No stretch removal (d) With stretch removal

Figure 8: Rendering improvements. Left: effect of rendering without antialiasing (a) and with antialiasing (b).
Right: effect of rendering without stretched triangles removal (a) and with stretched triangles removal (b).

content in a process that is denoted in the main paper by M̃t+1 = UnProj (M , It+1,Dt+1,Ct+1) .25

First, each pixel center is unprojected by its depth value and camera pose into a 3D mesh vertex with26

the pixel’s color as its vertex color. Then, each unprojected four neighboring pixels with coordinates27

(i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1) are used to define two adjacent triangle faces.28

To prevent holes in the generated mesh we connect the existing mesh Mt to the newly unprojected part29

M̃t+1 by inserting additional triangles. To do this, we first extract the boundary pixels surrounding30

the inpainting mask M , and find the faces from Mt that are projected to the current view Ct+1. For31

each such face, we select the 3D point closest to the current camera center: p∗ = argmin
p∈(p1,p2,p3)

∥p− c∥2,32

where c is the camera center of Ct+1, and (p1, p2, p3) are the points of a given triangle. Finally, we33

add the selected points to the triangulation scheme described above, which automatically creates the34

required triangles connecting Mt and M̃t+1.35

1.2 Rendering36

Antialiasing. Rendering an image from a mesh requires projecting points and faces to a 2D plane.37

The rasterization process often creates aliasing artifacts (Fig. 8, left), especially when a high-resolution38

mesh content from an earlier frame is rendered to a later frame, resulting in a large amount of triangle39

that needs to be rasterized into a low number of pixels. To avoid these artifacts, we apply antialiasing,40

similar to the image resize antialiasing method - we render the mesh at x2 higher resolution, apply41

Gaussian blur, and resize it to the required resolution.42

Stretched triangles removal. As described in Sec. 3.6, the stretched triangles are forming between43

close and far away content along regions of depth discontinuities (Fig. 8, right), and we would like to44

remove them. Following Liu et al. [3], we apply the Sobel filter on the depth map Dt to detect regions45

of depth discontinuities and threshold the values below the threshold of 0.3. Then we find triangles46

that are projected to the selected edge regions and filter them based on their normals. Specifically, we47

keep only the following triangles: {tri|(center(tri)− c)Tn < ϵ}, where ϵ is the threshold, n is the48

normal of a triangle, and c is the camera center of Ct+1. In practice, we set ϵ = −0.05.49

Floating artifacts fix. As described in Sec 3.6, content at the border of the current frame can be50

mapped towards the interior of the next frame due to parallax. This creates "floating artifacts," shown51

in Fig. 3 in the paper. To overcome it, we pad the previous depth map Dt with border depth values52

to 1.5x the rendering resolution, as if content exists beyond the image borders. Then, after we warp53

the padded depth to the next camera location, we get a new mask, Mpad, that contains the content54

beyond the image borders. We use this mask to mask out the floating regions and thus enable the55

inpainting model to fill those holes with closer content. We perform this procedure on the image that56

was already rendered in 2x resolution due to the antialiasing step described above.57

2 Baseline Comparison Details58

VideoFusion. Since VideoFusion [4] does not have an explicit way to control the motion presented59

in a video, we append “zoom out video” and “camera moving backward” to the input prompt to60

encourage the generated videos to follow a backward camera motion. We generate 1000 videos of 1661
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"Opulent hotel" "Medieval castle" "Candy house" 

"Haunted house" "Cave" "Library" 

Figure 9: StableDreamFusion sample results. We provide it our camera trajectory and a text prompt “a DSLR
photo of the inside a *”. Full results can be found in the SM html file.

frames each, in 256 resolution. When comparing our method to theirs, we downsample our videos to62

256 resolution. In this comparison, we use the full set of 10 prompts:63

1. “indoor scene, interior, candy house, fantasy, beautiful, masterpiece, best quality”64

2. “POV, haunted house, dark, wooden door, spider webs, skeletons”65

3. “walkthrough, an opulent hotel with long, carpeted hallways, beautiful photo, masterpiece,66

indoor scene”67

4. “A dimly lit library, with rows upon rows of leather-bound books and dark wooden shelves”68

5. “walkthrough, inside a medieval castle, metal, beautiful photo, masterpiece, indoor scene”69

6. “Simple museum, pictures, paintings, artistic, best quality, dimly lit”70

7. “walkthrough, sci-fi ship interiors, corridors,amazing quality, masterpiece, beautiful scenery,71

best quality”72

8. “A grand, marble staircase spirals up to a vaulted ceiling in a grand entrance hall of a73

palace.A warm glow on the intricately designed floor”74

9. “POV, cave, pools, water, dark cavern, inside a cave, beautiful scenery, best quality”75

10. “inside a castle made of ice, beautiful photo, masterpiece”76

GEN-1 To compare to GEN-1 [1], we used the RealEstate10K dataset [12], consisting of curated
Internet videos and corresponding camera poses. We filtered 22 indoor videos that follow a smooth
temporal backward camera motion to adapt it to our method’s setting. To do that, we filter videos that
adhere to the following constraints:

(ct+1 − ct)
T vt

∥(ct+1 − ct)∥ · ∥vt∥
≥ 0.9 ∀t = 1, . . . , n_frames,

where ct is the center of the camera at frame t, and vt is the viewing direction (last column of the77

rotation matrix). We subsample the filtered videos to contain 25 frames and reverse the video if it had78

a positive average displacement (ct+1 − ct) in the z direction.79

Since MiDaS produces depth maps that have a different range compared to the depth assumed in the80

RealEstate10K videos, we can’t directly take the camera extrinsics from the RealEstate10K [12] data.81

To align those ranges, we need to find a scaling factor to multiply the MiDaS predictions with. To do82

that we run COLMAP and compute depth maps, using its dense reconstruction. Our scaling factor is83

then the ratio of median depth values of COLMAP and MiDaS:84

r =
median({DC

t }Nt=1)

median({DM
t }Nt=1)

, (1)

where DC
t and DM

t are the COLMAP and MiDaS depth maps for frame t respectively, and N is the85

number of frames in the video.86

For comparison to GEN-1 we used prompts #1-#5 from the above prompt list that allow reasonable87

editing of a video, depicting an interior of a house.88
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StableDreamFusion. In addition, we compare our method to StableDreamfusion [10], an open-89

source text-to-3D model capable of generating an implicit function of a scene (NeRF [5]) from text90

prompts. We provide it our camera trajectory and a simple text prompt such as “a DSLR photo of the91

inside a cave” (when providing prompts from our usual prompts set, StableDreamFusion was unable92

to converge to meaningful results). The generated scenes contain a lot of blur and unrealistic artifacts,93

as can be seen in Figure 9 since to achieve good visual quality, NERF requires multiple viewpoints94

of a scene from different angles. Full video results of StableDreamFusion can be found in the SM95

HTML file.96

3 Broader impact97

Our framework is a test-time optimization method, which does not require any training data. Never-98

theless, our framework uses two pre-trained models: a depth prediction model and a text-to-image99

diffusion model [8], which are susceptible to biases inherited to their training data (as discussed in100

Sec. 5 in [8]). In our context, these models are used to generate 3D static scenes. To avoid harmful101

content, we consider only text prompts that describe general scenery and objects, while avoiding102

prompts that involve sensitive content such as humans.103
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