
Supplementary Information for Autobahn:
Automorphism-based Graph Neural Nets

1 Activations as functions on a group
In the Autobahn formalism, we make extensive use of the fact that the activations of a group-equivariant
neural network can be treated as functions on the same group. Here we give a brief review for the unfamiliar
reader. This formalism is also covered in detail in Sections 3 and 4 of Reference [6], although under slightly
different conventions.

Consider a space X acted on by a group G: at every point x in X , we can apply a group element g ∈ G,
which maps x to another point in X . The action of the group on X induces an action on functions of X . We
define an operator Tg acting on functions f : X → C as follows. 1

Tg (f) (x) = f (g (x)) . (1)

The inputs to group-equivariant neural networks are precisely functions on such spaces. For instance, for
standard convolutional layers acting on images, each point on the space is a single pixel and the group of
translation moves between pixels. The RGB value of each pixel is then vector-valued function of X .

But while the input is a function on X , representations internal to the network can be more general. For
instance, consider a neural network that is given a list of objects and attempts to learn an adjacency matrix.
Here, X is the list of objects, and the object identity is a function on the list. But the output space is a function
on pairs of objects: a different space.

Fortunately, the complexity of dealing with a myriad of spaces can be avoided by mapping functions from
their individual spaces to functions onG. This allows all possible spaces and group actions to be treated using
a single (albeit abstract) formalism, simplifying definitions and proofs. For simplicity, we will assume that
G is transitive on X : for all x, y ∈ X , there exists a group element g such that g(x) = y. (If the G is not
transitive, we can simply apply this procedure on every orbit ofG and concatenate the results along a channel
dimension.) The construction proceeds as follows. We arbitrarily choose an initial point x0 in X to act as the
origin. Then, we construct the function

fG (σ) = f (σ (x0)) ∀σ ∈ G. (2)

Since we have assumed that G is transitive, this is an injective map into functions on G that preserves all
of the information in f . In Figure 1, we depict this procedure, mapping the adjacency matrix for a graph
with size 6 vertices to the S6, the group of all permutations of six elements. Subsequent group actions then
transform the resulting function as follows.

TgfG (σ) = f (σ(gx0)) = fG (σg) . (3)
1Note this is a different convention for the action of group elements on functions from the one described in Reference [6]. The choice

of whether to use Tg operator described here or the Tg operator described in the reference is a matter of personal preference as they are
inverses.

1



e

(2 3)

(2 3)(6 5 4) 

0.2

0

0

A(g)g

2.0

1.41.9

0.2

3.5
0.1

7.7

(2 6 5 4 3) 1.9

Figure 1: Example showing how a function on the symmetric group can be constructed from neural network
activations on the edges of a graph. To construct the function, we first list the vertices in arbitrary order.
Then, for every permutation, we permute the indices and look at two arbitrarily chosen vertices (here we
have chosen the first two). If these vertices form an edge, the function takes the edge activation as its value.
Otherwise, the function takes a value of zero.

2 Equivariance of Automorphism-based Neurons
Here, we prove that the Algorithm 1 is equivariant to permutation.

Theorem 1. Let G be a graph of n vertices and let σ ∈ Sn. The neuron n` described in Algorithm 1 obeys

n`
(
Tσf

`−1
)

= T ′σn
`
(
f `−1

)
(4)

Proof. Denote the permutation of G by σ by Ḡ. Applying n` to Ḡ constructs a matching µ̄. Since matching is
accomplished up to an element in T ’s automorphism group, there exists v ∈ Aut(T ) such that

vµ = µ̄σ

Denoting convolution over Aut(T ) as ∗, we have

n`
(
Tσf

`−1
)

= T ′µ̄−1

(
ν
((
Tµ̄Tσf

`−1
)
∗ w + b

))
= T ′µ̄−1

(
ν
((
TvTµf

`−1
)
∗ w + b

))
= T ′µ̄−1T ′v

(
ν
((
Tµf

`−1
)
∗ w + b

))
= T ′σ−1T ′µ−1

(
ν
((
Tµf

`−1
)
∗ w + b

))
.

which proves equivariance. Note the third line follows from equivariance of convolution over Aut(T ) and
the fact that b is invariant to elements in Aut(T ).

3 Application of Autobahn to grid graphs
Here, we discuss the application of Autobahn to grid graphs and show how the ideas in Autobahn can be used
to recover the standard convolutional and steerable CNN (p4m) architectures

3.1 Steerable CNNs
We first recover the steerable CNN architecture for the p4m group described in Reference [2]. For concrete-
ness, we will consider a steerable CNN constructed using a 3 × 3 filter; however, the same construction can
be applied to an arbitrary k × k filter. To recover a 3 × 3 steerable CNN, we will use as our template a grid
of size 5 × 5. Using this larger template allows us to easily express the aggregation of all the signals in the

2



(a)

(b)

Figure 2: Template graphs for a Steerable CNN (a) and a standard convolutional neural network (b). In each
case the output of the neuron is nonzero only for permutations that preserve the set of blue nodes and is
invariant to permutation of the black nodes.

neuron’s immediate receptive domain. Note that this resembles the use of a star graph for MPNNs where we
include both the “input” and the “output” nodes in the same template.

We first describe the output of the neuron Each neuron outputs a function on S25 that (a) is nonzero
only for permutations that preserve the center 4 × 4 nodes and (b) is constant for all permutations of the
black nodes amongst each other. Furthermore, the output is nonzero only for elements corresponding to the
automorphism group of the 3× 3 grid. This is the group D4 which corresponds to rotations of the grid by 90
degrees and horizontal / vertical reflections.

These outputs then form the input of the neuron in the next layer. Each neuron receives as input a
function over D4 associated with each 3 × 3 subgrid in Figure 2a. After narrowing and promotion, each
of these function is embedded on group elements of S25 that first send the grid to the indices 1, . . . , 9 and
then applies the permutation corresponding to the appropriate element of D4. Finally, each neuron applies a
convolution that combines subgrid group elements of similar orientations together using a convolution over
the automorphism group of the template, which is also D4.

This example highlights the importance of having a formalism capable of more complex methods of trans-
ferring information between neurons than merely copying over node or edge features. If the input features
had been sent to individual nodes and edges than we would have inadvertently averaged input signals over
nodes or edges shared between incoming 3× 3 graphs.

3.2 Convolutional Neural Networks
As discussed in the main text, convolutional neural networks have a notion of left-right and up-down. This is
information not present in a grid graph. To hope to recover a CNN from any graph neural network architec-
ture, we must therefore consider a richer graph embedding for the image.

For a one-dimensional CNN, we can recover a CNN by considering a directed graph where edges always
point in one direction. Two extend this to a two-dimensional CNN, we introduce two different types of edges:
“red” edges that move horizontally from pixel to pixel in the image and “black” edges that move vertically.
We arbitrarily set the red edges to always point towards the right and the black edges to always point up. Then,
we construct a template using the same red and black edges (depicted in Figure 2b). Each template then picks
out a single k × k subgrid in the image (again, we set k = 3 for specificity in the discussion that follows).
To construct each neuron, we first extend our definition of automorphism to require that automorphism must
also preserve color. In this case the automorphism group of the template is the trivial group and we can take
an arbitrary linear combination of all the pixels covered by our template. This is the operation performed by
a standard CNN filter.

This example gives insight into the role of the automorphism group in the Autobahn formalism. In the

3



main text the automorphism group was defined as the set of all permutations that leaves the Adjacency matrix
unchanged. This choice was made simply because every graph has an adjacency matrix, ensuring that the
automorphism group would be well-defined for any graph. However, if we know more about the structure
of our graph, there is no reason that information cannot be included into the definition. For instance, in this
example we have also required that the permutations leave a collection of edge features unchanged as well
(specifically edge color). In other applications one might also further constrain the group by considering
other graph attributes such as node features.

4 Independence of representative for promotion.
Uniqueness of u and s in the definition of promotion is a straightforward application of the following lemma.

Lemma 2. Let τ and t be elements of Sm. Let u, v ∈ Sk and s, q ∈ Sm−k be permutations such that

τ = ús̀t = v́q̀t (5)

Then u = v and s = q.

Proof. It follows directly from the assumption that

ús̀ = v́q̀

=⇒ ús̀v́−1q̀−1 = I

Since v́−1 acts only on the first k elements and s̀ acts only on the last k, they commute and

úv́−1s̀q̀−1 = I

Moreover, let a = uv−1 and b = sq−1. It follows from the definition of ´ and ` that

á = úv́−1 and b̀ = s̀q̀−1. (6)

implying
áb̀ = I. (7)

But this is only possible if a is the identity element of Sk and b is the identity element of Sm−k, which in turn
implies u = v nd s = q.

5 Proof of Equivariance for Autobahn
Here, we prove that the Autobahn architecture obeys permutation equivariance. For Autobahn, neural net-
work inputs and activations are functions on subgroups acting on a subset of the graph’s vertices and global
permutation of inputs can induce group operations in the associated subgroups.

Proving equivariance requires we describe how Autobahn networks transform when applying a global
permutation to the input graph. To do so, we recall from Subsection 4.2 that narrowing is the pseudoinverse
of promotion. Consequently, between every step in Autobahn we can promote the activation of any neuron
to Sn and then immediately narrow it back to the nodes in the neuron’s local graph without changing the
network. Doing this allows us to rewrite the steps for an Autobahn neuron n`j as follows.
T1.1 Narrow every activation f `−1

sz from Sn to
(
az1, . . . , a

z
mz

)
.

T1.2 Further narrow the incoming activation f `−1
sz to the corresponding intersection to get f `−1

sz ↓(bz1 ...bzkz ).

T1.3 Promote each f `−1
sz ↓(bz1 ...bzkz ) to Sn.

T2.1 Narrow the results back to (bz1 . . . b
z
kz

).

4



T2.2 Promote each of these to (a1, . . . , am) :

f̃z = f `−1
sz ↓(bz1 ...bzkz )↑

(a1...am).

T2.3 Promote f̃z to Sn.
T3.1 Narrow back down to (a1, . . . , am).
T3.2 Apply a symmetric polynomial S to f̃1, . . . , f̃p :

f̂ = S(f̃1, . . . , f̃p).

T3.3 Promote f̂ to Sn.
T4.1 Narrow back down to (a1, . . . , am).
T4.2 Apply one or more (learnable) equivariant linear transformations pj , each of which is followed by a

fixed pointwise nonlinearity ξ, to get the final output of the neuron.

f `j = ξ(pj(f̂)).

T4.3 Promote every f `j to Sn.
Here, we have rewritten Autobahn so that steps T1, T2, T3, and T4 all map functions on Sn to functions on
Sn. Consequently, we can show that each of these steps is equivariant to permutations in Sn, making the
network to equivariant to permutation as whole.

5.1 Action of permutations on narrowing and promotion
Before we prove equivariance, we first consider how a permutation of a local graphs affects the arbitrary
orderings chosen when narrowing and promoting. Consider narrowing a function on m vertices onto a subset
of k vertices, {i1, . . . , ik} ⊂ {1, . . . ,m}. Narrowing first applies a permutation that sends the vertices
indexed by {i1, . . . , im} to the first k indices, (1, . . . ,m). Vertex i1 is sent to position 1, vertex i2 is sent to
position 2, and so forth. However, this implicitly orders the vertices: If we had initially listed the vertices in a
different order then they would have been sent to different positions in the set (1 . . . ,m). Consequently, when
applying a permutation π to a local graph graph with m nodes, it is not enough to merely consider narrowing
from {π(i1), . . . , π(im)} to (1, . . . ,m) as we have no guarantee of recovering the same arbitrary ordering
when considering a permuted copy of the graph. Rather, we must also ensure that our network is unaffected
by subsequent permutation p of the labels (1, . . . ,m) caused by making a different arbitrary choice in order
for the permuted graph. Throughout this section, we will extend the ´ and ` notation to both maps from Sm
to Sn or Sk to Sn as necessary and trust that the precise domain and ranges of the maps will be clear from
context.

Let f be an activation and u ∈ Sk, s ∈ Sm−k, and t ∈ Sm be permutations as in Subsection 5.2 of
the main text. Upon applying a permutation π to a neuron’s local graph, the neuron narrows the permuted
activation Tπf to the function

(Tπ)f↓(π(ip(1)),π(ip(2)),...,π(ip(k)))
(u) = (n− k)!

−1
∑

s∈Sm−k

Tπf(ús̀τ). (8)

where τ is an arbitrary permutation that sends π(i1) to p(1), π(i2) to p(2), etc. Moreover, since t and τπ
send the same vertices to the (unordered) sets {1, . . . , k} and {k + 1, . . . ,m} there must exist a permutation
a ∈ Sk−m such that

ṕàt = τπ. (9)

5



(. . . , 5, 3, . . . , 2, 1, . . . , 4 . . .) (1, 2, 3, 4, 5, . . .) (2, 4, 3, . . .)

(. . . , 4, 3, . . . , 5, . . . 2, 4, 1) (5, 4, 1, 3, 2, . . .) (4, 2, 3, . . . , )

b

ρ π́ὰ

t́

b−1

ṕ´̀a

t́−1

π

ρ−1

τ

π−1

π́−1ὰ−1

τ−1

ṕ−1 ´̀a−1

Figure 3: Commutative diagram depicting the permutations involved in T1 and T2. For concreteness, we
have set k = 3 and m = 5. Our local graph is defined on vertices vertices 1 through 5, and here we are
narrowing to vertices j1 = 2, j2 = 4, and j3 = 2.

and we can consequently write

Tπf↓(π(ip(1)),π(ip(2)),...,π(ip(k)))
(u) = (n− k)!

−1
∑

s∈Sm−k

Tπf(ús̀τ).

= (n− k)!
−1
∑

s∈Sm−k

Tπf(ús̀ṕàtπ−1).

= (n− k)!
−1
∑

s∈Sm−k

f(ús̀ṕàtπ−1π).

=
∑

s∈Sm−k

f(úṕs̀àt).

= f↓(π(ip(1)),π(ip(2)),...,π(ip(k)))
(up)

= Tpf↓(π(ip(1)),π(ip(2)),...,π(ip(k)))
(u). (10)

Similarly, promoted functions transform as

g↑(π(ip(1)),...,π(ip(k)))(α) =

{
g(u) if ∃u ∈ Sk, s ∈ Sm−k s.t. α = ús̀τ

0 otherwise.
(11)

=

{
g(u) if ∃u ∈ Sk, s ∈ Sm−k s.t. α = úṕs̀àtπ−1

0 otherwise.
(12)

=⇒ Tpg↑(π(ip(1)),...,π(ip(k))) = (Tπg) ↑(i1,...,ik) (13)

5.2 Proof of equivariance for individual sublayers
We now prove that each of the individual sublayers T1-T4 obey equivariance.

5.2.1 T1 is equivariant

Since we are applying narrowing twice, we must deal with two sets of ordered vertices: (i1, . . . , im) and the
ordered subset to which we are narrowing, (j1, . . . , jk).

Our entire graph will be acted on by a permutation ρ. We let b ∈ Sn be an arbitrary permutation that
sends the ordered set (i1, . . . , im) to the first m positions and let β ∈ Sn be a permutation that sends
(ρ(i1), . . . , ρ(im)) to (π(1), . . . , π(m)) for some (unknown) π. The permutations b and β play the same
role as t and τ when narrowing from {1, . . . , n} to (i1, . . . , im).

To aid the reader, we have summarized how global permutations affect the various subsets involved in
narrowing and promotion in 3.

6



We now seek to prove equivariance:((
(Tρf)↓(ρ(iπ(1)),...,ρ(iπ(m)))

)
↓(π(jp(1)),...,π(jp(k)))

)
↑
(
ρ
(
ijp(1)

)
...,ρ

(
ijp(k)

))

= Tρ

(((
f↓(i1,...,im)

)
↓(j1,...,jk)

)
↑(ij1 ,...,ijk)

)
(14)

Repeatedly applying (10), we have((
(Tρf)↓(ρ(iπ(1)),...,ρ(iπ(m)))

)
↓(π(jp(1)),...,π(jp(k)))

)
↑
(
ρ
(
ijp(1)

)
...,ρ

(
ijp(k)

))

=
((
Tπ

(
f↓(i1,...,im)

))
↓(π(jp(1)),...,π(jp(k)))

)
↑
(
ρ
(
ijp(1)

)
...,ρ

(
ijp(k)

))
(15)

=
(
Tp

((
f↓(i1,...,im)

)
↓(j1,...,jk)

))
↑
(
ρ
(
ijp(1)

)
...,ρ

(
ijp(k)

))
(16)

= Tρ

(((
f↓(i1,...,im)

)
↓(j1,...,jk)

))
↑(ij1 ...,ijk) (17)

where the last line follows by the same argument as (13).

5.2.2 T2 is equivariant

We seek to prove that((
(Tρf)↓(

ρ

(
ij
p−1(1)

)
...,ρ

(
ij
p−1(k)

))
)
↑(π(jp(1)),...,π(jp(k)))

)
↑(ρ(i(1)),...,ρ(i(m)))

= Tρ

(((
f↓(ij1 ,...,ijk)

)
↑(j1,...,jk)

)
↑(i1,...,im)

)
(18)

The proof proceeds similarly to the proof for T1. We have((
(Tρf)↓(

ρ
(
ijp(1)

)
...,ρ

(
ijp(k)

))) ↑(π(jp(1)),...,π(jp(k)))
)
↑(ρ(iπ(1)),...,ρ(iπ(m)))

=
((
Tp

(
f↓(ij1 ,...,ijk)

))
↑(π(jp(1)),...,π(jp(k)))

)
↑(ρ(iπ(1)),...,ρ(iπ(m))) (19)

=
(
Tπ

((
f↓(ij1 ,...,ijk)

)
↑(j1,...,jk)

))
↑(ρ(iπ(1)),...,ρ(iπ(m))) (20)

= Tρ

(((
f↓(ij1 ,...,ijk)

)
↑(j1,...,jk)

)
↑(i1,...,im)

)
(21)

5.2.3 T3 is equivariant

To prove that applying a symmetric polynomial and applying convolution over a graph’s automorphism group
preserves equivariance, we require the following lemma.

Lemma 3. Let A be an Sm equivariant operator. Then,(
A
(

(Tρf)↓(ρ(iπ(1)),...,ρ(iπ(k)))

))
↑(ρ(iπ(1)),...,ρ(iπ(k))) = Tρf

((
A
(
f↓(i1,...,ik)

))
↑(i1,...,ik)

)
(22)

Proof. Applying (10), the definition of equivariance, and (13) we have(
A
(

(Tρf)↓(ρ(iπ(1)),...,ρ(iπ(k)))

))
↑(ρ(iπ(1)),...,ρ(iπ(k)))

=
(
A
(
Tπ
(
f↓i1,...,im

)))
↑(ρ(iπ(1)),...,ρ(iπ(k)))

=
(
Tπ
(
A
(
f↓i1,...,im

)))
↑(ρ(iπ(1)),...,ρ(iπ(k)))

= Tρf
((
A
(
f↓(i1,...,ik)

))
↑(i1,...,ik)

)
(23)

7



To prove equivariance of T3, it is therefore enough to prove that application of the symmetric polynomial
is Sm-equivariant. However, the output of the polynomial is invariant by definition, and it is well-known that
the products are group-equivariant [5]. Consequently, the symmetric polynomials obey equivariance.

5.2.4 T4 is equivariant

Equivariance of T4 follows directly from Lemma 3 and the fact the neuron described by Algorithm 1 is
equivariant, as shown in Section 2.

6 Expressivity of Autobahn
Here, we give results directly comparing the expressivity of specific Autobahn architectures to other graph
neural networks.

6.1 Recovery of k’th-order Networks
Here, we show that

1. The expressivity of an Autobahn network whose largest template has k nodes is bounded above by the
expressivity of a k’th order network as described in [7].

2. There exists an Autobahn network that achieves this bound.

6.1.1 Group-theoretic description of k’th order networks

To facilitate our discussion, we first describe the k’th order networks from a group theoretic point of view.
Here, the k’th order network can be described as functions on the quotient spaces Sn/Sn−k, Sn/Sn−k+1,
etc. The different orbits of the permutation group on the k’th order tensor correspond to different quotient
spaces: for instance, the central diagonal Note that in general, a function on Sn/Sn−m can be identified with
a function on Sn that obeys the following property

g(u) = g(us̀) ∀ s ∈ Sn−m. (24)

The value of such a function depends only on which nodes u sends to the first m positions: the indices of
these nodes correspond, in order, to the indices in a tensor representation of the data. Note that the original
formulation of the k’th order network is given in terms of tensors with indices corresponding to individual
nodes; the two formulations can be interconverted as described in Section 1. The action of the network itself
can be fully described using the general theory of group equivariant networks described in [6]. However, here
it will be easier to describe the network as the composition of three operations.

1. Convolution over all possible permutations of the first m indices

g ? h(u) =
∑
s∈Sk

g(śu)h(s−1) (25)

Here g is a function obeying (24) and h is a function from Sk → C. It is easy to see that the output of
the convolution is on the same quotient space as g. Note that by setting h to a function that is 1 for a
single group element and zero otherwise and convolving, it is possible to use (25) to translate g by a
permutation that permutes the first k.

2. Moving a function onto a smaller homogeneous space by averaging over all possible permutations of
the other indices. If we look at the corresponding functions on Sn, this corresponds to performing the
following sum.

g′(u) =
∑

s∈Sn−k

g(śu) (26)

8



This corresponds to averaging over the last n− k indices.

3. Moving a function from a smaller homogeneous space Sn/Sn−m to a larger homogeneous space
Sn/Sn−k. The precise characterization of this function depends on how we view the inputs and outputs.
Writing them as m’th order and k’th order tensors γ and γ′ respectively, this corresponds to setting

γ′i1,i2,...,im,...,ik = γi1,i2,...,im . (27)

However, viewed as a function on Sn, this leaves the function unchanged.

6.1.2 Embedding Autobahn Activations in a k’th order network

It is sufficient to prove that the k’th order network can reproduce Autobahn for templates of size k and a k’th
order signal, as we can trivially treat a lower-order signal as a k’th order signal that has the same value for
many choices of index. First, we show that the k’th order network is capable of representing the Autobahn
activation. Consider an Autobahn activation fj whose local graph is denoted Rj . Using promotion, we can
embed the activation as a function on Sn as follows. Let t be an arbitrary permutation that moves the indices
of the j’th local graph to 1, . . . , k.

fj↑(1,...,n)(α) =

{
fj(u) if ∃u ∈ Sk, s ∈ Sm−k s.t. α = ús̀t

0 otherwise.
(28)

More specifically, we note that since the general theory of group equivariant networks says the activation of
an Autobahn neuron (here arbitrarily chosen to be neuron j) can be written as a function over Aut(Rj), and
will consequently have an even more structured sparsity pattern. Specifically, we define the ˆ symbol, similar
to the `, that maps elements of Aut(Rj) to Sn such that for u ∈ Aut(Rj),

û(i) = u(i) ∀ 1 ≤ i ≤ k (29)
û(i) = i ∀ i > k. (30)

Note that if a permutation can be written as û, it can also be written using the ´ symbol using Cayley’s
theorem. Consequently, for any given choice of tj that sends the indices here exists a permutation in vj ∈ Sk
such that

fj↑(1,...,n)(a) =

{
fj(u) if ∃u ∈ Aut(Rj), s ∈ Sm−k s.t. a = ûv́j s̀tj

0 otherwise.
(31)

Note this embedding is (trivially) injective.
We now extend this embedding to the multiple neuron case. Without loss of generality, we assume that

each subgraph isomorphic to a template corresponds to single neuron. (If two neurons are operating on the
same subgraph they can be treated as a single neuron operating on more channels.) We can always sort the
neurons based on their isomorphism class without breaking permutation equivariance. Consequently we need
only consider neurons that share a template when constructing an embedding: neurons whose local graphs
are not isomorphic can be embedded separately, and then concatenated along the channel index. Denoting
the set of neurons that share the template by NT , we can embed their activations in Sn/Sn−k as

femb(a) =

NT∑
j=1

fj↑(1,...,n)(a) (32)

Since each subgraph isomorphic to a template corresponds to a single neuron, for every value of (a) there is
at most one promoted activation that is nonzero. Consequently, this embedding is also injective.

Finally, we note that Autobahn explicitly uses information about the location of subgraphs in the net-
works. This can be transferred into a k’th order network by embedding functions that are 1 on a neuron, or
on the intersection between neurons, in the same manner as in (32).

9



6.1.3 Performing Automorphic Convolution in a k’th order network

We now show that the k’th order network is capable of performing operations on the embedded signal that
correspond to the core operations of Autobahn: convolution over the Automorphism group, narrowing, and
promotion. Let fj and g be a functions on Sk that are nonzero only for elements of the Automorphism group
of Rj . We first observe that

(fj ∗ g) ↑(1,...,n)(a) = fj↑(1,...,n) ? g(a) (33)

To show this, we note that if the top condition in (31) holds, we have that

(fj ∗ g) ↑(1,...,n)(a) =
∑

w∈Aut(Rj)

fj(w
−1u)g(w) (34)

=
∑

w∈Aut(Rj)

fj↑(1,...,n)(ŵ−1ûv́j s̀tj)g(w) (35)

=
∑
w∈Sk

fj↑(1,...,n)(ẃ−1ûv́j s̀tj)g(w) (36)

=fj↑(1,...,n) ? g(a) (37)

Similarly, if the bottom condition holds then

(fj ∗ g) ↑(1,...,n)(a) =0 (38)

=
∑
s∈Sk

fj↑(1,...,n)(śa)g(s−1) (39)

=fj↑(1,...,n) ? g(a). (40)

The second line follows from the fact that if fj(śa) being nonzero implies that the first condition in (31)
holds instead of the second, contradicting our assumption.

We now return to our embedding of the Autobahn activations. Embedding the output of each neurons
convolution over their respective local graph’s automorphism group,

NT∑
j=1

(f ∗ g)j ↑
(1,...,n)(a) =

NT∑
j=1

∑
s∈Sk

fj↑(1,...,n)(śa)g(s−1) (41)

=

NT∑
j=1

∑
s∈Sk

fj↑(1,...,n)(śa)

 g(s−1) (42)

=

NT∑
j=1

fj↑(1,...,n)

 ? g(a) (43)

Consequently, convolutions over the automorphism groups of individual neurons can be written using convo-
lutions of the form of (25) on the embedded signal.

6.1.4 Performing Narrowing in a k’th order network

We first establish two useful identities. We first note that

g↓(i1,...,ik)↓(j1,...,jm) = g↓(ij1 ,...ijm ) (44)

and

g↓(i1,...ik)↑
(1,...,n)(a) =

{ ∑
w∈Sn−m g(úẁt) if ∃u ∈ Sk, s ∈ Sn−k s.t. a = ús̀t

0 otherwise.
(45)

10



This latter identity can be written more compactly by introducing an indicator function 1 that is 1 if the
condition holds and 0 otherwise. Since

∃u ∈ Sk, s ∈ Sn−k s.t. a = ús̀t ⇐⇒ {a(i1), . . . , a(ik)} = {1, . . . , k} (46)

we can write

g↓(i1,...ik)↑
(1,...,n)(a) =

 ∑
w∈Sn−m

g(ẁa)

1A{i}(a) (47)

where
A{i} = {α ∈ Sn|α(i1), . . . , α(ik)} = {1, . . . , k} . (48)

This set is preserved by permutation of the other N − k indices, and consequently

g↓(i1,...ik)↑
(1,...,n)(a) =

∑
w∈Sn−m

g(ẁa)1A{i}(ẁa) (49)

Combining (44) and (49), we have(
NT∑
i=1

fi↓(j1,...,jm)

)
↑(1,...,n)(a) =

NT∑
i=1

fi↓(j1,...,jm)↑
(1,...,n)(a) (50)

=

NT∑
i=1

fi↑(1,...,n)↓(i1,...,ik)↓(j1,...,jm)↑
(1,...,n)(a) (51)

=

NT∑
i=1

fi↑(1,...,n)↓(ij1 ,...,ijm )↑
(1,...,n)(a) (52)

=

NT∑
i=1

∑
s∈Sn−m

fi↑(1,...,n)(s̀a)1Bj (s̀a) (53)

where is the set of permutations such that

Bj = {α ∈ Sn|α(ij1), . . . , α(ijm)} = {1, . . . ,m} . (54)

Here the i indices are chosen from an arbitrary neuron containing the graph intersections; there is no depen-
dence on i on the left-hand side because the actual values of ij1 are independent of the neuron used. Summing
both sides over the MT possible intersections to which we are narrowing our activations gives

MT∑
j=1

(
NT∑
i=1

fi↓(j1,...,jm)

)
↑(1,...,n)(a) =

MT∑
j=1

NT∑
i=1

∑
s∈Sn−m

fi↑(1,...,n)(s̀a)1Bj (s̀a) (55)

=
∑

s∈Sn−m

(
NT∑
i=1

fi↑(1,...,n)(s̀a)

)MT∑
j=1

1Bj (s̀a)

 (56)

Consequently, we can write narrowing as an operation on a k’th order network by first applying an element-
wise multiplication against a signal, followed by an average over the remaining indices.

6.1.5 Performing Promotion in a k’th order network

To write promotion as an operation in a k’th order network, let {fj} a function being promoted from a
subgraph on indices ij1 , . . . , ijm to i1, . . . , ik. We observe that

g↓(ij1 ,...,ijm )↑
(i1,...,ik)↑(1,...,n)(a) =

∑
w∈Sn−m

g(ẁa)1A{i}(a)1Bj (a). (57)

11



Now, we consider all MT functions being promoted from a set of isomorphic subgraphs. We have

MT∑
j=1

fj↑(i1,...,ik)↑(1,...,n)(a) =

MT∑
j=1

fj↑(1,...,n)(a)↓(ij1 ,...,ijm )↑(i1,...,ik)↑(1,...,n) (58)

=

MT∑
j=1

fj↑(1,...,n)(a)1A{i}(a)1Bj (a) (59)

Summing over the target reference domain gives

NT∑
i=1

MT∑
j=1

fj↑(i1,...,ik)↑(1,...,n)(a) =

NT∑
i=1

MT∑
j=1

fj↑(1,...,n)(a)1A{i}(a)1Bj (a) (60)

Finally, we note that since each element of fj↑(1,...,n)(a) is nonzero only for a single 1Bj , we can write

NT∑
i=1

MT∑
j=1

fj↑(i1,...,ik)↑(1,...,n)(a) =

NT∑
i=1

MT∑
j=1

fj↑(1,...,n)(a)

NT∑
i=1

MT∑
j=1

1A{i}(a)1Bj (a)

 (61)

Consequently, promotion corresponds to multiplying the embedded activation with indicator functions on the
sets of permutations that preserve the reference domains.

6.1.6 Writing a k’th order network as an Autobahn

To prove that this bound is tight, we construct an Autobahn network that can emulate the operations in
Subsubsection 6.1.1. To do this, we take as our templates the set of all edgeless graphs of size less than or
equal to k. Consequently, each neuron corresponds to one (ordered) set of k or less nodes. We will then
associate each set of neurons to a homogeneous space of the corresponding size. As the automorphism group
of these is simply the permutation group applied to the corresponding nodes, the network is able to trivially
perform the convolution in (25). To recover (26) we apply narrowing to move the activation from all larger
neurons of size k to a smaller neuron of size m, nl. We simplify this by only considering larger neurons
whose reference domain strictly includes Rl: while this is not necessary, it simplifies our construction. In
this case, it is easy to see that the narrowed activation corresponds to the sum over all possible strings of the
remaining k −m indices, which corresponds to (26).

Finally, promotion can be used to move an activation from a smaller homogeneous space to a larger one.
This follows from (61). Since there is one neuron corresponding to each set of m-node graphs, there is
exactly one fl that is nonzero for any given of a. Consequently, the value of the function for any given value
is precisely the value of fl↑(1,...,n).

6.2 Comparison with GSN
Both the GSN architecture and Autobahn directly featurize graphs using the isomorphism classes of sub-
graphs. However, whereas GSN uses the isomorphism classes to featurize an MPNN architecture, in Auto-
bahn the neurons convolve directly over the corresponding automorphism group. Consequently, it is natural to
ask whether the automorphism group adds any additional flexibility compared to merely using isomorphism
to construct features. The following result answers in the affirmative.

Theorem 4. Consider a GSN network with a given set of subgraphs chosen to construct initial features. Next,
consider an analogous Autobahn network where each layer’s neurons consist of (1) neurons that operate
exactly the same way as the MPNN neurons in the GSN (2) Autobahn neurons that on the subgraphs used to
featurize the GSN. The Autobahn network is at least as expressive as the GSN network. Moreover, there exists
collections of GSN subgraphs such that the Autobahn network is strictly more expressive.

12



To prove that the Autobahn network is as expressive as the GSN, we show that it can imitate the behavior
of the GSN. Since it has the same MPNN neurons as the GSN, it is enough to show the neurons operating
on the subgraphs are able to learn a unique hash for each subgraph. However, this is trivially true since each
subgraph has its own weights. To show that the there exist subgraphs such that the Autobahn network is
strictly more expressive, it is enough to give a single example. Consequently, we again consider templates
corresponding to the edgeless graph of size k or less. Since each node in an N -node graph is in exactly N
choose k subgraphs isomorphic to the edgeless graph. Each node receives exactly the same feature from
the featurization graphs, so this does not improve GSN expressiveness over 1-WL. However, by the results
above, the resulting Autobahn can recover a a k’th order network by simply ignoring the MPNN neurons.
Using results from [7] the network is consequently as powerful as the k-WL test, and is consequently strictly
more powerful than the corresponding GSN. Note that we cannot say that the Autobahn network is always
strictly more expressive than the GSN network because of pathological counterexamples, e.g. setting all of
the GSN’s subgraphs to be the subgraph of a single node. In this case, the two networks trivially have the
same expressivity.

6.2.1 Connection with the Reconstruction Conjecture

Previous work has analyzed the flexibility of neural networks in the light of the reconstruction conjecture[4,
8]. In the reconstruction conjecture, one takes a graph G and forms the multiset of all subgraphs created by
deleting a single node from G. The conjecture then states that if two graphs have the same multiset then they
must be isomorphic. In [1], it was noted that if the reconstruction conjecture held, a GSN network featurized
on all subgraphs of size N − 1 to be able to distinguish to isomorphic graphs. However, the performance of
the network if the reconstruction conjecture does not hold is unclear.

In contrast, Autobahn is able to reconstruct a graph from neurons operating on each of the N − 1-node
subgraphs even if the reconstruction conjecture does not hold. We demonstrate this by outlining an explicit
algorithm that achieves the reconstruction.

1. The output of the first layer is a single edge feature that is 1 for all edges in the subgraph.

2. Apply a single round of narrowing and promotion. Since narrowing averages over all nodes that are
outside of the intersection of the two sets, any edges that are outside the destination local graph are
averaged to node features.

3. Pick an arbitrary neuron. Since only edges to nodes outside of the neuron’s local graph were truncated,
and there is exactly one node missing from the subgraph, connecting the missing node to any nodes
that have nonzero node features reconstructs the graph.

Note that this construction does not require any convolutions over the Automorphism group. Instead, the
Autobahn network is able to perform the reconstruction due to its ability to perform higher-order message
passing.

7 Architecture, hyper-parameter and computational details
We provide some further details into the architecture, choice of hyper-parameters and training regime of our
network.

7.1 Architecture details
We model our block specific (i.e. cycle / path) convolutions after standard residual convolutional networks [3]
with ReLU activations. We refer the reader to our pytorch implementation for details of the implementation.

13



Modification Validation loss

Original 0.124± 0.001
No cycles 0.175± 0.004
Only maximum length paths 0.167± 0.001

Table 1: Validation loss for modified architectures on the Zinc (subset) dataset.

Dataset Channels Dropout Epochs Warmup Decay milestones

Zinc (subset) 128 0.0 600 15 150, 300
Zinc 128 0.0 150 5 40, 80
MolPCBA 128 0.0 50 5 35
MolHIV 128 0.5 60 15 N/A
MolMUV 64 0.0 30 5 N/A

Table 2: Hyper-parameter and training schedules used on each dataset.

We perform a simple ablation study of the main components of the model on the Zinc-subset problem. In
particular, we study the impact of omitting: i) the cycle-based convolutions and ii) the paths shorter than the
maximum length considered. Validation loss2 results are reported in table 1.

7.2 Hyper-parameter details
Our hyper-parameters were chosen based on a combination of chemical intuition and cursory data-based
selection, with some consideration towards computational cost. As our architecture specification is quite
general, the number of hyper-parameters is potentially large. In practice, we have restricted ourselves to
tuning three parameters: a global network width parameter (which controls the number of channels in all
convolutional and linear layers), a dropout parameter (which controls whether dropout is used and the amount
of dropout), and the training schedule. The values used are specified in table 2. The training schedule is set
with a base learning rate of 0.0003 at batch size 128 (and scaled linearly with batch size). The learning rate
is increased linearly from zero to the base rate during the specified number of warmup epochs, and is then
piecewise-constant, with the value decaying by a factor of 10 after each milestone.

The lengths of the paths and cycles considered in the model are also hyper-parameters of the model. We
used the same values (cycles of lengths 5 and 6, and paths of lengths 3 to 6 inclusive) in all of our models.
We note that in molecular graphs, cycles of lengths other than 5 and 6 are exceedingly rare (e.g. in the Zinc
dataset, cycles of lengths different from 5 or 6 appear in about 1% of the molecules). We evaluate different
possibilities for the maximum length of paths to be considered in table 3, we observe that in general, both
computational time and prediction performance increase with larger path lengths.

7.3 Computational details
In a message passing graph neural network, computational time is typically proportional to the number of
edges present in the graph. On the other hand, our Autobahn network scales with the number of paths and
cycles present in the graph. An immediate concern may be that the number of such structures could be
combinatorially large in the size of the graph. In table 4, we show that, due to their tree-like structure,
molecular graphs do not display such combinatorial explosion of number of sub-structures in practice.

The computational cost of our model scales roughly linearly with the total number of substructures under
consideration. In practice, for molecular graphs, selecting only paths of short lengths and cycles, we expect

2Note that for this particular dataset, validation losses tend to be higher than test losses, which is also observed in some other
architectures such as HIMP.

14



Path length Validation Loss Training Time

4 0.140± 0.000 3 h15 min
5 0.135± 0.000 4 h50 min
6 0.124± 0.000 6 h50 min
7 0.121± 0.001 9 h30 min

Table 3: Performance and training time of model on Zinc (subset) as a function of maximum path length
considered.

the computational cost to be on the same order of magnitude as standard graph neural networks. We report
the total amount of time (in GPU-hours) required for training each of our model in table 5. The training was
performed on Nvidia V100 GPUs, and mixed-precision computation was used for all models except MolHIV
were some gradient stability issue were encountered. The two largest datasets (Zinc an MolPCBA) were
trained on four GPUs, whereas the remaining datasets were trained on a single GPU.

Paths Cycles

Dataset Nodes Edges 3 4 5 6 7 8 5 6

Zinc 23.1 49.8 34.6 43.9 55.0 64.4 65.8 70.2 0.56 1.70
MolPCBA 26.0 56.3 39.3 51.0 65.2 79.5 84.2 93.1 0.50 2.23
MolHIV 25.5 54.9 39.2 52.1 68.9 87.2 97.2 111.5 0.34 2.01
MolMUV 24.2 52.5 36.5 47.6 61.1 73.4 77.2 84.6 0.63 2.02

Table 4: Average count of structures in various datasets.

Dataset Samples Samples / s / GPU Training time (GPU-hours)

Zinc (subset) 6.0M 280 6.8 h
Zinc 33.0M 215 42.7 h
MolPCBA 21.9M 171 35.5 h
MolHIV 2.5M 114 6.1 h
MolMUV 2.8M 222 3.5 h

Table 5: Computational cost of training provided models. Samples denotes total number of gradients com-
puted (i.e. number of epochs times number of observations in dataset).

References
[1] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M Bronstein. Improving graph

neural network expressivity via subgraph isomorphism counting. arXiv preprint arXiv:2006.09252, 2020.

[2] Taco S. Cohen and Max Welling. Steerable CNNs. In International Conference on Learning Represen-
tations (ICLR), 2017.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[4] Paul J Kelly. A congruence theorem for trees. Pacific Journal of Mathematics, 7(1):961–968, 1957.

15



[5] R. Kondor, Z. Lin, and S. Trivedi. Clebsch–Gordan nets: a fully Fourier space spherical convolutional
neural network. ArXiv e-prints, 1806.09231, June 2018.

[6] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. In Proceedings of International Conference on Machine
Learning (ICML), 2018.

[7] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. In International Conference on Learning Representations (ICLR), 2018.

[8] Stanislaw M Ulam. A collection of mathematical problems. Interscience Publishers, 1960.

16


	Activations as functions on a group
	Equivariance of Automorphism-based Neurons
	Application of Autobahn to grid graphs
	Steerable CNNs
	Convolutional Neural Networks

	Independence of representative for promotion.
	Proof of Equivariance for Autobahn
	Action of permutations on narrowing and promotion
	Proof of equivariance for individual sublayers
	T1 is equivariant
	T2 is equivariant
	T3 is equivariant
	T4 is equivariant


	Expressivity of Autobahn
	Recovery of k'th-order Networks
	Group-theoretic description of k'th order networks
	Embedding Autobahn Activations in a k'th order network
	Performing Automorphic Convolution in a k'th order network
	Performing Narrowing in a k'th order network
	Performing Promotion in a k'th order network
	Writing a k'th order network as an Autobahn

	Comparison with GSN
	Connection with the Reconstruction Conjecture


	Architecture, hyper-parameter and computational details
	Architecture details
	Hyper-parameter details
	Computational details


