Published as a conference paper at ICLR 2025

ACTIONREASONINGBENCH: REASONING ABOUT AC-
TIONS WITH AND WITHOUT RAMIFICATION CON-
STRAINTS

Divij Handa*!, Pavel Dolin*', Shrinidhi Kumbhar*!, Tran Cao Son2, Chitta Baral'
! Arizona State University, 2New Mexico State University
{dhanda, pdolin, skumbhai4, chitta}@asu .edu, stran@nmsu.edu

ABSTRACT

Reasoning about Actions and Change (RAC) has historically played a pivotal role
in solving foundational Al problems, such as the frame problem. It has driven
advancements in Al fields, such as non-monotonic and commonsense reasoning.
RAC remains crucial for Al systems that operate in dynamic environments, en-
gage in interactive scenarios, or rely on commonsense reasoning. Despite sub-
stantial advances made by Large Language Models (LLMs) in various Al do-
mains, their performance in RAC remains underexplored. To address this gap,
we introduce a new diagnostic benchmark, ACTIONREASONINGBENCH, which
encompasses 8 domains and includes questions for up to 19 action sequences.
This benchmark rigorously evaluates LLMs across six key RAC dimensions: Flu-
ent Tracking, State Tracking, Action Executability, Effects of Actions, Numerical
RAC, and Composite Questions. LLMs demonstrate average accuracy rates of
73.55%, 65.63%, 58.73%, and 62.38% on the former four dimensions, which are
frequently discussed in RAC literature. However, the performance on the lat-
ter two dimensions, which introduce complex and novel reasoning questions, the
average performance of LLMs is lowered to 33.16% and 51.19%, respectively,
reflecting a 17.9% performance decline. We also introduce new ramification con-
straints to capture the indirect effects of actions, providing deeper insights into
RAC challenges. Our evaluation of state-of-the-art LLMs, including both open-
source and commercial models, reveals challenges across all RAC dimensions,
particularly in handling ramifications, with GPT-4o failing to solve any question
and ol-preview achieving a score of only 18.4%.

1 INTRODUCTION

Reasoning about actions and change (RAC) is a fundamental problem in artificial intelligence, with
its roots tracing back to early work from the 1960s (McCarthy et al., [1963). Initially, research
focused on developing logical systems capable of effectively modeling and reasoning about actions
and their effects in a dynamic environment. One of the significant challenges in this domain has been
succinctly expressing how actions influence changeable properties of the world, known as fluents.
For example, consider the statement: “Moving an object from location X to location Y results in
the object being at location Y.” While it is relatively straightforward to describe the direct effects
on the affected fluents, such as the object’s location, it is much more complex to account for the
unaffected fluents, a challenge known as the frame problem. This challenge becomes exacerbated
when the descriptions involve relationships between fluents in a state, such as “an object can not
be at two different places at the same time”. While such constraints simplify action descriptions by
decoupling them from fluents, they introduce indirect effects, or ramifications. For example, the
statement “A block is said to be clear if there isn’t any block on top of it” describes a ramification
fluent, “clear” dependent on another fluent “on top of.”

It took multiple decades of research to create a comprehensive logical formalization that adequately
addressed these issues. It involved the laborious creation of numerous handcrafted rules and logic

*Equal contribution.

Published as a conference paper at ICLR 2025

detailing the effects and preconditions of actions (Reiter, 2001). However, these tools are limited
since they rely on manual effort to translate natural language descriptions of actions and their effects
into formal logic representations. To address this challenge, recent research in natural language
processing (NLP) has begun exploring the capabilities of LLMs in RAC tasks, as demonstrated by
works of |[He et al.| (2023)), |Spiliopoulou et al.| (2022)), and |Banerjee et al.| (2020). However, these
studies have not systematically decomposed the complex RAC problem into multiple categories and
overlook the critical ramifications of actions seen in real-world scenarios. To address this gap, we
introduce ACTIONREASONINGBENCH, a diagnostic RAC benchmark that aims to pinpoint where
modern state-of-the-art LLMs struggle.

We decompose the RAC task into six distinct categories—Fluent Tracking, State Tracking, Action
Executability, Effects of Actions, Numerical RAC, and Composite Questions. The first four cate-
gories focus on assessing fundamental aspects of RAC, while the latter two introduce more complex
and novel question types. The questions in every category span action sequences ranging from 1 to
19 steps, allowing us to test the RAC capabilities at a series of action sequence ranges. Additionally,
we introduce ramification constraints to represent the indirect effect of actions. These constraints
simplify action descriptions and align more closely with real-world conditions but introduce ad-
ditional complexity, as highlighted by Mcllraith| (2000). Specifically, we expand the domains by
adding ramification fluents with dependencies up to four levels deep, where actions propagate their
effects through multiple layers.

Highlights of our benchmark, ACTIONREASONINGBENCH, along with the comparison to previous
benchmarks on RAC, are presented in Table E} We evaluate four LLMs—two open-source models,
Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct (Dubey et al. |2024), as well as two leading
proprietary models, GPT-40 (Achiam et al.| [2023) and ol-preview (OpenAl, 2024). These LLMs
were tested on ACTIONREASONINGBENCH across various RAC categories under different prompt
settings, including Zero-shot-CoT (Kojima et al., [2022) and Few-shot-3 (Brown, 2020), to assess
how performance varies based on these configurations.

Our findings indicate that LLMs face

substantial challenges, particularly | PlanBench | TRAC | (Ours)
when addressing complex RAC ques-

tions. The average performance of all Eﬁﬁ;g g£ dﬁg‘r?eigs Zék I;k 1582k
LLMs on the complex categories de- Max ActionqSequence length 48 3 19
creases by 17.88% compared to the Max number of objects 24 5 28
first four basic categories. The best Bjpary Questions (T/F) % v v
performing LLM, GPT-40, achieves Free Answers v x v
an average accuracy of 59.91% on -

these categories. Notably, GPT-40 if;ig?igﬁ%abi“ty i 5 i
failed to produce any correct an- -

swers for questions involving ram- Elf‘;em Trfaiku}g x x 5
ifications constraints, while the ol- Nufr(l:éiigal Rcet;(:(;?ling i i v
preview model achieved an accuracy Composite Questions % % v
of only 18.42%. Performance was €s- Ramifications Constraints x x v
pecially poor in categories like Ac- Subcategories of Fluents X X v

tion Executability, Numerical RAC, -
and Composite Questions, with fur- Table 1: Differences between ACTIONREASONINGBENCH

ther declines observed as the length (Ours) and previous benchmarks on RAC. PlanBench
of action sequences increased. Ad- (Valmeekam etal,2024) ; TRAC (He et al., 2023)

ditionally, LLMs struggled with rea-
soning in scenarios that combined both true and false fluents, experiencing an average performance
drop of 12.16% compared to tasks involving exclusively true or false fluents.

2 RELATED WORKS

Benchmarking reasoning capabilities of LLMs Evaluating the reasoning capabilities of LLMs
using synthetic datasets has become a key focus in NLP, with increasing efforts to create challenging
benchmarks. Notable areas of interest include the legal reasoning (Fei et al.|[2023;|Guha et al.,|2023),
logical reasoning (Luo et al., 2024;|Han et al., 2024; |Patel et al.,|2024; Parmar et al.,|2024)) arithmetic

Published as a conference paper at ICLR 2025

reasoning (Cobbe et al.| 2021} [Miao et al., 2021)), temporal reasoning (Uddin et al., 2024} Fatemi
et al.;, 2024), and commonsense reasoning (Onoe et al., |2021; Lin et al., 2021; (Geva et al., 2021}
Lourie et al.| 2021)). Despite this progress, RAC remains significantly under-explored, even though
it plays a crucial role in several of these reasoning tasks, such as commonsense and legal reasoning.
To fill this gap, we create ACTIONREASONINGBENCH using synthetically generated data.

Evaluating RAC and Planning Benchmarking planning capabilities of LLMs is a well-studied
area, with recent works (Zheng et al.|, 2024} Xie et al., |2024) demonstrating the challenges LLMs
face. While planning is a non-polynomial problem that remains inherently difficult to solve, we
believe that RAC, which is a polynomial problem, is a prerequisite for effective planning. Without
comprehending the effects of actions, LLMs are unlikely to construct coherent plans. In this work,
we address this gap by proposing ACTIONREASONINGBENCH, a diagnostic benchmark for RAC.

Previous research, such as [Banerjee et al. (2020), has investigated RAC capabilities in models
like RoBERTa, focusing primarily on binary questions or single-word answers. Extending this,
He et al.| (2023) assessed LLMs on a broader range of question categories. However, only two
of these—Action Executability and State Tracking—pertain directly to RAC, with the remainder
addressing the broader domain of planning. Similarly, Valmeekam et al.|(2024) introduced a bench-
mark evaluating both RAC and planning, with a detailed emphasis on planning tasks but maintaining
a limited focus on RAC categories, specifically State Tracking and Action Executability. A compar-
ative analysis of the benchmarks from [He et al.|(2023)), [Valmeekam et al.|(2024), and our proposed
benchmark is summarized in Table[ll

Parallel to our work, Kokel et al.| (2024) introduced ACPBench to evaluate both RAC and plan-
ning. While ACPBench overlaps with our work, it primarily covers fundamental aspects of RAC.
In contrast, our benchmark introduces greater complexity by incorporating categories such as State
Tracking, Numerical RAC, Composite Questions, and constraints related to ramifications.

In this work, we concentrate on RAC and develop a benchmark that encompasses a wider range of
categories, enabling more precise identification of areas where LLMs underperform. Furthermore,
our benchmark introduces novel constraints involving ramifications, incorporating the indirect ef-
fects of actions. To the best of our knowledge, ramification constraints have not been addressed in
any existing benchmark, marking a significant advancement in the evaluation of RAC capabilities.

3 ACTIONREASONINGBENCH

This section provides a detailed overview of our benchmark, including its categorization, creation
methodology, and validation process. A sample instance is presented in Appendix [B] where we also
describe the objects, actions, and fluents within the domain.

3.1 QUESTION CATEGORIES

In our benchmark, the questions are organized into six distinct categories, each designed to assess a
specific dimension of RAC. Below, we provide a detailed description of each category.

1. Fluent Tracking - Given the initial state and the sequence of actions performed, this cate-
gory contains questions about the fluents, i.e. properties of the domain, of an object from
the changed state. For instance, in the Grippers domain, a fluent-tracking question might
be “List all valid properties associated with ball2.”

2. State Tracking - This category extends the concept of Fluent Tracking. It involves query-
ing about the complete set of fluents in the final state. For instance, in the Blocksworld
domain, a state-tracking question might be “What are all the valid properties in this state?”

3. Action Executability - This category encompasses two types of questions related to exe-
cutability of actions. The types of questions within this category are as follows:

(a) Given an initial state, and a sequence of actions, the question focuses on identifying
the first action in the sequence that is not executable.

(b) Given an initial state and a sequence of actions leading to a final state, the task is to
identify all actions that can be executed in the final state. For instance, in the Visitall

Published as a conference paper at ICLR 2025

domain, an action-executability question might be “List all executable actions present
in the current state.”

4. Effects of Actions - This category contains questions that explore the outcomes of perform-
ing a specific action. For instance, in the Mystery domain, an Effects-of-action question can
be “From the current state, the vehicle vO moves from location L1 to 10, and has fuel-level
6 and f5, which properties of the state will be true now?”

5. Numerical RAC - Questions requiring a numerical response fall under this category. These
questions may derive from any of the four previously mentioned categories. For example,
in the Spanner domain, a Numerical-RAC question can be “What are the number of exe-
cutable actions in the current state?”

6. Composite Question - This category contains questions that integrate multiple above-
mentioned categories, combining up to three distinct categories. These questions require
multiple steps of reasoning to arrive at the correct solution. For example, in the Satellite
domain, a composite question may combine aspects of Fluent Tracking and Action Exe-
cutability. An example of such a question could be “List all the properties of the state for
satelliteO before the first infeasible action in the sequence?”

3.2 FLUENT CATEGORIES

We further divide the fluents of all 8 domains into three distinct categories, each representing a
different aspect of ramifications within RAC.

1. Static Properties - These properties remain unchanged regardless of any action performed.
For instance, the property “connected” in the Visitall domain represents whether two loca-
tions are connected, a relationship that remains constant irrespective of the robot’s action,
which may involve moving, picking up, or placing down objects. In this domain, the con-
nectivity between locations remains unchanged, irrespective of any action.

2. Base Fluents - These fluents can change as a direct result of an action and do not depend on
other fluents. For example, in the Grippers domain, the fluent “carry” indicates whether
an object is being carried by a robot’s gripper. This fluent can change if the action pick or
drop is performed.

3. Ramification Fluents - These fluents are influenced indirectly by other fluents, and action
descriptions do not explicitly dictate their changes. Instead, they are determined by the
dependencies and relationships within the system. Ramification fluents are further divided
into two sub-categories:

(a) Derived Fluents - These fluents rely on the state of other fluents, reflecting a level of
dependency. Changes to them occur as a consequence of changes in the fluents they
depend on rather than through direct action. For instance, the fluent “stable” in the
Blocksworld domain is considered a derived fluent as its state depends on the fluents
“clear” and “on_table”. This relationship can be described as: “Blocks are stable
when clear and on the table”. Furthermore, fluent “clear” is itself a derived fluent,
dependent on the fluent “on”, which makes “stable” a second-level indirect effect.

(b) Self-Derived Fluents - These fluents rely on constraints related to themselves rather
than other fluents. For example, in the Depot domain, the fluent “at” represents the
location of a truck, which can only be at one location at any given time. If the truck
is at location 10, it cannot simultaneously be at location 11. Such constraints are ex-
plicitly included in the domain description, for example, “A truck can only be in one
location at a time”.

Classification of every fluent across all 8 domains can be found in Appendix[I| Furthermore, for each

fluent type, we generate questions involving negative fluents, i.e. fluents that are false, which allows
us to evaluate LLM’s comprehension of negation within RAC contexts.

3.3 DATASET STRUCTURE AND VARIATIONS

Selected Domains ACTIONREASONINGBENCH requires domains that facilitate the evaluation of
LLMs on both short and long sequences of meaningful actions, where the effects and preconditions

Published as a conference paper at ICLR 2025

of these actions are succinctly described. Additionally, these domains should reflect real-world
scenarios. To meet these criteria, we selected 8 domains Blocksworld, Depots, Driverlog, Grippers,
Moystery, Satellite, Spanner, and Visitall-sourced from the International Planning Competition (IPC),
covering the years 1998 to 2014. These domains are commonly used as benchmarks for evaluating
advanced planning systems and provide a robust foundation for research in automated planning.
Appendix |G| provides a detailed description of each domain. Notably, even state-of-the-art LLMs
like GPT-40 are not capable of generating diverse domains or action sequences that conform to the
precise constraints outlined in these domain descriptions, justifying the reliance on IPC domains.

Domain Descriptions and Ramifications The domains provided by the IPC are described using
the Planning Domain Definition Language (PDDL), a formal language designed to model deter-
ministic actions and state transitions for planning problems. Further information on PDDL can be
found in Appendix In this study, we initially translated the PDDL-based domains into nat-
ural language. Subsequently, ramification constraints were introduced into these natural language
descriptions. The process underwent validation by two experts in the RAC domain to ensure correct-
ness. Given that the category Action Executability focuses on determining whether the action can be
performed rather than analyzing its effect, we concentrated on the categories Fluent Tracking, State
Tracking, and Effects of Actions when introducing ramifications.

Action-Sequence Lengths In order to fine-tune LLMs, we generate a comprehensive set of ques-
tions that span various action-sequence lengths, specifically 1, 5, 10, 15, and 19. This range is
chosen to capture increasing complexities in RAC. We curate a distinct subset of questions with

action-sequence lengths of 1, 10, and 19 for evaluation. This subset is selected to assess the model’s
performance across the action sequences range.

Answer Types We formulate two distinct types of questions based on the expected answer format.
The first type consists of binary questions, where the response is either True or False. The second
type involves subjective answers, which encompass a range of multiple objects, actions, or fluents.

3.4 DATA CREATION & VALIDATION

Stage 1 Stage 2 Stage 3 Stage 4

Generating Instancesf Converting to ASP . Generating State Space Generating Questions

Templated IPC Domain Do Templated Question
+ >
Script (ASP) :]9_) RIEEEE : Generator
E : v
: - | [Templated Templated
Questions | ® ¢ e | Questions
Plans : Len 1 ¢ Len 19
I Ve ~ -

)) | Llama-3.1-
Templated Script Action-Stat :
P P ction-State : 70B-Instruct

IPC Domain
(PDDL)

Initial || Final
State | State

/PDDL Instances &l

Instance
Solver

Space for every

, : Action (from 1 to 19)
ASP Instances & . (| . NL
Plans : S ‘

Plan

Validator NL
Questions | ® ¢ e Questions
Len 1 Len 19

Figure 1: Overview of the question generation pipeline for ACTIONREASONINGBENCH. Blue
blocks represent “Generated Data”, and green blocks represent “Code used in the pipeline”. Stage
1 involves generating states and plans using [Helmert| (2006) and validating them with [Howey et al.
(2004). In Stage 2, PDDL instances and plans are converted to ASP. Stage 3 computes the action-
state space through ASP. Stage 4 generates questions using templates, which are then rephrased to
natural language via Llama-3.1-70B-Instruct.

The question generation process follows a four-stage pipeline, as illustrated in Figure [I] The se-
lected domains from the IPC are represented in PDDL (see Appendix [G|for examples). First, these
PDDL representations are used to generate 10 pairs of initial and goal conditions. A PDDL solver

Published as a conference paper at ICLR 2025

(Helmert, [2006) and validator (Howey et al., [2004) are then employed to obtain and validate the
action sequences necessary to transition from the initial to the goal state. In the second stage, the
PDDL domains, instances, and action sequences are converted into Answer Set Programming (ASP)
descriptions using Python-based templates.

In the third stage, ASP solvers are used to generate the action-state space and extract fluents for
each state, along with identifying all executable and inexecutable actions. Further details on these
formal languages are provided in Appendix [H] Finally, the fourth stage involves converting the
action-state data into questions using a Python template. Up to three natural language variations
are created for every object, action, and fluent. These templated sequences are then paraphrased to
Llama-3.1-70B-Instruct to ensure they sound natural and avoid repetition in long action sequences.
Three independent annotators review both the templated and the paraphrased versions to assess their
naturalness, as detailed in Appendix [D] Additionally, all eight domain descriptions were manually
translated from PDDL to natural language.

3.5 DATA SPLITS | Test Set | Train Set

Fluent Tracking 438 57,906
The benchmark was divided into two parts: one State Tracking 382 12,636
for training and the other for testing the LLMs, Action Executability 450 9,562
ensuring a balanced representation of question Effects of Actions 417 8,939
categories across the 8 domains. The Com- Numerical Reasoning 414 31,506
posite Questions category is slightly larger in ~ Composite Questions 1,397 28,688
the t.est set,'as it combines multiple categories, Static Properties 237 12.458
leading to increased questions. Table [2] pro- Base Fluents 231 10.461
Yldes an overview of the Fllstrlbutloq of ques- . lived Fluents 366 15.946
tions and thf:u'r corresponc!mg categories across gaif-Derived Fluents 390 23.436
both the training and testing sets. The test set yr o4 Fluents 2274 86.936

contains 3,498 questions, including 2,195 bi-
nary and 1,303 free-answer questions. Finally, ~ Total Unique Questions | 3,498 | 149,237
we designed both zero-shot-CoT and few-shot-
3 prompts for all the questions in the test set.

Table 2: Overview of the test and train sets across
Question and Fluent Categories. The “Mixed Flu-
ents” category represents questions that involve
4 EXPERIMENTS AND EVALUATION more than one type of fluent.

Models To evaluate our benchmark, we tested four LLMs and employed two prompting tech-
niques. The LLMs include two proprietary models—GPT-40 (Achiam et al. |2023) and ol-preview
(OpenAll [2024)—alongside two open-source models, Llama-3.1-8B-Instruct and Llama-3.1-70B-
Instruct (Dubey et al., 2024). Each LLM was evaluated using both few-shot prompting with three
examples (few-shot-3) Brown| (2020) and zero-shot-CoT |Kojima et al.| (2022) prompting.

While the entire dataset requires reasoning abilities, the ramification subset involves the most com-
plex and challenging reasoning tasks. Given that ol-preview is specifically optimized for reasoning
tasks and incurs significantly higher costs compared to GPT-4q'| we restricted its use to the ramifi-
cation subset, where its superior reasoning capabilities are expected to provide the greatest benefit.
Utilizing ol-preview across the entire dataset would not be cost-effective, as its advantages would
be less pronounced for simpler reasoning tasks.

To ensure a fair evaluation of the standalone reasoning capabilities of LLMs, we deliberately avoided
incorporating external tools or systems. Although integrating formal solvers (e.g., PDDL-based
planners) with LLMs could potentially improve performance, our primary focus is on assessing the
intrinsic reasoning abilities of these models.

Evaluation & Metrics ACTIONREASONINGBENCH includes two types of answer formats, as
outlined in Section[3.3} binary (true/false) and free-form responses. The evaluation process was per-
formed separately for each answer type. For binary questions, we extracted “true” and “false” key-
words from the model’s response and compared them to the ground truth. Since free-form answers
can’t be evaluated using exact string matching, we employed human evaluation for the ramification

'As of Oct 2024, ol-preview is six times more expensive than GPT-40 https://openai.com/api/
pricing/

https://openai.com/api/pricing/
https://openai.com/api/pricing/

Published as a conference paper at ICLR 2025

questions. While human evaluation is highly accurate, it is not scalable, so we used Llama-3.1-70B-
Instruct to assess all free-form responses. The specific prompt used to evaluate the LLMs and the
correlation between Llama-3.1-70B-Instruct and human evaluations are detailed in Appendix[F. For
all experiments, we report the accuracy along with the standard error of the mean (SEM), calculated

as SEM = ﬁ, where o represents the standard deviation, and n is the sample size.

Fine-tuning We fine-tuned the Llama-3.1-8B model using the training data split outlined in Sec-
tion[3.3] Due to the limited computing power, we excluded any data samples that exceeded a context
length of 4096 tokens. The fine-tuning process was performed separately for free-response and bi-
nary questions. Detailed information on the fine-tuning procedure is provided in Appendix [E] All
experiments were executed using 8xH100 GPUs.

5 RESULTS AND DISCUSSION

This section presents the results and analysis using ACTIONREASONINGBENCH. The Zero-shot-
CoT results for each LLM on both the binary and free-response subsets of the test set are provided
in Tables [5] and [3| respectively. Similarly, the Few-shot-3 results for each LLM evaluated on these
same subsets are displayed in Tables[6|and[7] The detailed analysis of the effects when ramification
constraints are incorporated into the descriptions is discussed in Section[5.1]

Action Seq. | Ques Categories | GPT-40 Llama-8B-Inst Llama-70B-Inst | Finetuned Llama-8B

Fluent Tracking 88.464‘43 3()'776440 71~156.28 76.925'84

State Tracking 73.336.59 28.896.76 64.447 14 75.56¢.41

1 Action Executability 27.086.41 08.333.99 33.336.80 31.256.69
Effects of Actions 82.506.01 20.00¢.32 67.507 41 60.537.93
Numerical RAC 11~114.68 06.673472 04.443.07 08.894,24

Composite Questions | 64.533 36 24.633.02 43.353 48 72.413.14

‘ Average ‘ 6028235 21-711498 4596259 ‘ 6102255

Fluent Tracking 82.005 43 36.006.79 62.006.86 80.005 66

State Tracking 74-426465 18.605‘93 60.477'46 66.677'27

10 Action Executability | 34.097 15 11.364.78 40.917 41 47.737.53
Effects of Actions 76~096.29 19~575,85 65.227.02 6222723
Numerical RAC 10.204.32 02.045 2 06.123 49 10.204.30

Composite Questions | 59.113 45 16.269 59 45.323 49 58.623 46

‘ Average ‘ 5701237 17~011480 45.982'39 ‘ 55.662'39

Fluent Tracking 67.447‘15 27-916484 67.447'15 67.447'15

State Tracking 75.51¢.14 16.335.98 51.027.14 65.31¢.80

19 Action Executability 41.677 12 08.333.99 29.796.67 37.506.99
Effects of Actions 76.606.18 14.895 19 46.817.08 61.707.09
Numerical RAC 10.204.30 06.123 49 08.163.91 06.123. 42

Composite Questions | 60.303 47 08.541 93 38.195 44 49.253 54

| Average | 56.782.38 11.721 54 39.175.34 | 48.055.40

Table 3: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the free-answer subset of the benchmark, evaluated without the ramifi-
cations constraints using the zero-shot-CoT. The results are categorized up by the action-sequence
lengths and question categories.

Performance across Domains In our evaluation, GPT-40 demonstrated the highest performance
on the Grippers domain and the lowest on the Satellite domain, with a performance gap of 15.53%.
For both Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct, the best performance is also on the
Grippers domain, but their worst performance occurs on the Mystery domain, with differences of
19.24% and 24.04%, respectively. Interestingly, the second lowest performing domain for GPT-40 is
Mpystery, while for the Llama models, it is Satellite. A detailed breakdown by domains is presented
in Appendix [C.3] This suggests that despite potential differences in pre-training data, these models
exhibit a similar relative understanding of the domains.

Published as a conference paper at ICLR 2025

—4— Base Fluents —$— Derived Fluents Self-Derived Fluents —§— Static Properties
1.0
! j i
0.8 %“ : — /K
Y T
E p 4
: >§I\\‘1
E 0.6 |
0.4
1 10 19 1 10 19 1 10 19
Action-Sequence Length Action-Sequence Length Action-Sequence Length
(a) GPT-40 (b) Llama-3.1-70B-Inst (c) Llama-3.1-8B-Instruct

Figure 2: Performance for every Fluent Category for both binary and free-answer questions for
every Action-Sequence length for GPT-40, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct for
Zero-shot-CoT prompt. Note: Bars represent SEM.

Furthermore, when correlating these results with the State Space Complexity metric (described in
App. [G), traditionally used to gauge complexity for classical Al systems, we observe an inconsistent
trend. This discrepancy implies that LLMs may employ different heuristics from those of traditional
Al systems when tackling RAC problems, an observation that opens avenues for future exploration.

Performance across Question Categories LLMs perform well in Fluent Tracking, State Track-
ing, and Effects of Actions, demonstrating their strength in keeping track of changes. However, they
struggle with Action Executability, Composite Questions, and Numerical RAC. The performance of
all LLMs on free-response complex questions highlights significant challenges, especially in the Nu-
merical RAC category. This category reformulates existing question types into numerical formats,
a domain where all tested LLMs exhibit notable difficulty. Specifically, performance on numerical
questions related to Action Executability is 8.65% lower than on questions in the Fluent Tracking
category. Previous research, such as (Ahn et al., [2024; McCoy et al., |2023), indicates that LLMs
struggle with arithmetic reasoning and counting, which, when mixed with the RAC questions, likely
contributes to the poor performance in the Numerical RAC category.

For Composite Questions, the combination of Fluent Tracking and Action Executability proves easier
to answer than the combination of State Tracking and Action Executability, with a 16.32% perfor-
mance difference. This can be attributed to the fact that the State Tracking category is a superset of
the Fluent Tracking category, thereby explaining the observed difference in difficulty.

Performance across Fluent Categories As evident from Figure 2] and Table[9] across all LLMs
examined in the study, a consistent trend emerges in which performance on Static Properties de-
creases as the length of action-sequence increases. While these static properties remain unchanged
throughout the actions, they might get overlooked in longer sequences, likely due to their absence
in the effect of any action. This phenomenon resembles the “needle in a haystack” challenge in
long-context scenarios, where LLMs struggle to recall specific information embedded within a long
context (Zhang et al.|2024)). Conversely, Base Fluents maintain stable performance across all action
sequences, indicating that the LLMs consistently capture the direct effects of actions. Ramification
fluents exhibit a steady decline in performance as the sequence lengthens, particularly affecting the
subcategory of Derived Fluents, which suggests that LLMs have more difficulty handling indirect
effects. Finally, Mixed Fluents, which involve more than one fluent type, show a consistent decline
in performance as the length of action sequences increases.

Performance across Action-Sequence Lengths Figure [3]illustrates the performance of the three
models—GPT-40, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct—across varying action se-
quence lengths in a zero-shot-CoT setting. The results combine both binary and free-response
formats, with detailed data available in Tables [5] and Generally, model accuracy declines as
the action-sequence length increases, a pattern that holds for most categories. However, GPT-40
deviates from this trend in the State Tracking category, where performance first decreases and then
improves. Since this trend is not observed with the other two models, and the results lie within the

Published as a conference paper at ICLR 2025

—4— Fluent Trk. State Trk. —$— Action Exec. —$— Effects of Ac. Num. Reas. —$— Composite
1.0
0.81 f_\—;\’ Q\&\‘
>
9 ?
506 :gf EE
9
< 0.4
0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ .‘T
1 10 19 1 10 19 1 10 19
Action-Sequence Length Action-Sequence Length Action-Sequence Length
(a) GPT-40 (b) Llama-3.1-70B-Inst (c) Llama-3.1-8B-Instruct

Figure 3: Performance for every QUestion Category for both binary and free-answer questions for
every Action-Sequence length for GPT-40, Llama-3.1-70B-Instruct, and Llama-3.1-8B-Instruct for
Zero-shot-CoT prompt. Note: Bars represent SEM.

margin of error, we believe this is an outlier. In contrast, the Effects of Actions category consistently
deviates from this trend, likely due to the nature of the task, which focuses on changes resulting
from the last action, making it less dependent on the sequence of actions.

Model Parameters and Fine-tuning As demonstrated in Tables [5] and [3] the Llama-3.1-70B-
Instruct model consistently outperforms the smaller Llama-3.1-8B-Instruct model, with an average
performance improvement of 20.84%. This improvement is likely due to the larger model’s supe-
rior reasoning capabilities stemming from its increased number of parameters. A similar trend is
observed when comparing GPT-40 to Llama-3.1-70B-Instruct, where GPT-40 exhibits an average
performance increase of 8.64%. Although the specific size of GPT-40 remains undisclosed, it is
widely speculated to be in the trillions of parameter Notably, fine-tuning the Llama-3.1-8B model
on the training set resulted in substantial gains in both binary and free-answer tasks, with an average
performance increase of 33.68% across the test set, even outperforming GPT-40 by 4.2%.

Impact of Few-Shot Examples on Model Performance As shown in Tables[5|and[6] the inclusion
of few-shot examples for binary answer categories does not significantly enhance model accuracy.
This limitation is especially pronounced in models such as GPT-40 and Llama-3.1-70B-Instruct,
which exhibit a relative performance decline of approximately 3.5% compared to zero-shot-CoT
conditions. We hypothesize that this decrease may be attributed to the few-shot examples inadver-
tently leading the model toward detecting spurious correlations. In contrast, the model relies more
heavily on its internal reasoning capabilities in a zero-shot-CoT setting, potentially mitigating bi-
ases introduced by example-driven patterns. However, as seen from Tables [3| and [/] the few-shot
approach shows effectiveness in free-answer questions only open-source LLMs.

LLMs Struggle with Negative Fluents Our study reveals a consistent pattern across all the LLMs
examined as demonstrated in Table [T0} wherein their performance declines when tasked with ques-
tions involving negative fluents compared to those focused on fluents that are true. Specifically, we
observed a 12.16% decrease in accuracy on these negative fluent tasks. Furthermore, when questions
required reasoning about both true and false fluents simultaneously, LLMs exhibited competence in
identifying the true fluents but demonstrated difficulty in correctly recalling the false ones.

5.1 RAMIFICATIONS RESULTS

As discussed in Section [4] the performance on ramification fluents is evaluated for two LLMs:
GPT-4o0, the highest-performing LLM, and ol-preview, the most recent state-of-the-art LLM. Table
[] presents the performance of both models when ramification constraints are introduced. Further
examples of the model responses to ramification-related questions can be found in the Appendix [J]

2GPT-40 and Gemini 1.5 Pro: How the New AI Models Compare - CNET

https://www.cnet.com/tech/services-and-software/gpt-4o-and-gemini-1-5-pro-how-the-new-ai-models-compare/

Published as a conference paper at ICLR 2025

Action Sequence | Question Categories | Free Answer \ Binary Questions

\ | GPT-40 ol-preview | GPT-40 ol-preview

Fluent Tracking 00.0099.00 00.0009.00 71.4317.10 100.00¢0.00
1 State Tracking 00.0099.00 20.0017.89 100.0090.00 100.000¢.00
Effects of Actions 00.0099.00 40.0021 .91 71.4317.10 57.1415.70

00.0000.00 25.0012.49 | 80.950857 85.71¢7.60

Fluent Tracking 00.0000'00 00.0000'00 57-1418‘70 57~1418.70
10 State Tracking 00.0000.00 33.3319.04 42.8615.70 -
Effects of Actions 00.00g0.00 14.2813.90 71.4317.10 100.00¢0.00

\ Average

‘ Average ‘ 00.0000'00 23-0711.68 ‘ 57-1410.80 78.5710'90
Fluent Tracking 00.0000_00 33.3327_21 42.8618_70 57-1418.70
19 State Tracking 00.0000.00 00.0009.00 57.14158.70 -
Effects of Actions 00.0000.00 00.0009.00 71.4317.10 85.7113.00
‘ Average ‘ 00.0000_00 07.6907_38 ‘ 57-1410.80 71.4312_10

Table 4: Performance comparison of GPT-40 and ol-preview on both the free-answer and binary
question subset of the benchmark, evaluated with the ramifications constraints using the zero-shot-
CoT. The results are categorized up by the action-sequence lengths and question categories with a
“-” indicating no response (due to longer prompts). We have provided some responses in App.

GPT-40 Performance GPT-4o0 did not answer any ramification-related questions correctly, as de-
picted in Table 4] Upon manual inspection of its outputs, it became evident that GPT-4o frequently
failed to mention ramification fluents, even when these were explicitly detailed in the domain de-
scription. In instances where it did address ramification fluents, the responses were incorrect or
incomplete, with some fluents being omitted. We hypothesize that GPT-40 may have encountered
the domain data during pre-training and relied on memorized effects of actions, as the experimen-
tal domains were derived from publicly available IPC datasets. Since the ramification fluents were
manually created and integrated for this study, this evaluation assesses the model’s reasoning abili-
ties without leveraging pre-existing knowledge. This likely explains why GPT-4o0 failed to generate
ramification fluents, as its pre-training included only the original fluents from the domains.

ol-preview Performance ol-preview, a recently developed LLM optimized for reasoning tasks
and incorporating a novel run-time inference mechanism|OpenAl (2024)), demonstrated significantly
better performance on ramification-related questions compared to GPT-4o, as presented in Table 4]
A detailed review of its outputs showed that ol-preview can correctly identify most ramification
fluents. However, the model struggles with fluents involving negation, which consistently poses
a challenge. It often omitted certain fluents in its final answers and, in some cases, incorrectly
evaluated the ramification fluents.

6 CONCLUSION

In this work, we introduced a new diagnostic benchmark, ACTIONREASONINGBENCH, designed
to comprehensively evaluate the performance of large language models (LLMs) on reasoning about
actions and change (RAC). By assessing various LLMs across eight domains and six key dimensions
of RAC, our findings indicate that while LLMs demonstrate moderate proficiency on traditional
RAC tasks, such as Fluent Tracking, State Tracking, Action Executability, and Effects of Actions,
they exhibit significant challenges when addressing more complex and novel questions, particularly
in areas like Numerical RAC and Composite Questions, with an average performance drop of 17.9%.
This highlights a substantial gap in the current ability of LLMs to handle complex reasoning tasks.

Additionally, we explored the indirect effects of actions, known as ramifications, where even state-
of-the-art models show considerable limitations. For example, GPT-40 could not solve any questions
involving ramifications, and the ol-preview model achieved a low score of 18.4%. These results
underscore the pressing need for further research and advancements in RAC reasoning, especially
in addressing indirect effects and more advanced reasoning tasks.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their constructive suggestions.

We extend our gratitude to the Research Computing (RC), and Enterprise Technology at ASU for
providing computing resources, and access to the ChatGPT enterprise version for experiments.

We acknowledge support by a 2023 Spring Amazon Research Award (ARA). This material is also
based upon work supported by the Engineering Research and Development Center - Information
Technology Laboratory (ERDC-ITL) under Contract No. W912HZ24C0022.

Son Tran acknowledges the partial support from NSF grant #1914635 during the time working on
this paper.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. arXiv preprint arXiv:2402.00157, 2024.

Pratyay Banerjee, Chitta Baral, Man Luo, Arindam Mitra, Kuntal Pal, Tran C Son, and Neeraj
Varshney. Can transformers reason about effects of actions? arXiv preprint arXiv:2012.09938,
2020.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems, 2021. URL https.//arxiv. org/abs/2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch,
Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating
llms on temporal reasoning. arXiv preprint arXiv:2406.09170, 2024.

Zhiwei Fei, Xiaoyu Shen, Dawei Zhu, Fengzhe Zhou, Zhuo Han, Songyang Zhang, Kai Chen,
Zongwen Shen, and Jidong Ge. LawBench: Benchmarking Legal Knowledge of Large Language
Models, September 2023.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189-208, 1971.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did Aristotle
Use a Laptop? A Question Answering Benchmark with Implicit Reasoning Strategies, January
2021.

Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Aditya K, Alex Chohlas-
Wood, Austin Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, Dmitry Talisman,
Enam Hoque, Faiz Surani, Frank Fagan, Galit Sarfaty, Gregory Dickinson, Haggai Porat, Jason
Hegland, Jessica Wu, Joe Nudell, Joel Niklaus, John Nay, Jonathan Choi, Kevin Tobia, Margaret
Hagan, Megan Ma, Michael Livermore, Nikon Rasumov-Rahe, Nils Holzenberger, Noam Kolt,
Peter Henderson, Sean Rehaag, Sharad Goel, Shang Gao, Spencer Williams, Sunny Gandhi, Tom
Zur, Varun Iyer, and Zehua Li. LegalBench: A Collaboratively Built Benchmark for Measur-
ing Legal Reasoning in Large Language Models. Advances in Neural Information Processing
Systems, 36:44123-44279, December 2023.

11

Published as a conference paper at ICLR 2025

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,
Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, An-
song Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscin-
ski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying,
Arman Cohan, and Dragomir Radev. FOLIO: Natural Language Reasoning with First-Order
Logic, May 2024.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Ronald Brachman, Francesca
Rossi, and Peter Stone. An introduction to the planning domain definition language, volume 13.
Springer, 2019.

Weinan He, Canming Huang, Zhanhao Xiao, and Yongmei Liu. Exploring the capacity of pretrained
language models for reasoning about actions and change. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 4629—
4643, 2023.

Malte Helmert. The fast downward planning system. Journal of Artificial Intelligence Research, 26:
191-246, 2006.

Richard Howey, Derek Long, and Maria Fox. Val: Automatic plan validation, continuous effects
and mixed initiative planning using pddl. In /6th IEEE International Conference on Tools with
Artificial Intelligence, pp. 294-301. IEEE, 2004.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199-22213, 2022.

Harsha Kokel, Michael Katz, Kavitha Srinivas, and Shirin Sohrabi. Acpbench: Reasoning about
action, change, and planning. arXiv preprint arXiv:2410.05669, 2024.

Bill Yuchen Lin, Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Xiang Ren, and William W. Cohen.
Differentiable Open-Ended Commonsense Reasoning, June 2021.

Do Xuan Long, Hai Nguyen Ngoc, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F
Chen, and Min-Yen Kan. Llms are biased towards output formats! systematically evaluating and
mitigating output format bias of llms. arXiv preprint arXiv:2408.08656, 2024.

Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. UNICORN on RAINBOW:
A Universal Commonsense Reasoning Model on a New Multitask Benchmark, March 2021.

Man Luo, Shrinidhi Kumbhar, Ming shen, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak
Aditya, and Chitta Baral. Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing
Logical Reasoning Capabilities of Language Models, March 2024.

John McCarthy et al. Situations, actions, and causal laws. Comtex Scientific, 1963.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers
of autoregression: Understanding large language models through the problem they are trained to
solve. arXiv preprint arXiv:2309.13638, 2023.

Sheila A Mcllraith. Integrating actions and state constraints: A closed-form solution to the ramifi-
cation problem (sometimes). Artificial Intelligence, 116(1-2):87-121, 2000.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A Diverse Corpus for Evaluating and Devel-
oping English Math Word Problem Solvers, June 2021.

Yasumasa Onoe, Michael JQ Zhang, Eunsol Choi, and Greg Durrett. Creak: A dataset for common-
sense reasoning over entity knowledge. arXiv preprint arXiv:2109.01653, 2021.

OpenAl Openai ol system card, 2024. URL https://cdn.openai.com/
ol-system-card-20240917.pdf. Accessed: 2024-09-30.

12

https://cdn.openai.com/o1-system-card-20240917.pdf
https://cdn.openai.com/o1-system-card-20240917.pdf

Published as a conference paper at ICLR 2025

Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Towards Systematic Evaluation of Logical Reasoning Ability
of Large Language Models, April 2024.

Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varsh-
ney, and Chitta Baral. Multi-logieval: Towards evaluating multi-step logical reasoning ability of
large language models. arXiv preprint arXiv:2406.17169, 2024.

Raymond Reiter. Knowledge in action: logical foundations for specifying and implementing dy-
namical systems. 2001.

Evangelia Spiliopoulou, Artidoro Pagnoni, Yonatan Bisk, and Eduard Hovy. Events realm: Event
reasoning of entity states via language models. In Proceedings of the 2022 Conference on Empir-
ical Methods in Natural Language Processing, pp. 1982-1997, 2022.

Zhi Rui Tam, Cheng-Kuang Wu, Yi-Lin Tsai, Chieh-Yen Lin, Hung-yi Lee, and Yun-Nung Chen.
Let me speak freely? a study on the impact of format restrictions on performance of large language
models. arXiv preprint arXiv:2408.02442, 2024.

Md Nayem Uddin, Amir Saeidi, Divij Handa, Agastya Seth, Tran Cao Son, Eduardo Blanco,
Steven R Corman, and Chitta Baral. Unseentimeqa: Time-sensitive question-answering beyond
llms’ memorization. arXiv preprint arXiv:2407.03525, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao, and
Yu Su. Travelplanner: A benchmark for real-world planning with language agents. arXiv preprint
arXiv:2402.01622, 2024.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluat-
ing text generation with bert. arXiv preprint arXiv:1904.09675, 2019.

Zhenyu Zhang, Runjin Chen, Shiwei Liu, Zhewei Yao, Olatunji Ruwase, Beidi Chen, Xiaoxia Wu,
and Zhangyang Wang. Found in the middle: How language models use long contexts better via
plug-and-play positional encoding. arXiv preprint arXiv:2403.04797, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

13

Published as a conference paper at ICLR 2025

A LIMITATIONS & FUTURE WORK

While ACTTONREASONINGBENCH provides a diagnostic assessment of LLMs on RAC, it repre-
sents an early step in this area and has several limitations, including but not limited to the following:

1. Although RAC is not inherently dependent on the English language, the current version of
ACTIONREASONINGBENCH is limited to questions formulated in English.

2. Although there are more complex types of RAC, including incorporating more reasoning
types, exploring those remains beyond the scope of this work and is left as a direction for
future research.

3. While the IPC domains in our work cover many scenarios, they may introduce a bias to-
wards planning-specific domains. Expanding the dataset to include more domains could
help mitigate this bias.

4. Despite our efforts to evaluate a variety of LLMs, including open and proprietary LLMs,
our assessment did not cover models with different architectures or training approaches due
to resource limitations.

5. Recent studies by |Long et al.|(2024) and [Tam et al.[(2024)) indicate that LLM performance
can fluctuate depending on the prompt format. This variation may lead to a marginal im-
provement in the performance of LLMs on ACTIONREASONINGBENCH.

6. Our free-answer evaluation, which relies on prompting Llama-3.1-70B-Instruct, isn’t per-
fect and reflects an ongoing challenge of evaluating the free-answers within the NLP com-
munity.

B DESCRIBING AN INSTANCE FROM ACTIONREASONINGBENCH

Blocksworld domain with Ramifications for a single sequence of action for Fluent Tracking

[DOMAIN DESCRIPTION]

A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks can
be stacked if the first block is held and the second block is clear, causing the first block to
rest on top of the second. Unstacking occurs when the hand is empty, the first block is clear,
and on top of the second, resulting in the first block being held again. A block can’t be at
two locations at the same time and is considered clear if nothing is on top of it and it’s not
held, and the hand is empty if it’s not holding anything. Blocks are stable when clear and on
the table, and they can be painted if stable and the hand is empty. A block is considered on
display if it can be painted and has no other block on top of it.

[INITIAL CONDITIONS]

Block bl is situated on the table, block b2 is not stacked with any other block, block b2 is
also on the table, block b3 is not stacked with any other block, block b3 is positioned on top
of block b7, block b4 is stacked on top of block b1, block bS5 is not stacked with any other
block, block b5 is placed on top of block b4, block b6 is on the table, block b7 is stacked on
top of block b6, and the hand is empty.

[QUESTION]

Starting from the initial condition, the following actions are taken: block b3 is unstacked
from the top of block b7 to achieve the current state. In this state, what are the valid proper-
ties (including both affirmative and negated properties) for b7? If there are no valid proper-
ties, write None.

In the domain description, actions and their corresponding effects on the state are outlined, including
the necessary conditions for performing these actions. The initial conditions describe the starting
configuration of objects within the domain. A typical scenario involves executing a sequence of
actions that alter the configuration of the state, followed by a query. In the example provided, the

14

Published as a conference paper at ICLR 2025

question falls under the category of fluent tracking, which asks about a specific set of properties
associated with the object “block b7 after one action has been performed.

The objects involved in this example are as follows:

¢ block bl
¢ block b2
* block b3
* block b4
* block b5
* block b6
* block b7
¢ hand

The properties of the “block™ object include:

* Block X on top of block Y
* Block X is on the table

* Block X is clear

* Block X is stable

* Block X can be painted

* Block X can be displayed
* Block X is held

The properties of the “hand” object are:

* The hand is empty

* The hand is holding block x
Several ramification constraints (i.e., properties that depend on other properties) are present in
“Blocksworld”:

* Clear: depends on the properties “on top of”” and “held”

» Stable: depends on the properties “clear” and “on the table”

* Paint: depends on the properties “’stable” and “hand is empty”

* Display: depends on the properties “painted” and ~on top”

* On top of: depends on itself, since a block can’t be at two locations at the same time

* Hand is holding a block: depends on itself, since the hand cannot hold two blocks at the

same time

The valid actions that can be performed within this domain include:

* Picking up a block

* Putting down a block

* Stacking a block on top of another block

* Unstacking a block from top of another block

C ADDITIONAL RESULTS

C.1 ZERO-SHOT-COT BINARY RESULT

Table [5] shows the results on GPT-40, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct on zero-
shot-CoT prompting.

15

Published as a conference paper at ICLR 2025

Action Seq. | Ques Categories | GPT-40 Llama-8B-Inst Llama-70B-Inst | Fine-tuned Llama-8B

Fluent Tracking 94.445 7q 80.004.78 90.123 31 89.063.90

State Tracking 85.944 35 80.00g.00 79.41¢.93 98.551 44

1 Action Executability 93.145 59 79.124.9¢ 94.125 33 94.743 62
Effects of Actions 78.494 .96 70.895.11 7717438 96.559 40
Numerical RAC 62.825 47 42.11g.01 57.386.33 49.375 62

Composite Questions | 74.564 0s 50.434.62 67.393.99 94.424 57

‘ Average ‘ 81.261,71 66.432'30 77.761,85 ‘ 87.761'43

Fluent Tracking 9143335 68.426'16 84.934'19 8986363

State Tracking 75.865.62 76.199 .29 86.21¢.40 96.435 48

10 Action Executability 70.874.48 65.675.50 74.494 49 81.825. 90
Effects of Actions 61.224 92 63.865.97 60.824.9¢ 96.675.30
Numerical RAC 55215‘08 6552883 5439660 51.145‘33

Composite Questions | 82.963 94 71.004.54 68.923 50 88.792.07

‘ Average ‘ 72501.89 67.792'47 70.122,04 ‘ 84.061'59

Fluent Tracking 91.53353 67.356'70 77~275.16 85~714.68

State Tracking 85.944 35 83.335.78 81.825 51 96.369_ 52

19 Action Executability 66.674.60 53.667.79 66.994 63 77.27¢.32
Effects of Actions 70.004.83 54.696.22 69.324.92 97.102.02
Numerical RAC 50.005.21 42.425 60 47.544 39 66.295 01

Composite Questions | 78.423 49 53.095 54 68.973.84 86.185 .90

‘ Average ‘ 72.311,91 56.642'93 68.242'07 ‘ 84.621'53

Table 5: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark, evaluated without
the ramifications constraints using the zero-shot-CoT. The results are categorized up by the action-
sequence lengths and question categories.

C.2 FEW-SHOT-3 RESULTS

Table [6] and [7] presents the results using the Few-shot-3 setting. These tables support the results
showed in Section[3

C.3 RESULTS BY DOMAINS

Table [§]shows the results of the binary questions across every domain in our benchmark.

C.4 RESULTS BY FLUENTS

Tables 0] [I0] show the results of the binary questions across fluent types in our benchmark.

D DATA VERIFICATION

To ensure the soundness of our benchmark, we employed three independent annotators who had no
prior involvement with the project. Their task was to evaluate the naturalness of the sentences by
assigning a score from 1 to 5, where 1 indicates the least natural and 5 most natural. To make sure
that rephrasing the templated questions using Llama-3.1-70B-Instruct helps, we sample from each
domain in the dataset was represented by 5 randomly sampled instances, resulting in a total of 65
samples across all domains for both templated questions and rephrased questions, resulting in a total
of 130 samples. The annotators were provided with both the sampled instances and the following
instructions:

Instruction to the Annotators

Rate the Prompts from 1 to 5, based on how natural they appear in English.

Table [TT] summarizes the naturalness scores assigned by annotators across all domains in ACTION-
REASONINGBENCH. The templated dataset received an average naturalness score of 4.2 out of

16

Published as a conference paper at ICLR 2025

Action Seq. | Ques Categories | GPT-40 Llama-8B-Inst Llama-70B-Inst

Fluent Tracking 85.003.57 68.424 77 82.653.82

State Tracking 91.573.05 71.954 .96 89.293 37

1 Action Executability | 95.102.14 84.313. 40 93.145 50
Effects of Actions 74.194 54 73.914 55 69.894 76
Numerical RAC 58.545_44 56.765476 56.105,48

Composite Questions | 82.662 49 58.373.23 74.309 77

‘ Average ‘ 81.921'45 67.261.80 77.261,58

Fluent Tracking 84.545 g7 69.664 87 82.473 86

State Tracking 91.553.30 64.185 86 86.114 08

10 Action Executability | 73.794 33 63.004 g3 74.764 08
Effects of Actions 59.184 96 53.685 12 65.314.81
Numerical RAC 41.675_03 42-255486 46.885.09

Composite Questions | 82.963 24 71.004.54 68.923 50

‘ Average ‘ 68.961,71 59.511.92 67.351,74

Fluent Tracking 73.264.77 63.385.79 71.084.98

State Tracking 91.013.03 63.645 13 84.273 36

19 Action Executability 62.864.72 54.555 00 62.864.72
Effects of Actions 69.574.50 56.635.44 66.674.89
Numerical RAC 56.995 13 49.15¢ 51 48.395.18

Composite Questions | 65.572 gg 57.313.11 62.045 93

‘ Average ‘ 68.561,71 57.581493 64.721,76

Table 6: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct,
on the binary subset (True/False) of the benchmark, evaluated without the ramifications constraints
using the Few-shot-3 setting. The results are categorized up by the action-sequence lengths and
question categories.

5, while the paraphrased version scored 4.5, indicating the high effectiveness of Llama-3.1-70B-
Instruct in enhancing the fluency of the data. We would like to point out that the annotators partici-
pated on a voluntary basis and were informed beforehand that no financial compensation would be
provided for their contribution.

E FINE-TUNING DETAILS

In this section, we describe the fine-tuning performed on the training split of ACTIONREASONING-
BENCH described in section [3.5] We fine-tuned Llama-3.1-8B separately for binary (true/false) and
free answer questions, using 6 epochs for the former and 18 epochs for the latter. The AdamW
optimizer was used, with a batch size of 4 and gradient accumulation steps set to 8 for both of the
training setups. Due to the available compute resources, we were limited to a maximum context
length of 4096 tokens. This leaves us roughly with 27k samples for binary answers and 14.4k sam-
ples for free answer. Tables[T2] [13]and [T4] show the statistics of the training set that we used to train
the models.

17

Published as a conference paper at ICLR 2025

Action Seq. | Ques Categories | GPT-40 Llama-8B-Inst Llama-70B-Inst

Fluent Tracking 76.925 84 50.006.93 75.006.00

State Tracking 73.336.59 44.447 41 73.687 14

1 Action Executability | 56.257 16 14.585 g9 38.307.09
Effects of Actions 80.00¢ 32 35.007 54 63.645 37
Numerical RAC 08.894_24 04.44307 13.335.07

Composite Questions | 49.263 51 41.383 46 55.613.63

‘ Average ‘ 54.502'39 35.332.30 53.732.49

Fluent Tracking 74.006.20 24.006.04 64.004.79

State Tracking 81.405.93 34.887.97 65.715.02

10 Action Executability 50.007 54 09.094 33 34.097 15
Effects of Actions 65.227 g2 41.307 96 62.86g.17
Numerical RAC 14.295_00 10.20432 12~244.68

Composite Questions | 43.843 48 37.933.41 48.133 65

‘ Average ‘ 50.572,40 30.342.20 47.002,50

Fluent Tracking 74.42¢ 65 44.197 57 65.127 97

State Tracking 61.224 96 28.576.45 54.557 51

19 Action Executability 47.927 91 10.424 41 25.00¢.25
Effects of Actions 73.916.47 27.66¢. 52 60.987 62
Numerical RAC 06.123 42 06.123 42 00.009.00

Composite Questions | 38.193 44 26.133.11 46.23 63

‘ Average ‘ 45.622,39 24-372‘06 42.542,44

Table 7: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct,
on the free answer subset of the benchmark, evaluated without the ramifications constraints using
the Few-shot-3 setting. The results are categorized up by the action-sequence lengths and question
categories.

Act. Seq. | Ques Categories | Blocksworld Depots Driverlog Grippers Mystery Satellite Spanner Visitall

Fluent Tracking 100.0¢.0 9231769 69.231332 95.244 76 100.0¢.0 88.243 05 88.897 2 100.09.9

State Tracking 83.339.04 93.336.67 66.671667 93.756.25 85.719.71 61.5414.04 62.512.5 100.09.0
1 Action Executability 71.4310.1 76.4710.6 76.4710.6 7895961 66.671143 76.199 52 80.09.18 47.0612.48
Effects of Act. 82.615.08 66.6712.6 85.Tlg71 77.279.14 100.00.0 60.013.00 80.010.69 87.58.54
Numerical RAC 64.7111 95 53.8514.39 46.671333 50.013.87 35.7l13.29 44441757 31.5810.06 31.8210.16
Composite 78.576.41 67.57.5 68.42764 70.73719 66.67765 53.855.09 60.98771 78.386.86

‘ Average ‘ 78.953 55 73.454 17 68.874.52 T7.443 64 73.2149 64.04451 65.894 19 70.694.24
Fluent Tracking 75.025.0 91.67g.33 100.09.0 100.0¢.9 80.013.33 73.6810.35 76.199 52 94.745 96

State Tracking 86.679.00 63.6415.21 83.3311.24 73.3311.82 63.641501 61.541404 81.251008 87.5125

10 Action Executability 52.3811.17 64.291309 73.6810.38 57.1411.07 46.671333 64.7111.95 65.010.04 55.011.41
Effects of Act. 68.09.52 66.6710.54 78.5711.38 69.57981 78.5711.38 30.7713.320 61.541404 66.6710.54
Numerical RAC 57.14411 .07 44.010.13 43.7512.81 37.518.3 33.3312.6 42.8611.07 29414139 2727972
Composite T1.746.11 78.056.54 T4.42673 T7.556.02 55.565.4 54.357.43 64.29745 71.437.75

‘ Average ‘ 67.424 g9 67.744 01 74.364.05 73.915.75 57.434.04 55.044 4 63.574.05 64.84 29
Fluent Tracking 93.756.25 66.6712.6 62.515.3 100.00.0 71431844 93.336.67 85.7lg71 61.5414.04
State Tracking 91.675.76 81.2510.08 86.679.09 70.015.98 87.5854 58.331486 78.5711.38 83.3316.67
19 Action Executability 52.1710.65 64.291399 57.891164 70.010.51 45.4510.87 56.251281 58.82123 68.1810.16
Effects of Act. 72.739.72 80.9557s 85.7Tlg71 70.01051 76.921216 41.671486 66.6711.43 76.47106
Numerical RAC 50.011.47 57891164 38461401 30.01051 125554 375125 26.67T11s2 31.8210.16
Composite 72.926 48 60.477 54 72.096.92 79.556.15 53.858.09 55.17.18 67.447 23 86.216.52

‘ Average ‘ 71.95.65 67.194 17 68.754.4 70.314.05 54.8747 56.674.54 64.464 37 66.974.53

Table 8: Performance across domains on GPT-40 on both the binary and free-answer subsets of the
benchmark, evaluated without the ramifications constraints using the zero-shot setting. The results
are categorized by the action-sequence lengths and question categories.

18

Published as a conference paper at ICLR 2025

Action Seq. Fluent Types | GPT-40 Llama-8B-Inst Llama-70B-Inst | Finetuned Llama-8B
Base Fluents 81.255 63 65.227 02 74.555 87 96.35 57
1 Derived Fluents 82.814'72 7636575 80.284,72 8675372
Self-Derived Fluents 8587363 68.24505 8144395 98.04137
Static Properties 85.19¢.84 72.737 75 80.06.32 89.474.06
Base Fluents 88.894 65 78.797 12 75.935 82 90.574.02
10 Derived Fluents 75.314'79 55.386,17 72~735.08 79.384,11
Self-Derived Fluents | 77.664.3 74.295 29 69.394 66 95.159 19
Static Properties 7941693 63.167 g3 697770 94-522,66
Base Fluents 90-244.63 6364837 76.196_57 83.614'74
19 Derived Fluents 74.424 7 44.07¢.46 67.475 14 76.474.2
Self-Derived Fluents | 80.04.34 70.916.12 71.744.69 93.464 39
Static Properties 824767'01 60.719_23 67.57'41 964882,17

Table 9: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark evaluated without the
ramifications constraints using the zero-shot-CoT. The results are categorized up by the fluent types

Action Seq. | Fluent Types | GPT-40 Llama-8B-Inst Llama-70B-Inst | Finetuned Llama-8B

Positive Fluents 83.163.84 80.05.39 79.314.34 72.844 94

1 Negative Fluents T7.784.62 60.34¢.42 70.775.64 77.534.40

Pos. and Nﬁg. Fluents 81.562,08 65.152.72 78.652417 93.771.29

Positive Fluents 82.473 g6 80.775.47 81.164.71 80.04.34

10 Negative Fluents 66.275.19 53.667.79 69.235.72 72.294 91
Pos. and Neg. Fluents | 71.329 32 67.425 g8 68.219. 43 87.741 73

Positive Fluents 79.314.34 67.447 15 72.865.32 84.934.19

19 Negative Fluents 71.084.08 58.147 50 67.535.34 75.644 .86

Pos. and Neg. Fluents | 70.985 33 54.03.52 67.59 47 86.271 7

Table 10: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and
fine-tuned Llama-3.1-8B on the binary subset (True/False) of the benchmark evaluated without the
ramifications constraints using the zero-shot-CoT. The results are categorized up by the fluent types

Domain Annotator 1 Annotator 2 Annotator 3 Average
Templated Rephrased | Templated Rephrased | Templated Rephrased | Templated Rephrased

Blocksworld 3.8 4.8 5.0 4.6 3.8 42 42 4.5
Depots 4.6 4.8 3.6 4.8 4.0 4.0 4.1 45
Driverlog 4.8 4.8 3.6 4.2 44 4.6 43 4.5
Grippers 4.6 5.0 4.0 4.8 4.6 4.8 44 49
Mystery 4.0 4.8 4.0 44 3.6 4.0 39 44
Satellite 44 4.8 4.6 44 44 42 45 45
Spanner 5.0 5.0 5.0 4.6 3.8 3.8 4.6 45
Visitall 3.6 42 3.8 4.6 4.0 42 3.8 43
Average | 43 4.8 | 4.2 4.6 | 4.1 4.2 | 42 4.5

Table 11: Naturalness scores assigned by three annotators on a scale of 1 to 5, where 1 indicates
completely incoherent text and 5 indicates natural-sounding questions. The table presents scores for
both the templated questions and paraphrased questions.

Answer category | No of Samples

False 13,793
True 13,319
Free-Response 14,476
Total \ 41,588

Table 12: Data distribution used for fine-tuning, categorized by response type. The binary question
responses are split into “True” and “False”. “Free-Response” indicates the count of open-ended
questions in the training set.

19

Published as a conference paper at ICLR 2025

Question category | No of Samples (Binary) | No of Samples(Free-Response)

Fluent Tracking 11,674 4,946
State Tracking 2,264 1,133
Action Executability 1,534 1,094
Effects of Actions 1,196 1,040
Numerical RAC 5,757 3,293
Composite Questions 4,687 2,970
Total \ 27,112 \ 14,476

Table 13: Data distribution used for fine-tuning, categorized by Question Categories.

Domain \ No of Samples (Binary) \ No of Samples (Free-Response)

Blocksworld 3,540 1,978
Depots 2,799 1,394
Driverlog 3,404 1,785
Grippers 3,494 1,910
Mystery 2,825 1,636
Satellite 4,037 2,073
Spanner 3,866 1,992
Visitall 3,147 1,708
Total \ 27,112 \ 14,476

Table 14: Data distribution used for fine-tuning, categorized by Domains.

20

Published as a conference paper at ICLR 2025

F FREE ANSWERS EVALUATION DETAILS

We evaluate the free answers using Llama-3.1-70B-Instruct. The following is the few-shot-7 prompt
that we used for evaluating the responses:

Prompt for Free Answer Evaluation with Llama-3.1-70b-Instruct

Evaluate whether the LLM response and the ground truth response are semantically the
same. Examine the responses, provide reasoning for your evaluation, and then Write ”True”
if the responses are the same or “False” if they are different. LLM Response or Ground
Truth could be "None”.

Example 1:

[LLM Response]
Location f1_4f is connected to f1_3f, f0_4f, and f2_4f.

[Ground Truth]

location f1_4f and location fO_4f are connected, location f1_4f and location f2_4f are
connected, location fO_4f and location f1_4f are connected, location f1_3f and location f1_4f
are connected, there is a connection between location f2_4f and location f1_4f, there is a
connection between location f1_4f and location f1_3f

[Reasoning for the evaluation]
all of the connections are the same

[Answer]
True

Example 7:

[LLM Response]

balll is at room2, ball2 is at room2, ball3 is at room4, ball4 is at room1, ball5 is at room1,
ball6 is at room4, ball7 is being carried by robot1’s Igripperl, ball8 is at room4, robotl is at
room?2, robotl1’s Igripper] is not free, robot1’s rgripperl is not free, robotl is carrying ball7
with Igripper1, robotl is carrying ball6 with rgripperl

[Ground Truth]

balll is present at room2, ball2 is at room?2, ball3 is present at room4, ball4 is at rooml,
ball5 is located at rooml, ball7 is being carried by robotl’s lgripperl, ball8 is present at
room4, rgripperl of robotl is carrying ball6 and robot1 is present in room2

[Reasoning for the evaluation]
According to the ground truth, robotl is carrying ball6, but LLM gives a contradictory

response: that ball6 is at room4

[Answer]| False

Given the examples and instructions above, evaluate the following responses:

[LLM Response]
{llm_response}

[Ground Truth]
{ground_truth}

21

Published as a conference paper at ICLR 2025

Table[I5]|shows the results of the free-answers using automatic metrics based on semantic similarity,
F1-BERTScore (Zhang et al.,2019).

Action Seq. | Ques Categories | GPT-40 Llama-8B-Inst Llama-70B-Inst | Finetuned Llama-8B
Fluent Tracking 71.762411 48-522484 55'212.85 90.220.95
State Tracking 68.241 98 54.853.18 61.072.59 82.061 g2
1 Action Executability | 56.933 36 49.49 g0 57.253 77 75.245 70
Effects of Actions 66.431 94 49.823 53 59'482.67 82.125 o7
Numerical RAC 87.071‘61 39.405‘05 61.945'30 89.521'36
Composite Questions | 55.031 g5 40.591 52 40.621 77 82.581 17
‘ Average ‘ 67.55210 47.113(15 55.923‘15 ‘ 83.621‘67
Fluent Tracking 6646229 5124208 5689320 85.401'74
State Tracking 70.091 26 60.435 59 64.105 03 83.781 49
10 Action Executability | 61.313.51 54.1445 79 68.285 78 79.045 40
Effects of Actions 66.191 34 52.993 09 62.052.16 82.031.78
Numerical RAC 82.381'82 29.144_13 503954@ 8520262
Composite Questions | 54.571 g8 45.671 59 54.414 39 79.831 56
‘ Average ‘ 6683198 48.932‘85 59352,87 ‘ 8247193
Fluent Tracking 60.783.19 47.695 71 56.353.12 87.791 39
State Tracking 70.331‘00 58.062‘77 62.062'47 83.511'41
19 Action Executability | 61.723 41 49.405 93 56.903 48 78.845 40
Effects of Actions 65.711 .99 52.533.51 62.783.99 84.901 29
Numerical RAC 8130229 32.554‘31 5379536 80.753'62
Composite Questions | 55.481 55 50.871 .40 52.751 63 77.101 .76
‘ Average ‘ 6588223 4851195 5743321 ‘ 82.141'96

Table 15: F1-BERTScore of GPT-40, Llama-3.1-8B-Instruct, Llama-3.1-70B-Instruct, and fine-
tuned Llama-3.1-8B on the free-answer subset of the benchmark, evaluated without the ramifications
constraints using the zero-shot-CoT. The results are categorized up by the action-sequence lengths
and question categories.

Below we share some examples where F1-BertScore fails to give an accurate score.

Low F1-BERTScore but the response is correct

[GROUND TRUTH]
robot1’s rgripper] is available

[RESPONSE]
rgripperl is free.

[BERT SCORE]
0.71

[Llama-3.1-70B-Intruct Evaluation]

The LLM response and the ground truth response are semantically the same. The term
“free” in the LLM response is equivalent to “available” in the ground truth response, both
indicating that the rgripperl is not being used. True.

[ANALYSIS]
The response is a simple paraphrase of the ground truth which is easily explained by the
LLM evaluation.

22

Published as a conference paper at ICLR 2025

High F1-BERTScore but the response is incorrect

[GROUND TRUTH]

loc_x0_y1 is not connected to loc_x2_y4
loc_x0_y3 is not connected to loc_x2_y4
loc_x1_y0 and loc_x2_y4 are not connected
loc_x1_y1 is not connected to loc_x2_y4

there is no connection between loc_x3_y0 and loc_x2_y4
there is no connection between loc_x3_y1 and loc_x2_y4
there is no connection between loc_x3_y2 and loc_x2_y4
there is no connection between loc_x3_y3 and loc_x2_y4

[RESPONSE]

- loc_x2_y4 is not visited.

- loc_x2_y4 is connected to loc_x1_y4.

- loc_x2_y4 is connected to loc_x3_y4.

- loc_x2_y4 is not connected to loc_x2_y3.
- loc_x2_y4 is not connected to loc_x2_y5.

- loc_x2_y4 is not connected to loc_x1_y2.
- loc_x2_y4 is not connected to loc_x1_y3.
- loc_x2_y4 is not connected to loc_x1_y5.

[BERT SCORE]
0.89

[Llama-3.1-70B-Intruct Evaluation]

The LLM response and the ground truth response are not semantically the same. The LLM
response states that loc_x2_y4 is not connected to loc_x2_y3, but the ground truth response
states that loc_x2_y4 and loc_x2_y3 are connected. Additionally, the LLM response states
that loc_x2_y4 is not connected to loc_x2_y5, but the ground truth response states that
loc_x2_y4 and loc_x2_y5 are connected. False.

[ANALYSIS]

The response contains a lot of incorrect responses. Moreover, the response fails to mention
the location of the robot. The Llama-3.1-70B-Instruct evaluation also fails to mention the
lack of the robot but correctly identifies some incorrect connections.

G DOMAINS IN ACTIONREASONINGBENCH

In the following sub-sections, we provide details regarding all the domains used in our study. We first
present the PDDL description that is given in the IPC and then present how state-space calculation
is performed for that domain. State space represents the possible number of interactions that can
be performed at a particular state. A higher state-space represents a more difficult problem for
traditional Al solvers.

G.1 BLOCKSWORLD

In this domain, we have a set of blocks that can be manipulated using four basic actions: picking
up a block from the table, putting down a block onto the table, stacking one block onto another, and
unstacking a block from atop another block. The goal is to move and stack these blocks using a
robotic hand, following specific rules and conditions.

This domain is formally represented in the IPC using the PDDL as outlined below:

23

Published as a conference paper at ICLR 2025

Domain # Fluents # Actions # Object IPC Year State)

Name Defined Defined Defined Complexity
Blocksworld 5 4 1 2000 O(N*+2N)
Depots 6 5 6 2002 O(24N7F2N)
DriverLog 5 6 4 2002 O(25N°=N)
Grippers 4 3 4 1998 O(2N°3N7)
Mystery 7 3 5 1998 027NV -3N)
Satellite 8 5 4 2002 O(25NH3N)
Spanner 6 3 4 2011 O(23N7+2N)
Visitall 3 1 1 2014 02N+ N)

Table 16: Summarizing key characteristics of various domains in ACTIONREASONINGBENCH in-
cluding the number of fluents, actions, and objects defined within each domain. Domains are cate-
gorized by year of introduction in the IPC and state space complexity, which reflects the difficulty
level for Al planners to solve each domain. A larger state space typically indicates greater complex-
ity and presents more significant challenges for traditional Al planners. “N” represents the number
of objects in each instance. For example, in the Spanner domain, N refers to the number of locations,
spanners and nuts.

PDDL description for Blocksworld domain

(define (domain BLOCKS)
(:requirements :strips :typing)

(:types block)

(:predicates (on ?x - block ?y - block)
(ontable ?x - block)

(clear ?x - block)

(handempty)

(holding ?x - block))

(:action pick-up

:parameters (7x - block)

:precondition (and (clear ?x) (ontable ?x) (handempty))
-effect

(and (not (ontable ?x))

(not (clear 7x))

(not (handempty))

(holding ?x)))

24

Published as a conference paper at ICLR 2025

(:action put-down
:parameters (?x - block)
:precondition (holding 7x)
-effect

(and (not (holding ?x))
(clear 7x)

(handempty)

(ontable ?x)))

(:action stack

:parameters (?x - block ?y - block)
:precondition (and (holding ?x) (clear ?y))
:effect

(and (not (holding ?x))

(not (clear ?y))

(clear 7x)

(handempty)

(on 2% 7y)))

(:action unstack

:parameters (?x - block ?y - block)

:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect

(and (holding 7x)

(clear ?y)

(not (clear ?x))

(not (handempty))

(not (on ?x ?y))))

)

Predicates define the number of fluents in a state:

e on(b1,b2)
 ontable(b)
e clear(b)
holding(b)
* handempty

The complexity of a state is, where N is the number of objects

O(2N2+2N) (l)
G.2 DEPOTS

The Depots domain models a logistics environment where crates are transported between different
locations using trucks and manipulated using hoists. The goal is to efficiently move crates from
one location to another, utilizing the available resources (hoists and trucks) while adhering to the
constraints defined by the predicates and actions.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Depot s domain

(define (domain depots)
(:requirements :strips :typing)
(:types place locatable - object
depot distributor - place

25

Published as a conference paper at ICLR 2025

truck hoist surface - locatable
pallet crate - surface)

(:predicates (at ?x - locatable ?y - place)
(on ?x - crate ?y - surface)

(in ?x - crate 7y - truck)

(lifting ?x - hoist ?y - crate)

(available ?x - hoist)

(clear ?x - surface))

(:action Drive

:parameters (?x - truck ?y - place ?z - place)
:precondition (and (at ?x 7y))

:effect (and (not (at 7x ?y)) (at ?x ?z)))

(:action Lift

:parameters (?x - hoist ?y - crate 7z - surface ?p - place)

:precondition (and (at ?x ?p) (available ?x) (at 7y ?p) (on ?y ?z) (clear ?y))

:effect (and (not (at ?y ?p)) (lifting ?x ?y) (not (clear ?y)) (not (available 7x)) (clear ?z) (not
(on ?y 7z))))

(:action Drop

:parameters (?x - hoist ?y - crate ?z - surface ?p - place)

:precondition (and (at ?x ?p) (at 7z ?p) (clear ?z) (lifting ?x ?y))

:effect (and (available 7x) (not (lifting 7x ?y)) (at ?y ?p) (not (clear ?z)) (clear ?y)(on ?y
2)))

(:action Load

:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at 7z ?p) (lifting 7x ?y))
:effect (and (not (lifting ?x ?y)) (in ?y ?z) (available ?x)))

(:action Unload

:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (available ?x) (in ?y ?z))
:effect (and (not (in ?y ?z)) (not (available ?x)) (lifting ?x ?y)))
)

Predicates define the number of fluents in a state:

* (at 7x - locatable ?y - place)
* (on 7x - crate ?y - surface)
* (in 7x - crate 7y - truck)

* (lifting 7x - hoist ?y - crate)
e (available ?x - hoist)

e (clear ?x - surface))

0(24N2+2N))

G.3 DRIVERLOG

This domain is modeled to simulate logistics operations where drivers, trucks, and objects must be
moved between different locations. The primary focus is on transporting objects via trucks, either
driven by drivers or moved manually by walking. The key actions in this domain include loading
and unloading trucks, drivers boarding and disembarking trucks, driving trucks between connected
locations, and walking when no truck is involved.

26

Published as a conference paper at ICLR 2025

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Driverlog domain

(define (domain driverlog)

(:requirements :typing) (:types location locatable - object
driver truck obj - locatable)

(:predicates

(at ?0bj - locatable ?loc - location)

(in ?0bj1 - obj ?0bj - truck)

(driving ?d - driver ?v - truck)

(link ?x ?y - location) (path ?x ?y - location)

(empty ?v - truck))

(:action LOAD-TRUCK

‘parameters

(?0bj - obj

2truck - truck

2oc - location)

:precondition (and (at ?truck ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?0bj ?truck)))

(:action UNLOAD-TRUCK

‘parameters

(?0bj - obj

truck - truck

?loc - location)

:precondition (and (at ?truck ?loc) (in ?obj ?truck))
:effect (and (not (in ?0bj ?truck)) (at ?o0bj ?1oc)))

(:action BOARD-TRUCK

:parameters

(?driver - driver

MNruck - truck

?oc - location)

:precondition (and (at ?truck ?loc) (at ?driver ?loc) (empty ?truck))

:effect (and (not (at ?driver ?loc)) (driving ?driver ?truck) (not (empty ?truck))))

(:action DISEMBARK-TRUCK

‘parameters

(?driver - driver

Mruck - truck

2oc - location)

:precondition (and (at ?truck ?loc) (driving ?driver ?truck))

:effect (and (not (driving ?driver ?truck)) (at ?driver ?loc) (empty ?truck)))

(:action DRIVE-TRUCK

‘parameters

(?truck - truck

?Noc-from - location

?oc-to - location

2driver - driver)

:precondition

(and (at ?truck ?loc-from)

(driving ?driver ?truck) (link ?loc-from ?loc-to))

:effect (and (not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

27

Published as a conference paper at ICLR 2025

(:action WALK

:parameters

(?driver - driver

MNoc-from - location

MNoc-to - location)

:precondition (and (at ?driver ?loc-from) (path ?loc-from ?loc-to))
:effect (and (not (at ?driver ?loc-from)) (at ?driver ?loc-to)))

)

Predicates define the number of fluents in a state:

* (at ?0bj - locatable ?loc - location)
* (in 70bjl - obj ?0bj - truck)

* (driving ?d - driver ?v - truck)

* (link ?x ?y - location)

* (path ?x ?y - location)

e (empty ?v - truck)

0(25N2—N) (3)

G.4 GRIPPER

This domain represents a transportation domain where a robot with two grippers can move between
rooms, pick up objects, and drop them off. The robot can only hold one object in each gripper at a
time. This domain could solve tasks where the robot needs to transport multiple objects from one
room to another by strategically moving, picking up, and dropping items.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Gripper domain

(define (domain gripper-strips)
(:requirements :strips :typing)

(:types room object robot gripper)
(:predicates (at-robby ?r - robot ?x - room)
(at ?0 - object ?x - room)

(free 7r - robot ?g - gripper)

(carry ?r - robot ?0 - object ?g - gripper))

(:action move

:parameters (7r - robot ?from ?to - room)

:precondition (and (at-robby ?r ?from))

:effect (and (at-robby ?r 7to) (not (at-robby ?r ?from))))

(action pick

:parameters (?r - robot ?0bj - object ?room - room ?g - gripper)
:precondition (and (at ?0bj ?room) (at-robby ?r ?room) (free 7r ?7g))
:effect (and (carry ?r ?obj 7g)

(not (at ?0bj ?room))

(not (free 7r 7g))))

28

Published as a conference paper at ICLR 2025

(:action drop

:parameters (?r - robot ?0bj - object 7room - room ?g - gripper)
:precondition (and (carry ?r ?0bj ?g) (at-robby ?r 7room))
:effect (and (at ?0bj ?room)

(free 7r 7g)

(not (carry 7 70bj ?2)))))

. J

Predicates define the number of fluents in a state:

* (carry 7r - robot 70 - object ?g - gripper)
* (at-robby ?r - robot ?x - room)
* (at 70 - object ?x - room)

* (free ?r - robot ?g - gripper)

O(2N3+3N2) (4)

G.5 MYSTERY

The Mystery domain represents a transportation system where vehicles move between locations,
constrained by fuel levels, and can load or unload cargo, constrained by available space. The key
aspects of this domain are managing fuel for vehicle movement and managing space for loading
and unloading cargo. Locations are connected, and the system also handles fuel transitions, space
transitions, and the movement of objects across a grid of locations.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for My stery domain

(define (domain mystery-strips)
(:requirements :typing)

(:types space fuel location movable - object
vehicle cargo - movable)
(:predicates

(at ?v - movable ?1 - location)
(conn ?11 ?12 - location)

(has-fuel 7?1 - location ?f - fuel)
(fuel-neighbor ?f1 ?f2 - fuel)

(in ?c - cargo ?v - vehicle)
(has-space ?v - vehicle ?s - space)
(space-neighbor ?s1 ?s2 - space))

(:action move

:parameters (?v - vehicle ?11 ?12 - location ?f1 ?f2 - fuel)
:precondition (and (at ?v ?11)

(conn 711 ?12)

(has-fuel 711 7f1)

(fuel-neighbor 72 ?f1))

:effect (and (not (at ?v ?11))

(at ?v 712)

(not (has-fuel ?11 7f1))

(has-fuel ?11 ?2)))

29

Published as a conference paper at ICLR 2025

(:action load

:parameters (?c - cargo ?v - vehicle ?1 - location ?s1 ?s2 - space)
:precondition (and (at ?c 71)

(at ?2v 1)

(has-space ?v ?s1)

(space-neighbor ?s2 ?s1))

:effect (and (not (at 7c 71))

(in ?2¢ ?v)

(not (has-space ?v ?s1))

(has-space ?v 7s2)))

(:action unload

:parameters (?c - cargo ?v - vehicle ?1 - location ?s1 ?s2 - space)
:precondition (and (in ?c ?v)
(at ?2v 71)

(has-space ?v ?s1)
(space-neighbor ?s1 ?s2))
:effect (and (not (in 7c ?v))
(at 2¢ M)

(not (has-space ?v ?s1))
(has-space ?v 7s2)))

)

. J

Predicates define the number of fluents in a state:

e (at ?7v - movable ?I - location)

¢ (has-fuel 7?1 - location ?f - fuel)

* (in ?c - cargo ?v - vehicle)

* (has-space ?v - vehicle 7s - space)
e (conn ?11 ?12 - location)

* (fuel-neighbor ?f1 22 - fuel)

* (space-neighbor ?s1 7s2 - space)

0(27N2—3N) (5)

G.6 SATELLITE

The Satellite domain represents a simplified model for managing and controlling satellites and their
onboard instruments. The goal in this domain is to coordinate the behavior of satellites, including
turning them toward desired directions, powering instruments on and off, calibrating instruments,
and capturing images.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Satellite domain

(define (domain satellite)
(:requirements :strips :typing)
(:types satellite direction instrument mode)

30

Published as a conference paper at ICLR 2025

(:predicates

(on_board ?i - instrument ?s - satellite)

(supports ?7i - instrument ?m - mode)

(pointing 7?s - satellite ?d - direction)
(power_avail 7s - satellite)

(power_on ?i - instrument)

(calibrated ?i - instrument)

(have_image 7d - direction ?m - mode)
(calibration_target ?i - instrument ?d - direction))

(:action turn_to

:parameters (?s - satellite 7d_new - direction ?d_prev - direction)
:precondition (and (pointing ?s ?d_prev))

:effect (and (pointing ?s ?d_new) (not (pointing ?s ?d_prev))))

(:action switch_on

:parameters (7i - instrument 7?s - satellite)

:precondition (and (on_board ?i ?s) (power_avail 7s))

:effect (and (power_on ?i) (not (calibrated ?i)) (not (power_avail ?s))))

(:action switch_off

:parameters (?i - instrument ?s - satellite)
:precondition (and (on_board ?i ?s) (power_on 7i))
:effect (and (not (power_on ?1)) (power_avail ?s)))

(:action calibrate

:parameters (?s - satellite ?i - instrument ?d - direction)
:precondition (and (on_board ?i ?s)

(calibration_target 71 ?d)

(pointing ?s ?d)

(power_on 1))

:effect (calibrated ?1))

(:action take_image

:parameters (?s - satellite ?d - direction ?i - instrument ?m - mode)
:precondition (and (calibrated ?i)

(on_board i ?s)

(supports 7i 7m)

(power_on M)

(pointing ?s ?d))

:effect (have_image ?d ?7m)))

Predicates define the number of fluents in a state:

e (on-board ?i - instrument 7?s - satellite)

* (supports ?i - instrument ?m - mode)

* (pointing ?s - satellite ?d - direction)

* (have-image ?d - direction ?m - mode)

* (calibration-target 7i - instrument ?d - direction)
* (power-avail 7s - satellite)

* (power-on 7i - instrument)

e (calibrated ?i - instrument)
o) (25N2 +3N)

31

(6)

Published as a conference paper at ICLR 2025

G.7 SPANNER

This domain models a simple world where a man moves between locations, picks up spanners, and
uses them to tighten loose nuts. The actions available to the man involve walking between locations,
picking up the spanner, and tightening nuts using the spanner if all conditions are met.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for Spanner domain

(define (domain spanner)
(:requirements :typing :strips)
(:types

location locatable - object
man nut spanner - locatable

)

(:predicates

(at 7m - locatable ?1 - location)
(carrying ?m - man ?7s - spanner)
(useable ?s - spanner)

(link ?11 - location ?12 - location)
(tightened ?n - nut)

(loose n - nut))

(:action walk

:parameters (?start - location ?end - location ?m - man)
:precondition (and (at ?m ?start) (link ?start ?end))
:effect (and (not (at ?m ?start)) (at ?m ?end)))

(:action pickup_spanner

:parameters (?1 - location ?s - spanner ?m - man)
:precondition (and (at ?m ?1) (at ?s ?1))

:effect (and (not (at ?s ?1)) (carrying ?m 7s)))

(:action tighten_nut

:parameters (?1 - location ?s - spanner ?m - man 7n - nut)
:precondition (and (at ?m ?1)

(at T ?1)

(carrying ?m ?s)

(useable ?s)

(loose n))

:effect (and (not (loose ?n))(not (useable ?s)) (tightened ?n)))
)

Predicates define the number of fluents in a state:

e (at 7m - locatable ?1 - location)

* (carrying m - man ?s - spanner)
e (link 711 - location ?12 - location)
* (useable 7s - spanner)

* (tightened 7n - nut)

* (loose 7n - nut))

0(23N2+2N) (7)

32

Published as a conference paper at ICLR 2025

G.8 VISITALL

The VisitAll domain is focused on controlling a robot that needs to visit all places on a connected
grid. The robot’s movement is governed by the connectivity of places, and each move changes
the robot’s location and marks the visited place. The task is essentially to traverse the entire grid,
visiting every place, while ensuring the robot follows connectivity constraints.

This domain is formally represented in the IPC using the PDDL as outlined below:

PDDL description for VisitAll domain

(define (domain grid-visit-all)
(:requirements :typing)

(:types place - object)

(:predicates (connected ?x ?y - place)
(at-robot ?x - place)

(visited ?x - place))

(:action move

:parameters (?curpos Tnextpos - place)

:precondition (and (at-robot ?curpos) (connected ?curpos Tnextpos))

:effect (and (at-robot ?nextpos) (not (at-robot ?curpos)) (visited ?nextpos)))

)

Predicates define the number of fluents in a state:

* (connected 7x ?y - place)
* (at-robot 7x - place)

* (visited ?x - place)
O(2N*+N) (8)

H PLANNING DESCRIPTION AND TOOLS

Planning, at its core, involves determining a sequence of actions that transforms the world from
an initial state to a goal state. A world state specifies which fluents are true or false at any given
time. The planning domain, denoted as D, specifies the fluents, actions, and their effects within
the system. Typically, planning domains are represented using formal languages such as PDDL or
ASP. In these languages, a transition function @, : states X actions — states defines how actions
transform an initial state into a resulting state.

H.1 PLANNING DOMAIN DEFINITION LANGUAGE (PDDL)

PDDL is a formal language developed for expressing planning problems and domain models. Since
its inception, PDDL has been extended to address increasingly complex planning scenarios, par-
ticularly those involving deterministic problems (Haslum et al.l [2019). PDDL facilitates the spec-
ification of both the planning domains and problem instances, including objects, initial, and goal
states. In this study, we employ the “STRIPS” (Stanford Research Institute Problem Solver) subset
of PDDL (Fikes & Nilssonl [1971). Additionally, the domains are “typed”, meaning that objects in
the planning problem are assigned specific types and subtypes, ensuring a structured representation
of the problem space.

H.2 ANSWER SET PROGRAMMING (ASP)
ASP is a declarative approach to problem-solving based on logic programming and non-monotonic

reasoning. Unlike traditional planning languages like PDDL, ASP focuses on defining constraints
and rules that describe potential solutions, rather than directly encoding state transitions. In ASP, a

33

Published as a conference paper at ICLR 2025

problem is encoded as a logic program consisting of rules, facts, and constraints, and the solution is
an “answer set” that satisfies all the constraints of the problem. In this study, we use ASP to generate
the complete state-space by applying the sequence of actions starting from the initial state.

I CLASSIFICATION OF FLUENTS

The subsequent sections provide a detailed classification of fluents across all 13 domains included
in ACTIONREASONINGBENCH, as described in section[3.2]

I.1 BLOCKSWORLD
In the BLOCKSWORLD domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - onTable (block)

3. Derived Fluents - clear (block), handEmpty

4. Self-Derived Fluents - holding (block), on (block,block)

1.2 DEPOTS

In the DEPOTS domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - No base fluents are present

3. Derived Fluents - clear (surface), available (hoist)
4.

Self-Derived Fluents - at (locatable,place), on(crate, surface),
in(crate, truck),lifting (hoist,crate)

1.3 DRIVERLOG
In the DRIVERLOG domain, the fluents are categorized as follows:

1. Static Properties - 1ink (location, location), path(location, location)
2. Base Fleunts - No base fluents are present

3. Derived Fluents - empty (truck)
4.

Self-Derived Fluents - at (locatable,location), in(object,truck),
driving(driver, truck)

1.4 GRIPPERS
In the GRIPPERS domain, the fluents are categorized as follows:

1. Static Properties - No static properties are present

2. Base Fleunts - carry (robot, object, gripper)

3. Derived Fluents - free (robot, gripper)

4. Self-Derived Fluents - at _robby (robot, room), at (object, room)
1.5 MYSTERY

In the MYSTERY domain, the fluents are categorized as follows:

1. Static Properties - space_neighbor (space, space),
fuel neighbor (fuel, fuel), conn(location, location)

34

Published as a conference paper at ICLR 2025

2. Base Fleunts - No base fluents are present
3. Derived Fluents - No derived fluents are present

4. Self-Derived Fluents - at (movable, location), in(cargo,vehicle),
has_space (vehicle, space), has_fuel (location, fuel)

1.6 SATELLITE
In the SATELLITE domain, the fluents are categorized as follows:

1. Static Properties - on_board (instrument, satellite),
supports (instrument, mode),calibration_target (instrument,direction)

2. Base Fleunts - power_on (instrument), calibrated (instrument),
have_image (direction, mode)

3. Derived Fluents - power_avail (satellite)

4. Self-Derived Fluents - pointing (satellite,direction)

.7 SPANNER

In the SPANNER domain, the fluents are categorized as follows:
1. Static Properties - 1ink (location, location)
2. Base Fleunts - carrying (man, spanner), tightened (nut)
3. Derived Fluents - 1oose (nut), useable (spanner)

4. Self-Derived Fluents - at (locatable, location)

I.8 VISITALL

In the VISITALL domain, the fluents are categorized as follows:
1. Static Properties - connected (place, place)
2. Base Fleunts - No base fluents are present
3. Derived Fluents - visited (place)

4. Self-Derived Fluents - at _robot (place)

J RESPOSNES ON RAMIFICATION DATASET

In the following sections, we illustrate some instances and responses that we see from GPT-40 and
ol-preview.

35

Published as a conference paper at ICLR 2025

J.1 GPT-40

A Ramificaiton question for State Tracking

[DOMAIN DESCRIPTION]

A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks
can be stacked if the first block is held and the second block is clear, causing the first block
to rest on top of the second. Unstacking occurs when the hand is empty, the first block is
clear, and on top of the second, resulting in the first block being held again. A block is clear
if nothing is on top of it and it’s not held, and the hand is empty if it’s not holding anything.
Blocks are stable when clear and on the table, and they can be painted if stable and the hand
is empty. A block is considered on display if it can be painted and has no other block on top
of it.

[INITIAL CONDITIONS]

Block bl is stacked on block b4, block b2 has no blocks on top of it, block b2 is stacked on
block b6, block b3 has no blocks on top of it, block b3 is stacked on block b5, block b4 is
positioned on the table, block bS5 is stacked on block b7, block b6 is positioned on the table,
block b7 is stacked on block bl and the hand is empty.

[QUESTION]

Given the initial condition, the following actions are taken: block b3 is unstacked from
block b5 to achieve the current state. In this state, if block b3 is placed down, what are all
the valid properties of the state (including both affirmative and negated properties)? If there
are no valid properties, state None.

Response to the above question

[REASON]
To determine the valid properties of the state after block b3 is placed down, we need to
follow the sequence of actions and check the conditions for each property.

1. **Initial Conditions:**
- bl is on b4.

- b2 is on b6.

- b3 is on b5.

- b4 is on the table.

- b5 is on b7.

- b6 is on the table.
-b7isonbl.

- The hand is empty.

2. *¥*Action: Unstack b3 from b5:**
- The hand must be empty.

- b3 must be clear and on top of b5.

- Result: b3 is held, b5 is now clear.

3. **Current State after unstacking b3:%*
- bl is on b4.

- b2 is on bb.

- b3 is held.

36

Published as a conference paper at ICLR 2025

- b4 is on the table.

- b5 is on b7 and is clear.

- b6 is on the table.

-b7isonbl.

- The hand is not empty (holding b3).

4. **Action: Place b3 down:**
- The hand must be holding b3.
- Result: b3 is placed on the table, the hand is empty.

5. **Final State after placing b3 down:**
- bl is on b4.

- b2 is on b6.

- b3 is on the table and clear.

- b4 is on the table.

- b5 is on b7 and is clear.

- b6 is on the table.

-b7isonbl.

- The hand is empty.

6. **Valid Properties: **

- bl is on b4.

- b2 is on b6.

- b3 is on the table.

- b3 is clear.

- b4 is on the table.

- b5 is on b7.

- b5 is clear.

- b6 is on the table.

-b7is onbl.

- The hand is empty.

- bl is not clear (b7 is on it).

- b2 is not clear (nothing on it but it is on b6).

- b4 is clear (nothing on it and on the table).

- b6 is clear (nothing on it and on the table).

- b7 is not clear (b5 is on it).

- b3 is stable (clear and on the table).

- b4 is stable (clear and on the table).

- b6 is stable (clear and on the table).

- b3 can be painted (stable and hand is empty).

- b4 can be painted (stable and hand is empty).

- b6 can be painted (stable and hand is empty).

- b3 is on display (can be painted and no block on top).
- b4 is on display (can be painted and no block on top).
- b6 is on display (can be painted and no block on top).

[ANSWER]

- bl is on b4.

- b2 is on b6.

- b3 is on the table.
- b3 is clear.

- b4 is on the table.
-b5is onb7.

- b5 is clear.

- b6 is on the table.
-b7isonbl.

37

Published as a conference paper at ICLR 2025

- The hand is empty.
- bl is not clear.

- b2 is not clear.

- b4 is clear.

- b6 is clear.

- b7 is not clear.

- b3 is stable.

- b4 is stable.

- b6 is stable.

- b3 can be painted.
- b4 can be painted.
- b6 can be painted.
- b3 is on display.

- b4 is on display.

- b6 is on display.

From the above response, we can see that block b4 is not stable, but the model says it is stable.

J.2 OI1-PREVIEW

A Ramificaiton question for State Tracking

[DOMAIN DESCRIPTION]

A block can only be picked up if it is clear, on the table, and the hand is empty, resulting in
the block being held. A held block can be put down, placing it back on the table. Blocks
can be stacked if the first block is held and the second block is clear, causing the first block
to rest on top of the second. Unstacking occurs when the hand is empty, the first block is
clear, and on top of the second, resulting in the first block being held again. A block is clear
if nothing is on top of it and it’s not held, and the hand is empty if it’s not holding anything.
Blocks are stable when clear and on the table, and they can be painted if stable and the hand
is empty. A block is considered on display if it can be painted and has no other block on top
of it.

[INITIAL CONDITIONS]

Block bl is positioned above block b7, block b2 has no blocks on it, block b2 is stacked on
block b6, block b3 is stacked on block b4, block b4 is situated on the table, block b5 has no
blocks on it, block b5 is situated on the table, block b6 is stacked on block b3, block b7 is
on the table, block b8 is positioned above block b1, block b9 has no blocks on it, block b9
is stacked on block b8, and the hand is empty.

[QUESTION]

Based on the initial condition, the following actions are taken: block b9 is removed from
block b8 to achieve the current state. In this state, identify all valid properties that do not
include negations and list them; if there are no such properties, indicate None.

38

Published as a conference paper at ICLR 2025

Response to the above question

[REASON]

After removing block b9 from block bS8, block b9 is placed on the table, and the hand
remains empty. Block b9 now has no blocks on top of it and is not held, so it is **clear™*.
Since it is on the table, it is also **stable**. With the hand empty and block b9 being stable,
it **can be painted**. As there are no blocks on top of it, block b9 is **on display**.

Similarly, block b5 is on the table with no blocks on top and is not held, making it
clear and **stable**. It **can be painted** and is **on display**.

Block b7 is on the table and, with no blocks explicitly on top of it after the action, is
clear®*, **stable, **can be painted**, and is **on display**.

Blocks bl and b8 have no blocks on top of them and are not held, so they are **clear**.

Block b2 has no blocks on top and is not held, so it is **clear**, though it is not on
the table and thus not stable.

The hand is explicitly stated to be **empty** in the current state.

[ANSWER]

- The hand is empty

- Block bl is clear

- Block b2 is clear

- Block b5 is clear

- Block b5 is on the table
- Block b5 is stable

- Block b5 can be painted
- Block b5 is on display

- Block b7 is clear

- Block b7 is on the table
- Block b7 is stable

- Block b7 can be painted
- Block b7 is on display

- Block b8 is clear

- Block b9 is clear

- Block b9 is on the table
- Block b9 is stable

- Block b9 can be painted
- Block b9 is on display

From the above response, we can see that block b1 is not clear, but the model says it is clear.

K IMPACT OF INPUT FORMATS ON LLM PERFORMANCE

In this section, we explore the effects of different input formats on LLMs. Specifically, we compare
the performance of LLMs when inputs are presented in formal language (PDDL) or in templated
formats generated during the data creation pipeline (described in Section[3.4)), as opposed to natural
language. For our analysis, we sampled 10% of the test set from ACTIONREASONINGBENCH,
covering all question categories and action sequence lengths.

K.1 FORMAL LANGUAGE (PDDL)

Table [17| presents the performance of LLMs when provided inputs in the formal language PDDL.
Our results reveal a significant drop in performance for most models. GPT-40 shows a notable per-
formance degradation of 16.03% compared to the natural language baseline. Similarly, Llama-3.1-
70B-Instruct experiences a 6.7% decrease in accuracy. Interestingly, Llama-3.1-8B-Instruct exhibits

39

Published as a conference paper at ICLR 2025

Action Seq. | GPT-40 Llama-8B-Inst Llama-70B-Inst

1 43.907 75 26.836.92 53.667.79
10 48.787.81 17.075.38 31.717.97
19 33.337.55 17.95¢6.15 25.646.99

Table 17: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct
on the free-answer subset of the benchmark evaluated without the ramifications constraints using the
zero-shot-CoT. The input is given in the formal language, i.e. PDDL. The results are categorized up
by the action sequence length.

a 3.78% increase in performance, likely attributable to its initially low baseline performance. These
findings suggest that the pretraining phase of LLMs, predominantly focused on natural language,
plays a crucial role in shaping their reasoning capabilities. Consequently, formal language inputs,
that deviate from this training paradigm, may hinder model performance.

K.2 TEMPLATED LANGUAGE

Action Seq. | GPT-40 Llama-8B-Inst Llama-70B-Inst

1 76.92¢.75 32.507.40 63.417 52
10 66.677.55 19.516.19 47.507 89
19 64.107 ¢s 17.956.15 25.646.99

Table 18: Performance comparison of GPT-40, Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct
on the free-answer subset of the benchmark evaluated without the ramifications constraints using the
zero-shot-CoT. The input is given in the templatized language. The results are categorized up by the
action sequence length.

Table [T8]summarizes the performance of LLMs when inputs are presented in the templated formats
described in Section rather than in fully paraphrased natural language. The results indicate
a consistent improvement across all models. Notably, GPT-40 achieves the highest gain, with an
average performance improvement of 11.2%. Llama-3.1-8B-Instruct exhibits the second largest
improvement, with a 6.5% increase, while Llama-3.1-70B-Instruct demonstrates a modest gain of
1.81%. These results suggest that templated inputs reduce the verbal reasoning burden on LLMs,
leading to more accurate outputs.

40

	Introduction
	Related Works
	ActionReasoningBench
	Question Categories
	Fluent Categories
	Dataset Structure and Variations
	Data Creation & Validation
	Data Splits

	Experiments and Evaluation
	Results and Discussion
	Ramifications Results

	Conclusion
	Limitations & Future Work
	Describing an Instance from ActionReasoningBench
	Additional Results
	Zero-shot-CoT Binary Result
	Few-shot-3 Results
	Results by Domains
	Results by Fluents

	Data Verification
	Fine-tuning Details
	Free Answers Evaluation Details
	Domains in ActionReasoningBench
	Blocksworld
	Depots
	Driverlog
	Gripper
	Mystery
	Satellite
	Spanner
	VisitAll

	Planning Description and Tools
	Planning Domain Definition Language (PDDL)
	Answer Set Programming (ASP)

	Classification of Fluents
	Blocksworld
	Depots
	Driverlog
	Grippers
	Mystery
	Satellite
	Spanner
	Visitall

	Resposnes on Ramification Dataset
	GPT-4o
	o1-preview

	Impact of Input Formats on LLM Performance
	Formal Language (PDDL)
	Templated Language

