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A.1 Related Work

Risk-Sensitive/Robust Control and Dynamic Games. H1-robust control has been one of the
most fundamental research fields in control theory, addressing worst-case controller design for
linear plants in the presence of unknown disturbances and uncertainties. Frequency-domain and
time-domain/state-space formulations of theH1-robust control problem were first introduced in [34]
and [35], respectively. Based on the time-domain approach, the precise equivalence relationships
between controllers in the disturbance attenuation (which belongs to a class ofH1-robust control)
problem, risk-sensitive linear control, and zero-sum LQ dynamic games have been studied extensively
[22, 23, 24, 36, 26, 25]. Specifically, [22] first demonstrated the equivalence of the controllers
between LEQG and zero-sum LQ (differential) games; [23] studied the relationship between the
mixed H2/H1 design problem, a sub-problem of the H1-robust control problem, and LEQG;
[24, 36] investigated the disturbance attenuation problem through a dynamic games approach, for
both finite- and infinite-horizons, time-invariant and -varying, deterministic and stochastic settings.
We refer the readers to [26, 25] for comprehensive studies of H1-robust control, dynamic game
theory, risk-sensitive control, and also their precise interconnections.

Policy Optimization for LQ Control. Applying PG methods to LQ control problems has been
investigated in both control and learning communities extensively. In contrast to the early work on this
topic [37, 38], the recent study focuses more on theoretical aspects such as global convergence and
sample complexity of these PG methods [11, 12, 13, 14, 15, 39, 17, 16, 40, 19, 41, 33]. Specifically,
[11] was the first work to show the global convergence of PG methods for the LQR problem. Initial
sample complexity results for the derivative-free PG methods based on zeroth-order optimization
techniques were also reported in [11]. Subsequently, [14] characterized the optimization landscape of
the LQR in detail, and provided an initial extension toward the distributive LQR. Building upon these
works, [19] enhanced the sample complexity result by adopting a two-point zeroth-order optimization
method, in contrast to the single-point method adopted in [11]. The sample complexity result of
the two-point method was further improved recently in both continuous- [17] and discrete-time
LQR [33]. Moreover, [41] studied the global convergence of PG methods for the LQR where both
the state and control weighting matrices are indefinite, but without addressing the derivative-free
setting; [15, 39] derived global convergence of PG methods for zero-sum LQ dynamic games, also
pointing to the need to investigate the indefinite LQR. The most relevant works that addressed LQ
control with robustness/risk-sensitivity concerns using policy optimization methods were [40, 42, 16].
The work in [40] considered LQR with multiplicative noises, which enjoys a similar landscape as
standard LQR. The work in [42] studied finite-horizon risk-sensitive nonlinear control, and established
stationary-point convergence when using iterative LEQG and performing optimization over control
actions directly. [16] examined the mixed H2/H1 control design problem, a class of H1-robust
control problems, with a different landscape from LQR. However, no sample complexity results
were provided in either [42] or [16]. Very recently, [32] has also studied the convergence of policy
gradient method for finite-horizon LQR problems. Interestingly, the landscape analysis independently
developed in [32] matches some of our findings for the inner-loop subproblem of zero-sum LQ
dynamic games, while we consider a more general setting with time-varying system dynamics and
a possibly indefinite state-weighting matrix. Other recent results on PO for LQ control include
[12, 43, 18, 13, 20, 44, 21]. We also refer the readers to [45, 46] for analyses of model-based methods
in solving LQ control problems, and to [47, 48] for online control of LQ systems.

Nonconvex-Nonconcave Minimax Optimization & MARL. Solving minimax problems using PG
methods, especially gradient descent-ascent (GDA), has been one of the most popular sub-fields
in the optimization community recently. Convergence of the first-order GDA algorithm (and its
variants) has been studied in [49, 50, 51, 52] for general nonconvex-nonconcave objectives, in [53]
for the setting with an additional two-sided Polyak-Łojasiewicz (PL) condition, and in [54] for the
setting under the weak Minty variational inequality condition. In fact, [55] has shown very recently
the computational hardness of solving nonconvex-nonconcave constrained minimax problems with
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first-order methods. To the best of our knowledge, zeroth-order/derivative-free methods, as studied
in our paper, have not yet been investigated for nonconvex-nonconcave minimax optimization
problems. On the other hand, in the multi-agent RL (MARL) regime, policy optimization for solving
zero-sum Markov/dynamic games naturally leads to a nonconvex-nonconcave minimax problem
[15, 56, 57], whose convergence guarantee has remained open [56] until very recently, except for
the aforementioned LQ setting [15, 39]. In particular, [57] has established the first non-asymptotic
global convergence of independent policy gradient methods for tabular (finite-state-action) zero-sum
Markov games, where GDA with two-timescale stepsizes is used. In stark contrast to these works,
the crucial global smoothness assumption (or property that automatically holds in the tabular MARL
setting) on the objective therein does not hold in our control setting with unbounded and continuous
spaces. A careful characterization of the iterate trajectory is thus required in order to establish global
convergence and sample complexity results.

Risk-Sensitive/Robust RL. Risk-sensitivity/robustness to model uncertainty/misspecification in
RL has attracted significant research efforts, following the frameworks of robust adversarial RL
(RARL) and robust Markov decision process (RMDP). Tracing back to [58], early works on RARL
exploited the same game-theoretic perspective as inH1-robust control, by modeling the uncertainty
as a fictitious adversary against the nominal agent. This worst-case (minimax) design concept
then enabled actor-critic type algorithms with exceptional empirical performance, but rather sparse
theoretical footprints [59]. Very recently, theoretical investigations on the convergence and stability
of RARL have been carried out in [60] within the LQ setting. In parallel, the RMDP framework
has been proposed in [61, 62], and the robustness of RL algorithms under such framework has been
further studied in [63, 64, 65] for the finite MDP settings, in contrast to our continuous control tasks.
Other recent advances on risk-sensitive/robust RL/MDP include [66, 67].

Contributions Over Existing Works. Seminal works [11, 19] presented sample complexity results
for the infinite-horizon deterministic LQR, and [32] studied the finite-horizon stochastic LQR. The
main technical challenge between our robust control setting and [11, 19, 32] is the lack of coercivity
of the objective function (cf. Lemma 3.5). In particular, the objective value may remain finite while
approaching the boundary of the robustness constraint set K (cf. (3.9)), and a descent direction of
the objective value may still drive the iterates out of K, which will lead to an unbounded/undefined
value. To address this “landscape” challenge in the model-based setting, [15] used an extra projection
step, which is restrictive since it requires model information as well as non-standard assumptions.
This projection step has been removed in [39] and [16], again in the case when the model is known.
Specifically, the Riccati-based arguments in [39] are tailored for the zero-sum game setting and
require assumptions that are non-standard for robust control. The implicit regularization arguments
in [16] align better with the robust control literature, by leveraging standard tools such as the KYP
lemma. However, the arguments in [16] only apply to the setting with a known model, as they rely on
a specialized “perturbation technique” which may potentially generate arbitrarily small “margins"
between the iterates and the boundary of the robustness feasible set. Such an argument cannot be
directly applied to our model-free setting where a uniform margin is required for provable tolerance
of statistical errors, when “samples” are used to estimate the policy gradients. Our work has overcome
the technical challenges mentioned above, by developing the first implicit regularization results when
applying model-free PG methods for robust controller designs.

A.2 Notations

For a square matrix X of proper dimension, we use Tr(X) to denote its trace. We also use kXk
and kXkF to denote, respectively, the operator norm and the Frobenius norm of X. If X is further
symmetric, we use X > 0 to denote that X is positive definite. Similarly, X � 0, X  0, and X < 0
are used to denote X being positive semi-definite, negative semi-definite, and negative definite,
respectively. Further, again for a symmetric matrix X, �min(X) and �max(X) are used to denote,
respectively, the smallest and the largest eigenvalues of X. Moreover, we use hX,Y i := Tr(X>Y )
to denote the standard matrix inner product and use diag(X0, · · · ,XN ) to denote the block-diagonal
matrix with X0, · · · ,XN on the diagonal block entries. In the case where X0 =X1 = · · ·=XN =X, we
further denote it as diag(XN ). We use x ⇠N (µ,⌃) to denote a Gaussian random variable with mean
µ and covariance ⌃ and use kvk to denote the Euclidean norm of a vector v. Lastly, we use I and 0 to
denote the identity and zero matrices with appropriate dimensions.
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A.3 Extended Backgrounds

In this section, we first introduce two classic settings in risk-sensitive and robust control, namely
LEQG, and LQ disturbance attenuation. We then discuss, in §2.2, the challenges one confronts
when attempting to address the above two problems directly using derivative-free PG methods
by sampling system trajectories. Fortunately, solving zero-sum LQ (stochastic) dynamic games, a
benchmark setting in MARL, via derivative-free PG methods by sampling system trajectories provides
a workaround to address these problems all in a unified way, due to the well-known equivalence
relationships between zero-sum LQ dynamic games and the two aforementioned classes of problems
[25], which we will also discuss in §A.3.3.

A.3.1 Linear Exponential Quadratic Gaussian

We first consider a fundamental setting of risk-sensitive optimal control, known as the LEQG problem
[22, 27, 28], in the finite-horizon setting. The time-varying (linear) systems dynamics are described
by:

xt+1 = Atxt +Btut +wt, t 2 {0, · · · ,N � 1},

where xt 2 Rm represents the system state; ut 2 Rd is the control input; wt 2 Rm is an independent
(across time) Gaussian random noise drawn from wt ⇠N (0,W ) for some W > 0; the initial state
x0 ⇠N (0,X0) is a Gaussian random vector for some X0 > 0, independent of the sequence {wt}; and
At , Bt are time-varying system matrices with appropriate dimensions. The objective function is given
by

J
⇣
{ut}

⌘
:=

2
�
logEexp

�
2

⇣N�1X

t=0

(x>t Qtxt +u>t Rtut) + x>NQNxN
⌘�
,

where Qt � 0 and Rt > 0, for all t 2 {0, · · · ,N � 1}, and QN � 0 are symmetric weighting matrices;
and � > 0 is a parameter capturing the degree of risk-sensitivity, which is upper-bounded by some
�⇤ > 0 [23, 28, 29].

The goal in the LEQG problem is to find the J -minimizing optimal control policy µ⇤t : (R
m ⇥Rd )t ⇥

Rm ! Rd that maps, at time t, the history of state-control pairs up to time t and the current state
xt to the control ut , this being so for all t 2 {0, · · · ,N � 1}. It has been shown in [22] that µ⇤t has a
linear state-feedback form µ⇤t(xt) = �K ⇤t xt , where K ⇤t 2 Rd⇥m, for all t 2 {0, · · · ,N � 1}. Therefore, it
suffices to search K ⇤t in the matrix space Rd⇥m for all t 2 {0, · · · ,N �1}, without losing any optimality.
The resulting policy optimization problem is then represented as (by a slight abuse of notation with
regard to J ):

min
{Kt }
J

⇣
{Kt}

⌘
:=

2
�
logEexp

�
2

⇣N�1X

t=0

⇣
x>t (Qt +K>t RtKt)xt

⌘
+ x>NQNxN

⌘�
. (A.1)

To characterize the solution to (A.1), we first introduce the following time-varying Riccati difference
equation (RDE):

PKt
=Qt +K>t RtKt + (At �BtKt)>ePKt+1(At �BtKt), t 2 {0, · · · ,N � 1}, PKN

=QN, (A.2)

where ePKt+1 := PKt+1 + �PKt+1(W
�1 � �PKt+1)

�1PKt+1 . Then, (A.1) can be expressed by the solution
to (A.2) and the exact PG can be analyzed, as follows, with its proof being deferred to §B.1.

Lemma A.1 (Closed-Form Objective Function and PG) For any sequence of {Kt} such that (A.2)
generates a sequence of positive semi-definite (p.s.d.) sequence {PKt

} satisfying X�10 � �PK0 > 0 and
W�1��PKt

> 0, for all t 2 {1, · · · ,N }, the objective function J
⇣
{Kt}

⌘
can be expressed as

J
⇣
{Kt}

⌘
= �1

�
logdet(I � �PK0X0)�

1
�

NX

t=1

logdet(I � �PKt
W ). (A.3)
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As � ! 0, (A.3) reduces to Tr(PK0X0) +
PN

t=1Tr(PKt
W ), which is the objective function of the

finite-horizon linear-quadratic-Gaussian (LQG) problem. Moreover, the PG of (A.3) at time t has
the form:

rKt
J

⇣
{Kt}

⌘
:=
@J

⇣
{Kt}

⌘

@Kt
= 2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1At

i
⌃Kt

, t 2 {0, · · · ,N � 1}, (A.4)

where

⌃Kt
:=

t�1Y

i=0

h
(I � �PKi+1W )�>(Ai �BiKi )

i
·X

1
2
0 (I � �X

1
2
0 PK0X

1
2
0 )
�1X

1
2
0

·
t�1Y

i=0

h
(Ai �BiKi )>(I � �PKi+1W )�1

i

+
tX

⌧=1

( t�1Y

i=⌧

h
(I � �PKi+1W )�>(Ai �BiKi )

i
·W

1
2 (I � �W

1
2PK⌧W

1
2 )�1W

1
2

·
t�1Y

i=⌧

h
(Ai �BiKi )>(I � �PKi+1W )�1

i)
.

A.3.2 LQ Disturbance Attenuation

Second, we introduce the optimal LQ disturbance attenuation problem, again for finite-horizon
settings, with time-varying (deterministic) dynamical systems described by

xt+1 = Atxt +Btut +Dtwt, zt = Ctxt +Etut, t 2 {0, · · · ,N � 1},

where xt 2 Rm is the system state; ut 2 Rd is the control input; wt 2 Rn is the (unknown) disturbance
input; zt 2 Rl is the controlled output; At , Bt , Ct , Dt , Et are system matrices with appropriate
dimensions; and x0 2 Rm is unknown. In addition, we assume that E>t [Ct Et] = [0 Rt] for some Rt >
0 to eliminate the cross-weightings between control input u and system state x, which provides no loss
of generality, and is standard in the literature [23, 25]. As shown in §3.5.1 of [25], a simple procedure
can transform the general problem into a form where there are no coupling terms between u and x,
satisfying the above “normalization” assumption that we have made. Subsequently, we introduce
the `2-norms of the vectors ! :=

h
x>0 C

>
0 ,w

>
0 , · · · ,w

>
N�1

i>
and z :=

h
z>0 , · · · , z

>
N�1,x

>
NQ1/2

N

i>
as

k!k :=
n
x>0 C

>
0 C0x0 +

PN�1
t=0 kwtk2

o1/2
and kzk =

n
C
⇣
{ut}, {wt}

⌘o1/2
:=

n
x>NQNxN +

PN�1
t=0 kztk2

o1/2
,

where QN � 0 is symmetric, and k · k in the two expressions denote appropriate Euclidean norms.
Then, the robustness of a designed controller can be guaranteed by a constraint on the ratio between
kzk and k!k. Specifically, the goal of the optimal LQ disturbance attenuation problem is to find the
optimal control policy µ⇤t : (R

m ⇥Rd )t ⇥Rm! Rd that maps, at time t, the history of state-control
pairs until time t and the current state xt , denoted as ht := {x0, · · · ,xt ,u0, · · · ,ut�1}, to the control ut ,
such that

� ⇤ = inf
{µt }

sup
x0,{wt }

n
C
⇣
{µt(ht)}, {wt}

⌘o1/2

k!k = sup
x0,{wt }

n
C
⇣
{µ⇤t(ht)}, {wt}

⌘o1/2

k!k , (A.5)

where � ⇤ =
p
(�⇤)�1 > 0 is the optimal (minimax) level of disturbance attenuation at the output

[23, 25], and recall that �⇤ is the upper bound for the risk-sensitivity parameter in LEQG. It is
known that under closed-loop perfect-state information pattern, the existence of a sequence {µ⇤t},
t 2 {0, · · · ,N � 1}, is always guaranteed and µ⇤t is linear state-feedback, i.e., µ⇤(ht) = �K ⇤t xt ([25];
Theorem 3.5). Thus, it suffices to search for K ⇤t 2 Rd⇥m, for all t 2 {0, · · · ,N � 1}, to achieve the
optimal attenuation.
The problem (A.5) can be challenging to solve to the optimum [25]. Moreover, in practice, due to
the inevitable uncertainty in modeling the system, the robust controller that achieves the optimal
attenuation level can be too sensitive to the model uncertainty to use. Hence, a reasonable surrogate
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of the optimal LQ disturbance attenuation problem is the following: Given a � > � ⇤, find a control
policy µt = �Ktxt , for all t 2 {0, · · · ,N � 1}, that solves

min
{µt }
J

⇣
{µt(xt )}

⌘
:= E{⇠t }

"N�1X

t=0

⇣
x>t Qtxt +u>t Rtut

⌘
+ x>NQNxN

#
s.t. sup

x0,{wt }

n
C
⇣
{µt(xt )}, {wt}

⌘o1/2

k!k < � ,

(A.6)

where Qt := C>t Ct for t 2 {0, · · · ,N � 1}, J
⇣
{µt(xt)}

⌘
is the LQG cost of the system xt+1 = Atxt +

Btut +Dt⇠t , and ⇠t ⇠N (0,I) is independent Gaussian noise with unit intensity [30]. Note that the
LQ disturbance attenuation problem in (A.6), and particularly with x0 = 0, is also called the mixed
H2/H1 problem [35, 30, 68, 16], when the system is time-invariant, and the horizon of the problem
N is1. To solve (A.6) using policy optimization methods, we introduce the time-varying RDE:

PKt
=Qt +K>t RtKt + (At �BtKt)>ePKt+1(At �BtKt), t 2 {0, · · · ,N � 1}, PKN

=QN, (A.7)

where ePKt+1 := PKt+1 + PKt+1(�
2
I �D>t PKt+1Dt)�1PKt+1 . Then, two upper bounds of J and their

corresponding PGs can be expressed in terms of solutions to (A.7) (if exist) [30]. In particular, (A.8)
below is closely related to the objective function of LEQG in (A.1), and (A.9) is connected to the
objective function of zero-sum LQ dynamic games to be introduced shortly.

Lemma A.2 (Closed-Forms for the Objective Function and PGs) For any sequence of control gains
{Kt} such that (A.7) generates a sequence of p.s.d. solutions {PKt+1 } satisfying �2

I �D>t PKt+1Dt > 0,
for all t 2 {0, · · · ,N �1}, and �2

I �PK0 > 0, then two common upper bounds of the objective function
J in (A.6) are:

J
⇣
{Kt}

⌘
= ��2 logdet(I ���2PK0 )��

2
NX

t=1

logdet(I ���2PKt
Dt�1D

>
t�1), (A.8)

J
⇣
{Kt}

⌘
= Tr(PK0 ) +

NX

t=1

Tr(PKt
Dt�1D

>
t�1). (A.9)

The PGs of (A.8) and (A.9) at time t can be expressed as

rKt
J

⇣
{Kt}

⌘
:=
@J

⇣
{Kt}

⌘

@Kt
= 2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1At

i
⌃Kt

, t 2 {0, · · · ,N � 1}, (A.10)

where ⌃t , t 2 {0, · · · ,N � 1}, for the PGs of (A.8) and (A.9) are expressed, respectively, as

⌃Kt :=
t�1Y

i=0

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )

i
· (I ���2PK0 )

�1 ·
t�1Y

i=0

h
(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i

+
tX

⌧=1

( t�1Y

i=⌧

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )

i
·D⌧�1(I ���2D>⌧�1PK⌧D⌧�1)

�1D>⌧�1

·
t�1Y

i=⌧

h
(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i)
,

⌃Kt :=
t�1Y

i=0

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i

+
tX

⌧=1

( t�1Y

i=⌧

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )

i
·D⌧�1D>⌧�1

·
t�1Y

i=⌧

h
(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i)
.

The proof of Lemma A.2 is deferred to §B.2. Before moving on to the next section, we provide a
remark regarding the challenges of addressing LEQG or the LQ disturbance attenuation problem
directly using derivative-free PG methods.
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Remark A.3 (Challenges) It seems tempting to tackle LEQG or the LQ disturbance attenuation
problem directly using derivative-free PG methods, e.g., vanilla PG or natural PG methods by
sampling the system trajectories as in [11]. However, there are several challenges. First, when
attempting to sample the LEQG objective (A.1) using system trajectories (and then to estimate PGs),
the bias of gradient estimates can be difficult to control uniformly with a fixed sample size per iterate,
as the log function is not globally Lipschitz2. Moreover, for the vanilla PG method, even with exact
PG accesses, the iterates may not preserve a certain level of risk-sensitivity/disturbance attenuation,
i.e., remain feasible, along the iterations, which can make the disturbance input drive the cost to
arbitrarily large values (see the numerical examples in [16] for the infinite-horizon LTI setting).
This failure will only be exacerbated in the derivative-free setting with accesses to only noisy PG
estimates. Lastly, developing a derivative-free natural PG method (which we will show in §3.3 that
it can preserve a prescribed attenuation level along the iterations) is also challenging, because
the expressions of ⌃Kt

in Lemmas A.1 and A.2 cannot be sampled from system trajectories directly.
Therefore, the game-theoretic approach to be introduced next is rather one workaround.

A.3.3 An Equivalent Dynamic Game Formulation

Lastly, and more importantly, we describe an equivalent dynamic game formulation to the LEQG
and the LQ disturbance attenuation problems introduced above. Under certain conditions to be
introduced in Lemma A.6, the saddle-point gain matrix of the minimizing player in the dynamic
game (if exists) also addresses the LEQG and the LQ disturbance attenuation problem, providing
an alternative route to overcome the challenges reported in Remark A.3. Specifically, we consider
a zero-sum LQ stochastic dynamic game (henceforth, game) model with closed-loop perfect-state
information pattern, which can also be viewed as a benchmark setting of MARL for two competing
agents [69, 70, 15, 39, 71], as the role played by LQR for single-agent RL [3]. The linear time-varying
system dynamics follow

xt+1 = Atxt +Btut +Dtwt + ⇠t , t 2 {0, · · · ,N � 1}, (A.11)

where xt 2 Rm is the system state, ut := µu,t(hu,t) 2 Rd (resp., wt := µw,t(hw,t) 2 Rn) is the
control input of the minimizing (resp., maximizing) player3 and µu,t : (Rm ⇥Rd )t ⇥Rm ! Rd

(resp., µw,t : (Rm ⇥ Rn)t ⇥ Rm ! Rn) is the control policy that maps, at time t, the history of
state-control pairs up to time t, and state at time t, denoted as hu,t := {x0, · · · ,xt ,u0, · · · ,ut�1} (resp.,
hw,t := {x0, · · · ,xt ,w0, · · · ,wt�1}), to the control ut (resp., wt). The independent process noises
are denoted by ⇠t ⇠ D and At , Bt , Dt are system matrices with proper dimensions. Further, we
assume x0 ⇠ D to be independent of the process noises, and the distribution D has zero mean and
a positive-definite covariance. We also assume that kx0k,k⇠tk  #, for all t 2 {0, · · · ,N � 1}, almost
surely, for some constant #4. The goal of the minimizing (resp. maximizing) player is to minimize
(resp. maximize) a quadratic objective function, namely to solve the zero-sum game

inf
{ut }

sup
{wt }

Ex0,⇠0,··· ,⇠N�1

"N�1X

t=0

⇣
x>t Qtxt +u>t R

u
t ut �w>t Rw

t wt

⌘
+ x>NQNxN

#
, (A.12)

where Qt � 0, Ru
t ,R

w
t > 0 are symmetric weighting matrices and the system transitions follow

(A.11). Whenever the solution to (A.12) exists such that the inf and sup operators in (A.12) are
interchangeable, then the value (A.12) is the value of the game, and the corresponding policies of the
players are known as saddle-point policies. To characterize the solution to (A.12), we first introduce
the following time-varying RDE:

P⇤t =Qt +A>t P
⇤
t+1⇤

�1
t At, t 2 {0, · · · ,N � 1}, (A.13)

2One workaround for mitigating this bias might be to remove the log operator in the objective (A.1), and
only minimize the terms after the Eexp(·) function. However, it is not clear yet if derivative-free methods
provably converge for this objective, as exp function is neither globally smooth nor Lipschitz. We have left this
direction in our future work, as our goal in the present work is to provide a unified way to solve all three classes
of problems.

3Hereafter we will use player and agent interchangeably.
4The assumption on the boundedness of distribution is only for ease of analysis [19, 18]. Extensions to

sub-Gaussian distributions are standard and do not affect the sample complexity result, as noted by [19].
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where ⇤t := I +
⇣
Bt(Ru

t )
�1B>t �Dt(Rw

t )
�1D>t

⌘
P⇤t+1 and P⇤N = QN . For the stochastic game with

closed-loop perfect-state information pattern that we considered, we already know from [26] that
whenever a saddle point exists, the saddle-point control policies are linear state-feedback (i.e.,
µ⇤u,t(hu,t) = �K ⇤t xt and µ⇤w,t(hw,t) = �L⇤txt), and the gain matrices K ⇤t and L⇤t , for t 2 {0, · · · ,N � 1},
are unique and can be expressed by

K ⇤t = (Ru
t )
�1B>t P

⇤
t+1⇤

�1
t At, (A.14) L⇤t = �(Rw

t )
�1D>t P

⇤
t+1⇤

�1
t At, (A.15)

where P⇤t+1, t 2 {0, · · · ,N � 1}, is the sequence of p.s.d. matrices generated by (A.13). We next
introduce a standard assumption that suffices to ensure the existence of the value of the game,
following from Theorem 3.2 of [25] and Theorem 6.7 of [26].

Assumption A.4 Rw
t �D>t P⇤t+1Dt >0, for all t 2 {0, · · · ,N�1}, where P⇤t+1�0 is generated by (A.13).

Under Assumption A.4, the value in (A.12) is attained by the controller sequence
⇣
{�K ⇤t x⇤t }, {�L⇤tx⇤t }

⌘
,

where K ⇤t and L⇤t are given in (A.14) and (A.15), respectively, and x⇤t+1 is the corresponding state
trajectory generated by x⇤t+1 =⇤�1t Atx

⇤
t + ⇠t , for t 2 {0, · · · ,N � 1} and with x⇤0 = x0 [25]. Thus, the

solution to (A.12) can be found by searching K ⇤t and L⇤t in Rd⇥m ⇥Rn⇥m, for all t 2 {0, · · · ,N � 1}.
The resulting minimax policy optimization problem is

min
{Kt }

max
{Lt }
G
⇣
{Kt}, {Lt}

⌘
:= Ex0,⇠0,··· ,⇠N�1

"N�1X

t=0
x>t

⇣
Qt +K>t Ru

t Kt �L>t R
w
t Lt)xt + x>NQNxN

#
, (A.16)

subject to the system transition xt+1 = (At �BtKt �DtLt)xt +⇠t , for t 2 {0, · · · ,N �1}. Some further
notes regarding Assumption A.4 are provided in the remark below.

Remark A.5 (Unique Feedback Nash (Saddle-point) Equilibrium) By [25, 26], Assumption 2.1 (A.4)
is sufficient to guarantee the existence of feedback Nash (equivalently, saddle-point) equilibrium in
zero-sum LQ dynamic games (game), under which it is also unique. Besides sufficiency, Assumption
2.1 (A.4) is also “almost necessary", and “quite tight" as noted in Remark 6.8 of [26]. In particular,
if the sequence of matrices Rw

t �D>t P⇤t+1Dt for t 2 {0, · · · ,N �1} in Assumption 2.1 (A.4) admits any
negative eigenvalues, then the upper value of the game becomes unbounded. In the context of LEQG
and LQ disturbance attenuation (LQDA), suppose we set the system parameters of LEQG, LQDA,
and game according to Lemma 2.2 (A.6), and in particular set ��1I in LEQG, �2

I in LQDA, and
R
w in the game to be the same. Then these three problems are equivalent as far as their optimum

solutions go (which is what we seek). Due to this equivalence, Assumption 2.1 (A.4) is a sufficient
and “almost necessary" condition for the existence of a solution to the equivalent LEQG/LQDA.
Specifically, if the sequence of matrices Rw

t �D>t P⇤t+1Dt for t 2 {0, · · · ,N � 1} in Assumption 2.1
(A.4) admits any negative eigenvalues, then no state-feedback controller can achieve a �-level of
disturbance attenuation in the equivalent LQDA, and no state-feedback controller can achieve a
�-degree of risk-sensitivity in the equivalent LEQG.

Lastly, we formally state the well-known equivalence conditions between LEQG, LQ disturbance
attenuation, and zero-sum LQ stochastic dynamic games in the following lemma, and provide a short
proof in §B.3.

Lemma A.6 (Connections) For any fixed � > � ⇤ in the LQ disturbance attenuation problem, we can
introduce an equivalent LEQG problem and an equivalent zero-sum LQ dynamic game. Specifically, if
we set ��1I ,Rt,C

>
t Ct,W in LEQG, �2

I ,Rt,C
>
t Ct,DtD

>
t in the LQ disturbance attenuation problem,

and Rw
t ,R

u
t ,Qt,DtD

>
t in the game to be the same, for all t 2 {0, · · · ,N � 1}, then the optimal gain

matrices in LEQG, the gain matrix in the LQ disturbance attenuation problem, and the saddle-point
gain matrix for the minimizing player in the game are the same.

By the above connections and Remark A.3, we will hereafter focus on the stochastic zero-sum LQ
dynamic game between a minimizing controller and a maximizing disturbance, using PG methods
with exact gradient accesses in §3, and derivative-free PG methods by sampling system trajectories in
§4. As a result, the minimizing controller we obtain solves all three classes of problems introduced
above altogether.
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A.4 Compact Formulations

In this section, we re-derive the game formulations in §2.3 (and equivalently, §A.3.3), with linear
state-feedback policies for the two players, using the following compact notations:

x =
h
x>0 , · · · ,x

>
N

i>
, u =

h
u>0 , · · · ,u>N�1

i>
, w =

h
w>0 , · · · ,w

>
N�1

i>
, ⇠ =

h
x>0 , ⇠

>
0 , · · · ,⇠>N�1

i>
,

A =

2
666664

0m⇥mN 0m⇥m
diag(A0, · · · ,AN�1) 0mN⇥m

3
777775 , B =

2
666664

0m⇥dN
diag(B0, · · · ,BN�1)

3
777775 , D =

2
666664

0m⇥nN
diag(D0, · · · ,DN�1)

3
777775 ,

Q =
h
diag(Q0, · · · ,QN )

i
, R

u =
h
diag(Ru

0 , · · · ,R
u
N�1)

i
, R

w =
h
diag(Rw

0 , · · · ,R
w
N�1)

i
,

K =
h
diag(K0, · · · ,KN�1) 0dN⇥m

i
, L =

h
diag(L0, · · · ,LN�1) 0nN⇥m

i
.

With the above definitions, the game in §2.3 is characterized by the transition dynamics

x = Ax +Bu+Dw+⇠ = (A�BK �DL)x +⇠, (A.17)

where x is the concatenated system state, u = �Kx (respectively, w = �Lx) is the linear state-
feedback controller of the minimizing (resp., maximizing) player, and A,B,D are the system matrices
in their corresponding compact forms. Note that A is essentially a nilpotent matrix with degree of
N +1 (i.e. a lower triangular matrix with zeros along the main diagonal) such that AN+1 = 0. Also,
⇠ is a vector that concatenates the independently sampled initial state x0 2 D and process noises
⇠t 2D, t 2 {0, · · · ,N � 1}. The objective of the minimizing (resp. maximizing) player is to minimize
(resp. maximize) the objective function re-written in terms of the compact notation, that is to solve

inf
K

sup
L

G(K ,L) := E⇠


x
>
⇣
Q +K

>
R
u
K �L>Rw

L

⌘
x

�
(A.18)

subject to the transition dynamics (A.17).

An Illustrative Example: Let us now consider a scalar example with N,n,m,d = 1 with the
following concatenated notations:

x =
"
x0
x1

#
, ⇠ =

2
66664
x0
⇠0

3
77775 , (u,w,Ru,Rw) = (u0,w0,R

u
0 ,R

w
0 ), A =

2
66664
0 0
A0 0

3
77775 , B =

2
66664
0
B0

3
77775 , D =

2
66664
0
D0

3
77775 ,

Q =

2
666664
Q0 0

0 Q1

3
777775 , K =

h
K0 0

i
, L =

h
L0 0

i
.

Then, the system dynamics of the game and the linear state-feedback controllers are represented as

x = Ax +Bu+Dw+⇠ ()
"
x0
x1

#
=

2
66664
0 0
A0 0

3
77775 ·

"
x0
x1

#
+

2
66664
0
B0

3
77775 ·u0 +

2
66664
0
D0

3
77775 ·w0 +

2
66664
x0
⇠0

3
77775 ,

u = �Kx () u0 = �
h
K0 0

i
·
"
x0
x1

#
, w = �Lx () w0 = �

h
L0 0

i
·
"
x0
x1

#

x = (A�BK �DL)x +⇠ ()
"
x0
x1

#
=

0
BBBB@

2
66664
0 0
A0 0

3
77775�

2
66664
0
B0

3
77775 ·

h
K0 0

i
�
2
66664
0
D0

3
77775 ·

h
L0 0

i 1CCCCA ·
"
x0
x1

#
+

2
66664
x0
⇠0

3
77775

()
"
x0
x1

#
=

2
66664

0 0
A0 �B0K0 �D0L0 0

3
77775 ·

"
x0
x1

#
+

2
66664
x0
⇠0

3
77775 =

2
66664

x0
(A0 �B0K0 �D0L0)x0 + ⇠0

3
77775 .

Moreover, we define AK0,L0 := A0�B0K0�D0L0 and establish the equivalence between the recursive
Lyapunov equation (3.3) and its compact form (3.4) such that

PK ,L = (A�BK �DL)>PK ,L(A�BK �DL) +Q +K
>
R
u
K �L>Rw

L

()

2
6666664
PK0,L0 0

0 PK1,L1

3
7777775 =

2
66664

0 0
AK0,L0 0

3
77775

> 2
6666664
PK0,L0 0

0 PK1,L1

3
7777775

2
66664

0 0
AK0,L0 0

3
77775+

2
6666664
Q0 +K>0 Ru

0K0 �L0Rw
0 L0 0

0 Q1

3
7777775

()

2
6666664
PK0,L0 0

0 PK1,L1

3
7777775 =

2
6666664
A>K0,L0

PK1,L1AK0,L0 +Q0 +K>0 Ru
0K0 �L0Rw

0 L0 0

0 Q1

3
7777775 .
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Next, we note that the solution to (3.5), ⌃K ,L, is also a recursive formula in the compact form, such
that

⌃K ,L = (A�BK �DL)⌃K ,L(A�BK �DL)> +⌃0

() E

2
66666664

x0x
>
0 0

0 x1x
>
1

3
77777775
=

2
66664

0 0
AK0,L0 0

3
77775E

2
66666664

x0x
>
0 0

0 x1x
>
1

3
77777775

2
66664

0 0
AK0,L0 0

3
77775

>
+E

2
66666664

x0x
>
0 0

0 ⇠0⇠
>
0

3
77777775

() E

2
66666664

x0x
>
0 0

0 x1x
>
1

3
77777775
= E

2
66666664

x0x
>
0 0

0 AK0,L0x0x
>
0 A
>
K0,L0

+ ⇠0⇠
>
0

3
77777775
.

This completes the illustrative example.

A.5 Extended Discussions

Remark A.7 (Double-Loop Scheme) Our double-loop scheme, which has also been used before in
[15, 39], is pertinent to the descent-multi-step-ascent scheme [72] and the gradient descent-ascent
(GDA) scheme with two-timescale stepsizes [51, 73, 74] for solving nonconvex-(non)concave minimax
optimization problems, with the number of multi-steps of ascent going to infinity, or the ratio between
the fast and slow stepsizes going to infinity (the ⌧-GDA scheme with ⌧ !1 [51, 74]). Another
variant is the alternating GDA (AGDA) scheme, which has been investigated in [53] to address
nonconvex-nonconcave problems with two-sided PL condition. However, unlike this literature, one
key condition for establishing convergence, the global smoothness of the objective function, does not
hold in our control setting with unbounded decision spaces and objective functions. In fact, as per
Lemma 3.3, a non-judicious choice of K may lead to an undefined inner-loop maximization problem
with unbounded objective. Hence, one has to carefully control the update-rule here, to ensure that
the iterates do not yield unbounded/undefined values along iterations. As we will show in §D.4, it
is not hard to construct cases where descent-multi-step-ascent/AGDA/⌧-GDA diverges even with
infinitesimal stepsizes, similar to the negative results reported in the infinite-horizon setting in [60].
These results suggest that it seems challenging to provably show that other candidate update schemes
converge to the global NE in zero-sum LQ games, except the double-loop one, as we will show next.

Remark A.8 (IR) Suppose that the initial control gain matrix satisfies K0 2 K. Then Lemma A.6
shows that K0 is the control gain matrix that attains a �-level of disturbance attenuation. By the
implicit regularization property in Theorem 3.7, every iterate Kk 2 K for all k � 0 following the
NPG (3.17) or the GN (3.18) update rules will thus preserve this �-level of disturbance attenuation
throughout the policy optimization (learning) process. Theorem 3.7 thus provides some provable
robustness guarantees for two specific policy search directions, (3.17) and (3.18), which is important
for safety-critical control systems in the presence of adversarial disturbances, since otherwise, the
system performance index can be driven to arbitrarily large values.

Remark A.9 When solving LEQG and LQ disturbance attenuation (LQDA) problems using the pro-
posed double-loop derivative-free PG methods (cf. Algorithms 1 and 2), we exploited the equivalence
relationships in Lemma 2.2 to construct and solve an equivalent zero-sum LQ game. We comment on
how to construct such an equivalent game problem in the model-free setting where only oracle-level
accesses to the LEQG and LQDA models are available.

Suppose that one would like to solve the LQDA problem by solving the equivalent zero-sum game;
then, the only information needed is oracle-level accesses to the LQDA model (cf. §2.2). In particular,
for a fixed sequence of gains Kt and any sequence of disturbances wt , we assume that this LQDA
oracle can return the kzk as defined in §2.2. Then, the LQDA oracle with an additionally injected
sequence of independent Gaussian noise (with any positive definite covariance matrix) suffices to
serve as the oracle for our double-loop derivative-free PG algorithms (for the stochastic game).
Therefore, no explicit knowledge on the system parameters (At , Bt , Dt , Ct , Et , �) is needed.

However, if one would like to solve the LEQG problem by solving an equivalent zero-sum game,
one will need knowledge of W (to build-up the black-box sampling oracle/simulator, but still, the
exact value of W is not revealed to the learning agent) in addition to oracle-level accesses to the
original LEQG model (cf. 2.1). Also, explicit knowledge of the parameters (At , Bt , Qt , Rt , �) is not
required. We would like to note that the assumption on the knowledge (and/or the availability of the
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estimate) of W is reasonable for a large family of control applications where system dynamics and
disturbance can be studied separately. For example, consider the risk-sensitive control of a wind
turbine. The turbine dynamics and the wind information can be gathered separately. One can identify
W by looking at the past wind data. Similar situations hold for many aerospace applications where
the properties of process noise (e.g. wind gust) can be estimated beforehand.

B Proofs of Main Results

B.1 Proof of Lemma A.1

Proof Since x0 ⇠ N (0,X0), w0, · · · ,wN�1 ⇠ N (0,W ), PKt
� 0 for all t, X�10 � �PK0 > 0, and

W�1 � �PKt
> 0, for all t 2 {1, · · · ,N }, we have by Lemma C.1 of [16] that the objective function of

LEQG can be represented by (A.3). Also, the conditions that X�10 � �PK0 > 0 and W�1 � �PKt
> 0,

for all t 2 {0, · · · ,N }, ensure the existence of the expression ⌃Kt
, which can be verified through

applying matrix inversion lemma as in (B.1). Thus, the existence of the expression rKt
J

⇣
{Kt}

⌘
is

also ensured, for all t 2 {0, · · · ,N �1}. Let us now use rKt
to denote the derivative w.r.t. Kt . Then,

for t 2 {1, · · · ,N � 1}, we have

rKtJ
⇣
{Kt}

⌘
= �1

�
Tr

⇢
(I � �PK0X0)�> ·

h
rKt (I � �PK⌧X0)

i>�� 1
�

tX

⌧=1
Tr

⇢
(I � �PK⌧W )�> ·

h
rKt (I � �PK⌧W )

i>�

= Tr
h
(I � �PK0X0)�1 ·rKt (PK0X0)

i
+

tX

⌧=1
Tr

h
(I � �PK⌧W )�1 ·rKt (PK⌧W )

i

= Tr
h
rKtPK0 ·X0(I � �PK0X0)�1

i
+

tX

⌧=1
Tr

h
rKtPK⌧ ·W (I � �PK⌧W )�1

i

= Tr
h
rKtPK0 ·X

1
2
0 (I � �X

1
2
0 PK0X

1
2
0 )�1X

1
2
0

i
+

tX

⌧=1
Tr

h
rKtPK⌧ ·W

1
2 (I � �W

1
2 PK⌧W

1
2 )�1W

1
2
i
,

where the first equality is due to rX logdetX = X�>, the chain rule, and the fact that PK⌧ , for all
⌧ 2 {t+1, · · · ,N }, is independent of Kt . The second and third equalities are due to the cyclic property
of matrix trace, Tr(A>B>) = Tr(AB), and that X0,W are independent of Kt . The last equality uses
matrix inversion lemma, such that for V 2 {X0,W }:

V · (I � �PKV )�1 = V
1
2 (I � �V

1
2PKV

1
2 )�1V

1
2 (B.1)

Then, by the definition of the RDE in (A.2) and defining M0 := X
1
2
0 (I � �X

1
2
0 PK0X

1
2
0 )
�1X

1
2
0 , Mt :=

W
1
2 (I � �W 1

2PKt
W

1
2 )�1W

1
2 for all t 2 {1, · · · ,N � 1}, we have:

8t 2 {0, · · · ,N � 1}, rKt
J

⇣
{Kt}

⌘
=

tX

⌧=0

Tr
h
rKt

PK⌧ ·M⌧

i

=
t�1X

⌧=0

Tr
h
rKt

PK⌧ ·M⌧

i
+2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1AtMt

i

+Tr
h
(At �BtKt)> ·rKt

ePKt+1 · (At �BtKt)Mt

i

=
t�1X

⌧=0

Tr
h
rKt

PK⌧ ·M⌧

i
+2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1AtMt

i
,

where the last equality is due to ePKt+1 not depending on Kt and thus rKt
ePKt+1 = 0. Then, for all

⌧ 2 {1, · · · , t � 1}, we first recall the definition that ePK⌧ = PK⌧ + �PK⌧ (W
�1 � �PK⌧ )

�1PK⌧ , and then

26



take the derivatives on both sides with respect to Kt to get

rKt
ePK⌧ = rKt


PK⌧ + �PK⌧ (W

�1 � �PK⌧ )
�1PK⌧

�
= rKt


(I � �PK⌧W )�1PK⌧

i

= (I � �PK⌧W )�1 ·rKt
PK⌧ · �W (I � �PK⌧W )�1PK⌧ + (I � �PK⌧W )�1 ·rKt

PK⌧

= (I � �PK⌧W )�1 ·rKt
PK⌧ ·

h
W

1
2 (��1I �W

1
2PK⌧W

1
2 )�1W

1
2PK⌧ + I

i

= (I � �PK⌧W )�1 ·rKt
PK⌧ · (I � �WPK⌧ )

�1 = (I � �PK⌧W )�1 ·rKt
PK⌧ · (I � �PK⌧W )�>,

where the second and the fifth equalities use matrix inversion lemma, the third equality uses
rX (P�1) = �P�1 ·rXP ·P�1, and the fourth equality uses (B.1). Now, for any ⌧ 2 {0, · · · , t � 1}, we
can iteratively unroll the RDE (A.2) to obtain that

Tr
h
rKt

PK⌧ ·M⌧

i
= 2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1At

i

·
t�1Y

i=⌧

h
(I � �PKi+1W )�>(Ai �BiKi )

i
·M⌧ ·

t�1Y

i=⌧

h
(Ai �BiKi )>(I � �PKi+1W )�1

i
.

Taking a summation proves the PG expression in (A.4).

B.2 Proof of Lemma A.2

Proof We first prove the policy gradient of (A.8). By the conditions that �2
I�D>t PKt+1Dt > 0, for all

t 2 {0, · · · ,N � 1}, and �2
I �PK0 > 0, the expression ⌃Kt

exists and thus the expression rKt
J

⇣
{Kt}

⌘

exists, for all t 2 {0, · · · ,N � 1}. Then, the PG expression of (A.8) follows from the proof of Lemma
A.1 by replacing ��1 and W therein with �2 and DtD

>
t , respectively, and also replacing the X0 in

the expression of ⌃Kt
by I . Next, we prove the PG of (A.9) w.r.t. Kt . Let us now use rKt

to denote
the derivative w.r.t. Kt . Then, for t 2 {0, · · · ,N � 1}, we have

rKtJ
⇣
{Kt}

⌘
= Tr

h
rKtPK0

i
+

tX

⌧=1
Tr

h
rKt (PK⌧D⌧�1D

>
⌧�1)

i
= Tr

h
rKtPK0

i
+

tX

⌧=1
Tr

h
D>⌧�1 ·rKtPK⌧ ·D⌧�1

i
,

where the first equality is due to that PK⌧ , for all ⌧ 2 {t +1, · · · ,N }, does not depend on Kt . Recalling
the RDE in (A.7), we can unroll the recursive formula to obtain

Tr
h
rKtPK0

i
= 2

h
(Rt +B>t ePKt+1Bt )Kt �B>t ePKt+1At

i

·
t�1Y

i=0

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i
.

Moreover, for any ⌧ 2 {1, · · · , t}, we have

Tr
h
D>⌧�1 ·rKtPK⌧ ·D⌧�1

i
= 2

h
(Rt +B>t ePKt+1Bt)Kt �B>t ePKt+1At

i

·
t�1Y

i=⌧

h
(I ���2PKi+1DiD

>
i )�>(Ai �BiKi )

i
·D⌧�1D>⌧�1 ·

t�1Y

i=⌧

h
(Ai �BiKi )>(I ���2PKi+1DiD

>
i )�1

i
.

Taking a summation proves the expression of the policy gradient in (A.10).

B.3 Proof of Lemmas 2.2 and A.6

Proof The equivalence relationships are proved in three parts. Firstly, by Chapter 6.4, page 306 of
[26], the discrete-time zero-sum LQ dynamic game with additive stochastic disturbance (zero-mean,
independent sequence), and with closed-loop perfect-state information pattern, admits the same
saddle-point gain matrices for the minimizer and the maximizer as the deterministic version of the
game (that is, without the stochastic driving term).

Subsequently, by Theorem 4.1 of [24], we can introduce a corresponding (deterministic) zero-sum LQ
dynamic game with Rw

t = �2
I for any fixed � > � ⇤ in the LQ disturbance attenuation problem. Then,
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if we replace Rw
t ,R

u
t ,Qt in the deterministic version of the game presented in §2.3 by �2

I ,Rt,C
>
t Ct

in §2.2, respectively, for all t 2 {0, · · · ,N � 1}, and also set other shared parameters in §2.3 and §2.2
to be the same, the saddle-point gain matrix for the minimizing player in that game is equivalent to
the gain matrix in the disturbance attenuation problem.

Lastly, by §VI.B of [22] and if we replace Rw
t ,R

u
t ,Qt,DtD

>
t in the deterministic version of the game

presented in §2.3 by ��1I ,Rt,C
>
t Ct,W in §2.1 for all t 2 {0, · · · ,N � 1}, and also set other shared

parameters in §2.3 to be the same as the ones in §2.1, then the deterministic zero-sum LQ dynamic
game is equivalent to the LEQG problem with perfect state measurements, in the sense that the
optimal gain matrix in the latter is the same as the saddle-point gain matrix for the minimizing player
in the former. This completes the proof.

B.4 Proof of Lemma 3.1

Proof We first prove that for a fixed K 2 K, the optimization problem with respect to L can be
nonconcave, by establishing an example of the game. Here, K is the feasible set as defined in (3.9),
which ensures that for a fixed K , the solution to the maximization problem with respect to L is well
defined. Specifically, we consider a 3-dimensional linear time-invariant system with At = A, Bt = B,
Dt =D, Qt =Q, Ru

t = Ru , and Rw
t = Rw for all t, where

A =

2
66666664

1 0 �5
�1 1 0
0 0 1

3
77777775
, B =

2
66666664

1 �10 0
0 3 1
�1 0 2

3
77777775
, D =

2
66666664

0.5 0 0
0 0.2 0
0 0 0.2

3
77777775
,

Q =

2
66666664

2 �1 0
�1 2 �1
0 �1 2

3
77777775
, Ru =

2
666666664

4 �1 0
�1 4 �2
0 �2 3

3
777777775
, Rw = 5 · I .

Also, we set ⌃0 = I , N = 5, and choose the time-invariant control gain matrices Kt = K , L1t = L1,
L2t = L2, L3t = L3 = L1+L2

2 for all t, where

K =

2
666666664

�0.12 �0.01 0.62
�0.21 0.14 0.15
�0.06 0.05 0.42

3
777777775
, L1 =

2
666666664

�0.86 0.97 0.14
�0.82 0.36 0.51
0.98 0.08 �0.20

3
777777775
, L2 =

2
666666664

�0.70 �0.37 0.09
�0.54 �0.28 0.23
0.74 0.62 �0.51

3
777777775
.

The concatenated matrices A,B,D,Q,Ru,Rw,K ,L1,L2,L3 are generated following the definitions
in §3. Then, we first note that K 2 K holds, as PK ,L(K) � 0 exists and one can calculate that
�min(Rw �D>PK ,L(K)D) = 0.5041 > 0. Subsequently, we can verify that

⇣
G(K ,L1)+G(K ,L2)

⌘
/2�

G(K ,L3) = 6.7437 > 0. Thus, we can conclude that there exists a K 2 K such that the objective
function is nonconcave with respect to L. Next, we prove the other argument by choosing the
following time-invariant control gain matrices Lt = L, K1

t = K1, K2
t = K2, K3

t = K3 for all t, where

L = 0, K1 =

2
666666664

1.44 0.31 �1.18
0.03 �0.13 �0.39
0.36 �1.71 0.24

3
777777775
, K2 =

2
666666664

�0.08 �0.16 �1.96
�0.13 �1.12 1.28
1.67 �0.91 1.71

3
777777775
, K3 =

K1 +K2

2
.

Following similar steps, we can verify that
⇣
G(K1,L)+G(K2,L)

⌘
/2�G(K3,L) = �1.2277⇥105 < 0.

Therefore, there exists L such that the objective function is nonconvex with respect to K .
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B.5 Proof of Lemma 3.2

Proof For t 2 {0, · · · ,N � 1}, we can define the cost-to-go function starting from time t to N as Gt .
Recalling the definition of PKt,Lt in (3.3), we can write Gt as

Gt = Ext ,⇠t ,...,⇠N�1

n
x>t PKt ,Lt xt +

N�1X

⌧=t
⇠>⌧ PK⌧+1,L⌧+1⇠⌧

o
= Ext

n
x>t PKt ,Lt xt

o
+E⇠t ,...,⇠N�1

nN�1X

⌧=t
⇠>⌧ PK⌧+1,L⌧+1⇠⌧

o

= Ext

n
x>t (Qt +K>t Ru

t Kt �L>t R
w
t Lt )xt + x>t (At �BtKt �DtLt)>PKt+1,Lt+1 (At �BtKt �DtLt)xt

o

+E⇠t ,...,⇠N�1
nN�1X

⌧=t
⇠>⌧ PK⌧+1,L⌧+1⇠⌧

o
.

We denoterLtGt :=
@Gt
@Lt

for notational simplicity, and note that the last term of the above equation does

not depend on Lt . Then, we can show that rLtGt = 2
h
(�Rw

t +D>t PKt+1,Lt+1Dt)Lt �D>t PKt+1,Lt+1(At �
BtKt)

i
Ext {xtx

>
t }. By writing the gradient of each time step compactly and taking expectations

over x0 and the additive noises {⇠0, . . . ,⇠N�1} along the trajectory, we can derive the exact PG of
G(K ,L) with respect to L as rLG(K ,L) = 2

h
(�Rw +D

>
PK ,LD)L �D>PK ,L(A �BK)

i
⌃K ,L, where

⌃K ,L is the solution to (3.5). Using similar techniques, we can derive, for a fixed L, the PG of
G(K ,L) with respect to K to be rKG(K ,L) = 2

h
(Ru +B

>
PK ,LB)K �B>PK ,L(A�DL)

i
⌃K ,L. Since

⌃0 being full-rank ensures that ⌃K ,L is also full-rank and we have rKG(K ,L) = rLG(K ,L) = 0 at
the stationary points, the PG forms derived above imply

K = (Ru +B
>
PK ,LB)�1B>PK ,L(A�DL), L = (�Rw +D

>
PK ,LD)�1D>PK ,L(A�BK), (B.2)

where by assumption, we have R
w �D>PK ,LD > 0, and R

u +B
>
PK ,LB > 0 is further implied by

PK ,L � 0 (and thus they are both invertible). Therefore, we can solve (B.2) to obtain

K = (Ru )�1B>PK ,L
h
I +

⇣
B(Ru )�1B> �D(Rw)�1D>

⌘
PK ,L

i�1
A,

L = �(Rw)�1D>PK ,L
h
I +

⇣
B(Ru )�1B> �D(Rw)�1D>

⌘
PK ,L

i�1
A,

which are (A.14) and (A.15) in their corresponding compact forms. Moreover, at the Nash equilibrium,
the solution to (A.13) in its compact form, denoted as P⇤, is also the solution to the Lyapunov equation

P
⇤ =Q + (K⇤)>Ru

K
⇤ � (L⇤)>Rw

L
⇤ + (A�BK⇤ �DL

⇤)>P⇤(A�BK⇤ �DL
⇤).

Lastly, under Assumption A.4, the solution to the RDE (A.13) is uniquely computed. As a result, the
stationary point of G(K ,L) is also the unique Nash equilibrium of the game. This completes the
proof.

B.6 Proof of Lemma 3.3

Proof Let the sequence of outer-loop control gains {Kt}, t 2 {0, · · · ,N � 1}, be fixed. To facilitate
the analysis, we first construct a sequence of auxiliary zero-sum LQ dynamic games, denoted
as {�dt }, t 2 {0, · · · ,N � 1}, where each �dt has closed-loop state-feedback information structure.
Specifically, for any t, �dt starts from some arbitrary x0 and follows a deterministic system dynamics
x⌧+1 = A⌧x⌧ +B⌧u⌧ +D⌧w⌧ for a finite horizon of N � t, where

A⌧ := At+⌧ �Bt+⌧Kt+⌧ , B⌧ := 0, D⌧ :=Dt+⌧ , u⌧ = �K⌧x⌧ = �Kt+⌧x⌧ , w⌧ = �L⌧x⌧ .

The weighting matrices of �dt are chosen to be Q⌧ := Qt+⌧ , Ru
⌧ := Ru

t+⌧ , and R
w
⌧ := Rw

t+⌧ for
all ⌧ 2 {0, · · · ,N � t � 1} and QN�t = QN . Moreover, for any sequence of control gains {L⌧},
⌧ 2 {0, · · · ,N �t�1} in �dt , we define {PL⌧

}, ⌧ 2 {0, · · · ,N �t}, as the sequence of solutions generated
by the recursive Lyapunov equation

PL⌧
=Q⌧ +K

>
⌧ R

u
⌧K⌧ �L

>
⌧ R

w
⌧ L⌧ + (A⌧ �D⌧L⌧)>PL⌧+1

(A⌧ �D⌧L⌧), PLN�t
=QN�t . (B.3)
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Then, for any t 2 {0, · · · ,N � 1}, Theorem 3.2 of [25] suggests that �dt admits a unique feedback
saddle-point if the sequence of p.s.d. solutions {P⌧}, ⌧ 2 {0, · · · ,N � t}, computed by the recursive
Riccati equation

P⌧ =Q⌧ +K
>
⌧ R

u
⌧K⌧ +A

>
⌧ P⌧+1A⌧ +A

>
⌧ P⌧+1D⌧(R

w
⌧ �D

>
⌧ P⌧+1D⌧)�1D

>
⌧ P⌧+1A⌧ , PN�t =QN�t .

(B.4)

exists and satisfies

R
w
⌧ �D

>
⌧ P⌧+1D⌧ > 0, ⌧ 2 {0, · · · ,N � t � 1}. (B.5)

Whenever exist, the saddle-point solutions at time ⌧, for any ⌧ 2 {0, · · · ,N � t � 1}, are given by

u⇤⌧ = 0, w⇤⌧ = �L
⇤
⌧x⌧ = (R

w
⌧ �D

>
⌧ P⌧+1D⌧)�1D

>
⌧ P⌧+1A⌧x⌧ . (B.6)

Moreover, the saddle-point value of �dt is x>0 P0x0 and the upper value of �dt becomes unbounded
when the matrix R

w
⌧ �D

>
⌧ P⌧+1D⌧ has at least one negative eigenvalue for at least one ⌧ 2 {0, · · · ,N �

t � 1}. Further, since the choice of x0 was arbitrary, it holds that P0 � PL0
for any sequence of

{L⌧}, ⌧ 2 {0, · · · ,N � t � 1}. Because the above properties hold for all �dt , t 2 {0, · · · ,N � 1}, we can
generate a compact matrix PK ,L(K) 2 Rm(N+1)⇥m(N+1) by putting P0 for each �dt , t 2 {0, · · · ,N � 1},
sequentially on the diagonal and putting QN at the end of the diagonal. The resulting PK ,L(K) then
solves (3.8), and satisfies PK ,L(K) � PK ,L, for all L 2 S(n,m,N ), where PK ,L is computed by (3.4).

Subsequently, we construct an auxiliary zero-sum LQ dynamic game �s with closed-loop state-
feedback information pattern, using compact notations. In particular, �s has a horizon of N and a
(stochastic) system dynamics being x = Ax +Bu+Dw+⇠, where the initial state is some arbitrary
x0 and

A := A�BK , B := 0, D :=D, ⇠ :=
h
x>0 ,⇠

>
0 , · · · ,⇠

>
N�1

i>
, u = �Kx, w = �Lx.

We assume that x0,⇠0, · · · ,⇠N�1 ⇠D are zero-mean and independent random variables. The weight-
ing matrices of �s are chosen to be Q :=Q, R

u
:= R

u , and R
w
:= R

w. By Corollary 6.4 of [26], �s is
equivalent to �d0 above in that the Riccati equation (B.4) and the saddle-point gain matrices (B.6) are
the same for �s and �d0 .

Note that for a fixed outer-loop control policy u = �Kx, the inner-loop subproblem is the same as �s,
in that �s essentially absorbs the fixed outer-loop control input into system dynamics. Therefore,
the properties of �s, which are equivalent to those of �d0 , apply to our inner-loop subproblem.
Specifically, (3.8) is a compact representation of (B.4) and (3.9) is the set of K such that (B.4) admits
a sequence of p.s.d. solutions satisfying (B.5). Therefore, K 2K is a sufficient and almost necessary
condition for the solution to the inner-loop to be well defined, in that if K < K, the inner-loop
objective G(K , ·) can be driven to arbitrarily large values. Whenever the solution to the inner-loop
exists, it is unique and takes the form of (3.10). This completes the proof.

B.7 Proof of Lemma 3.4

Proof Let K 2K be fixed. First, the nonconcavity of the inner-loop objective G(K , ·) follows directly
from Lemma 3.1. Then, we have by (3.9) and the definitions of the compact matrices that PKt,L(Kt ) � 0
exists and satisfies Rw

t �D>t PKt+1,L(Kt+1)Dt > 0, for all t 2 {0, · · · ,N � 1}. Also, for any sequence of
{Lt}, the sequence of solutions to the recursive Lyapunov equation (3.3), {PKt,Lt }, always exists and
is unique: by Lemma 3.3, it holds that PKt,L(Kt ) � PKt,Lt and thus Rw

t �D>t PKt+1,Lt+1Dt > 0 for all
t 2 {0, · · · ,N � 1}. Now, for any t 2 {0, · · · ,N � 1}, we have by (3.3) that

PKt,Lt = (At �BtKt �DtLt)>PKt+1,Lt+1(At �BtKt �DtLt) +Qt +K>t R
u
t Kt �L>t Rw

t Lt
= (At �BtKt)>PKt+1,Lt+1(At �BtKt) +Qt +K>t R

u
t Kt � (At �BtKt)>PKt+1,Lt+1DtLt

�L>t D>t PKt+1,Lt+1(At �BtKt)�L>t (Rw
t �D>t PKt+1,Lt+1Dt)Lt. (B.7)

Note that as kLtk ! +1, the quadratic term in (B.7), with leading matrix �(Rw
t �D>t PKt+1,Lt+1Dt) < 0,

dominates other terms. Thus, as kLtk ! +1 for some t 2 {0, · · · ,N � 1}, �min(PKt,Lt ) ! �1,
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which further makes �min(PK ,L)! �1. In compact forms, this means that �min(PK ,L)! �1 as
kLk ! +1. By (3.2), the inner-loop objective for a fixed K 2 K and any L 2 S(n,m,N ) has the
form of G(K ,L) = Tr(PK ,L⌃0), where ⌃0 > 0 is full-rank. This proves the coercivity of the inner-loop
objective G(K , ·).
Moreover, for a fixed K 2 K, as PK ,L is a polynomial of L, G(K , ·) is continuous in L. Combined
with the coercivity property and the upper-boundedness of G(K , ·) for K 2 K, we can conclude
the compactness of the superlevel set (3.12). The local Lipschitz and smoothness properties of
G(K , ·) follow from Lemmas 4 and 5 of [19], with their A,B,Q,R,K matrices replaced by our
A�BK ,D,Q+K

>
R
u
K ,�Rw,L, respectively. Note that the property k⌃Kk 

C(K)
�min(Q) in the proof of

Lemma 16 in [19] does not hold in our setting as we only assume Q � 0 and Q+K>Ru
K may not be

full-rank. Instead, we utilize the fact that LK (a) is compact, and thus there exists a uniform constant
c⌃,a := maxL2LK (a) k⌃K ,Lk such that k⌃K ,Lk  c⌃,a for all L 2 LK (a). Subsequently, we note that for
all L 2 LK (a), the operator norms of the PG (3.13) and the Hessian, which are continuous functions
of L, can be uniformly bounded by some constants lK ,a > 0 and  K ,a > 0, respectively. That is,

lK ,a := max
L2LK (a)

���rLG(K ,L)
���,  K ,a := max

L2LK (a)

���r2
L
G(K ,L)

��� = max
L2LK (a)

sup
kXkF=1

���r2
L
G(K ,L)[X ,X ]

���,

wherer2
L
G(K ,L)[X ,X ] denotes the action of the Hessian on a matrix X 2 S(n,m,N ). The expression

of r2
L
G(K ,L)[X ,X ] follows from Proposition 3.10 of [14], with their R,B,X,Y ,AK being replaced

by our �Rw,D,PK ,L,⌃K ,L,A �BK �DL, respectively. This proves the global Lipschitzness and
smoothness of G(K , ·) over the compact superlevel set LK (a).
To prove the PL condition, we first characterize the difference between PK ,L and PK ,L(K) as

PK ,L(K) �PK ,L = A
>
K ,L(K)(PK ,L(K) �PK ,L)AK ,L(K) + (L(K)�L)>EK ,L

+E
>
K ,L(L(K)�L)� (L(K)�L)>HK ,L(L(K)�L),

where AK ,L(K) := A�BK �DL(K). By Lemma 3.3 and K 2K, we can conclude that for all L, the
inequality HK ,L > 0 holds because PK ,L(K) � PK ,L for all L 2 S(n,m,N ). Then, by Proposition 2.1(b)
of [14], we have that for every ' > 0,

(L(K)�L)>EK ,L +E
>
K ,L(L(K)�L)  1

'
(L(K)�L)>(L(K)�L) +'E>

K ,LEK ,L.

Choosing ' = 1/�min(HK ,L) yields

(L(K)�L)>EK ,L +E
>
K ,L(L(K)�L)� (L(K)�L)>HK ,L(L(K)�L) 

E
>
K ,LEK ,L

�min(HK ,L)


E
>
K ,LEK ,L

�min(HK ,L(K))
,

(B.8)
where the last inequality is due to HK ,L(K)  HK ,L,8L 2 S (n,m,N ). Let Y be the solution to

Y = A
>
K ,L(K)YAK ,L(K) +

E
>
K ,LEK ,L

�min(HK ,L(K))
. From (B.8), we further know that PK ,L(K) �PK ,L  Y and Y =

PN
t=0

h
A
>
K ,L(K)

it E
>
K ,LEK ,L

�min(HK ,L(K))

h
AK ,L(K)

it
. Therefore, letting ⌃K ,L(K) =

PN
t=0[AK ,L(K)]t⌃0[A

>
K ,L(K)]

t ,
we have
G (K ,L(K))�G(K ,L) = Tr

⇣
⌃0(PK ,L(K) �PK ,L)

⌘
 Tr (⌃0Y)

= Tr
 
⌃0

✓ NX

t=0

h
A
>
K ,L(K)

it E
>
K ,LEK ,L

�min(HK ,L(K))

h
AK ,L(K)

it◆
!


k⌃K ,L(K)k
�min(HK ,L(K))

Tr(E>
K ,LEK ,L) (B.9)


k⌃K ,L(K)k

�min(HK ,L(K))�
2
min(⌃K ,L)

Tr(⌃>
K ,LE

>
K ,LEK ,L⌃K ,L) 

k⌃K ,L(K)k
4�min(HK ,L(K))�2 Tr(rLG(K ,L)>rLG(K ,L)).

Inequality (B.9) follows from the cyclic property of matrix trace and the last inequality is due to
⌃0  ⌃K ,L. Hence,

G(K ,L(K))�G(K ,L)
k⌃K ,L(K)k

4�min(HK ,L(K))�2 Tr(rLG(K ,L)>rLG(K ,L)).

Substituting in µK := 4�min(HK ,L(K))�2/k⌃K ,L(K)k completes the proof.
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B.8 Proof of Lemma 3.5

Proof The nonconvexity proof is done by constructing a time-invariant example, which chooses
⌃0 = I and N = 5. We further choose the system matrices to be At = A, Bt = B, Dt = D, Qt = Q,
Ru
t = Ru , and Rw

t = Rw for all t, where

A =

2
66666664

1 0 �5
�1 1 0
0 0 1

3
77777775
, B =

2
66666664

1 �10 0
0 3 1
�1 0 2

3
77777775
, D =

2
66666664

0.5 0 0
0 0.5 0
0 0 0.5

3
77777775

Q =

2
66666664

3 �1 0
�1 2 �1
0 �1 1

3
77777775
, Ru =

2
66666664

2 1 1
1 3 �1
1 �1 3

3
77777775
,

and Rw = 7.22543 · I . We also choose the time-invariant gain matrices K1
t = K1, K2

t = K2, and
K3
t = K3, where

K1 =

2
666666664

�0.8750 1.2500 �2.5000
�0.1875 0.1250 0.2500
�0.4375 0.6250 �0.7500

3
777777775
, K2 =

2
666666664

�0.8786 1.2407 �2.4715
�0.1878 0.1237 0.2548
�0.4439 0.5820 �0.7212

3
777777775
, K3 =

K1 +K2

2
.

The concatenated matrices A,B,D,Q,Ru,Rw,K1,K2,K3 are generated following the def-
initions in §3. Subsequently, we can prove that K

1,K2,K3 2 K by verifying that the
recursive Riccati equation (3.8) yields p.s.d. solutions for K

1,K2,K3, respectively, and
�min(HK1,L(K1)) = 4.3496 ⇥ 10�6, �min(HK2,L(K2)) = 0.1844, �min(HK3,L(K3)) = 0.0926.
Then, we can compute that

⇣
G(K1,L(K1)) + G(K2,L(K2))

⌘
/2 � G(K3,L(K3)) = �0.0224 < 0.

Thus, we can conclude that G(K ,L(K)) is nonconvex in K . Subsequently, we show that the
outer loop is noncoercive on K by a scalar example with N = 2 and time-invariant system
matrices being At = 2, Bt = Dt = Qt = Ru

t = 1, and Rw
t = 5, for all t. Then, we con-

sider the gain matrix K
✏ =

"
2� ✏ 0 0
0 2� ✏ 0

#
2 K, 8✏ 2

✓
0, 169

◆
. It can be observed that

lim✏!0+G(K✏,L(K✏)) = 11 <1, while lim✏!0+K
✏ 2 @K, for ✏ 2 (0, 169 ). Therefore, G(K ,L(K))

is not coercive. Lastly, by Lemma 3.2, the stationary point of the outer loop in K, denoted as
(K⇤,L(K⇤)), is unique and constitutes the unique Nash equilibrium of the game.

B.9 Proof of Theorem 3.6

Proof We prove the global convergence of three inner-loop PG updates as follows:

PG: For a fixed K 2K and an arbitrary L0 that induces a finite G(K ,L0), we first define superlevel
sets LK (G(K ,L0)) and LK (a) as in (3.12), where a < G(K ,L0) is an arbitrary constant. Clearly, it
holds that L0 2 LK (G(K ,L0)) ⇢ LK (a) and thus LK (G(K ,L0)) is nonempty as well as compact (as
shown before in Lemma 3.4). Next, denote the closure of the complement of LK (a) as (LK (a))c,
which is again nonempty and also disjoint with LK (G(K ,L0)), i.e., LK (G(K ,L0))\ (LK (a))c = ?,
due to a being strictly less than G(K ,L0). Hence, one can deduce (see for example Lemma A.1 of
[75]) that, there exists a Hausdorff distance �a > 0 between LK (G(K ,L0)) and (LK (a))c such that for
a given L 2 LK (G(K ,L0)), all L0 satisfying kL0 �LkF  �a also satisfy L

0 2 LK (a).
Now, since L0 2 LK (G(K ,L0)), we have krLG(K ,L0)kF  lK ,G(K ,L0), where lK ,G(K ,L0) is the global
Lipschitz constant over LK (G(K ,L0)). Therefore, it suffices to choose ⌘0  �a

lK ,G(K ,L0)
to ensure that

the one-step “fictitious” PG update satisfies L0 + ⌘0rLG(K ,L0) 2 LK (a). By Lemma 3.4, we can
apply the descent lemma (for minimization problems) [76] to derive:

G(K ,L0)�G(K ,L0 + ⌘0rLG(K ,L0))  �⌘0
D
rLG(K ,L0),rLG(K ,L0)

E
+
⌘20 K ,a

2
krLG(K ,L0)k2F.

Thus, we can additionally require ⌘0  1/ K ,a to guarantee that the objective is non-decreasing
(i.e., L0 + ⌘0rLG(K ,L0) 2 LK (G(K ,L0))). This also implies that starting from L0 + ⌘0rLG(K ,L0),
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taking another “fictitious” PG update step of ⌘0rLG(K ,L0) with ⌘0  min{�a/lK ,G(K ,L0),1/ K ,a}
ensures that L0 + 2⌘0rLG(K ,L0) 2 LK (G(K ,L0)). Applying the same argument iteratively certifies
that we can actually take a much larger stepsize e⌘0, with the only requirement being e⌘0  1/ K ,a,
which guarantees that after one-step of the “actual” PG update, L1 = L0 +e⌘0rLG(K ,L0), it holds
that L1 2 LK (G(K ,L0)). This is because 1/ K ,a can be covered by a finite times of �a/lK ,G(K ,L0) > 0.
Now, since L1 2 LK (G(K ,L0)), we can repeat the above arguments for all future iterations and show
that with a fixed stepsize ⌘ satisfying ⌘  1/ K ,a, the iterates of the PG update (3.13) satisfies for all
l � 0 that

G(K ,Ll )�G(K ,Ll+1)  �⌘
D
rLG(K ,Ll ),rLG(K ,Ll )

E
+
⌘2 K ,a

2
krLG(K ,Ll )k2F  0.

By the choice of ⌘, we characterize the convergence rate of the PG update (3.13) by exploiting the
PL condition from Lemma 3.4, such that

G(K ,Ll )�G(K ,Ll+1)  �
1

2 K ,a
krLG(K ,Ll )k2F  �

µK
2 K ,a

⇣
G(K ,L(K))�G(K ,Ll )

⌘
,

where µK is the global PL constant for a given K 2 K. Thus, G(K ,L(K)) � G(K ,Ll+1) 
⇣
1 �

µK
2 K ,a

⌘⇣
G(K ,L(K))�G(K ,Ll )

⌘
. This completes the proof for the linear convergence of the objective.

Next, we show the convergence of the control gain matrix to L(K). We let q := 1� µK
2 K ,a

and present
the following comparison

G(K ,L(K))�G(K ,Ll ) = Tr
h
(PK ,L(K) �PK ,Ll )⌃0

i

= Tr
 NX

t=0

(A>
K ,Ll

)t
⇣
(L(K)�Ll )>HK ,L(K)(L(K)�Ll )

⌘
(AK ,Ll )

t⌃0

�

= Tr

(L(K)�Ll )>HK ,L(K)(L(K)�Ll )⌃K ,Ll

�

� � ·�min(HK ,L(K)) · kL(K)�Llk2F,
where the second equality is due to that EK ,L(K) = 0 from the property of stationary points, and the
last inequality is due to ⌃K ,Ll � ⌃0,8l � 0. Then, we can conclude that

kL(K)�LlkF 
q
��1min(HK ,L(K)) ·

⇣
G(K ,L(K))�G(K ,Ll )

⌘

 q
l
2 ·

q
��1min(HK ,L(K)) ·

⇣
G(K ,L(K))�G(K ,L0)

⌘
. (B.10)

This completes the convergence proof of the gain matrix.

NPG: We argue that for a fixed K 2K, the inner-loop iterates following the NPG update (3.14) with
a certain stepsize choice satisfy PK ,Ll+1 � PK ,Ll in the p.s.d. sense, for all l � 0. By the definition of
PK ,L in (3.4), we can derive the following comparison between PK ,Ll and PK ,Ll+1 :

PK ,Ll+1 �PK ,Ll = A
>
K ,Ll+1

(PK ,Ll+1 �PK ,Ll )AK ,Ll+1 + 4⌘E>
K ,Ll

EK ,Ll � 4⌘
2
E
>
K ,Ll

HK ,LlEK ,Ll

= A
>
K ,Ll+1

(PK ,Ll+1 �PK ,Ll )AK ,Ll+1 + 4⌘E>
K ,Ll

(I � ⌘HK ,Ll )EK ,Ll ,

where AK ,L := A�BK�DL. As a result, we can require ⌘  1
kHK ,Ll

k to guarantee that PK ,Ll+1 � PK ,Ll .
Moreover, Lemma 3.3 suggests that for a fixed K 2 K, it holds that PK ,L  PK ,L(K) in the p.s.d.
sense for all L. Thus, if we require ⌘  minl 1

kHK ,Ll
k , then {PK ,Ll }l�0 constitutes a monotonically

non-decreasing sequence in the p.s.d. sense. Moreover, since K 2K and {PK ,Ll }l�0 monotonically
non-decreasing, the sequence {HK ,Ll }l�0 is monotonically non-increasing (in the p.s.d. sense) and
each HK ,Ll is both symmetric and positive-definite. Therefore, we can choose a uniform stepsize
⌘ = 1

2kHK ,L0 k
minl 1

kHK ,Ll
k and show the convergence rate of the NPG update (3.14) as follows:

G(K ,Ll+1)�G(K ,Ll ) = Tr
⇣
(PK ,Ll+1 �PK ,Ll )⌃0

⌘
� Tr

⇣
(4⌘E>

K ,Ll
EK ,Ll � 4⌘

2
E
>
K ,Ll

HK ,LlEK ,Ll )⌃0
⌘

�
�

kHK ,L0k
Tr(E>

K ,Ll
EK ,Ll ) �

��min(HK ,L(K))
kHK ,L0kk⌃K ,L(K)k

⇣
G(K ,L(K))�G(K ,Ll )

⌘
,
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where the last inequality follows from (B.9) . Thus,

G(K ,L(K))�G(K ,Ll+1) 
⇣
1�

��min(HK ,L(K))
kHK ,L0kk⌃K ,L(K)k

⌘
(G(K ,L(K))�G(K ,Ll )).

This implies the globally linear convergence of the objective. The convergence proof of the gain
matrix is similar to the one presented for the vanilla PG update. The only difference is to have
q := 1� ��min(HK ,L(K))

kHK ,L0 kk⌃K ,L(K)k
instead.

GN: Similar to the proof for NPG, we first find a stepsize such that {PK ,Ll }l�0 constitutes a monotoni-
cally non-decreasing sequence bounded above by PK ,L(K) in the p.s.d. sense (based on Lemma 3.3).
Taking the difference between PK ,Ll and PK ,Ll+1 and substituting in (3.15) yield

PK ,Ll+1 �PK ,Ll = A
>
K ,Ll+1

(PK ,Ll+1 �PK ,Ll )AK ,Ll+1 + 4⌘E>
K ,Ll

H
�1
K ,Ll

EK ,Ll � 4⌘
2
E
>
K ,Ll

H
�1
K ,Ll

EK ,Ll

= A
>
K ,Ll+1

(PK ,Ll+1 �PK ,Ll )AK ,Ll+1 + 4⌘E>
K ,Ll

(H�1
K ,Ll
� ⌘H�1

K ,Ll
)EK ,Ll .

Therefore, PK ,Ll+1 � PK ,Ll can be ensured by choosing ⌘  1. Subsequently, we characterize the
convergence rate of the GN update with ⌘  1/2 as follows

G(K ,Ll+1)�G(K ,Ll ) = Tr
⇣
(PK ,Ll+1 �PK ,Ll )⌃0

⌘
� Tr

⇣
(4⌘E>

K ,Ll
H
�1
K ,Ll

EK ,Ll � 4⌘
2
E
>
K ,Ll

H
�1
K ,Ll

EK ,Ll )⌃0
⌘

�
�

kHK ,Ll k
Tr(E>

K ,Ll
EK ,Ll ) �

��min(HK ,L(K))
kHK ,L0kk⌃K ,L(K)k

⇣
G(K ,L(K))�G(K ,Ll )

⌘
,

where the last inequality follows from (B.9) and the fact that {HK ,Ll }l�0 is a monotonically non-
increasing sequence lower bounded by HK ,L(K) > 0, in the p.s.d. sense. Thus,

G(K ,L(K))�G(K ,Ll+1) 
⇣
1�

��min(HK ,L(K))
kHK ,L0kk⌃K ,L(K)k

⌘
(G(K ,L(K))�G(K ,Ll ))

and the globally linear convergence rate of the objective is proved. Lastly, the locally Q-quadratic
convergence rate for the GN update directly follows from [14, 41] and the convergence proof of the
gain matrix is the same as the one for the NPG update. This completes the proof.

B.10 Proof of Theorem 3.7

Proof We first introduce the following cost difference lemma for the outer-loop problem, whose
proof is deferred to §C.1.

Lemma B.1 (Cost Difference Lemma for Outer-Loop) Suppose that for two sequences of control
gain matrices {Kt} and {K 0t } and a given t 2 {0, · · · ,N � 1}, there exist p.s.d. solutions to (3.3) at
time t + 1, denoted as PKt+1,L(Kt+1) and PK 0t+1,L(K 0t+1), respectively. Also, suppose that the following
inequalities are satisfied:

Rw
t �D>t PKt+1,L(Kt+1)Dt > 0, Rw

t �D>t PK 0t+1,L(K 0t+1)Dt > 0.

Then, there exist p.s.d. solutions to (3.3) at time t, denoted as PKt,L(Kt ) and PK 0t ,L(K 0t ), and their
difference can be quantified as

PK 0t ,L(K 0t ) �PKt,L(Kt ) = A>K 0t ,L(K 0t )
(PK 0t+1,L(K 0t+1) �PKt+1,L(Kt+1))AK 0t ,L(K

0
t )

+RKt,K
0
t
�⌅>Kt,K

0
t
(Rw

t �D>t PKt+1,L(Kt+1)Dt)�1⌅Kt,K
0
t
, (B.11)

where
ePKt+1,L(Kt+1) := PKt+1,L(Kt+1) +PKt+1,L(Kt+1)Dt(Rw

t �D
>
t PKt+1,L(Kt+1)Dt )�1D

>
t PKt+1,L(Kt+1) (B.12)

FKt,L(Kt ) := (Ru
t +B>t ePKt+1,L(Kt+1)Bt)Kt �B>t ePKt+1,L(Kt+1)At

L(Kt ) := (�Rw
t +D>t PKt+1,L(Kt+1)Dt)�1D

>
t PKt+1,L(Kt+1)(At �BtKt )

⌅Kt,K
0
t
:= �(Rw

t �D
>
t PKt+1,L(Kt+1)Dt)L(K 0t )�D

>
t PKt+1,L(Kt+1)(At �BtK 0t )

RKt,K
0
t
:= (At �BtK 0t )

>ePKt+1,L(Kt+1)(At �BtK 0t )�PKt,L(Kt ) +Qt + (K 0t )
>Ru

t (K
0
t )

= (K 0t �Kt )>FKt,L(Kt ) +F>Kt,L(Kt )
(K 0t �Kt ) + (K 0t �Kt )>(Ru

t +B>t ePKt+1,L(Kt+1)Bt)(K
0
t �Kt). (B.13)
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Subsequently, we prove that starting from any K 2 K, the next iterate K
0 is guaranteed to satisfy

K
0 2 K following the NPG update (3.17) or the GN update (3.18) with proper stepsizes. Note that

(3.8) is the compact form of the following recursive Riccati equation

PKt,L(Kt ) =Qt +K>t R
u
t Kt + (At �BtKt)>ePKt+1,L(Kt+1)(At �BtKt), t 2 {0, · · · ,N � 1} (B.14)

where ePKt+1,L(Kt+1) is as defined in (B.12) and PKN ,L(KN ) = QN . Thus, K 2 K is equivalent to that
(B.14) admits a solution PKt+1,L(Kt+1) � 0 and Rw

t �D>t PKt+1,L(Kt+1)Dt > 0, for all t 2 {0, · · · ,N � 1}.
Since K 2K and PKN ,L(KN ) = PK 0N ,L(K 0N ) =QN for any K

0 , we have

Rw
N�1 �D

>
N�1PK 0N ,L(K 0N )DN�1 = Rw

N�1 �D
>
N�1PKN ,L(KN )DN�1 = Rw

N�1 �D
>
N�1QNDN�1 > 0.

That is, Rw
N�1 �D

>
N�1PK 0N ,L(K 0N )DN�1 is invertible and a solution to (B.14) with t =N � 1, denoted

as PK 0N�1,L(K 0N�1), exists and is both p.s.d. and unique.

Subsequently, we invoke Lemma B.1 to find a stepsize such that a solution to (B.14) with
t = N � 2 also exists after one-step NPG update (3.17). By (B.14), it suffices to ensure
Rw
N�2 � D>N�2PK 0N�1,L(K 0N�1)DN�2 > 0 (thus invertible) in order to guarantee the existence of

PK 0N�2,L0(KN�2). By Lemma B.1 and PKN ,L(KN ) = PK 0N ,L(K 0N ) =QN , we have

PK 0N�1,L(K 0N�1) �PKN�1,L(KN�1) =RKN�1,K
0
N�1
�⌅>KN�1,K

0
N�1

(Rw
N�1 �D

>
N�1PKN ,L(KN )DN�1)�1⌅KN�1,K

0
N�1

RKN�1,K
0
N�1

,

where the last inequality is due to the fact that Rw
N�1 �D

>
N�1PKN ,L(KN )DN�1 > 0. Then, we substitute

the NPG update rule K 0N�1 = KN�1 � 2↵KN�1FKN�1,L(KN�1) for t =N � 1 into (B.13) to get

PK 0N�1,L(K
0
N�1)
�PKN�1,L(KN�1)  (K 0N�1 �KN�1)>FKN�1,L(KN�1) +F>KN�1,L(KN�1)

(K 0N�1 �KN�1)

+ (K 0N�1 �KN�1)>(Ru
N�1 +B>N�1

ePKN ,L(KN )BN�1)(K
0
N�1 �KN�1)

= �4↵KN�1F
>
KN�1,L(KN�1)

FKN�1,L(KN�1) + 4↵2KN�1
F>KN�1,L(KN�1)

(Ru
N�1 +B>N�1

ePKN ,L(KN )BN�1)FKN�1,L(KN�1)

= �4↵KN�1F
>
KN�1,L(KN�1)

⇣
I �↵KN�1 (R

u
N�1 +B>N�1

ePKN ,L(KN )BN�1)
⌘
FKN�1,L(KN�1).

Therefore, choosing ↵KN�1 2 [0,1/kRu
N�1 + B>N�1ePKN ,L(KN )BN�1k] suffices to ensure that

PK 0N�1,L(K 0N�1)  PKN�1,L(KN�1). Hence,

Rw
N�2 �D

>
N�2PK 0N�1,L(K 0N�1)DN�2 � Rw

N�2 �D
>
N�2PKN�1,L(KN�1)DN�2 > 0,

where the last inequality comes from K 2K. Therefore, the existence of PK 0N�2,L0(KN�2) � 0 is proved if
the above requirement on ↵KN�1 is satisfied. We can apply this argument iteratively backward since for
all t 2 {1, · · · ,N }, PK 0t ,L(K 0t )  PKt,L(Kt ) implies Rw

t�1�D
>
t�1PK 0t ,L(K 0t )Dt�1 � Rw

t�1�D
>
t�1PKt,L(Kt )Dt�1 >

0 and thus Lemma B.1 can be applied for all t. Moreover, PK 0t ,L(K 0t )  PKt,L(Kt ) is guaranteed to hold
for all t 2 {1, · · · ,N } if we require the stepsize of the NPG update to satisfy

↵Kt
2 [0,1/kRu

t +B>t ePKt+1,L(Kt+1)Btk], 8t 2 {0, · · · ,N � 1}.

Equivalently, the above conditions can also be represented using the compact forms introduced in §3.
In particular, GK ,L(K) is a concatenated matrix with blocks of Ru

t +B
>
t
ePKt+1,L(Kt+1)Bt , t 2 {0, · · · ,N�1},

on the diagonal. Thus, we have kGK ,L(K)k � kRu
t + B>t ePKt+1,L(Kt+1)Btk, for all t 2 {0, · · · ,N � 1}.

Adopting the compact notations, we have for any K 2K, if the stepsize ↵K 2 [0,1/kGK ,L(K)k], then

PK 0 ,L(K 0) �PK ,L(K)  (K 0 �K)>FK ,L(K) +F
>
K ,L(K)(K

0 �K) + (K 0 �K)>GK ,L(K)(K 0 �K)

= �4↵KF>K ,L(K)FK ,L(K) + 4↵2
K
F
>
K ,L(K)GK ,L(K)FK ,L(K)

= �4↵KF>K ,L(K)

⇣
I �↵KGK ,L(K)

⌘
FK ,L(K)  0. (B.15)

Since we have already shown that PK 0t ,L(K 0t ) � 0 exists for all t 2 {0, · · · ,N � 1} and PK 0 ,L(K 0) is
a concatenation of blocks of PK 0t ,L(K 0t ), we can conclude that K 0 2 K. Applying the above anal-
ysis iteratively proves that the sequence {PKk ,L(Kk )}k�0 following the NPG update (3.17) with a
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given K0 2 K and a constant stepsize ↵  mink�0 1
kGKk ,L(Kk )k

is monotonically non-increasing in
the p.s.d. sense, and thus Kk 2 K for all k � 0 given a K0 2 K. Furthermore, we can choose
↵  1

kGK0 ,L(K0)k
mink�0 1

kGKk ,L(Kk )k
because {GKk ,L(Kk )} is monotonically non-increasing and each

GKk ,L(Kk ) is symmetric and positive-definite. This completes the proof for the NPG update (3.17).

For the GN update (3.18), all our arguments for the proof above still hold but instead we invoke
Lemma B.1 with the recursive update rule being K 0t = Kt � 2↵Kt

(Ru
t +B>t ePKt+1,L(Kt+1)Bt)�1FKt,L(Kt ),

for all t 2 {0, · · · ,N � 1}. In particular, we have the matrix difference at time t =N � 1, denoted as
PK 0N�1,L(K 0N�1) �PKN�1,L(KN�1), being

PK 0N�1,L(K 0N�1) �PKN�1,L(KN�1)  (K 0N�1 �KN�1)>FKN�1,L(KN�1) +F>KN�1,L(KN�1)
(K 0N�1 �KN�1)

+ (K 0N�1 �KN�1)>(Ru
N�1 +B>N�1ePKN ,L(KN )BN�1)(K 0N�1 �KN�1)

= �4↵KN�1F
>
KN�1,L(KN�1)

⇣
(1�↵KN�1 ) · (R

u
N�1 +B>N�1ePKN ,L(KN )BN�1)�1

⌘
FKN�1,L(KN�1).

Therefore, choosing ↵KN�1 2 [0,1] suffices to ensure that PK 0N�1,L(K 0N�1)  PKN�1,L(KN�1). Applying
the iterative arguments for the proof of the NPG update and using the compact notations yields that
for any fixed K 2K, if the stepsize satisfies ↵K 2 [0,1], then PK 0 ,L(K 0) � 0 exists and

PK 0 ,L(K 0) �PK ,L(K)  (K 0 �K)>FK ,L(K) +F
>
K ,L(K)(K

0 �K) + (K 0 �K)>GK ,L(K)(K 0 �K)

= �4↵KF>K ,L(K)G
�1
K ,L(K)FK ,L(K) + 4↵2

K
F
>
K ,L(K)G

�1
K ,L(K)FK ,L(K)

= �4↵KF>K ,L(K)

⇣
(1�↵K ) ·G�1K ,L(K)

⌘
FK ,L(K)  0. (B.16)

This proves that K 0 2K. Now, we can apply the above analysis iteratively to prove that the sequence
{PKk ,L(Kk )}k�0 following the GN update (3.18) with a given K0 2K and a constant stepsize ↵ 2 [0,1]
is monotonically non-increasing in the p.s.d. sense. Thus. we have Kk 2 K for all k � 0 given a
K0 2K. This completes the proof.

B.11 Proof of Theorem 3.8

Proof For the NPG update (3.17), let ↵  1
2kGK0 ,L(K0)k

and suppose K0 2K. Theorem 3.7 suggests
that PKk ,L(Kk ) � PK⇤,L(K⇤) � 0 exists for all k � 0 and the sequence {PKk ,L(Kk )}k�0 is non-increasing in
the p.s.d. sense. As a result, we have by (B.15) that

Tr
⇣
(PKk+1,L(Kk+1) �PKk ,L(Kk ))⌃0

⌘
 �

�
kGK0,L(K0)k

Tr(F>
Kk ,L(Kk )

FKk ,L(Kk ))  �2↵�Tr(F>
Kk ,L(Kk )

FKk ,L(Kk )).

(B.17)

Therefore, from iterations k = 0 to K �1, summing over both sides of (B.17) and dividing by K yield,

1
K

K�1X

k=0

Tr(F>
Kk ,L(Kk )

FKk ,L(Kk )) 
Tr(PK0,L(K0) �PK⇤,L(K⇤))

2↵� ·K . (B.18)

Namely, the sequence of natural gradient norm square {Tr(F>
Kk ,L(Kk )

FKk ,L(Kk ))}k�0 converges on
average with a globally O(1/K) rate. The convergent stationary point is also the unique Nash
equilibrium of the game, by Lemma 3.5. This completes the convergence proof of the NPG update.
Similarly, for the GN update with ↵  1/2 and suppose K0 2K, we can obtain from (B.16) that

Tr
⇣
(PKk+1,L(Kk+1) �PKk ,L(Kk ))⌃0

⌘
 �

2↵�
kGK0,L(K0)k

Tr(F>
Kk ,L(Kk )

FKk ,L(Kk )). (B.19)

As before, we sum up (B.19) from k = 0 to K � 1 and divide both sides by K to obtain

1
K

K�1X

k=0

Tr(F>
Kk ,L(Kk )

FKk ,L(Kk )) 
kGK0,L(K0)k Tr(PK0,L(K0) �PK⇤,L(K⇤))

2↵� ·K .
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This proves that the sequence of natural gradient norm squares, {Tr(F>
Kk ,L(Kk )

FKk ,L(Kk ))}k�0,
converges on average with a globally O(1/K) rate. Also, The convergent stationary point is the
unique Nash equilibrium. Finally, faster local rates can be shown by following the techniques
presented in Theorem 4.6 of [16].

B.12 Proof of Theorem 4.1 (PG)

Proof We first provide a complete version of Theorem 4.1 for the PG update (4.1) and introduce a
helper lemma, whose proof is deferred to §C.2.

Theorem B.2 (Inner-Loop Sample Complexity for PG) For a fixed K 2 K and an arbitrary L0
that induces a finite G(K ,L0), define a superlevel set LK (a) as in (3.12), where a  G(K ,L0) is an
arbitrary constant. Let ✏1,�1 2 (0,1), and M1, r1,⌘ > 0 in Algorithm 1 satisfy

M1 �
0
BBBB@
d1
r1

✓
G(K ,L(K)) +

lK ,a

⇢K ,a

◆r
log

✓2d1L
�1

◆1CCCCA
2
1024
µK✏1

,

r1 min
(
✓K ,aµK
8 K ,a

r
✏1
240

,
1

8 2
K ,a

r
✏1µK
30

, ⇢K ,a

)
, ⌘ min

(
1,

1
8 K ,a

, ⇢K ,a ·
pµK

32
+ K ,a + lK ,a

��1)
,

where ✓K ,a = min
n
1/[2 K ,a],⇢K ,a/lK ,a

o
; lK ,a, K ,a,µK are defined in Lemma 3.4; ⇢K ,a :=

minL2LK (a)⇢K ,L > 0; and d1 = nmN . Then, with probability at least 1 � �1 and a total num-
ber of iterations L = 8

⌘µK
log( 2

✏1
), the inner-loop ZO-PG update (4.1) outputs some L(K) := LL such

that G(K ,L(K)) � G(K ,L(K))� ✏1, and kL(K)�L(K)kF 
q
��1min(HK ,L(K)) · ✏1.

Lemma B.3 For a given K 2K and a given L, let ✏1,�1 2 (0,1) and let the batchsize M1,L > 0 and
the smoothing radius r1,L > 0 of a M1,L-sample one-point minibatch gradient estimator satisfy

M1,L �
0
BBBB@
d1
r1,L

✓
G(K ,L) +

lK ,L

⇢K ,L

◆r
log

✓2d1
�1

◆1CCCCA
2
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µK✏1

, r1,L min
⇢✓K ,LµK
8 K ,L

r
✏1
240

,
1

8 2
K ,L

r
✏1µK
30

, ⇢K ,L

�
,

where ✓K ,L =min
n

1
2 K ,L

, ⇢K ,L
lK ,L

o
; lK ,L, K ,L,⇢K ,L are the local curvature parameters in Lemma 3.4;

and d1 = nmN . Also, let the stepsize ⌘L > 0 satisfy

⌘L min
(
1,

1
8 K ,L

,⇢K ,L ·
pµK
32

+ K ,L + lK ,L

�)
.

Then, the gain matrix after applying one step of (4.1) on L, denoted as L0 , satisfies with probability
at least 1� �1 that G(K ,L)  G(K ,L0) and

G(K ,L(K))�G(K ,L0) 
✓
1�

⌘LµK
8

◆
· (G(K ,L(K))�G(K ,L)) +

⌘LµK✏1
16

.

We now prove the sample complexity result for a given L0 2 LK (a). First, we use �l := G(K ,L(K))�
G(K ,Ll ) to denote the optimality gap at iteration l, where l 2 {0, · · · ,L}. By Lemma B.3, if we require
✏1,�1 2 (0,1), the parameters M1,L0 , r1,L0 ,⌘L0 > 0 in Algorithm 1 to satisfy

M1,L0 �
0
BBBB@
d1
r1

✓
G(K ,L0) +

lK ,L0
⇢K ,L0

◆r
log

✓2d1L
�1

◆1CCCCA
2
1024
µK✏1

,

r1,L0 min
⇢✓K ,L0µK
8 K ,L0

r
✏1
240

,
1

8 2
K ,L0

r
✏1µK
30

, ⇢K ,L0

�
, ⌘L0 min

⇢
1,

1
8 K ,L0

,
⇢K ,L0p

µK
32 + K ,L0 + lK ,L0

�
,

then we ensure with probability at least 1��1/L that G(K ,L0)  G(K ,L1), i.e., L1 2 LK (a). Moreover,
for any Ll , where l 2 {0, · · · ,L � 1}, there exist M1,Ll , r1,Ll ,⌘Ll > 0 as defined in Lemma B.3 that
guarantee G(K ,Ll )  G(K ,Ll+1) with probability at least 1��1/L. Now, we choose uniform constants
M1, r1,⌘ > 0 such that
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M1 �
0
BBBB@
d1
r1

✓
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⇢K ,a
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8 2
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9>>=>>;  min
l2{0,··· ,L�1}

r1,Ll ,
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8>><>>:1,
1

8 K ,a
,

⇢K ,ap
µK
32 + K ,a + lK ,a

9>>=>>;  min
l2{0,··· ,L�1}

⌘Ll ,

where ✓K ,a = min
n
1/[2 K ,a],⇢K ,a/lK ,a

o
, ⇢K ,a = minL2LK (a)⇢K ,L > 0 is due to the compactness of

LK (a), and lK ,a, K ,a <1 are defined in Lemma 3.4 that satisfy
lK ,a � max

L2LK (a)
lK ,L,  K ,a � max

L2LK (a)
 K ,L.

Then, we can guarantee with probability at least 1 � �1 that the value of the objective function,
following the ZO-PG update (4.1), is monotonically non-decreasing. That is, we have with probability
at least 1 � �1 that Ll 2 LK (a), for all l 2 {0, · · · ,L}, when a L0 2 LK (a) is given. By Lemma
B.3 and the above choices of M1, r1,⌘, we also ensure with probability at least 1 � �1 that �l ⇣
1� ⌘µK

8

⌘
·�l�1 +

⌘µK✏1
16 , for all l 2 {1, · · · ,L�1}. Thus, we can show with probability at least 1� �1

that

�L 
✓
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⌘µK
8

◆
·�L�1 + ⌘

µK✏1
16


✓
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⌘µK
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µK✏1
16


✓
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⌘µK
8

◆L
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2
.

As a result, when L = 8
⌘µK

log( 2
✏1
), the inequality G(K ,LL)  G(K ,L(K))� ✏1 holds with probability

at least 1 � �1. This proves the convergence of the generated values of the objective function for
the ZO-PG update (4.1). Lastly, we demonstrate the convergence of the gain matrix to L(K) by our
results in §B.9. Based on (B.10) and the convergence of the objective function values, we have with
probability at least 1� �1 that

kL(K)�LLkF 
q
��1min(HK ,L(K)) ·

⇣
G(K ,L(K))�G(K ,LL)

⌘


q
��1min(HK ,L(K)) · ✏1. (B.20)

This completes the proof.

B.13 Proof of Theorem 4.1 (NPG)

Proof We first provide a complete version of Theorem 4.1 for the NPG update (4.2) and introduce a
helper lemma, whose proof is deferred to §C.3.

Theorem B.4 (Inner-Loop Sample Complexity for NPG) For a fixed K 2 K and an arbitrary L0
that induces a finite G(K ,L0), define a superlevel set LK (a) as in (3.12), where a  G(K ,L0) is an
arbitrary constant. Let ✏1,�1 2 (0,1), and M1, r1,⌘ > 0 in Algorithm 1 satisfy

M1 �max
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G(K ,L(K)) +

lK ,a

⇢K ,a

◆2
·
64d21({a +1)2

�2r21µK✏1
,
2{2

a

�2

)
· log

✓4Lmax{d1,d⌃}
�1

◆
,

r1 min
(
�
p
µK✏1

16{a K ,a
,
�µK✓K ,a

p
✏1/2

32{a K ,a
,⇢K ,a

)
,

⌘ min
(

�2

32 K ,a{a
,

1
2 K ,a

, ⇢K ,a ·
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�
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�lK ,a

2

��1)
,

where ✓K ,a = min
n
1/[2 K ,a],⇢K ,a/lK ,a

o
; lK ,a, K ,a,µK are defined in Lemma 3.4; ⇢K ,a,{a,{a

are uniform constants over LK (a) defined in §B.13; d⌃ = m2(N + 1); and d1 = nmN . Then,
with probability at least 1 � �1 and a total number of iterations L = 8{a

⌘µK
log( 2

✏1
), the inner-loop

ZO-NPG update (4.2) outputs some L(K) := LL such that G(K ,L(K)) � G(K ,L(K)) � ✏1, and

kL(K)�L(K)kF 
q
��1min(HK ,L(K)) · ✏1.
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Lemma B.5 For a given K 2K and a given L, let ✏1,�1 2 (0,1) and let the batchsize M1,L > 0 and
the smoothing radius r1,L > 0 of a M1,L-sample one-point minibatch gradient estimator satisfy

M1,L �max

8>><>>:

✓
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,

where ✓K ,L = min
n
1/[2 K ,L],⇢K ,L/lK ,L

o
; lK ,L, K ,L,⇢K ,L are the local curvature parameters in

Lemma 3.4; d1 = nmN ; d⌃ =m2(N +1); { := c⌃K ,L
+ �

2 ; and c⌃K ,L
is a polynomial of kAkF , kBkF ,

kDkF , kKkF , kLkF that is linear in c0, defined in Lemma C.1. Also, let the stepsize ⌘L > 0 satisfy

⌘L min
(

�2

32 K ,L{
,

1
2 K ,L

, ⇢K ,L ·
 pµK
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+
2 K ,L

�
+ lK ,L +

�lK ,L

2

��1)
.

Then, the gain matrix after applying one step of (4.2) on L, denoted as L0 , satisfies with probability
at least 1� �1 that G(K ,L)  G(K ,L0) and

G(K ,L(K))�G(K ,L0) 
✓
1�

⌘LµK
8{

◆
· (G(K ,L(K))�G(K ,L)) +

⌘LµK✏1
16{

.

Based on Lemma B.5, the rest of the proof mostly follows the proof of Theorem 4.1 in §B.12.
Specifically, we can choose uniform constants M1, r1,⌘ > 0 such that

M1 �max
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where ✓K ,a =min
n
1/[2 K ,a],⇢K ,a/lK ,a

o
and

{a := max
L2LK (a)

{ <1, {a := min
L2LK (a)

{ > 0, ⇢K ,a = min
L2LK (a)

⇢K ,L > 0, lK ,a � max
L2LK (a)

lK ,L,  K ,a � max
L2LK (a)

 K ,L.

Then, we can guarantee with probability at least 1 � �1 that the value of the objective function,
following the ZO-NPG update (4.2), is monotonically non-decreasing. That is, we have with
probability at least 1 � �1 that Ll 2 LK (a), for all l 2 {0, · · · ,L}, when an L0 2 LK (a) is given. By
Lemma B.3 and the above choices of M1, r1,⌘, we also ensure with probability at least 1� �1 that
�l 

⇣
1� ⌘µK

8{a

⌘
·�l�1 +

⌘µK✏1
16{a

, for all l 2 {1, · · · ,L� 1}. Thus, we can show with probability at least
1� �1 that

�L 
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As a result, when L = 8{a
⌘µK

log( 2
✏1
), the inequality G(K ,LL)  G(K ,L(K))� ✏1 holds with probability

at least 1 � �1. This proves the convergence of the generated values of the objective function for
the ZO-NPG update (4.2). The convergence of the gain matrix to L(K) follows from the proof of
Theorem 4.1 in §B.12. This completes the proof.

B.14 Proof of Theorem 4.2

Proof We first present a complete version of Theorem 4.2 and a few useful lemmas, whose proofs
are deferred to §C.4-§C.8.
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Theorem B.6 (IR: Derivative-Free Setting) For any K0 2K and defining ⇣ := �min(HK0,L(K0)) > 0,
introduce the following set bK:

bK :=
⇢
K | (3.8) admits a solution PK ,L(K) � 0, and PK ,L(K)  PK0,L(K0) +

⇣
2kDk2

· I
�
⇢K. (B.21)

Let �2 2 (0,1) and other parameters in Algorithm 2 satisfy �1  �2/[6M2K] and
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����1, P := PK0,L(K0) +
⇣

2kDk2
· I , (B.22)

where bG(K ,L(K)),bc2,K ,bc5,K ,bc⌃K ,L(K) ,
bB⌃,K ,bB1,L(K),bB⌃,L(K),$ > 0 are uniform constants over bK

defined in §B.14. Then, it holds with probability at least 1��2 that Kk 2 bK ⇢K for all k 2 {1, · · · ,K}.

Lemma B.7 For any K ,K 0 2K, there exist some B1,K ,BP,K ,BL(K),K ,B⌃,K > 0 that are continuous
functions of K such that all K 0 satisfying kK 0 �KkF  B1,K satisfy

kPK 0 ,L(K 0) �PK ,L(K)kF  BP,K · kK 0 �KkF (B.23)

kL(K 0)�L(K)kF  BL(K),K · kK 0 �KkF (B.24)

k⌃K 0 ,L(K 0) �⌃K ,L(K)kF  B⌃,K · kK 0 �KkF. (B.25)

Lemma B.8 For any K ,K 0 2K, there exist some B1,K ,B⌃,K > 0 as defined in Lemma B.7 such that
if K 0 satisfies
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⇢
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✏2
4c5,K (c⌃K ,L(K) +B⌃,K )

,
✏2

4c2,KB⌃,K

�
,

where c⌃K ,L(K) is a polynomial of kAkF , kBkF , kDkF , kKkF , and c0, and c2,K , c5,K are defined in §C.9,
then it holds that krKG(K 0 ,L(K 0))�rKG(K ,L(K))kF  ✏2.

Lemma B.9 For any K 2K, there exists some B2,K > 0 such that all K 0 satisfying kK 0 �KkF  B2,K
satisfy K

0 2K.

Lemma B.10 For any K 2K, let the batchsize M2, smoothing radius r2, inner-loop parameters ✏1
and �1 2 (0,1) satisfy
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.

where B1,K ,B2,K ,B⌃,K , c⌃K ,L(K) > 0 are defined in Lemmas B.7, B.8, and B.9, and d2 = dmN .
Then, we have with probability at least 1� �2 that

���rKG(K ,L(K))�rKG(K ,L(K))
���
F
 ✏2, where

rKG(K ,L(K)) is the estimated PG from Algorithm 2.

Lemma B.11 For any K 2K, let the batchsize M2, inner-loop parameters ✏1 and �1 2 (0,1) satisfy
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where B1,L(K),B⌃,L(K) are defined in Lemma C.2 and c⌃K ,L(K) is a polynomial of kAkF , kBkF , kDkF ,

kKkF , and c0. Then, we have with probability at least 1� �2 that k⌃
K ,L(K) �⌃K ,L(K)kF  ✏2, with

⌃
K ,L(K) being the estimated correlation matrix from Algorithm 2. Moreover, it holds with probability

at least 1� �2 that �min(⌃K ,L(K)) � �/2 if ✏2  �/2.

Based on the above lemmas, we prove the implicit regularization property of the outer-loop ZO-NPG
update (4.3). Define ⇣ := �min(HK0,L(K0)) > 0 and the following set bK:

bK :=
⇢
K | (3.8) admits a solution PK ,L(K) � 0, and PK ,L(K)  PK0,L(K0) +

⇣
2kDk2

· I
�
⇢K.

It is a strict subset of K as all K 2 bK satisfy �min(HK ,L(K)) � ⇣
2 > 0. Then, we prove the compactness

of bK by first proving its boundedness. Specifically, for any K 2 bK ⇢ K, we have by (3.8) that
PK ,L(K) � 0 solves

PK ,L(K)=Q+K>Ru
K + (A�BK)>

⇣
PK ,L(K) +PK ,L(K)D(Rw �D>PK ,L(K)D)�1D>PK ,L(K)

⌘
(A�BK), (B.26)

where the second term on the RHS of (B.26) is p.s.d. and thus Q + K
>
R
u
K  PK ,L(K) with

Q � 0 and R
u > 0. Since PK ,L(K),PK0,L(K0) are symmetric and p.s.d., all K 2 bK satisfy

kPK ,L(K)kF 
���PK0,L(K0) +

⇣
2kDk2 · I

���
F

. These arguments together imply that for all K 2 bK,

kKkF 
q
kPK0,L(K0) +

⇣
2kDk2 · IkF/�min(Ru), proving the boundedness of bK.

Next, we take an arbitrary sequence {Kn} 2 bK and note that kKnkF is bounded for all n. Applying
Bolzano-Weierstrass theorem implies that the set of limit points of {Kn}, denoted as bKlim, is nonempty.
Then, for any Klim 2 bKlim, we can find a subsequence {K⌧n } 2 bK that converges to Klim. We
denote the corresponding sequence of solutions to (B.26) as {PK⌧n ,L(K⌧n )}, where 0  PK⌧n ,L(K⌧n )


PK0,L(K0) +

⇣
2kDk2 · I for all n. By Bolzano-Weierstrass theorem, the boundedness of {PK⌧n ,L(K⌧n )}, and

the continuity of (B.26) with respect to K , we have the set of limit points of {PK⌧n ,L(K⌧n )}, denoted
as bPlim, is nonempty. Then, for any Plim 2 bPlim, we can again find a subsequence {PK⌧n ,L(K⌧n )}
that converges to Plim. Since PK⌧n ,L(K⌧n ) is a p.s.d. solution to (B.26) satisfying 0  PK⌧n

,L(K⌧n )


PK0,L(K0) +
⇣

2kDk2 · I for all n and (B.26) is continuous in K , Plim must solve (B.26) and satisfy

0  Plim  PK0,L(K0) +
⇣

2kDk2 · I , which implies Klim 2 bK. Note that the above arguments work for any

sequence {Kn} 2 bK and any limit points Klim and Plim, which proves the closedness of bK. Together
with the boundedness, bK is thus compact.

Now, denote the iterates after one-step of the outer-loop ZO-NPG update (4.3) and the exact NPG
update (3.17) from Kk as Kk+1 and eKk+1, respectively, for k 2 {0, · · · ,K � 1}. Clearly, it holds that
K0 2 bK. Additionally, we require the stepsize ↵ > 0 to satisfy

↵  1
2
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���Ru +B(P +PD(Rw �D>PD)�1D>P)B

����1, where P := PK0,L(K0) +
⇣

2kDk2
· I ,

(B.27)

which is stricter than the requirement in Theorem 3.7. Given our stepsize choice, Theorem 3.7
guarantees that PeK1,L(eK1)

� 0 exists and satisfies PeK1,L(eK1)
 PK0,L(K0) almost surely. By requiring
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, ⇣
2B

P,eK1
KkDk2

o
with probability at least 1� �2

K , we have by Lemma

B.9 that K1 2K with probability at least 1� �2K . Thus, we invoke the recursive arguments in the proof
of Theorem 3.7 (see §B.10) to show that PK1,L(K1) � 0 exists and invoke Lemma B.7 to obtain that

kPK1,L(K1) �PeK1,L(eK1)
k  ⇣

2KkDk2
=) PK1,L(K1)  PeK1,L(eK1)

+
⇣

2KkDk2
· I  PK0,L(K0) +

⇣

2KkDk2
· I .

(B.28)

41



In other words, it holds that K1 2 bK with probability at least 1� �2
K . Subsequently, we can invoke

Theorem 3.7 again to get that taking another step of the exact outer-loop NPG update starting from
K1, the updated gain matrix, denoted as eK2, satisfies PeK2,L(eK2)

 PK1,L(K1). Similarly, by requiring

kK2 � eK2kF min
n
B1,eK2

,B2,eK2
, ⇣
2B

P,eK2
KkDk2

o
, we can guarantee with probability at least 1� �2

K that

K2 2 K, conditioned on K1 2 bK. Conditioning on (B.28), we apply Theorem 3.7 and Lemma B.7
again to get with probability at least 1� �2

K that PK2,L(K2) � 0 exists and satisfies

PK2,L(K2)  PeK2,L(eK2)
+

⇣
2KkDk2

· I  PK1,L(K1) +
⇣

2KkDk2
· I  PK0,L(K0) +

⇣
KkDk2

· I .

That is, K2 2 bK with probability at least 1� �2K . Applying above arguments iteratively for all iterations
and taking a union bound yield that if the estimation accuracy, for all k 2 {1, · · · ,K}, satisfies with
probability at least 1� �2

K that

kKk � eKkkF min

8>><>>:B1,eKk
,B2,eKk

,
⇣

2B
P,eKk

KkDk2

9>>=>>; , (B.29)

then it holds with probability at least 1� �2 that KK 2 bK ⇢K, where KK is the gain matrix after K
steps of the ZO-NPG update (4.3) starting from K0 and with a constant stepsize ↵ satisfying (B.27).

Lastly, we provide precise choices of the parameters for Algorithm 2 such that (B.29) can be satisfied.
Since bK is compact, there exist some uniform constants over bK

B1 := min
K2bK

B1,K > 0, BP := max
K2bK

BP,K <1.

Moreover, let us denote the closure of the complement of K as Kc. Since bK ⇢ K is compact and
all K 2 bK satisfy: i) PK ,L(K) � 0 exists; and (ii) �min(HK ,L(K)) � ⇣

2 > 0, bK is disjoint from Kc, i.e.,
bK\Kc = ?. Hence, one can deduce (see for example Lemma A.1 of [75]) that, there exists a distance
B2 > 0 between bK and Kc such that B2 min

K2bKB2,K . As a result, we now aim to enforce for all
k 2 {1, · · · ,K}, that the following inequality holds with probability at least 1� �2

K :

kKk � eKkkF  $ := min
(
B1,B2,

⇣
2BPKkDk2

)
. (B.30)

Note that compared to (B.29), (B.30) is independent of the iteration index k, and is more stringent.
Thus, (B.30) also ensures Kk 2 bK for all k 2 {1, · · · ,K} with probability at least 1��2, as (B.29) does.
Condition (B.30) can be achieved by Lemmas B.10 and B.11. Specifically, we start from any gain
matrix K from the set of {K0, · · · ,KK�1} and use K

0 and eK 0 to denote the gain matrices after one
step of the ZO-NPG (4.3) and the exact NPG (3.17) updates, respectively. Now, suppose that the
parameters of Algorithm 2 satisfy �1  �2/[6M2K] and

M2 �max

8>><>>:
128d22↵

2c20
bG(K ,L(K))2

r22�
4$2

,
512d22↵

2(bG(K ,L(K)) + r2BPc0)2

r22�
2$2

,
32↵2(bc5,K )2(bc⌃K ,L(K) )

2

�2$2 ,
8(bc⌃K ,L(K) )

2

�2

9>>=>>;

· log
 
12Kmax{d2,d⌃}

�2

!
, ✏1 min

8>>><>>>:
�$r2
16↵d2

,
bB21,L(K)⇣

2
,

�2$2⇣

128↵2(bc5,K )2bB2⌃,L(K)

,
�2⇣

32bB2⌃,L(K)

9>>>=>>>;
,

r2 min
⇢
$,

�$

64↵bc5,K (bc⌃K ,L(K) +
bB⌃,K )

,
�$

64↵bc2,K bB⌃,K

�
,

with the requirement on ✏1 uses the fact that all K 2 bK satisfy �min(HK ,L(K)) � ⇣
2 . Also,

bG(K ,L(K)), bc2,K , bc5,K , bc⌃K ,L(K) ,
bB⌃,K , bB1,L(K), bB⌃,L(K) > 0 are uniform constants over bK such

that
bG(K ,L(K)) := max

K2bK
G(K ,L(K)), bB⌃,K := max

K2bK
B⌃,K , bB1,L(K) := min

K2bK
B1,L(K),

bB⌃,L(K) := max
K2bK

B⌃,L(K), bc2,K := max
K2bK

c2,K , bc5,K := max
K2bK

c5,K , bc⌃K ,L(K) := max
K2bK

c⌃K ,L(K) ,
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where B⌃,K is from Lemma B.7, B1,L(K),B⌃,L(K) are from Lemma C.2, c2,K , c5,K are defined in §C.9,
and c⌃K ,L(K) is from Lemma B.8. Then, Lemma B.10 proves that the following inequality holds with

probability at least 1� �2
2K :

���rKG(K ,L(K))�rKG(K ,L(K))
���
F

�$
4↵

. (B.31)

Moreover, we invoke Lemma B.11 to get with probability at least 1� �2
2K that

����⌃K ,L(K) �⌃K ,L(K)

����
F
min

(
�$

4↵bc5,K
,
�
2

)
min

(
�$

4↵c5,K
,
�
2

)
.

By matrix perturbation theory (see for example Theorem 35 of [11]) and noting that ⌃
K ,L(K) =

⌃K ,L(K) + (⌃
K ,L(K) � ⌃K ,L(K)), since ⌃K ,L(K) � ⌃0 and k⌃

K ,L(K) � ⌃K ,L(K)kF 
�
2 , we have with

probability at least 1� �2
2K that

���⌃�1
K ,L(K) �⌃

�1
K ,L(K)

���
F 

2k⌃
K ,L(K) �⌃K ,L(K)kF

�
 $

2↵c5,K
. (B.32)

Lastly, by Lemma B.11 and k⌃
K ,L(K) �⌃K ,L(K)kF 

�
2 , we can ensure that �min(⌃K ,L(K)) �

�
2 and

thus
���⌃�1K ,L(K)

���
F
 2
� , all with probability at least 1� �2

2K . Then, we combine (B.31) and (B.32) to

show that with probability at least 1� �2
K ,

keK 0 �K 0kF = ↵
���rKG(K ,L(K))⌃

�1
K ,L(K) �rKG(K ,L(K))⌃�1

K ,L(K)

���
F

 ↵
���rKG(K ,L(K))�rKG(K ,L(K))

���
F

���⌃�1K ,L(K)

���
F
+↵

���rKG(K ,L(K))
���
F

���⌃�1K ,L(K) �⌃�1K ,L(K)

���
F

 2↵
�
·
���rKG(K ,L(K))�rKG(K ,L(K))

���
F
+↵c5,K ·

���⌃�1K ,L(K) �⌃�1K ,L(K)

���
F
 $,

where the second inequality uses (C.16). Therefore, the above choices of parameters fulfill the
requirements in (B.30), and thus guarantee Kk 2 bK for all k 2 {1, · · · ,K} with probability at least
1� �2. This completes the proof.

B.15 Proof of Theorem 4.3

Proof We provide a complete version of Theorem 4.3 as follows.

Theorem B.12 (Outer-Loop Sample Complexity) For any K0 2K, let ✏2  �/2, �2,✏1,�1,M2, r2,↵
in Algorithm 2 satisfy the requirements in Theorem B.6, but with $ therein replaced by ' :=
min

n
$,↵�✏2/[

p
sc0BP]

o
. Then, it holds with probability at least 1 � �2 that the sequence {Kk},

k 2 {0, · · · ,K}, converges with O(1/K) rate in the sense that K�1
PK�1

k=0 kFKk ,L(Kk )k
2
F  ✏2 with

K = Tr(PK0,L(K0) �PK⇤,L(K⇤))/[↵�✏2], which is also towards the unique Nash equilibrium.

Then, we focus on proving Theorem B.12. First, we require the parameters in Algorithm 2 to
satisfy (B.22). Then, Theorem 4.2 proves with probability at least 1 � �2 that Kk 2 bK, for all
k 2 {1, · · · ,K}. Subsequently, we characterize the convergence rate of the outer-loop ZO-NPG update
(4.3), conditioned on Kk 2 bK, for all k 2 {1, · · · ,K}. Once again, we start from K0 and characterize
the one-step progress of (4.3) from K0 to K1. In addition to the requirement in (B.29), we now
require kK1� eK1kF 

↵�✏2p
sc0BP,eK1

with probability at least 1� �2K , where eK1 is the gain matrix after one

step of (3.17) starting from K0 and with a constant stepsize ↵ satisfying (B.27). Invoking Lemma
B.7 yields with probability at least 1� �2

K that

Tr(PK1,L(K1) �PfK1,L(fK1)
) 
p
skPK1,L(K1) �PeK1,L(fK1)

kF 
p
sB

P,eK1
· kK1 � eK1kF 

↵�✏2
c0

, (B.33)
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where PK1,L(K1) �PfK1,L(fK1)
2 Rs⇥s is symmetric. By (B.17), we have with probability at least 1� �2

K
that

Tr
⇣
(PK1,L(K1) �PK0,L(K0))⌃0

⌘
= Tr

⇣
(PK1,L(K1) �PeK1,L(eK1)

)⌃0
⌘
+Tr

⇣
(PeK1,L(eK1)

�PK0,L(K0))⌃0
⌘


↵�✏2
c0
· c0 � 2↵�Tr(F>

K0,L(K0)
FK0,L(K0))  �↵�Tr(F>

K0,L(K0)
FK0,L(K0)),

where the first inequality is due to k⌃0kF  c0 almost surely and the last inequality follows
from our assumption that Tr(F>

K0,L(K0)
FK0,L(K0)) � ✏2. Similarly, for all future iterations k 2

{2, · · · ,K}, we can require kKk � eKkkF 
↵�✏2p
sc0BP,eKk

with probability at least 1 � �2
K to obtain

Tr
⇣
(PKk ,L(Kk ) �PKk�1,L(Kk�1))⌃0

⌘
 �↵�Tr(F>

Kk�1,L(Kk�1)
FKk�1,L(Kk�1)) until the update converges to

the ✏2-stationary point of the outer-loop, which is also the unique Nash equilibrium. Summing up all
iterations and taking a union bound yield with probability at least 1� �2 the sublinear convergence
rate, in that

1
K

K�1X

k=0

Tr(F>
Kk ,L(Kk )

FKk ,L(Kk )) 
Tr(PK0,L(K0) �PK⇤,L(K⇤))

↵� ·K . (B.34)

That is, when K =Tr(PK0,L(K0) �PK⇤,L(K⇤))/[↵�✏2], it satisfies with probability at least 1 � �2 that
K�1

PK�1
k=0 kFKk ,L(Kk )k

2
F ✏2.

Lastly, the precise choices of the parameters for Algorithm 2 such that the above requirements on the
estimation accuracy can be satisfied follow from the proof of Theorem 4.2 in §B.14, with additionally
✏2  �/2, and $ in (B.30) replaced by

' := min
(
$,

↵�✏2p
sc0BP

)
, (B.35)

where BP = max
K2bK BP,K is a uniform constant. Note that (B.35) is again independent of

the iteration index k, and is more stringent than (B.30). Thus, (B.35) also ensures Kk 2 bK for
all k 2 {1, · · · ,K} with probability at least 1 � �2, as (B.30) does. By Lemmas B.10 and B.11,
requirements on the parameters in (B.22) with $ replaced by ' suffice to guarantee that Kk 2 bK for
all k 2 {1, · · · ,K} with probability at least 1� �2. Also, it ensures with probability at least 1� �2 that
the convergence in (B.34) holds. This completes the proof.

C Supplementary Results

C.1 Proof of Lemma B.1

Proof Firstly, we have Rw
t �D>t PKt+1,L(Kt+1)Dt , Rw

t �D>t PK 0t+1,L(K 0t+1)Dt invertible since the conditions

Rw
t �D>t PKt+1,L(Kt+1)Dt > 0, Rw

t �D>t PK 0t+1,L(K 0t+1)Dt > 0
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are satisfied. Then, by the definition of PK,L in (3.3) and the definition of L(K), we can derive

PK 0t ,L(K 0t ) �PKt,L(Kt ) �A
>
K 0t ,L(K

0
t )
(PK 0t+1,L(K 0t+1) �PKt+1,L(Kt+1))AK 0t ,L(K

0
t )

= A>K 0t ,L(K 0t )
PKt+1,L(Kt+1)AK 0t ,L(K

0
t ) �PKt,L(Kt ) +PK 0t ,L(K 0t ) �A

>
K 0t ,L(K

0
t )
PK 0t+1,L(K

0
t+1)

AK 0t ,L(K
0
t )

= (At �BtK 0t )
>PKt+1,L(Kt+1)(At �BtK 0t )�L(K

0
t )
>D>t PKt+1,L(Kt+1)(At �BtK 0t )� (At �BtK 0t )

>PKt+1,L(Kt+1)DtL(K 0t )

�PKt,L(Kt ) +Qt + (K 0t )
>Ru

t (K
0
t )�L(K

0
t )
>(Rw

t �D
>
t PKt+1,L(Kt+1)Dt )L(K 0t )

= (At �BtK 0t )
>ePKt+1,L(Kt+1)(At �BtK 0t )

� (At �BtK 0t )
>PKt+1,L(Kt+1)Dt(Rw

t �D
>
t PKt+1,L(Kt+1)Dt )�1D

>
t PKt+1,L(Kt+1)(At �BtK 0t )�PKt,L(Kt ) +Qt

+ (K 0t )
>Ru

t (K
0
t )�L(K

0
t )
>D>t PKt+1,L(Kt+1)(At �BtK 0t )� (At �BtK 0t )

>PKt+1,L(Kt+1)DtL(K 0t )

�L(K 0t )
>(Rw

t �D
>
t PKt+1,L(Kt+1)Dt)L(K 0t )

=RKt,K
0
t
� (At �BtK 0t )

>PKt+1,L(Kt+1)Dt(Rw
t �D

>
t PKt+1,L(Kt+1)Dt)�1D

>
t PKt+1,L(Kt+1)(At �BtK 0t )

�L(K 0t )
>D>t PKt+1,L(Kt+1)(At �BtK 0t )� (At �BtK 0t )

>PKt+1,L(Kt+1)DtL(K 0t )

�L(K 0t )
>(Rw

t �D
>
t PKt+1,L(Kt+1)Dt )L(K 0t )

=RKt,K
0
t
�
h
� (Rw

t �D
>
t PKt+1,L(Kt+1)Dt )L(K 0t )�D

>
t PKt+1,L(Kt+1)(At �BtK 0t )

i>
(Rw

t �D
>
t PKt+1,L(Kt+1)Dt)�1

·
h
� (Rw

t �D
>
t PKt+1,L(Kt+1)Dt )L(K 0t )�D

>
t PKt+1,L(Kt+1)(At �BtK 0t )

i

=RKt,K
0
t
�⌅>Kt,K

0
t
(Rw

t �D
>
t PKt+1,L(Kt+1)Dt)�1⌅Kt,K

0
t
.

This completes the proof of (B.11). Further, we invoke (3.3) to represent RKt,K
0
t

as

RKt,K
0
t
= (At �BtK

0
t )
>ePKt+1,L(Kt+1)(At �BtK

0
t )�PKt,L(Kt ) +Qt + (K 0t )

>Ru
t (K

0
t )

= (K 0t �Kt)>
⇣
(Ru

t +B>t ePKt+1,L(Kt+1)Bt)Kt �B>t ePKt+1,L(Kt+1)At

⌘

+ (K 0t �Kt)>(Ru
t +B>t ePKt+1,L(Kt+1)Bt)(K 0t �Kt)

+
⇣
(Ru

t +B>t ePKt+1,L(Kt+1)Bt)Kt �B>t ePKt+1,L(Kt+1)At

⌘>
(K 0t �Kt)

= (K 0t �Kt)>FKt,L(Kt ) +F>Kt,L(Kt )
(K 0t �Kt) + (K 0t �Kt)>(Ru

t +B>t ePKt+1,L(Kt+1)Bt)(K 0t �Kt).

This completes the proof.

C.2 Proof of Lemma B.3

Proof Firstly, for a fixed K 2 K and a given L, we require r1,L  ⇢K ,L to ensure that the “size”
of the perturbation added to the gain matrix L is smaller than the radius within which the local
Lipschitz continuity and the local smoothness properties in Lemma 3.4 hold. In other words, we have
kr1,LUkF  ⇢K ,L, where U is drawn uniformly from S(n,m,N ) and has kUkF = 1. Then, we invoke
Lemma 23 of [19] to obtain that with probability at least 1��1, the concentration of gradient estimates

around its mean is
���rLG(K ,L)�rLGr1,L (K ,L)

���
F
 d1

r1,L
p
M1,L

✓
G(K ,L) + lK ,L

⇢K ,L

◆r
log

✓
2d1
�1

◆
, where

rLG(K ,L) is the gradient estimate obtained from an M1,L-sample one-point minibatch estimator,
rLGr1,L (K ,L) := rLE[G(K ,L + r1,LU)] is the gradient of the smoothed version of G(K ,L), and
d1 = nmN is the degrees of freedom of S(n,m,N ). Therefore, it suffices to require the batchsize

M1,L > 0 to satisfy M1,L �
 
d1
r1,L

✓
G(K ,L) + lK ,L

⇢K ,L

◆r
log

✓
2d1
�1

◆!2
1024
µK✏1

in order to ensure that with

probability at least 1� �1 that

���rLG(K ,L)�rLGr1,L (K ,L)
���
F

p
µK✏1
32

. (C.1)
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Then, we can bound, with probability at least 1� �1, the “size” of the one-step ZO-PG update (4.1)
by

kL0 �LkF = k⌘LrLG(K ,L)kF
 ⌘LkrLG(K ,L)�rLGr1,L (K ,L)kF + ⌘LkrLGr1,L (K ,L)�rLG(K ,L)kF + ⌘LkrLG(K ,L)kF

 ⌘L
 p

µK✏1
32

+ K ,L
p
✏1 + lK ,L

!
 ⌘L

 p
µK
32

+ K ,L + lK ,L

!
,

where the second to last inequality follows from (C.1), Lemma 14(b) of [19], Lemma 3.4, and
r1,L ⇠⇥(

p
✏1). The last inequality follows from our requirement that ✏1 < 1. Therefore, it suffices

to require ⌘L  ⇢K ,L ·
⇣pµK

32 + K ,L + lK ,L

⌘�1
to ensure that L0 lies within the radius that the local

Lipschitz continuity and the local smoothness properties hold with probability at least 1� �1. Now,
we exploit the local smoothness property to derive that

G(K ,L)�G(K ,L0)  �⌘LhrLG(K ,L),rLG(K ,L)i+
 K ,L⌘

2
L

2
krLG(K ,L)k2F

= �⌘LhrLG(K ,L),rLG(K ,L)�rLGr1,L (K ,L)i � ⌘LhrLG(K ,L),rLGr1,L (K ,L)i+
 K ,L⌘

2
L

2
krLG(K ,L)k2F

 ⌘LkrLG(K ,L)kFkrLG(K ,L)�rLGr1,L (K ,L)kF � ⌘LkrLG(K ,L)k2F

+ ⌘L K ,Lr1,LkrLG(K ,L)kF +
 K ,L⌘

2
L

2
krLG(K ,L)k2F

 �
⌘L
2
krLG(K ,L)k2F +

⌘L
2
krLG(K ,L)�rLGr1,L (K ,L)k2F

+ ⌘L K ,Lr1,LkrLG(K ,L)kF +
 K ,L⌘

2
L

2
krLG(K ,L)k2F . (C.2)

Moreover, we can bound the last term of (C.2) as

 K ,L⌘
2
L

2
krLG(K ,L)k2F   K ,L⌘

2
L
krLG(K ,L)�rLGr1,L (K ,L)k2F +2 K ,L⌘

2
L
( 2

K ,Lr
2
1 + krLG(K ,L)k2F ).

(C.3)

Substituting (C.3) into (C.2) yields that the following inequality holds almost surely:

G(K ,L)�G(K ,L0) 
✓
�
⌘L
2

+2 K ,L⌘
2
L

◆
krLG(K ,L)k2F +

✓⌘L
2

+ K ,L⌘
2
L

◆
krLG(K ,L)�rLGr1,L (K ,L)k2F

+ ⌘L K ,Lr1,LkrLG(K ,L)kF +2 3
K ,L⌘

2
L
r21,L.

Next, recalling the definition that ✓K ,L =min
n

1
2 K ,L

, ⇢K ,L
lK ,L

o
, we invoke the local smoothness property

to obtain
0
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K ,L K ,L

2

1
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⌘
�G(K ,L)  G(K ,L(K))�G(K ,L).

Define � := G(K ,L(K))�G(K ,L) and �0 := G(K ,L(K))�G(K ,L0), then it holds almost surely that
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where the last two inequalities utilize ⌘L  1
8 K ,L

and the µK -PL condition in Lemma 3.4. Thus, if
the stepsize ⌘L of the one-step ZO-PG update (4.1) and the smoothing radius r1,L for the minibatch
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estimator further satisfy
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then with probability at least 1� �1, we can bound the one-step ascent as
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(C.4)

where the last inequality follows from (C.1). Lastly, by (C.4), we have G(K ,L)�G(K ,L0) = �0 �� 
�⌘LµK8 � + ⌘L

µK✏1
16 . Therefore, it holds that G(K ,L) � G(K ,L0)  0 with probability at least 1 � �1

since by the implicit assumption that ✏1  �. This completes the proof.

C.3 Proof of Lemma B.5

Proof We first introduce the following lemma and defer its proof to the end of this subsection.

Lemma C.1 (⌃K ,L Estimation) For any K 2 K and any L 2 S(n,m,N ), let the batchsize M1 in
Algorithm 1 satisfy
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F
 ✏1, where ⌃K ,L is the estimated state correlation

matrix obtained from Algorithm 1. Moreover, if ✏1  �/2, then it satisfies with probability at least
1� �1 that �min(⌃K ,L) � �/2.

Similar to the proof of Lemma B.3, we first require r1,L  ⇢K ,L to ensure that perturbing L pre-
serves the local Lipschitz and smoothness properties. Then, Lemma 23 of [19] suggests that if
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Moreover, by Lemma C.1 and if we require M1,L � 2{2/�2 · log(4d⌃/�1), then it holds with
probability at least 1� �1

2 that
���⌃K ,L �⌃K ,L

���
F
 �

2 . By the standard matrix perturbation theory (see
for example Theorem 35 of [11]), we have
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Furthermore, by Lemma C.1 and the condition that k⌃K ,L � ⌃K ,Lk 
�
2 , we can ensure that
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�
2 and thus
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� . Combining (C.5) and (C.6) yields that with probability

at least 1� �1, the “size” of the one-step inner-loop ZO-NPG update (4.2) can be bounded by
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where the last inequality follows from (C.5), Lemma 14 of [19], ✏1 < 1 and r1,L ⇠⇥(
p
✏1). Therefore,

it suffices to require ⌘L  ⇢K ,L ·
h pµK
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to ensure that L0 lies within the
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radius that the Lipschitz and smoothness properties hold. Now, we exploit the smoothness property
to derive that
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where the second to last inequality utilizes Lemma 14 of [19] and
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Further, recalling the definition that ✓K ,L = min
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that the following inequality holds almost surely:
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where the second to last inequality uses ⌘L  �2/[32 K ,L{] and the PL condition. The last inequality
uses 2ab  a2 + b2. Thus, if the stepsize ⌘L of the one-step ZO-NPG update (4.2) and the smoothing
radius r1,L for the minibatch estimator satisfy
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then with probability at least 1� �1, we can bound the one-step ascent as
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where the last inequality uses (C.5). By (C.9), we have G(K ,L)�G(K ,L0) = �0��  �⌘LµK8{ �+ ⌘LµK✏116{ .
Therefore, it holds that G(K ,L)�G(K ,L0)  0 with probability at least 1� �1 because ✏1  �.

Lastly, we prove Lemma C.1. Due to the modification to sample state trajectories using unperturbed
gain matrix, we avoid the bias induced by the perturbation on the gain matrix compared to the
results presented in [11]. As a result, the only bias between the estimated correlation matrix and
the exact one, denoted as k⌃K ,L �⌃K ,LkF , where ⌃K ,L(K) = 1

M1

PM1�1
i=0 diag

⇣
xi0(x

i
0)
>, · · · ,xiN (xiN )>

⌘

and ⌃K ,L = E⇠

h
⌃K ,L

i
, is induced by ⇠. Since
���diag

⇣
xi0(x

i
0)
>,⇠ i0(⇠

i
0)
>, · · · ,⇠ iN�1(⇠

i
N�1)

>
⌘���

F
 c0

holds almost surely, and

diag
⇣
xi0(x

i
0)
>, · · · ,xiN (xiN )>

⌘
=

N�1X

t=0

(AK ,L)t · diag
⇣
xi0(x

i
0)
>,⇠ i0(⇠

i
0)
>, · · · ,⇠ iN�1(⇠

i
N�1)

>
⌘
· (A>

K ,L)
t ,
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that is a polynomial of kAkF , kBkF , kDkF , kKkF , kLkF , and is linear in c0

such that
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almost surely. Then, we apply Hoeffding’s

inequality to get with probability at least 1� 2�1 that
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F
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Therefore, it suffices to choose M1 � 1
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2
⌃K ,L

✏�21 log(2d⌃/�1) to ensure that
���⌃K ,L �⌃K ,L

���
F
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with probability at least 1 � �1. Lastly, by Weyl’s theorem, we can bound �min(⌃K ,L) � �/2 by
requiring ✏1  �/2. This completes the proof.

C.4 Proof of Lemma B.7

Proof We note that (B.23) follows from Proposition B.1 of [15], but with the inner- and outer-loop
players being interchanged. That is, our B,D,K ,L,Ru,Rw correspond to C,B,L,K,Rv,Ru in [15].
Following (B.31) and (B.32) of [15], we can prove (B.23). We note that the constants in Proposition
B.1 of [15] are uniform over the compact set ⌦ therein. However, it is hard to construct such a
compact set in our setting without posing additional constraints. Therefore, B1,K and BP,K are only
continuous functions of K rather than being absolute constants, due to the quotient of two continuous
functions being a continuous function provided that the denominator is not zero. Equations (B.24)
and (B.25) follow from Lemmas C.2 and B.8, respectively, in the supplementary material of [15],
with the same notational correspondences introduced above. Similarly, we do not have uniform
constants but instead BL(K),K ,B⌃,K are continuous functions of K . This completes the proof.

C.5 Proof of Lemma B.8

Proof By the definition that rKG(K ,L(K)) = 2FK ,L(K)⌃K ,L(K), we have
���rKG(K 0 ,L(K 0))�rKG(K ,L(K))
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F  2
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F .

49



From Lemma C.4 and let K ,K 0 2K be sufficiently close to each other such that kK 0 �KkF  B1,K ,
we have kFK 0 ,L(K 0) � FK ,L(K)kF  c5,K · kK 0 �KkF , where c5,K is defined in §C.9. Next, the term
k⌃K 0 ,L(K 0)kF can be separated into k⌃K 0 ,L(K 0)kF  k⌃K ,L(K)kF + k⌃K 0 ,L(K 0) �⌃K ,L(K)kF . To bound
k⌃K ,L(K)kF , we note that because kx0k,k⇠tk  # almost surely for all t, there exists a finite c⌃K ,L(K)

that is a polynomial of kAkF , kBkF , kDkF , kKkF , and c0 such that k⌃K ,L(K)kF  c⌃K ,L(K) almost surely.
By Lemma B.7 and the condition that kK 0 �KkF  B1,K , we have k⌃K 0 ,L(K 0)kF  c⌃K ,L(K) +B⌃,K ,
which leads to

2kFK 0 ,L(K 0) �FK ,L(K)kFk⌃K 0 ,L(K 0)kF  2c5,K (c⌃K ,L(K) +B⌃,K ) · kK
0 �KkF.

Therefore, if we require kK 0 � KkF  ✏2/[4c5,K (c⌃K ,L(K) + B⌃,K )], then 2
���FK 0 ,L(K 0) �
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���
F

���⌃K 0 ,L(K 0)
���
F
 ✏2

2 holds almost surely. Subsequently, we combine (C.15) with (B.25)
to get

2kFK ,L(K)kFk⌃K 0 ,L(K 0) �⌃K ,L(K)kF  2c2,KB⌃,K · kK 0 �KkF.

By requiring kK 0 �KkF  ✏2
4c2,KB⌃,K , it holds almost surely that 2

���FK ,L(K)
���
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���⌃K 0 ,L(K 0)�⌃K ,L(K)
���
F


✏2
2 . Therefore, we can almost surely bound krKG(K 0 ,L(K 0))�rKG(K ,L(K))kF  ✏2 by enforcing

the above requirements on kK 0 �KkF . This completes the proof.

C.6 Proof of Lemma B.9

Proof For any K 2K, we can define the following set:

K :=
⇢
K | (3.8) admits a solution PK ,L(K) � 0, and PK ,L(K)  PK ,L(K)

�
. (C.10)

Clearly, it holds that K 2 K. Then, we first prove that K is bounded. Recall that PK ,L(K) � 0 is the
solution to (3.8), such that

PK ,L(K) =Q +K
>
R
u
K + (A�BK)>

⇣
PK ,L(K) +PK ,L(K)D(Rw �D>PK ,L(K)D)�1D>PK ,L(K)

⌘
(A�BK).

(C.11)
Since K 2 K, any K 2 K also satisfies K 2 K, due to that PK ,L(K)  PK ,L(K) implies R

w �
D
>
PK ,L(K)D > 0. As a result, the second term on the RHS of (C.11) is p.s.d. and we can obtain

Q+K>Ru
K  PK ,L(K), where Q � 0 and R

u > 0. Then, from the definition ofK and PK ,L(K),PK ,L(K)
are symmetric and p.s.d., we have kPK ,L(K)kF  kPK ,L(K)kF . These arguments together imply that for

any K 2K, kKkF 
q
kPK ,L(K)kF/�min(Ru), proving the boundedness of K.

Next, we take an arbitrary sequence {Kn} 2 K and note that kKnkF is bounded for all n. Applying
Bolzano-Weierstrass theorem implies that the set of limit points of {Kn}, denoted asKlim, is nonempty.
Then, for any Klim 2Klim, we can find a subsequence {K⌧n } 2K that converges to Klim. We denote
the corresponding sequence of solutions to (C.11) as {PK⌧n ,L(K⌧n )}, where 0  PK⌧n ,L(K⌧n )

 PK ,L(K)
for all n. By Bolzano-Weierstrass theorem, the boundedness of {PK⌧n ,L(K⌧n )}, and the continuity
of (C.11) with respect to K , we have the set of limit points of {PK⌧n ,L(K⌧n )}, denoted as P lim, is
nonempty. Then, for any Plim 2 P lim, we can again find a subsequence {PK⌧n ,L(K⌧n )} that converges
to Plim. Since PK⌧n

,L(K⌧n )
is a p.s.d. solution to (C.11) satisfying 0  PK⌧n

,L(K⌧n )
 PK ,L(K) for all

n and (C.11) is continuous in K , Plim must solve (C.11) and satisfy 0  Plim  PK ,L(K), which implies
Klim 2K. Note that the above arguments work for any sequence {Kn} 2K and any limit points Klim
and Plim, which proves the closedness of K. Together with the boundedness, K is thus compact.

Finally, let us denote the closure of the complement of K as Kc. By K 2 K ⇢ K and (C.10), any
K 2 K satisfies: i) PK ,L(K) � 0 exists; ii) Rw �D>PK ,L(K)D � R

w �D>PK ,L(K)D > 0. This implies
that K is disjoint with Kc, i.e., K\Kc = ?. Then, there exists a distance B2,K > 0 between K and Kc

such that for a given K 2K, all K 0 satisfying kK 0 �Kk  B2,K also satisfy K
0 2K (see for example

Lemma A.1 of [75]). This completes the proof.
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C.7 Proof of Lemma B.10

Proof To simplify the notations, we first define

ř := rKG(K ,L(K)) =
1
M2

M2�1X

j=0

d2
r2

 NX

t=0

c
j
t

�
V

j , r := rKG(K ,L(K)), br := E⇠[r],

er := rKGr2(K ,L(K)), r := rKG(K ,L(K)),

where L(K) is the approximate inner-loop solution obtained from Algorithm 1. Our goal is to quantify
kř�rkF , which can be separated into four terms kř�rkF  kř�rkF+kr�brkF+kbr�erkF+ker�rkF .

According to Theorem 4.1, G(K + r2V ,L(K + r2V )) � G(K + r2V ,L(K + r2V )) � ✏1 holds with
probability at least 1��1. Applying union bound and triangle inequality yield that kř�rkF  d2✏1/r2
holds with probability at least 1�M2�1. Therefore, we can bound kř�rkF by ✏2/4 with probability
at least 1� �2/3 by requiring ✏1  ✏2r2/[4d2], and �1  �2/[3M2].

Subsequently, we consider the bias induced by ⇠. By definition in (3.2), we have
PN

t=0 c
j
t

driven by (K ,L(K)) and x0,⇠t ⇠ D for all t can also be represented as Tr
h
PK ,L(K) ·

diag(x0x
>
0 ,⇠0⇠

>
0 , · · · ,⇠N�1⇠

>
N�1)

i
, where

���diag(x0x>0 ,⇠0⇠
>
0 , · · · ,⇠N�1⇠

>
N�1)

���
F

 c0 almost surely. Then, we apply Hoeffding’s inequality and (C.13) to get with probability at least
1 � 2�2 that kr �brkF  d2c0G(K ,L(K))/[r2�] ·

p
log(d2/�2)/[2M2]. Then, it suffices to choose

M2 � 8d22c
2
0G(K ,L(K))2/[r22�

2✏22] · log(6d2/�2) to ensure that kr�brkF  ✏2/4 with probability at
least 1� �2/3.

For the third term, we can apply standard results in zeroth-order optimization [77], which leads to er =
d2/r2 ·EV

h
G(K+r2V ,L(K+r2V ))V

i
. Then, we invoke Lemma B.7 and Hoeffding’s inequality to get

with probability at least 1�2�2 that kbr�erkF  d2/r2 · (G(K ,L(K))+ r2BP,Kc0) ·
p
2log(d2/�2)/M2,

where we require r2  B1,K . Thus, it suffices to choose M2 � 32d22(G(K ,L(K))+r2BP,Kc0)2/[r22✏
2
2]·

log(6d2/�2) to ensure that kbr�erkF  ✏2/4 with probability at least 1� �2/3.

Lastly, by Lemma B.8, we can bound the last term ker�rkF almost surely by ✏2/4 if requiring

r2 = kK 0 �KkF min
⇢
B1,K ,B2,K ,

✏2
16c5,K (c⌃K ,L(K) +B⌃,K )

,
✏2

16c2,KB⌃,K

�

where B1,K ,B⌃,K are defined in Lemma B.7, c⌃K ,L(K) is defined in §C.5, and r2  B2,K ensures the
perturbed gain matrices K + r2V j , for all j , lie within K, as proved in Lemma B.9. Thus, we have
kř �rkF  ✏2 with probability at least 1� �2, which completes the proof.

C.8 Proof of Lemma B.11

Proof We first introduce a lemma similar to Lemma 16 of [11] and defer its proof to the end of this
subsection.

Lemma C.2 (⌃K ,L Perturbation) For a fixed K 2 K, there exist some continuous functions
B1,L,B⌃,L > 0 such that if kL0 �LkF  B1,L, then it holds that k⌃K ,L0 �⌃K ,LkF  B⌃,L · kL0 �LkF .

The estimation bias, k⌃
K ,L(K) �⌃K ,L(K)kF , can be separated into two terms, such that

k⌃
K ,L(K) �⌃K ,L(K)kF  k⌃K ,L(K) �⌃K ,L(K)kF + k⌃K ,L(K) �⌃K ,L(K)kF, (C.12)

where ⌃
K ,L(K) =

1
M2

PM2�1
j=0 diag

⇣
x
j
0(x

j
0)
>, · · · ,xjN (xjN )>

⌘
, ⌃

K ,L(K) = E⇠

h
⌃
K ,L(K)

i
, and {xt} is the

sequence of noisy states driven by the independently sampled noises x0,⇠t ⇠ D, for all t, and the
pair of control gain matrix (K ,L(K)), where L(K) is the approximate inner-loop solution. Recall that
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���diag
⇣
x
j
0(x

j
0)
>,⇠

j
0(⇠

j
0)
>, · · · ,⇠ jN�1(⇠

j
N�1)

>
⌘���

F
 c0 almost surely and

diag
⇣
x
j
0(x

j
0)
>, · · · ,xjN (xjN )>

⌘
=

N�1X

t=0
(A

K ,L(K))
t · diag

⇣
x
j
0(x

j
0)
>,⇠

j
0(⇠

j
0)
>, · · · ,⇠jN�1(⇠

j
N�1)

>⌘ · (A>
K ,L(K)

)t ,

then there exists a c⌃K ,L(K) that is a polynomial of kAkF , kBkF , kDkF , kKkF , and is linear in c0 such that
���diag

⇣
x
j
0(x

j
0)
>, · · · ,xjN (xjN )>

⌘���
F
 c⌃K ,L(K) almost surely. Then, we apply Hoeffding’s inequality

to get with probability at least 1 � 2�2 that
����⌃K ,L(K) � ⌃K ,L(K)

����
F


q
c2⌃K ,L(K)

log(d⌃/�2)/[2M2].

Therefore, it suffices to choose M2 � 2c2⌃K ,L(K)
✏�22 log

⇣4d⌃
�2

⌘
to ensure that k⌃

K ,L(K) �⌃K ,L(K)kF 
✏2/2 with probability at least 1� �2/2.

For the second term on the RHS of (C.12), we have by Theorems 4.1 or B.4, depending on whether
the inner-loop oracle is implemented with the ZO-PG (4.1) or the ZO-NPG (4.2) updates, that with
probability at least 1� �1: kL(K)�L(K)k2F  �

�1
min(HK ,L(K)) · ✏1. Then, we apply Lemma C.2 to get

when kL(K)�L(K)kF  B1,L(K), it holds that k⌃
K ,L(K) �⌃K ,L(K)kF  B⌃,L(K)kL(K)�L(K)kF with

probability at least 1� �1. Thus, if

✏1 min
⇢
B21,L(K)�min(HK ,L(K)),

✏22�min(HK ,L(K))

4B2⌃,L(K)

�
, �1 

�2
2
,

then we can bound k⌃
K ,L(K) �⌃K ,L(K)kF  ✏2/2 with probability at least 1� �2/2. Combining two

terms together, we can conclude that k⌃
K ,L(K) � ⌃K ,L(K)kF  ✏2 with probability at least 1 � �2.

Then, by the Weyl’s Theorem, we can bound �min(⌃K ,L(K)) � �/2 if ✏2  �/2. Lastly, we prove
Lemma C.2, which mostly follows from Lemma 16 of [11], with our A �BK ,D,Q +K

>
R
u
K ,L

matrices being replaced by the A,B,Q,K therein, respectively, except that the upper bound for
k⌃Kk therein does not hold in our setting since we only require Q � 0 and thus Q +K

>
R
u
K may

not be full-rank. Instead, we utilize that the value of the objective function following (4.1) or (4.2)
is monotonically non-decreasing, as shown in Theorems 4.1 and B.4. Moreover, the superlevel
set LK (G(K ,L0)) following the definition in (3.12) is compact. Thus, there exists a constant
c⌃G(K ,L0)

:= maxL2LK (G(K ,L0)) k⌃K ,Lk depending on K such that for a fixed K 2K, k⌃K ,LkF  c⌃G(K ,L0)

holds for all iterates of L following (4.1) or (4.2) until convergence of the inner loop. This implies
that for a fixed K 2K, if kL0 �LkF  B1,L := �/[4c⌃G(K ,L0)

kDkF(kA�BK �DLkF +1)], then it holds
that k⌃K ,L0 � ⌃K ,LkF  B⌃,L · kL0 � LkF , where B⌃,L := 4c2⌃G(K ,L0)

kDkF(kA � BK �DLkF + 1)/�.
This completes the proof.

C.9 Auxiliary Bounds

Define the following polynomials of G(K ,L(K)):

c1,K :=
G(K ,L(K))

�
+
kDk2FG(K ,L(K))2

�2 ·�min(HK ,L(K))
, c2,K :=

s
kGK ,L(K)k

�
·
⇣
G(K ,L(K))�G(K⇤,L⇤)

⌘
,

c3,K :=
c2,K + kBkFkAkFc1,K

�min(Ru )
, c4,K :=

kDkFG(K ,L(K))
� ·�min(HK ,L(K))

⇣
kAkF + kBkFc3,K

⌘
,

c5,K := 2

kRukF + kBk2FG(K ,L(K)) + kBkFkDkFG(K ,L(K))BL(K),K

+BP,KkBkF
✓
kBkF

⇣
c3,K +B1,K

⌘
+ kAkF + kDkF (c4,K +BL(K),K )

◆�
,

where B1,K , BP,K , and BL(K),K follow from Lemma B.7. Then, we present the following lemmas.

Lemma C.3 For K ,K 0 2K, the following inequalities hold
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kPK ,L(K)kF  G(K ,L(K))/�, (C.13)

kePK ,L(K)kF  c1,K , (C.14)
kFK ,L(K)kF  c2,K , (C.15)

krKG(K ,L(K))kF  2k⌃K ,L(K)kc2,K , (C.16)
kKkF  c3,K , (C.17)
kL(K)kF  c4,K . (C.18)

Proof To start with, we note that for any K 2K, the solution to the Riccati equation (3.8) satisfies
PK ,L(K) � 0. Thus, (C.13) can be proved by G(K ,L(K)) = Tr(PK ,L(K)⌃0) � �kPK ,L(K)kF , where the
inequality follows from � = �min(⌃0) > 0 and Tr(M) � kMkF for any matrix M � 0. Then, for any
K 2K, we have by (C.13) and the definition of ePK ,L(K) in (3.7) that

���ePK ,L(K)
���
F 

���PK ,L(K)
���
F +

���PK ,L(K)DH
�1
K ,L(K)D

>
PK ,L(K)

���
F 
G(K ,L(K))

�
+
kDk2FG(K ,L(K))2

�2 ·�min(HK ,L(K))
= c1,K .

This completes the proof of (C.14). Subsequently, for any K ,K 0 2K, we invoke Lemma 11 of [11]
to get

G(K ,L(K))�G(K⇤,L⇤) � G(K ,L(K))�G(K 0 ,L(K 0)) �
�

kGK ,L(K)k
Tr(F>

K ,L(K)FK ,L(K)).

As a result, we have kFK ,L(K)k2F = Tr(F>
K ,L(K)FK ,L(K)) 

kGK ,L(K)k
�

⇣
G(K ,L(K))�G(K⇤,L⇤)

⌘
, and taking

a square root of both sides yields (C.15). Moreover, we can prove (C.16) such that

krKG(K ,L(K))k2F  4k⌃K ,L(K)k2Tr(F>
K ,L(K)FK ,L(K)) 

4k⌃K ,L(K)k2kGK ,L(K)k
�

⇣
G(K ,L(K))�G(K⇤,L(K⇤))

⌘
.

Next, we invoke Lemma 25 of [11] and (C.14) to get

kKkF 
c2,K

�min(Ru)
+

���B>ePK ,L(K)A
���
F

�min(Ru)


c2,K + kBkFkAkFc1,K
�min(Ru)

= c3,K ,

which proves (C.17). Lastly, for any K 2K and recall the definition of L(K) from (3.10)

kL(K)kF = kH�1
K ,L(K)D

>
PK ,L(K)(A�BK)kF 

kDkFG(K ,L(K))
� ·�min(HK ,L(K))

⇣
kAkF + kBkFc3,K

⌘
= c4,K ,

which proves (C.18).

Lemma C.4 For K ,K 0 2K satisfying kK 0 �KkF  B1,K , where B1,K is as defined in Lemma B.7, it
holds that

kFK 0 ,L(K 0) �FK ,L(K)kF  c5,K · kK 0 �KkF. (C.19)

Proof For K ,K 0 2K and recalling the definition of FK ,L in (3.6), we have

kFK 0 ,L(K 0) �FK ,L(K)kF
= 2

���(Ru +B
>
PK 0 ,L(K 0)B)K

0 �B>PK 0 ,L(K 0)(A�DL(K 0))� (Ru +B
>
PK ,L(K)B)K �B>PK ,L(K)(A�DL(K))

���
F

 2kRukFkK 0 �KkF +2kBk2FkK
0kFkPK 0 ,L(K 0) �PK ,L(K)kF +2kBk2FkPK ,L(K)kFkK 0 �KkF

+2kBkFkAkFkPK 0 ,L(K 0) �PK ,L(K)kF +2kBkFkDkFkL(K 0)kFkPK 0 ,L(K 0) �PK ,L(K)kF
+2kBkFkPK ,L(K)kFkDkFkL(K 0)�L(K)kF

= 2
⇣
kRukF + kBk2FkPK ,L(K)kF

⌘
· kK 0 �KkF +2

⇣
kBkFkPK ,L(K)kFkDkF

⌘
· kL(K 0)�L(K)kF

+2
✓
kBk2F

⇣
kKkF + kK 0 �KkF

⌘
+ kBkFkAkF + kBkFkDkF

⇣
kL(K)kF + kL(K 0)�L(K)kF

⌘◆
· kPK 0 ,L(K 0) �PK ,L(K)kF .
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Applying (C.13), (C.17), (C.18), (B.23), and (B.24) proves (C.19), such that

kFK 0 ,L(K 0) �FK ,L(K)kF
 2

⇣
kRukF + kBk2FG(K ,L(K))

⌘
· kK 0 �KkF +2

⇣
kBkFkDkFG(K ,L(K))

⌘
· kL(K 0)�L(K)kF

+2
✓
kBk2F

⇣
c3,K +B1,K

⌘
+ kBkFkAkF + kBkFkDkF(c4,K +BL(K),K )

◆
· kPK 0 ,L(K 0) �PK ,L(K)kF

 2

kRukF + kBk2FG(K ,L(K)) + kBkFkDkFG(K ,L(K))BL(K),K

+BP,KkBkF
✓
kBkF

⇣
c3,K +B1,K

⌘
+ kAkF + kDkF(c4,K +BL(K),K )

◆�
· kK 0 �KkF.

This completes the proof.

D Simulation Results

In this section, we provide simulation results to complement our theories. In particular, we present
convergence (divergence) results in the following four scenarios where we apply PG updates in
Algorithms 1 and 2 to solve a finite-horizon zero-sum LQ dynamic game with time-invariant system
parameters: (i) double-loop update scheme with both the inner- and outer-loop solved exactly; (ii)
double-loop scheme with the inner-loop solved in the derivative-free scheme by sampling system
trajectories while the outer-loop solved exactly; (iii) double-loop scheme with the inner-loop solved
exactly while the outer-loop solved in the derivative-free scheme by sampling system trajectories;
(iv) descent-multi-step-ascent/AGDA/⌧-GDA with exact gradient accesses diverge. Subsequently,
we extend our numerical experiments to a setting with time-varying system parameters in §D.5, and
demonstrate the convergence results of double-loop PG updates.
Simulation Setup. All the experiments are executed on a desktop computer equipped with a 3.7
GHz Hexa-Core Intel Core i7-8700K processor with Matlab R2019b. The device also has two 8GB
3000MHz DDR4 memories and a NVIDIA GeForce GTX 1080 8GB GDDR5X graphic card. In
all settings except the one used in §D.5, we set the horizon of the problem to N = 5 and test a
linear time-invariant system with the set of system matrices being At = A, Bt = B, Dt =D, Qt =Q,
Ru
t = Ru , and Rw

t = Rw, where Rw = 5 · I and

A =

2
66666664

1 0 �5
�1 1 0
0 0 1

3
77777775
, B =

2
66666664

1 �10 0
0 3 1
�1 0 2

3
77777775
, D =

2
66666664

0.5 0 0
0 0.2 0
0 0 0.2

3
77777775
,

Q =

2
66666664

2 �1 0
�1 2 �1
0 �1 2

3
77777775
, Ru =

2
666666664

4 �1 0
�1 4 �2
0 �2 3

3
777777775
. (D.1)

D.1 Exact Double-Loop Updates

We set ⌃0 = I . Then, we present the convergence result following two different initializations, denoted
as K1

0 and K
2
0 , where K2

0 is closer to the boundary ofK. Specifically, K i
0 =

h
diag((Ki

0)
5) 015⇥3

i
, for

i 2 {1,2}, where K1
0 =

2
666666664

�0.12 �0.01 0.62
�0.21 0.14 0.15
�0.06 0.05 0.42

3
777777775

and K2
0 =

2
666666664

�0.14 �0.04 0.62
�0.21 0.14 0.15
�0.06 0.05 0.42

3
777777775
. Then, we can verify

that �min(HK
1
0 ,L(K

1
0 )
) = 0.5041 and �min(HK

2
0 ,L(K

2
0 )
) = 0.0199. Moreover, we initialize L = 0 in

both cases.

Case 1: We demonstrate in Figure 4 the convergence of three update combinations, namely PG-
NPG, NPG-NPG, and GN-GN, for the inner and outer loop, respectively. The stepsizes are chosen
to be (⌘,↵) = (1 ⇥ 10�4,3 ⇥ 10�6) for PG-NPG, (⌘,↵) = (0.0635,3 ⇥ 10�6) for NPG-NPG, and
(⌘,↵) = (0.5,5⇥ 10�4) for GN-GN. Also, we require the approximate inner-loop solution to have
the accuracy of ✏1 = 0.001. As shown in the top of Figure 4, the double-loop algorithm with all
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Figure 4: Three exact double-loop PG updates with initial gain matrix being K
1
0 . Top: Con-

vergence of G(K ,L) and �min(HK ,L). Bottom: Convergence of {l�1
Pl�1
◆=0 krL(K ,L◆)kF }l�1and

{k�1
Pk�1
=0 krKG(K ,L(K))kF }k�1. L(K) is the approximate inner-loop solution with ✏1 = 10�3.

Figure 5: Two exact double-loop PG updates with initial gain matrix being K
2
0 . Left: Con-

vergence of of G(K ,L) and �min(HK ,L(K)). Right: Convergence of {l�1
Pl�1
◆=0 krL(K ,L◆)kF }l�1and

{k�1
Pk�1
=0 krKG(K ,L(K))kF }k�1. L(K) is the approximate inner-loop solution with ✏1 = 10�3.

three update combinations successfully converges to the unique Nash equilibrium of the game. Also,
the sequence {�min(HKk ,L(Kk ))}k�0 is monotonically non-decreasing, which matches the implicit
regularization property we introduced in Theorem 3.7 for the outer-loop NPG and GN updates. As
K

1
0 2K, we can guarantee that all future iterates will stay inside K. The convergences of the average

gradient norms with respect to both L and K are also presented in the bottom of Figure 4.

Case 2: When the initial gain matrix K
2
0 is closer to the boundary of K, one non-judicious update

could easily drive the gain matrix outside of K. In this case, we present two combinations of updates,
namely NPG-NPG and GN-GN, for the inner and outer loop, respectively. We use the stepsizes
(⌘,↵) = (0.0635,2.48⇥ 10�7) for NPG-NPG and (⌘,↵) = (0.5,2.5⇥ 10�4) for GN-GN. Similarly,
we set ✏1 = 0.001. The convergence patterns presented in Figure 5 are similar to those of Case 1.

D.2 Derivative-Free Inner-Loop Oracles

We provide two sets of experiments to validate Theorems 4.1 and B.4. We consider the same example
as the one in §D.1, but using derivative-free updates (4.1)-(4.2) by sampling system trajectories
to approximately solve the inner-loop subproblem, as proposed in §4.1. Note that the inner-loop
subproblem is essentially an indefinite LQR, as introduced in §3. The outer-loop problem is solved
using the exact NPG update (3.17). Note that according to Theorem 4.3, one can also use the
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Figure 6: Convergence of G(K ,L) and �min(HK ,L(K)) with the initial gain matrix being K
3
0 . Left:

The inner loop follows the ZO-PG update (4.1) and the outer loop follows the exact NPG update
(3.17). Right: The inner loop follows the ZO-NPG update (4.2) and the outer loop follows the exact
NPG update (3.17).

Figure 7: Convergence of G(K ,L) and �min(HK ,L) when the outer loop follows the ZO-NPG update
(4.3). Left: The inner-loop solutions are computed by (3.10). Right: The inner-loop solutions are
approximated by the exact NPG update (3.14) with an accuracy level of ✏1 = 10�4.

outer-loop ZO-NPG (4.3) together with the inner-loop derivative-free updates to achieve the same
convergence pattern. However, we use an exact outer-loop update, as it suffices to illustrate our
idea here and also has better computational efficiency. In contrast to the example in §D.1, we set

⌃0 = 0.1 · I and initialize K
3
0 =

h
diag((K3

0 )
5) 015⇥3

i
with K3

0 =

2
666666664

�0.04 �0.01 0.61
�0.21 0.15 0.15
�0.06 0.05 0.42

3
777777775
, where one

can verify that �min(HK
3
0 ,L(K

3
0 )
) = 1.8673 > 0. That is, K3

0 2K.

Inner-Loop ZO-PG: When we use the inner-loop ZO-PG update (4.1) in Algorithm 1, we choose
M1 = 106 and r1 = 1. Moreover, we set the stepsizes of the inner-loop ZO-PG and the outer-loop
exact NPG to be (⌘,↵) = (8⇥ 10�3,4.5756⇥ 10�4), respectively. The desired accuracy level of the
double-loop algorithm is picked to be (✏1,✏2) = (0.8,0.5). As shown in the left of Figure 6, the
inner-loop ZO-PG (4.2) successfully converges for every fixed outer-loop update, validating our
results in Theorem 4.1. Also, the double-loop algorithm converges to the unique Nash equilibrium of
the game.

Inner-Loop ZO-NPG: When the inner-loop subproblem is solved via the ZO-NPG update (4.2), we
choose the same M1, r1,↵,✏1,✏2 as the ones used in the inner-loop ZO-PG update but in contrast we
set ⌘ = 5⇥ 10�2. Similar convergence patterns can be observed in the right of Figure 6.

D.3 Derivative-Free Outer-Loop NPG

We set ⌃0 = 0.05 · I . We present convergence results following the initial gain matrix K0 =
h
diag(K5) 015⇥3

i
, where K =

2
666666664

�0.08 0.35 0.62
�0.21 0.19 0.32
�0.06 0.10 0.41

3
777777775

and �min(HK0,L(K0)) = 3.2325. The convergence

of Algorithm 2 is implemented for two cases, with the inner-loop oracle being implemented using
(i) the exact solution as computed by (3.10); and (ii) the approximate inner-loop solution following
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Figure 8: Divergence of G(K ,L), {l�1
Pl�1
◆=0 krL(K ,L◆)kF }l�1, and {k�1

Pk�1
=0 krKG(K ,L(K))kF }k�1.

Top: ANGDA with stepsizes ⌘ = ↵ = 1.7319 ⇥ 10�11. Middle: ⌧-NGDA with stepsizes ↵ =
1.7319⇥ 10�11 and ⌘ = 103 ·↵. Bottom: Descent-multi-step-ascent with update rules (3.14) and
(3.17) and stepsizes ⌘ = ↵ = 1.7319⇥ 10�9. For each iteration of the outer-loop update (3.17), we
run 10 iterations of the inner-loop update (3.14).

the exact NPG update (3.14). As proved by Theorems 4.1 and B.4, the inner loop can also be solved
approximately using either ZO-PG or ZO-NPG updates, which has been verified via the simulation
results presented in §D.2. The parameters of Algorithm 2 in both cases are set to M2 = 5 ⇥ 105,
r2 = 0.08, (⌘,↵) = (0.1,4.67⇥10�5), and (✏1,✏2) = (10�4,0.8). Figure 7 illustrates the behaviors of
the objective function and the smallest eigenvalue of HK ,L following the double-loop update scheme.
It is shown that iterates of the outer-loop gain matrix {Kk}k�0 stay within the feasible set K along
with the double-loop update, which preserves a certain disturbance attenuation level in the view of
Remark A.8. Moreover, in both cases, we have Algorithm 2 converging sublinearly to the unique
Nash equilibrium.

D.4 Divergent Cases

As noted in Remark A.7, it is unclear yet if descent-multi-step-ascent, AGDA, or ⌧-GDA, where
⌧ = ⌘/↵, can converge globally to the Nash equilibrium in our setting. In this section, we present
some scenarios where descent-multi-step-ascent, AGDA, and ⌧-GDA diverges even with infinitesimal
stepsizes. We use the same example as §D.1 and initialize K

4
0 ,L

4
0 to be time-invariant such that

K4
0,t = K4

0 =

2
666666664

�0.1362 0.0934 0.6458
�0.2717 �0.1134 �0.4534
�0.6961 �0.9279 �0.6620

3
777777775

and L40,t = L40 =

2
666666664

0.2887 �0.2286 0.4588
�0.7849 �0.1089 �0.3755
�0.2935 0.9541 0.7895

3
777777775

for all t.

Note that in descent-multi-step-ascent/AGDA/⌧-GDA, the maximizing problem with respect to L

for a fixed K is no longer solved to a high accuracy for each iteration of the updates on K . Thus,
we can relax the constraint K 2 K since the maximizing player will not drive the cost to 1 in
such iterates under descent-multi-step-ascent/AGDA/⌧-GDA. Figure 8 illustrates the behaviors of
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Figure 9: Convergence of the
exact double-loop NPG updates
with initial gain matrix being K

5
0 .

Top: Convergence of G(K ,L) and
�min(HK ,L). Bottom: Convergence
of {k�1

Pk�1
=0 krKG(K,L(K))kF }k�1

and {l�1
Pl�1
◆=0 krL(K ,L◆)kF }l�1. The

stepsizes of the inner-loop and the
outer-loop NPG updates are chosen
to be 0.0097 and 3.0372 ⇥ 10�5,
respectively. For each iteration of the
outer-loop NPG update, we solve the
inner-loop subproblem to the accuracy
of ✏1 = 0.001.

the objective and the gradient norms with respect to K and L when applying alternating natural
GDA (ANGDA), ⌧-natural GDA (⌧-NGDA), and descent-multi-step-ascent with updates (3.14)
and (3.17) to our problem. The stepsizes for the ANGDA are chosen to be infinitesimal such that
⌘ = ↵ = 1.7319⇥ 10�11. However, we can still observe the diverging patterns from the top row of
Figure 8, even with such tiny stepsizes. Further, we test the same example with the same initialization
but use ⌧-NGDA with ⌧ = 103. That is, ⌘ = 103 · ↵. In such case, it is shown in the middle row
of Figure 8 that diverging behaviors still appear. Whether there exists a finite timescale separation
⌧⇤, similar to the one proved in [74], such that ⌧-GDA type algorithms with ⌧ 2 (⌧⇤,1) provably
converge to the unique Nash equilibrium in our setting requires further investigation, and is left as
our future work. Lastly, we present a case where descent-multi-step-ascent with updates following
(3.14) and (3.17) diverges. The stepsizes of the inner-loop and the outer-loop updates are chosen to
be ⌘ = ↵ = 1.7319⇥10�9 and we run 10 iterations of (3.14) for each iteration of (3.17). The bottom
row of Figure 8 demonstrates the diverging behaviors of this update scheme.

D.5 Time-Varying Systems

Instead of setting At = A, Bt = B, and Dt =D for all t, we now choose

At = A+
(�1)ttA

10
, Bt = B+

(�1)ttB
10

, Dt =D +
(�1)ttD

10
,

and set Rw = 10·I . Rest of the parameters are set to the same as in (D.1). The horizon of the problem is

again set to N = 5 and we initialize our algorithm using K5
0,t = K5

0 =

2
666666664

�0.0984 �0.7158 �0.1460
�0.1405 0.0039 0.4544
�0.1559 �0.7595 0.7403

3
777777775
.

We demonstrate in Figure 9 the convergence of exact double-loop NPG updates. The stepsizes of the
inner-loop and the outer-loop updates are chosen to be (⌘,↵) = (0.0097,3.0372⇥ 10�5). Also, we
require the approximate inner-loop solution to have the accuracy of ✏1 = 0.001. As shown at the top
of Figure 9, the double-loop NPG updates successfully converge to the unique Nash equilibrium of
the game. Also, the minimum eigenvalue of Rw �D>PK ,LD is monotonically non-decreasing along
the iterations of the outer-loop NPG update, which matches the implicit regularization property we
introduced in Theorem 3.7. This guarantees that all future iterates of K will stay in the interior of K
given that the initial K does. The convergences of the average gradient norms with respect to both L

and K are also presented at the bottom of Figure 9.
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