
Published as a conference paper at ICLR 2023

APPENDIX

A ADDITIONAL BASELINE COMPARISON

We compare our approach with additional pruning and quantization approaches in Table 2 for
ResNet-50 trained on ImageNet. We see that we continue to achieve high levels of model com-
pression along with slice sparsity for inference speedups. Yuan et al. (2020) achieve high levels of
sparsity but are unstructured requiring dedicated hardware to obtain speedups. A similar case holds
for the quantization approaches of Zhao et al. (2019); Jain et al. (2020) which can obtain inference
speedups but with hardware optimized for 4-bit and 8-bit integer arithmetic. Additionally, they typ-
ically require post-hoc training stages (Jain et al., 2020) to improve performance after quantization
while our approach is a single stage trained end-to-end.

Table 2: Comparison of our approach with other pruning and quantization approaches for ResNet-50
trained on ImageNet. We continue to achieve the most compression along with high slice spar-
sity. * denotes that the sparsity is unstructured and do not directly translate to computational benefits.

Algorithm Size
(MB)

Error
(Top-1 %)

Sparsity
(%)

ResNet-50 (ImageNet)

Uncompressed 102.00 (1×) 23.7 0.0
Savarese et al. (2020) 8.36 (12×) 24.5 91.8*
Yuan et al. (2020) 38.76 (3×) 24.8 38.8
Zhao et al. (2019) (4 bit) 12.75 (8×) 33.8 0.0
Zhao et al. (2019) (8 bit) 25.5 (4×) 25.3 0.0
Jain et al. (2020) (4 bit w/ retraining) 12.75 (8×) 25.6 0.0
Jain et al. (2020) (8 bit w/o retraining) 25.5 (4×) 25.7 0.0
Jain et al. (2020) (8 bit w/ retraining) 25.5 (4×) 24.6 0.0

LilNetX (Best) 3.96 (26×) 25.4 66.7
LilNetX (Extreme) 2.96 (34×) 25.8 81.7

B HISTOGRAM OF WEIGHTS FOR DENSE UNCOMPRESSED MODEL

We obtain the histogram of weights of the various types of layers of a dense uncompressed ResNet-
50 model trained on ImageNet with only the cross entropy loss. We do not apply any weight decay
in order to avoid enforcing any distribution on the weights. Results are shown in Fig. 7. We show
histograms for 1 × 1, 3 × 3, 7 × 7 convolutions as well as for the dense layer. For 3 × 3 and
7 × 7 convolutions, we pick a random dimension from a 9-dimensional or a 49-dimensional slice
respectively, to highlight the histograms, as a single probability model is fit to each dimension as
shown in Eq. (3). We see that the distributions naturally follow unimodality and are more or less
zero-centered even without any weight decay regularization. The 7 × 7 convolution weight distri-
bution is less continuous due to relatively fewer weight values per dimension (192) but still weakly
exhibits the property of unimodality and symmetry. This shows that networks trained with vanilla
cross entropy loss prefer such distributions naturally. However, the probability models in Eq. (3) do
not enforce any such distribution and can take on any random distribution. Thus, enforcing a Gaus-
sian prior as proposed in Sec. 3.2 promotes unimodality and symmetry of the weight distributions
which can be beneficial for network performance.

C HISTOGRAM OF WEIGHTS FOR QUANTIZED LATENTS

To provide insights into the effect of our quantization, we visualize the histogram of the quantized
latents as well for different weight groups. Results are shown in Fig. 8. We see that we obtain high
levels of 0s on almost all weight groups spanning different types of convolutional layers as well as
the final dense layer. Fewer number of zeros are present in the initial 7×7 convolution similar to the
uncompressed weights as shown in Fig. 7 highlighting its importance in the network. Additionally,
high amount of elements are zeros in 3×3 convolutions highlighting their redundancy and potential
for compression compared to other convolutional layers or the dense layer.

15



Published as a conference paper at ICLR 2023

0.4 0.2 0.0 0.2 0.4
Weight value

0

100000

200000

300000

400000

500000

600000

Fr
eq

ue
nc

y

1x1 convolutions

0.4 0.2 0.0 0.2 0.4
Weight value

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

3x3 convolutions - Dim. 1

2 1 0 1 2
Weight value

0

5

10

15

20

Fr
eq

ue
nc

y

7x7 convolutions - Dim. 14

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weight value

0

20000

40000

60000

80000

100000

120000

Fr
eq

ue
nc

y

Dense/FC

Figure 7: Histogram of the weights for various types of layers of a ResNet-50 model trained on
ImageNet without weight decay. For 3× 3 or 7× 7 convolutions we pick a random dimension of a
9-dimensional or 49-dimensional slice to highlight the weight distribution for each dimension. Note
the unimodal and zero-centered nature of each of these distributions, even without enforcing weight
decay, highlighting the importance of the Gaussian prior as proposed in Sec. 3.2

D COMPARISON OF MODEL COMPRESSION WITH ENTROPY CODING AND
SPARSE MATRIX FORMATS

Instead of entropy coding, the sparse matrices can additionally be compressed using sparse matrix
formats. We choose the two popular formats of Compressed Sparse Row (CSR) or Coordinate
Format(COO). Results are summarized in Table 3 for our best run for ResNet-50 shown in Table 1
in the main paper. We see that entropy coding far outperforms the sparse formats of CSR and COO
with COO obtaining better compression rates than CSR. This is expected as CSR/COO achieves
high levels of compression only with extremely high levels of sparsity. With an unstructured sparsity
level of ∼80%, storing only the non zero weights itself (and not their indices) provides a maximum
compression of 5×.

Table 3: Sparse formats: Comparison of the effect of entropy coding vs. sparse matrix formats of
CSR, COO on model compression of a ResNet-50 trained on ImageNet. We show the model size in
MB of the latent weights along with the sparsity of the model weights.

Entropy Coding CSR COO Slice Sparsity (%) Unstructured Sparsity (%)

3.96 (26×) 57 (2×) 30 (3×) 66.7 78.8

E PARAMETER GROUPS FOR VARIOUS NETWORKS

We share weight decoders and probability models for different parameter groups of a network which
can be seen as being drawn from similar weight distributions. This limits the overhead in storing the
weights of the corresponding decoders. We list the types of parameter groups for each network as
follows:

16



Published as a conference paper at ICLR 2023

6 4 2 0 2 4
Quantized weight bins

0

20

40

60

80

100

Fr
eq

ue
nc

y

Weight histogram for weight group 7x7 Conv

4 2 0 2 4
Quantized weight bins

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
eq

ue
nc

y

1e6 Weight histogram for weight group 3x3 Conv

4 2 0 2 4
Quantized weight bins

0

1

2

3

4

5

6

7

8

Fr
eq

ue
nc

y

1e6 Weight histogram for weight group 1x1 Conv

6 4 2 0 2 4 6
Quantized weight bins

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

1e6 Weight histogram for weight group Linear

Figure 8: Histogram of the quantized latents for various types of layers of a ResNet-50 model trained
on ImageNet. For 3 × 3 or 7 × 7 convolutions we pick a random dimension of a 9-dimensional or
49-dimensional slice to highlight the weight distribution for each dimension. Note the high level of
0s obtained due to our sparsity priors.

• VGG-16 consists of a parameter group for each dense layer and a parameter group for all
3× 3 convolutions leading to four weight decoders/probability models for each parameter
group.

• For ResNet-20-4 we use zero padding shortcut type A as defined in He et al. (2016), which
leads to only 2 parameter groups, one for the final dense layer and the other for all 3 × 3
convolutions.

• For ResNet-18 trained on ImageNet, we use three parameter groups, for the initial 7x7
convolution, 3× 3 convolutions, as well as the dense layer.

• ResNet-50 consists of an additional parameter group for 1 × 1 convolutions compared to
ResNet-18.

• MobileNet-V2 consists of 3 parameter groups for the initial 3x3 convolution, final dense
layer and the remaining 3x3 convolution.

F STANDARD ERROR FOR MULTIPLE RUNS

Sec. 5 in the main paper shows results when averaged across 3 seeds. In this section, we additionally
provide the standard errors across the 3 random seeds. Results are summarized in Fig. 9 for the two
datasets of CIFAR-10/100. CIFAR-10 shows little to no standard error both in the x-axis (model
size) and y-axis (top-1 validation accuracy). This suggests that the training is stable for different
random seeds. For CIFAR-100 however, we observe large error in the top-1 validation accuracy. We
attribute this to the slow convergence for CIFAR-100 also highlighted in Fig. 10.

CIFAR-100 Convergence:We analyze the convergence of 3 different runs for ResNet-20-4 trained
on the CIFAR-100 dataset with varying values of λS and λU . Results are shown in Fig. 10 when
trained for 200 epochs. We see that validation accuracy (on the right y-axis) continues to increase
towards the end of training between 190-200 epochs. At the same time, validation loss (on the
left y-axis) also decreases. This suggests that the model hasn’t fully converged by the end of 200
epochs. We hypothesize that this is an artifact of the dataset as well as the cosine decay schedule

17



Published as a conference paper at ICLR 2023

0.75 0.80 0.85 0.90 0.95

Slice Sparsity (%)

71.0

71.5

72.0

72.5

T
op

-1
A

cc
ur

ac
y

(%
)

Effect of weight decay (CIFAR-100)

Weight Decay

0.0

3e-07

3e-06

50 100 150 200
Model Size (KB)

91

92

93

CIFAR-10

λU
0.0

3e-07

3e-06

60 80 100 120
Model Size (KB)

70.5

71.0

71.5

72.0

72.5

CIFAR-100

Figure 9: Scatter plots with horizontal and vertical error bars for ResNet-20-4 trained on CIFAR-
10/100. For a different random seed, model size changes leading to the error bar in the x-axis
while the vertical bar represents the top-1 validation accuracy error on the y-axis. There is very
little variance in CIFAR-10 and slightly higher for CIFAR-100 due to slow convergence as shown
in Fig. 10

where learning rate decreases drastically towards the end of training and is not maintained for longer
for better convergence.

0 25 50 75 100 125 150 175 200
Epoch Number

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Va
lid

at
io

n 
Lo

ss

Convergence (CIFAR-100)

10

20

30

40

50

60

70

To
p-

1 
Va

lid
at

io
n 

Ac
c.

 (%
)

Run 0
Run 1
Run 2

Figure 10: Convergence plots for 3 ResNet-20-4 runs on CIFAR-100. We see that loss (left axis)
as well as top-1 validation accuracy (right axis) do not stabilize towards the end of training and
respectively decrease/increase sharply suggesting that the training has not fully converged.

18



Published as a conference paper at ICLR 2023

G l2 vs. l1 vs. l∞ NORM

In this section, we analyze the effect of different types of norm for both individual weights and
groups. For individual weights, we compare the l2 norm with the l1 norm while for the group norm,
we compare the l2 norm with the l∞ norm (l1 weight norm is same as l1 group norm due to sum
of absolutes). Results are summarized in Fig. 11 where top/bottom rows are for CIFAR-10/100
respectively. We see that l2 group norm outperforms its l∞ counterpart for both datasets. However,
l1 norm has little additional effect in terms of l2 weight norm. Additionally, the l2 group norm yields
lesser slice sparsity for a given sparsity (c,g) highlighting the importance of l∞ for high structured
sparsity. While l∞ leads to higher sparsity, it also shows higher model size for a given slice sparsity.
Thus, there is an inherent tradeoff for l∞ which leads to more sparsity but also larger model sizes
(d,h).

H INITIALIZATION OF CONTINUOUS SURROGATES

The initialization of the continuous surrogate Ŵ of a latent space weight W̃ and the decoder ma-
trix Ψ plays an important in the neural network training. Naı̈ve He initialization (He et al., 2015)
commonly used in training ResNet classifiers does not work in our case since small values of Ŵ
get rounded to zero before decoding. Such an initialization results in zero gradients for updating the
parameters and the loss becomes stagnant. To overcome this issue, we propose a modification to the
initialization of the different parameters. In our framework, we recap that the decoded weights used
in a forward pass are obtained using

W = reshape(W̃Ψ) (9)

where W̃ is a matrix in ZCinCout×l and Ψ is a matrix in Zl×l (where l = 1 for dense weights (and
biases) while l = K2 for convolutional weights).

Our goal is to initialize Ŵ and Ψ such that the decoded weights W follow He initialization. First,
since Ŵ is rounded to nearest integer (to obtain latent space weights W̃ ), we assume its elements
to be drawn from a uniform distribution in [−b, b] where b > 0.5 in order to enforce atleast some
non-zero weights after rounding to nearest integer. Next, we take the elements of Ψ to be a normal
distribution with mean 0 and variance v.

Assuming the parameters to be i.i.d., and Var(X) denoting the variance of any individual element
in matrix X ,

Var(W ) = l × Var(Ψ)× Var(W̃ ) (10)

Assuming a RELU activation, with f denoting the total number of channels (fan-in or fan-out) for a
layer, LHS of Eq. (10), using the He initializer becomes 2

f , RHS on the other hand can be obtained
analytically

2

f
= l × v × (2b+ 1)2 − 1

12

=⇒ b =

√
24
lvf + 1− 1

2
, v =

24

lf ((2b+ 1)2 − 1)
(11)

Eq. (11) gives us a relationship between b (defining the uniform distribution of Ŵ ) and v (defining
the normal distribution of Ψ). Note that l and f values are constant and known for each layer.

For a weight decoder corresponding to a parameter group, the maximum value of f in that group
enforces the smallest value of b which should be above a minimum limit bmin. Denoting fmax as the
maximum fan-in or fan-out value for a parameter group, we get

v =
24

lfmax ((2bmin + 1)2 − 1)

=⇒ b =

√
fmax

f ((2bmin + 1)2 − 1) + 1− 1

2
(12)

19



Published as a conference paper at ICLR 2023

The hyperparameter bmin then refers to the minimum boundary any latent space parameter can take
in the network. By calculating the values of v based on fmax, bmin and b for various parameters
based on the corresponding value of f , we then initialize the elements of Ŵ to be drawn from a
uniform distribution in the interval [−b, b] and elements of Ψ to be drawn from N (0, v).

Note that f = fmax =⇒ b = bmin which shows that the minimum boundary corresponds to the
layer with maximum channels (fan-in or fan-out) f .

By choosing an appropriate value of bmin we obtain good initial values of the gradient which allows
the network to converge well as training progresses. bmin offers an intuitive way of initializing the
discrete weights. Too small a value leads to most of the weights being set to zero while too large
a value can lead to exploding gradients. In practice, we find that this initialization approach works
well for Cifar experiments. For ImageNet experiments, we assume a normal distribution instead of
uniform distribution for Ŵ with a sufficiently high variance for the network to train.

I LICENSE

Table 4: Licenses of datasets.

Dataset License

CIFAR-10 Krizhevsky et al. (2009) MIT
CIFAR-100 Krizhevsky et al. (2009) MIT
ImageNet Deng et al. (2009) BSD 3-Clause

Table 4 lists all datasets we used and their licenses.

20



Published as a conference paper at ICLR 2023

50 100 150 200
Model Size (KB)

91

92

93
To

p-
1 

Ac
cu

ra
cy

 (%
)

CIFAR-10

80 90
Slice Sparsity

91

92

93

CIFAR-10

U

L2
L1

S

Linf
L2

(a) (b)

0.94 0.96 0.98 1.00
Sparsity (Latents) (%)

75

80

85

90

95

Sl
ice

 S
pa

rs
ity

 (%
)

CIFAR-10

50 100 150 200
Model Size (KB)

75

80

85

90

95

Sl
ice

 S
pa

rs
ity

 (%
)

CIFAR-10

U

L2
L1

S

Linf
L2

(c) (d)

60 80 100 120 140
Model Size (KB)

70.5

71.0

71.5

72.0

To
p-

1 
Ac

cu
ra

cy
 (%

)

CIFAR-100

85 90 95
Slice Sparsity

70.5

71.0

71.5

72.0

CIFAR-100

U

L2
L1

S

Linf
L2

(e) (f)

0.97 0.98 0.99
Sparsity (Latents) (%)

85.0

87.5

90.0

92.5

95.0

Sl
ice

 S
pa

rs
ity

 (%
)

CIFAR-100

60 80 100 120 140
Model Size (KB)

85.0

87.5

90.0

92.5

95.0

Sl
ice

 S
pa

rs
ity

 (%
)

CIFAR-100

U

L2
L1

S

Linf
L2

(g) (h)

Figure 11: Comparison of l2 vs. l1vs. l∞ norm for various metrics of sparsity and size for both
CIFAR-10 (top row) and CIFAR-100 (bottom row). We see that l2 group norm does better than l∞
group norm in terms of accuracy vs model-size or slice sparsity (a,b,e,f). l1 weight norm has little
additional effect compared to l2 weight norm. l∞ favors higher slice sparsity for the same level of
sparsity (c,g). l∞ tends to result in higher model size for a given slice sparsity but also higher slice
sparsity given a model size, which shows the tradeoff between compression and sparsification.

21


	Introduction
	Related Work
	Approach
	Compression term
	Sparsity priors
	Joint optimization objective
	Implementation Details

	Analysis
	Effect of Unstructured Sparsity Regularization
	Effect of Structured Sparsity Regularization
	Structured vs@汥瑀瑯步渠. unstructured sparsity regularization

	Experiments
	Comparison with compression methods
	Utilizing Slice Sparsity for Inference Speedups

	Conclusion
	Additional baseline comparison
	Histogram of weights for dense uncompressed model
	Histogram of weights for quantized latents
	Comparison of model compression with entropy coding and sparse matrix formats
	Parameter groups for various networks
	Standard Error for Multiple Runs
	l2 vs@汥瑀瑯步渠. l1 vs@汥瑀瑯步渠. l norm
	Initialization of Continuous Surrogates
	License



