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1 The Experimental Details
In this section, we provide more details about our experiments,
including the statistics of the four benchmark datasets, adopted
evaluation metrics, and experimental settings.
Dataset.We evaluate our proposed CAEMmodels on the Charades-
CD and ActivityNet-CD [11] datasets, which are repartitioned to
evaluate the performance and generalizing ability of TSG models.
Moreover, to demonstrate the effectiveness of our proposed CAEM
method, we also generalize it on the Charades-CG and ActivityNet-
CG [5] datasets, which contain normal test queries where all words
are seen in the training set (denoted as Trivial) and generalized test
queries with unseen words in the training set (denoted as Novel).
Overall, we summarize the detailed statistics of the four benchmark
datasets in Table 1.

Table 1: Statistics of the evaluated datasets, where 𝑁train, 𝑁eval,
𝑁test-iid, and 𝑁test-ood are the number of events in the train, val, test-
iid, and test-ood splits respectively.

Dataset Domain OOD
Type 𝑁train 𝑁eval 𝑁test-iid 𝑁test-ood

Charades-CD Indoors Vision 11071 859 823 3375

ActivityNet-CD Open Vision 51415 3521 3443 13578

Charades-CG Indoors Text 8281 - 3096 703

ActivityNet-CG Open Text 36724 - 3944 15712

Evaluation Metrics. As we mentioned in our formal text, existing
D-TSG methods [2, 6, 7, 11] employed different metrics to evaluate
their model performance on the D-TSG task. For fair comparisons,
we adopt two kinds of evaluation metrics during the testing stage,
i.e., the conventional recall metrics and discount recall metrics
proposed by [11].

Following the previous methods [2, 6, 7, 9], we first employ the
conventional recall metrics: We consider a predicted candidate is
correct if it has the IoU greater than a threshold, which is denoted as
Recall@Top − k, IoU =𝑚 and abbreviated as R@𝑘, IoU@𝑚, where
𝐾 is the top range number of ranked generated candidates and𝑚 is
the threshold. Specifically, for each query 𝑞𝑖 , it first calculates the
Intersection-over-Union (IoU) between the predicted moment and
its groundtruth, and this metric is formally defined as:

R@𝑘, IoU@𝑚 =
1
𝑁𝑞

∑
𝑖

𝑟 (𝑘,𝑚,𝑞𝑖 ) , (1)

where 𝑟 (𝑘,𝑚,𝑞𝑖 ) = 1 if there is at least one of top-k predicted mo-
ments of query 𝑞𝑖 having an IoU larger than threshold𝑚, otherwise
it equals to 0. 𝑁𝑞 is the total number of all queries. In our method,
for all four datasets, 𝑘 is all set to 1, while𝑚 is set to {0.5, 0.7}.

However, in [11], Yuan et al. noted that the conventional evalua-
tion metric, i.e., 𝑅@𝐾, 𝐼𝑜𝑈 =𝑚, is unreliable under small thresholds.
To alleviate this issue, they proposed a more challenging metrics
termed discounted recall metrics to calibrate the value by consider-
ing the "temporal distance" between the predicted and ground-truth
moments, which can be formulated as follows:

dR@𝑛, IoU@𝑚 =
1
𝑁𝑞

∑
𝑖

𝑟 (𝑘,𝑚,𝑞𝑖 ) · 𝛼𝑠𝑖 · 𝛼
𝑒
𝑖 ,

𝛼𝑠𝑖 = 1 − abs
(
𝑝𝑠𝑖 − 𝑔

𝑠
𝑖

)
, 𝛼𝑒𝑖 = 1 − abs

(
𝑝𝑒𝑖 − 𝑔

𝑒
𝑖

)
,

(2)

where 𝑝𝑠,𝑒 and 𝑔𝑠,𝑒 represent the starting and ending timestamps of
predictions and ground truth. When the predicted and ground-truth
moments are very close to each other, the discount ratio 𝛼𝑠,𝑒

𝑖
will

be close to 1, i.e., and the new metric can degrade to conventional
recall metrics with exactly accurate predictions. Otherwise, even
if the IoU threshold condition is met, the score will still be dis-
counted. It helps to alleviate the inflating recall scores under small
IoU thresholds. As these newly proposed metrics could evaluate
the model generalization on OOD samples by discounting the nor-
mal recall metrics for suppressing the performance of speculation
methods that over-rely on moments annotation biases, we follow
recent state-of-the-art DTSG methods [4, 9–11] to furtherly test
the OOD generalization of our proposed CAEM method.
Experimental Settings. Following the previous methods [7, 9, 11,
12], we adopt the off-the-shelf video features that are extracted
by pre-trained 3D CNN backbones [1, 8]. The visual features and
textual embeddings are projected into 256 dimensions before send-
ing to vision-language transformers, and the hidden dimension of
transformers is also set to 256. As for the hyperparameters, we set
the random ratio 𝜙 in the Temporal Counterfactual Augmentation
to 0.5. The balance factor 𝜆 for calculating the final matching score
in the Counterfact-Adaptive Framework is set to 0.6. The temporal
factor in 𝐿SCL and 𝐿CCL is set to 0.1. the training stage, we employ
the Adam optimizer [3] is employed to update the parameters with
the learning rate set to 4 × 10−4 on a single Nvidia A6000 with 64
batch size.

2 Training and Testing Details
During the training stage, all the key components of CAEMmethod,
i.e., Temporal Counterfactual Augmentation (TCA), Event-Query
Matching model (EQM), and Counterfact-Adaptive Framework
(CAF), are enabled. However, during the inference stage, the TCA
will be disabled. The factual and counterfactual EQMs are employed
to process the same video-query pairs, and the predicted results will
be integrated to generate a ranked moment sequence. We denote
the training procedure of the proposed CAEM method in Algo. 1.
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Algorithm 1: Our proposed CAEM method
Data: Untrimmed video 𝑉 , text query 𝑄
Result: Predicted Event Moment
Initialize pre-trained video feature extractors Mv and text
feature extractors Mq;

Initialize factual and counterfactual models EQM and EQM*;
if isTraining then

Extracting visual and textual features:
Fv ← Mv (𝑉 ) , Fq ← Mq (𝑄);
if 𝑙/𝑙V < 0.5 then

F∗v ← Delaying(Fv, 𝜌1, 𝜙) counterfactual
annotations: 𝑙∗ ← (𝑡𝑠 + 𝜌1, 𝑡𝑒 + 𝜌1)

else
Selecte irrelevant event Ẽ from other videos;
F∗v ← Inserting(Fv, Ẽ, 𝜌2, 𝜙);
counterfactual annotations: 𝑙∗ ← (𝑡𝑠 + 𝜌2, 𝑡𝑒 + 𝜌2);

Calculate loss for factuals:
𝐿SCL, 𝐿LOC ← EQM(Fv, Fq, 𝑙);
Calculate loss for counterfactuals:
𝐿∗SCL, 𝐿

∗
LOC ← EQM∗ (F∗v, Fq, 𝑙∗) ;

Calculate 𝐿CCL;
Backward;

else
Calculating factual matching scores: 𝑠 ← EQM(Fv, Fq);
Calculating counterfactual matching scores:
𝑠∗ ← EQM∗ (Fv, Fq);
Integrating matching scores: 𝑠total = 𝑠 + 𝜆𝑠∗;
Rank moments according to 𝑠total in descending;
Return the first moment;

3 Additional Further Analysis
In this section, we conduct more ablation studies on key model
components and training objectives on the ActivityNet-CD dataset.
Moreover, to further demonstrate the effectiveness of our CAEM
method, we combine our proposed TCA and CAF modules with the
previous 2DTAN model and observe the achieved improvements.

Table 2: Experimental results of ablation studies on the
ActivityNet-CD dataset.

SCL TCA CAF dR@1, IoU=0.3 dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD IID OOD

! % % 53.36 37.20 44.97 25.16 33.08 14.24
% ! % 52.73 36.00 44.46 24.37 32.09 13.92
! ! % 52.60 36.75 43.83 25.23 32.30 14.26
% ! ! 53.02 36.87 44.88 25.27 32.75 14.34
! ! ! 54.16 38.35 46.07 26.42 33.92 14.80

Abaltion Studies on ActivityNet-CD dataset.We conduct more
ablation studies on the three key modules, i.e., Temporal Counter-
factual Augmentation (TCA), Counterfact-Adaptive Framework
(CAF), and the Semantic Consistency Learning (SCL) in the funda-
mental structure Query-Event Matching Model of our method. The

experimental results on the ActivityNet-CD dataset are reported
in Table 2. We can observe that the three key components consis-
tently show boosted performance which is similar to the results
on the Charades-CD dataset. These outcomes affirm again the ef-
fectiveness of our approach, highlighting the pivotal role played
by TCA, CAF, and SCL in enhancing OOD generalization of TSG
performance across diverse video datasets.

Table 3: Analysis with respect to the training objectives
in Event-Query Matching Model on the ActivityNet-CD
dataset.

𝐿rlm 𝐿mlm 𝐿cl
dR@1, IoU=0.3 dR@1, IoU=0.5 dR@1, IoU=0.7
IID OOD IID OOD IID OOD

% % % 45.37 29.92 36.43 18.06 24.17 9.17
! ! % 53.02 36.87 44.88 25.27 32.75 14.34
! ! % 54.09 37.28 45.48 25.91 33.19 14.68
! % ! 53.32 38.09 45.46 25.86 33.25 14.60
! ! ! 54.16 38.35 46.07 26.42 33.92 14.80

Additional Analysis on Training Objectives.We also conduct
more analysis concerning the training objectives in EQM on the
ActivityNet-CD dataset. According to the experimental results listed
in Table 3, we can see that both IID and OOD drop dramatically
without 𝐿rlm, which is consistent with the experimental results
on the Charades-CD dataset. The reason is the 𝐿rlm aims to teach
our model to learn relative temporal locations between these fixed
temporal locations and ground truth. Event-level multimodal rep-
resentations are learned with the compositions of vision-aware
tokens, which have fixed mapping temporal locations determined
manually. Hence the 𝐿rlm performs an essential role in precisely
rectifying the temporal locations.
Analysis on Model Transferability. We also demonstrate the
model transferability of our proposed CAEM method by combining
two key modules, i.e., TCA and CAF modules, with previous TSG
models. Specifically, we employ the typical TSG method 2DTAN
[12], and devise two extended models 2DTAN + TCA and 2DTAN
+ TCA + CAF that are facilitated with our modules. The experi-
ments are conducted on Charades-CD and ActivityNet-CD datasets
under the same experimental settings. According to the results
illustrated in Fig. 2, we can observe that our proposed TCA and
CAF modules effectively boost the performance of the previous
TSG method 2DTAN on both IID and OOD test splits. By compar-
ing the experimental results of the three models, we can see the
performance is increasing with TCA and CAF being introduced
gradually. Particularly, facilitated with the twomodules, the 2DTAN
method achieves remarkable improvements on the OOD test sam-
ples, outperforming previous results by a large margin. It proves
again that overcoming the limitations of OOD generalization in the
TSG task with counterfactual data augmentation and consistency
rule is reasonable.
Combination with Proposal-free Method. We have validated
the transferability of our proposed key components by combining
our method with 2DTAN. This typical proposal-based method se-
lects predictions by evaluating the matching scores of event-query
joint representations. Considering that the proposal-free methods
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Figure 1: Visualizations of temporal distributions of all train, test-iid, and test-ood samples from (a) ActivityNet-CD and (b)
Charades-CD datasets and corresponding predictions of our proposed CAEM method. Note that the X and Y axes in each
subfigure represent normalized starting and ending timestamps respectively.
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Figure 2: Analysis of model transferability. Note that we
adopt the discounted recall metrics which is the same as ex-
periments in ablation studies in formal text.

are also proposed to address the conventional TSG challenge, we
combine our method based on a proposal-free paradigm to explore
its effectiveness further. Here, we report the experimental results
based on a proposal-free method VSLNet, and make comparisons
with the SOTA BSSARD method. We can observe that our method
consistently boosts the performance of VSLNet on both two datasets
and outperforms the counterpart BSSARD method. However, it can
be observed that our complete CAEM shows better results. One

probable reason is that our proposed two modules are deliberately
designed for the pipeline illustrated in Fig. 1(b) in the formal paper.

Table 4: Additional experimental results of combining our
proposed method with the proposal-free VSLNet baseline.

Methods ActivityNet-CD-OOD Charades-CD-OOD
R1@0.5 R1@0.7 R1@0.5 R1@0.7

VSLNet (ACL’20) 25.40 13.51 43.08 22.52
VSLNet+BSSARD (AAAI’24) 27.02 14.93 47.20 27.17
VSLNet+TCA+CAF (Ours) 27.41 15.04 49.21 29.10

CAEM (Ours) 28.98 15.54 54.42 28.29

Visualizations of Temporal Distributions. In this part, we vi-
sualize the temporal distributions of all predictions generated by
our CAEM method on both two datasets in Fig. 1, including IID and
OOD test samples. By comparing the ground truth and predictions
of our CAEM method, we come to the following conclusions: (1)
Our method shows significant OOD generalization ability against
training bias. According to the visualizations of our predictions on
OOD test samples of the two datasets, we can see the centers with
high density have been shifted compared with the training split,
which demonstrated that our method avoids overfitting the training
bias that leads to degenerated generalization. (2) However, we also
note that the kernels of predictions in high density are partially
overlapped only with the kernels of ground truth. It means our
method could localize the temporal locations roughly better still
has limitations on predicting the event duration. Such observations
also inspire us for future work on the DTSG task.

4 Additional Qualitative Analysis
Finally, we visualize more OOD test cases from the Charades-
CD and ActivityNet-CD datasets in Fig. 3. Following the settings
adopted in the formal text, we also make fair comparisons with
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Figure 3: Additional visualizations of grounding results of OOD test samples from ActivityNet-CD (left) and Charades-CD
(right) datasets and corresponding distributions of training sets.

recent state-of-the-art method BSSARD [7]. By observing the visu-
alization results, we can see that our proposed CAEM method pre-
cisely localizes the target event that is the most relevant to the given
text query. It proves the effectiveness of our solution again, which

introduces counterfactual data augmentation and consistency rule
into event-query matching to achieve better generalization.
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