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ABSTRACT

Diffusion models are acclaimed for generating high-quality and diverse images.
However, their performance notably degrades when trained on data with a long-
tailed distribution. For long tail diffusion model generation, current works focus
on the calibration and enhancement of the tail generation with head-tail knowl-
edge transfer. The transfer process relies on the abundant diversity derived from
the head class and, more significantly, the condition capacity of the model predic-
tion. However, the dependency on the conditional model prediction to realize the
knowledge transfer might exhibit bias during training, leading to unsatisfactory
generation results and lack of robustness. Utilizing a Bayesian framework, we de-
velop a weighted denoising score-matching technique for knowledge transfer di-
rectly from head to tail classes. Additionally, we incorporate a gating mechanism
in the knowledge transfer process. We provide statistical analysis to validate this
methodology, revealing that the effectiveness of such knowledge transfer depends
on both label distribution and sample similarity, providing the insight to consider
sample similarity when re-balancing the label proportion in training. We exten-
sively evaluate our approach with experiments on multiple benchmark datasets,
demonstrating its effectiveness and superior performance compared to existing
methods. Code: https://github.com/MediaBrain-SJTU/OC_LT.

1 INTRODUCTION

Diffusion models have emerged as a powerful class of deep probabilistic models. These models
leverage techniques from statistical physics and probabilistic modeling to generate high-quality,
realistic samples from complex data distributions (Sohl-Dickstein et al., 2015). The effective imple-
mentation of a diffusion model necessitates extensive training on a diverse and sizable collection of
image data. In general, there is a prevalent occurrence of a long-tail distribution (Yang et al., 2022),
wherein a vast majority of images belong to a few dominant categories, while a significant portion
of the dataset comprises less frequently occurring categories. As a consequence, the training of dif-
fusion models with long-tail data continues to pose a formidable challenge owing to the distortion
in the entire dataset.

In current works, many attempts have been made to address the lack of diversity and mode col-
lapse issues in the generation of tail classes. A series of methods based on Generative Adversarial
Networks (GANs) has been proposed. One of the common approaches is to adopt strategies that re-
fine the general model’s generation ability by improving its conditional modeling (Rangwani et al.,
2022) on tail categories, which heavily depend on GANs structure. Another line of research focuses
on alleviating the scarcity of samples in tail classes through appropriate data augmentation tech-
niques (Karras et al., 2020; Zhao et al., 2020; Rangwani et al., 2023), and diffusion process (Zheng
et al., 2023b; Wang et al., 2023). Nevertheless, such methods may not effectively capture the under-
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lying data distribution or introduce meaningful variations (Yoo et al., 2020). For long tail diffusion
models, Class Balancing Diffusion Models (CBDM) (Qin et al., 2023) has proposed a distribution
adjustment regularizer enhancing tail generation based on the model prediction on the head class.
However, the augmentation relying on the condition and prediction of the model might cause bias
during training resulting in generated outcomes that do not meet expectations and leading to a lack
of robustness.
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Figure 1: The illustration of our motivation. We directly uti-
lize head samples as reference for tail augmentation instead
of depending on the model condition capacity.

In order to alleviate the issue, a di-
rect knowledge transfer from head to
tail categories should be established.
Let’s review a recent study on the dif-
fusion process, Xu et al. (2023) ob-
served that the score function exhibits
the highest variance during the inter-
mediate steps, which is a critical pe-
riod for semantic formation (Zhang
et al., 2023) with the undetermined
target. Therefore, based on this ev-
idence, we can utilize the score in-
formation from head classes to cali-
brate and enhance the generation of
tail classes in this period and finally
improve the overall generation per-
formance. In this study, leveraging
the evidence that the score of the dif-
fusion model could be estimated via referencing multiple targets in the dataset (Xu et al., 2023), we
propose a calibration strategy for the scores of the tail class directly making use of the head samples
as reference, as shown in Figure. 1. By employing the strategy that leverages the similarity of un-
derlying data distribution, the reliance on the conditional capacity of the model is mitigated and the
generation performance is improved.

To realize the augmentation for the tail scores, we begin with modeling the score as the weighted
scores averaging towards different targets. For conditional generation, the score estimation of noisy
tail samples is augmented via properly improving the contribution of the score from the head sam-
ples in the reference batch, denoted as a T2H (noisy Tail to clean Head) operation to enhance the
diversity of the tail generation. Simultaneously, a Batch Re-sample approach is utilized to alleviate
the limitation on overall head-to-tail transfer strength in T2H mode. Besides that, in unconditional
generation, the score function is predominantly influenced by samples from the head classes. Batch
re-sampling is also employed to address this issue. While the method H2T (noisy Head to clean
Tail), the reverse direction to T2H, has shown its effectiveness in unconditional generation.

Our contributions can be summarized as follows: (1) We have developed a method denoted as T2H
based on the multi-target nature of score estimation to effectively calibrate and enhance the gen-
eration of tail classes in the semantic formation period, thereby significantly improving the overall
generation performance. (2) A “Batch Re-sample” strategy is employed to construct a balanced
reference batch, in order to address the extreme dominance issue of scores from the head class and
promotes head-to-tail transfer under T2H mode. (3) We conduct extensive testing on three differ-
ent long tail datasets (CIFAR10, CIFAR100, TinyImageNet) to validate the effectiveness of our
proposed method. The results consistently demonstrated the superiority of our approach.

2 PRELIMINARY

The diffusion model involves slowly adding noise to the existing training data in the forward pro-
cess, and then utilizing a deep learning network to gradually recover the original data from the
noise in the reverse process. In the forward process, a clean image is progressively transformed
by adding carefully calibrated Gaussian noise (Ho et al., 2020) at each diffusion step t, q(xt|x) =
N (αtx, σ

2
t I), 0 ≤ t ≤ T where the coefficients αt and σt are chosen so that q(xt) is close to initial

data density at t ≈ 0 and close to Gaussian at t ≈ T . For the reverse process, the diffusion model
firstly samples from a Gaussian noise distribution p(xT ) ∼ N (0, I), and then gradually incorporates
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Figure 2: Overall flowchart for two strategies (H2T, T2H), where the target is determined by evalu-
ating the probabilities of labels before and after the transfer to identify the satisfied mode.

various structures and semantic information at each step. Then transition p(xt−1|xt) is estimated
by training an image-to-image Unet parameterized by θ, pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σt).
Instead of directly predicting the mean value, the Unet is trained to predict the noise content of xt,
which is optimized by the following loss:

LDiff(θ, x) = Et∼U(0,T ),ϵ∼N (0,I)[||ϵ− ϵθ(xt; t)||22] (1)

Another perspective on the diffusion model is to start from a parameter-free designed stochastic
differential equation (SDE) dx = f(x, t)dt+ g(t)dw, which transfers the initial data distribution to
a prior distribution as time goes from 0 to T . The w is the standard Wigner process. Sampling the
diffusion model via a reverse time SDE (Anderson, 1982): dx = [f(x, t)− g(t)2∇xt log p(xt)]dt̄+
g(t)dw̄. The ·̄ means time reverse. The score function namely s(xt, t) = ∇xt log p(xt) should be
estimated in the training stage. The predicted noise in Eq. (1) could be related to the score function
via denoising score matching (Vincent, 2011):

ϵθ(xt, t) = −σtsθ(xt, t) (2)
From Eq. (2) we could learn that the score is proportional to the noise predicted by the model. In
this study, we start from the optimal score ∇xt

log p(xt) to formulate our methodology for long tail
distribution.

3 METHOD

Our problem involves training data that exhibits a long-tail distribution (x(i), y(i))
M

i=1 sampled
from p(x, y) and a diffusion model parametrized via a denoising Unet ϵθ(xt, t). The y(i) ∈
{C1, C2, ..., CL} is the label of x(i), assuming that the classes are ordered in descending proba-
bility of label occurrence, i.e., if i < j then ni > nj , where the ni is the number training samples
belonging to class Ci. With proper training methodology using long-tailed training data and dif-
fusion model, we want to generate a more balanced and diversified data distribution p⋆(x0) in the
inference time.

During the inference stage, a diffusion model utilizes a step-by-step reverse operation from a prior
distribution p(xT ) to data distribution p(x0) with reverse-SDE discussed in Section. 2. The reverse-
SDE uses the score function s(xt, t) at time step t obtained from the training stage. The optimal
score s⋆(xt, t) = ∇xt

log qt(xt) could be expressed with the expectation:
∇xt

log qt(xt) = Eq(x0|xt)∇xt
log q(xt|x0), (3)

where the proof is provided in Appendix A. As the equation illustrated, the score for a given xt

could be calculated by the expectation under the distribution q(x0|xt). Since this distribution is
intractable, we utilize importance sampling to sample from initial data distribution q(x0).

Using the Bayesian rule, we have q(x0|xt) = q(x0)q(xt|x0)/q(xt). Given q(xt) =∫
q(xt|x0)q(x0)dx0, we can derive

Eq(x0|xt)∇xt
log q(xt|x0) = Eq(x0)

q(xt|x0)

Ex′
0∼q(x0)q(xt|x′

0)
∇xt

log q(xt|x0). (4)

Thus, with a mini-batch of samples from q(x0), i.e., x(1:N)
0

iid∼ q(x0), we have

Eq(x0|xt)∇xt
log q(xt|x0) ≈

N∑
i=1

q(xt|x(i)
0 )∑N

j=1 q(xt|x(j)
0 )

∇xt log q(xt|x(i)
0 ). (5)
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Specifically, we have expanded upon the original one-to-one optimal noise estimator in denoising
score matching and transformed it into the one-to-many distributional matching technique, with a
conditional distribution that determines the mapping probability, which encourages a mode-covering
behavior in the score matching to enhance the diversity of generative modeling (Zheng & Zhou,
2021). The expectation in the equation we approximate with a weighted average of scores with
respect to different samples {x(i)

0 } denoted as a reference batch.

T2H. In conditional generation, the labels are involved and conditioned. The unconditional score
∇xt

log q(xt) and conditional score ∇xt
log q(xt|y) are both estimated in the training stage. With

label participated, the sampling distribution should be x
(i)
0 ∼ q(x0|y) with label y instead of x(i)

0 ∼
q(x0) in Eq. (5) as:

∇xt
log q(xt|y) ≈

N∑
i=1

q(xt|x(i)
0 , y)∑

j q(xt|x(j)
0 , y

(j)
0 )︸ ︷︷ ︸

Score Weight

∇xt
log q(xt|x(i)

0 , y) {(x(k)
0 , y

(k)
0 )}Mk=1 ∼ q(x0, y0),

(6)
where the proof is provided in Appendix. B. In the denominator, we sample from q(x0, y0) instead of
q(x0) in the self-normalizing technique with label. The distribution of q(xt|x(i)

0 ) follows a Gaussian

distribution and could be calculated by B exp(− ||x(i)
0 −xt||2

2σ2
t

) where B is a normalizing constant and

there is no label involved. The mixing weight q(xt|x(i)
0 ,y)∑

j q(xt|x(j)
0 ,y

(j)
0 )

from (x
(j)
0 , y

(j)
0 ) is dominant by the

L2 distance respect to xt. In addition to the L2 distance in the Gaussian kernel, here we make a
further assumption that the distribution q(xt|x0, y0) is adjusted by q(y0)

β :

q(xt|x0, y0) ∝ B q(y0)
β exp(−||xt − x0||22

2σ2
t

), (7)

where β is a pre-defined parameter, that controls the overall distribution density with respect to y0.
When β = 0 then the xt’s distribution is only dependent on x0.

Initial Sample
Head Samples

Figure 3: Mixing score weights of the sample with
ID 8 towards different target in a reference batch
under different weight calculation of q(xt|x0, y0).

For the score estimation of xt obtained from
noisy tail sample (xT

0 , y
T
0 ), we employ a

method of score-oriented calibration. The ap-
proach enhances the contribution of head class
samples (xH

0 , yH0 ) by increasing the mixing
score weight in Eq. 6. Consequently, it lever-
ages the rich diversity of the head class to im-
prove the performance of the tail class.

To improve the mixing score weight for the
head samples, we could assign β = 1 in Eq. 7,
since the q(yH0 ) in the equation has a relative
larger value. As shown in Figure. 3, the mix-
ing weights towards head samples are improved
compared with directly calculating the mixing

weight depending only on exp(− ||x(i)
0 −xt||2

2σ2
t

).

Furthermore, for faster and easier imple-
mentation, we firstly sample a mini-batch
{x(i)

0 , y
(i)
0 }Ki=1. Then as the typical training

strategy of the diffusion model, for each sam-
ple x

(i)
0 , we sample a random t ∼ U(0, T ) and random Gaussian noise ϵi ∼ N (0, I) and obtain

the perturbed noisy xt. The training objective is to predict the noise ϵ̂i by our parametrized Unet
ϵθ(xt, t; y) = −σtsθ(xt, t; y) .
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Since the score for each target xt, the ∇xt
log q(xt|x(i)

0 , y) ∝ − 1
σt
ϵi. As a consequence, we transfer

the Eq. 6 from a score-weighted mixing problem to a score selection problem as:

ϵ̂i = ϵz; z ∼ psel(z) =
q(xt|x(z)

0 , y
(z)
0 )∑

j q(xt|x(j)
0 , y

(j)
0 )

; 0 ≤ z ≤ K, (8)

where psel(z) denotes the probability of selecting score with index z in the batch with size K. ϵz
is calculated with ϵz = xt√

ᾱ
− x

(z)
0 , where the estimated noise is obtained by a new clean target and

current noisy sample. So we firstly calculate the multi-nomial distribution in Eq. (8) with Gaussian

kernel: q(xt|x(z)
0 , y

(z)
0 ) ∝ B exp(− ||x(z)

0 −xt||22
2σ2

t
), and then we sample z from this distribution. If

q(y
(z)
0 ) ≥ q(y

(i)
0 ), the transferring is allowed and the score is substituted with ϵz , which means the

noisy tail sample is mapped to a clean head sample. If not, the transferring is forbidden then the
score is sent back to ϵi, which means that the noisy head sample is forbidden to map to the clean tail
sample. Since the noisy sample is obtained from the head class, we denote such kind of transferring
mode as T2H (noisy Tail sample to clean Head sample).

Here, we amplify the contribution of head samples by selectively transferring the target solely to the
clean head samples in the reference batch. The equivalence between T2H and directly enhancing
the contribution of head samples via setting β = 1 in score mixing has also been validated in the
experiments, as shown in Figure. 5.

We summarize the Algorithm in Alg. 1. We note for H2T mode, we just need to change the boundary
condition from q(y

(z)
0 ) ≥ q(y

(i)
0 ) in the algorithm to q(v) ≤ q(y

(i)
0 ).

Algorithm 1 T2H algorithm for conditional long tail generation

Sample mini-batch {(x(i)
0 , y

(i)
0 )}Ki=1 with balanced distribution q⋆(x, y)

for each sample (x
(i)
0 , y

(i)
0 ) in the mini-batch do

Sample xt with random t and Gaussian noise ϵi ∼ N (0, σ2
t I)

Calculate psel(z) according to Eq. 8 with Gaussian kernel C exp(− ||x(z)
0 −xt||22
2σ2

t
) 0 ≤ z ≤ K

Sample z ∼ psel(z)

if q(y(z)0 ) ≥ q(y
(i)
0 ) (q(y(z)0 ) < q(y

(i)
0 )) then

ϵ̂i = ϵz (ϵ̂i = ϵi)
end if
Compute denoising loss
if Conditional then
LDiff = ||ϵ̂i − ϵθ(xt, t; y)||22

else
LDiff = ||ϵ̂i − ϵθ(xt, t)||22

end if
end for

For a specific sample of tail class CT , we could augment the score via encouraging the model to pre-
dict the score towards the head class. Indeed, by leveraging the rich semantics of the head class and
increasing the diversity of scores from the tail categories along the generation path, our approach
enhances the overall diversity of generated samples. The increased variety ensures a more compre-
hensive generation of different classes and ultimately enhances the overall quality and diversity of
the generated samples. The fidelity of the transferring could be found in Appendix. G.

Batch Re-sample. T2H achieves enhancement in generating tail categories through head-to-tail
transfer for conditional generation. Here we evaluate the strength of the transfer quantitatively.
Consider two samples (xH

0 , yH0 ) and (xT
0 , y

T
0 ) from different head class CH and tail class CT .

Let’s discuss the distribution with same perturbed noise level N (0, σ2
t I) with q(xt|xH

0 , yH0 ) and
q(xt|xT

0 , y
T
0 ). For the purpose of measuring the strength of transition from CT to CH based on

Langevin dynamics, then the Eq(xt|xH ,yH)
q(xt|xT

0 ,yT
0 )∑

k q(xt|x(k)
0 ,y

(k)
0 )

should be calculated (Song & Ermon,

2020). Then we have the following proposition:
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Proposition 3.1 Let q(xt|x0, y0) ∝ B q(y0)
β exp(− ||xt−x0||22

2σ2
t

), then:

Eq(xt|xH
0 ,yH

0 )

q(xt|xT
0 , y

T
0 )∑

k q(xt|x(k)
0 , y

(k)
0 )

≤ B

2
(q(yH) q(yT ))β exp(−||xH

0 − xT
0 ||22

8σ2
t

). (9)

As you can see from the proposition, the transition strength is determined by the L2 distance rep-
resented by a Gaussian kernel between two samples and the product of label probability powered
by β. In the perspective of Eq. (7) with algorithm T2H, when β = 1, The transfer strength is
constrained by the product of the q(y) of the head and tail classes, which is relatively a small value.
Therefore, employing a Batch Re-sampling strategy during training, which equalizes the appearance
probability of each category, can significantly enhance the head-to-tail transfer.

Besides, in unconditional generation, the training data q(x0) exhibits a long-tail distribution dur-
ing the training process. As a result, If we directly use the results from the score estimated in
Eq. (5), then the generated p(x0) will also follow a long-tail distribution. The frequent occurrence
of head samples will lead to unconditional scores being dominated by the score of head samples.
To intuitively illustrate the necessity of using the Batch Re-sample, we employed a toy example to
illustrate the phenomenon of head class dominance in long-tail unconditional generation, as shown
in Figure. 4. The Batch-Re-sample could also alleviate this issue. More can be found in Appendix. J.

6 4 2 0 2 4 6
X

6

4

2

0

2

4

6

Y

Figure 4: A toy example for simulating the score
distribution. The red and blue points denote head
and tail samples, respectively.

Here, we follow the common assumption in
the long tail recognition: the balanced distri-
bution and initial long tail distribution are re-
lated by sharing the same conditional probabil-
ity q(x|y) = q⋆(x|y) (Zhang et al., 2013).

H2T, Full. In the former analysis, in order to
augment the tail class, we propose a method de-
noted as noisy Tail to clean Head (T2H). Con-
versely, there would exist a method of H2T de-
noting noisy Head to clean Tail. In H2T, the
weight of score towards target tail samples is
improved corresponding to smaller β in Eq. (7),
eg. β = −1, as the inverse value q(y) for the
tail class is larger than the head class. Conse-
quently, for a noisy head sample, the contribu-
tion of the tail sample targets are enhanced. In
addition to H2T and T2H, if we do not assess
the probabilities of transferred labels, this mode
is denoted as ’Full’ (means allowing both trans-
fer directions).

Connection with CBDM (Qin et al., 2023). The CBDM has employed a score aligning loss in
the training stage: 1

|Y|
∑

y′∈Y t||ϵθ(xt, y) − ϵθ(xt, y
′)||2. The conditional score with label y of xt

is regularized with an another conditional score with label y′. The aligned strength is weighted
with the diffusion time t. We could further prove that the optimal score of CBDM could be writ-
ten as a weighted sum of the initial denoising score and an adjustment term, which is similar to
Eq. (6). When the diffusion model converges, the optimal minimizer ϵ∗(xt, y) for the CBDM loss:
LCBDM (xt, y, t, ϵ) = ||ϵθ(xt, y)− ϵ||2+ τt

|Y|
∑

y′∈Y ||ϵθ(xt, y)− ϵθ(xt, y
′)||2 could be denoted as:

ϵ∗(xt, y) =
1

1+tτ ϵ+
t τ

(1+t τ) |Y|
∑

y′ ϵθ(xt, y
′). where the proof is provided in Appendix. D. The op-

eration also can be considered as augmenting the tail class with the head with labels. The difference
is that the reference of our method is obtained from data, whereas CBDM’s reference is based on the
predictions and condition capacity of the model that may cause biased scores, as we have discussed
in Section. 1. Our method possesses greater robustness besides the state-the-of-the-art performance.

4 EXPERIMENTS

Experimental Setup. We started by selecting two widely utilized datasets in the field of image syn-
thesis, namely CIFAR10/CIFAR100, with their long-tailed versions CIFAR10LT and CIFAR100LT.
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Table 1: Ablation study for both conditional and unconditional generation on CIFAR10LT.

Model Conditional Batch Re-Sample T2H H2T Full FID (↓) IS (↑)
A ✓ 25.31±0.12 7.01±0.02

B ✓ 16.92±0.17 8.15±0.03

C ✓ ✓ 16.85±0.10 8.16±0.02

D ✓ ✓ 16.78±0.09 8.11±0.05

E ✓ ✓ 16.09±0.11 8.27±0.02

F ✓ 10.72±0.23 9.37±0.03

G ✓ ✓ 10.20±0.13 9.65±0.01

H ✓ ✓ ✓ 8.20±0.09 9.77±0.01

I ✓ ✓ ✓ 7.52±0.12 9.73±0.02

J ✓ ✓ ✓ 6.89±0.09 9.75±0.05

The construction of CIFAR10LT and CIFAR100LT follows the methodology proposed in Cao et al.
(2019) , wherein the size of each category exponentially decreases with its category index, adher-
ing to an imbalance factor of imb = 0.01. For the CIFAR10LT dataset, we also implement a more
skewed version with the imbalance factor of imb = 0.001. Two commonly used metrics for image
generation are adopted namely Frechet Inception Distance (FID) (Heusel et al., 2017) and Inception
Scores (IS) (Salimans et al., 2016). During the inference time, we generate 50k images for the eval-
uation of the metrics. A DDIM sampler (Song et al., 2020a) is utilized with 100 steps of 10 steps
skip comparison with initial DDPM (Ho et al., 2020) 1000 steps.

Our training schedules are strictly follows the implementation of CBDM (Qin et al., 2023), which
follows the DDPM settings. The experiments are conducted with two settings corresponding to the
methods, unconditional generation and conditional generation. For the unconditional generation,
we only adjust the training strategy with no label information injected into the diffusion model for
optimization. At the inference stage, the unconditional diffusion model is asked to generate 50k
images freely. For the conditional generation, there is label information injected into the diffusion
model in the training stage. While at the inference stage, the diffusion model is asked to generate
50k/L images for each class where L is the number of classes.

Table 2: Comparison with other long tail generation methods

Datasets with different imb factors
CIFAR10LT CIFAR100LT

Imb factor 0.01 Imb factor 0.001 Imb factor 0.01

# Metrics FID (↓) IS (↑) FID (↓) IS (↑) FID (↓) IS (↑)

CBGAN (Rangwani et al., 2021) 37.23 6.01 46.61 5.77 33.01 7.04
gSR-GAN (Rangwani et al., 2022) 12.86 8.56 38.71 6.89 13.96 10.01

DDPM (Ho et al., 2020) 10.72 9.37 15.00 9.16 10.25 12.96
CBDM (Qin et al., 2023) 7.27 9.37 12.71 9.01 7.82 12.40

Ours (DDPM+T2H) 6.89 9.75 11.56 9.17 6.68 12.94

Ablation study. We conduct both conditional and unconditional generation experiment on
CIFAR10LT, the strategies that have been discussed are applied to a base DDPM uncondi-
tional/conditional generation model. As shown in the Table 1, in an unconditional generation, the
Batch Re-sample with H2T and T2H could improve the performance, where H2T is more effective
as we discussed in the former section. In a conditional generation, T2H is more efficient than H2T
and ’Full’ since improving the contribution of head samples for the noisy tail sample could enhance
the diversity of tail classes and promoting the overall generation performance.

Table 3: Results on TinyImageNet200LT
datasets with diffusion baselines

Method FID IS

Base DDPM 19.24 18.20
CBDM 18.07 18.01

Ours + T2H 17.81 18.12

Comparison with other methods. We conduct a
conditional generation, on CIFAR10LT, CIFAR100LT
dataset. And we do a comparison with two GAN-
based long-tail generation methods CBGAN (Rang-
wani et al., 2021) and gSR-GAN (Rangwani et al.,
2022) and one diffusion-based methods CBDM. The
results are shown in Table 2.
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As illustrated in the Table 2, in the comparative analysis of conditional generation, the T2H method
achieved the best performance of 6.89 FID score, surpassing base DDPM models with 3.83 and
CBDM with 0.38. In a more skewed version of CIFAR10LT with an imbalanced factor of 0.001,
T2H has achieved more than 1.0 FID improvements compared with CBDM. Under the CIFAR100LT
benchmark, our method has also achieved more than 1.0 FID than the CBDM. The results have
shown that our method has obtained a further improvement in the diffusion model on the long-tailed
distribution, illustrating a more effective calibration and augmentation from data distribution than
from the model prediction.

We also conduct experiments on a dataset TinyImageNet200LT with more classes and higher reso-
lution, which is the long tail version of TinyImageNet200 (Tavanaei, 2020). The metric is based on
10k generated images referenced with its validation set, as shown in Table. 3

H2T

T2H

Figure 5: FID scores versus different β
value. The performance of H2T (uncon-
ditional) and T2H (conditional) is also
marked on the figure as pentagram.

T2H and H2T relation with different β value. For the
purpose of validating the assumption with Eq. (7), we di-
rectly utilize the formula to calculate psel(z) instead of
H2T and T2H. As shown in Figure. 5, in the case of un-
conditional generation, the generation performance im-
proves as the β increases. Conversely, in the case of con-
ditional generation, the generation performance deterio-
rates as the β increases.

Training Robustness of our method. In order to achieve
better performance for image generation, a diffusion
model is required to train for a long time. Due to various
forms of data imbalance, which is essentially the long-tail
nature of the data, the model tends to overfit and conse-
quently leads to a decrease in performance, as observed in
Figure 6. This phenomenon is evident in both conditional
and unconditional diffusion model training without any
additional processing. However, when employing CBDM
in conditional generation, this situation can be mitigated
to some extent. However, as training progresses, CBDM augmentation heavily relies on the model’s
prediction for other labels, so this phenomenon still exists. Nevertheless, our method effectively
suppresses the issue and stabilizes performance in the long-time training process.
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(a) Conditional Generation
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32.5

35.0
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DDPM Base
DDPM+H2T

(b) Unconditional Generation

Figure 6: FID metric versus the long time training process on CIFAR10LT dataset. Our method
could achieve better performance and stabilize the generation quality.

Transfer Probability with diffusion time. We make a study on selecting probability psel(z)
in Eq. (8) with diffusion time. The transfer probability

∑
z ̸=i psel(z), which denotes shifting the

denoise target in the training stage, is counted and calculated with 100k samples perturbed with
levels of noise corresponding to different diffusion times within a mini-batch. As shown in Figure. 7,
when the diffusion step size is between 500 and 800, the probability of transferring the denoise target
increases from 0 to 1 as the step size increases. If the step size exceeds 800, then the transfer will

8
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With 
Transfer

No
Transfer

Figure 7: The left subfigure is the transfer probability versus diffusion time. The right subfigure
shows the FID scores with different transfer cutting time.

occur with an approximately 1.0 probability. We also restrict the transfer cutting step, denoting that
the target transfer (T2H, H2T) is only allowed below this diffusion step. The FID scores decrease
dramatically for both conditional and unconditional generation with a cutting time range from 500-
800, which is consistent with the observation of high variance phase in Xu et al. (2023).

5 RELATED WORK

Diffusion Models. For the diffusion generation model, Ho et al. (2020) firstly announced that
the training of the model is accomplished by utilizing a weighted variational bound. Song et al.
(2020b) proposed an alternative approach to constructing a diffusion model, which involves utilizing
a stochastic differential equation (SDE) that gradually injects noise to smoothly transform a complex
data distribution into a known prior distribution. Karras et al. (2022) presents a design space that
distinctly delineates the concrete design choices for former works. As for the diffusion process,
Xu et al. (2023) has observed three phases with distinct behaviors affecting the generation diffusion
model. Raya & Ambrogioni (2023) demonstrate that the diffusion process could be modeled in a
manner analogous to symmetry breaking in physics.

Long Tail Recognition. Long tail recognition refers to the task of accurately recognizing and clas-
sifying rare or infrequently occurring classes in a given dataset together with frequently occurring
classes (Zhou et al., 2022). There are several approaches to address the problem, including re-
weighting (Huang et al., 2016), logit adjustment (Menon et al., 2020; Zhou et al., 2023), robust
distributional matching (Zheng et al., 2023a; Chen et al., 2024), and knowledge transfer (Wang
et al., 2017; Chen et al., 2022; 2023b). Cui et al. (2019) declare that as the number of samples
increases, the diminishing phenomenon suggests that there is a decreasing marginal benefit for a
model to extract additional information from the data due to the presence of information overlap.

Long Tail Generation. The objective of long tail generation is to generate a more balancing and
diverse dataset training with a long tail dataset. CB-GAN (Rangwani et al., 2021) has used a regular-
izer that makes use of a pretrained classifier in the training stage to ascertain the balance learning of
all classes in the dataset. gSR-GAN (Rangwani et al., 2022) observes that the performance decline
in long tail generation primarily occurs because of class-specific mode collapse in tail classes which
correlated with the spectral explosion of the conditioning parameter matrix and proposes a corre-
sponding group spectral regularizer. CBDM (Qin et al., 2023) makes use of a distribution adjustment
regularizer in the training stage for the purpose of augmenting the tail classes.

6 CONCLUSION

The main challenge for the long-tail diffusion generation is the lack of diversity for the tail class
generation. To tackle the challenge, based on the multi-target characteristic of denoising score, a
T2H augmentation for the estimation of noisy tail samples is achieved improving the score contribu-
tion of head samples in the reference batch. At the same time, the Batch Re-sample operation helps
alleviate the dominant effect of head samples on the scores and promote head-to-tail transfer. The
experiments are conducted to validate our approach on multiple benchmark datasets, demonstrating
effectiveness compared with baseline methods and robustness versus training time.

9
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A THE EXPECTATION FORMULATION OF OPTIMAL SCORE FOR xt.

The optimal score for xt could be calculated as :

∇xt
log q(xt) = Eq(x0|xt)∇xt

log q(xt|x0)

Proof A.1 Based on Bayes theorem and definition of expectation:

∇xt
log q(xt) =

1

q(xt)
∇xt

q(xt)

=
1

q(xt)
∇xt

∫
q(xt|x0)q(x0)dx0

=

∫
q(x0)

q(xt)
∇xt

q(xt|x0)dx0

=

∫
q(xt|x0) q(x0)

q(xt)
∇xt log q(xt|x0)dx0

=

∫
q(xt, x0)

q(xt)
∇xt

log q(xt|x0)dx0

=

∫
q(x0|xt)∇xt

log q(xt|x0)dx0

= Eq(x0|xt)∇xt
log q(xt|x0)

B THE SCORE FOR THE CONDITIONAL GENERATION

The optimal score for xt given y could be calculated as:

∇xt
log q(xt|y) ≈

N∑
i=1

q(xt|x(i)
0 , y)∑

j q(xt|x(j)
0 , y)

∇xt
log q(xt|x(i)

0 , y); (x
(i)
0 , y

(i)
0 ) ∼ q(x0, y0) (10)

Proof B.1
∇xt log q(xt|y) = Eq(x0|xt,y)∇xt log q(xt|x0, y)

We use importance sampling:

Eq(x0|xt,y)∇xt
log q(xt|x0, y) =

∑
x0∼q(x0|y)

q(x0|xt, y)

q(x0|y)
∇xt log q(xt|x0, y) (11)

since conditional probability formula:

q(x0|xt, y)

q(x0|y)
=

q(xt|x0, y)q(x0|y)
q(xt|y)q(x0|y)

=
q(xt|x0, y)

q(xt|y)
(12)

Compared with unconditional generation, we here calculate q(xt|y) as q(xt|y) =∫
q(xt|x0, y)q(x0|y)dx0, we utilize Monte-Carlo sample as:

q(xt|y) =
∑
j

q(xt|x(j)
0 , y) x

(j)
0 ∼ q(x0|y) (13)

We substitute the Equation into the Eq. (12):

1

N

∑
x
(i)
0 ∼q(x0|y)

q(xt|x(i)
0 , y)∑

j q(xt|x(j)
0 , y)

∇xt
log q(xt|x(i)

0 , y) (14)

Here, we want to augment the distribution q(x0|y) for a larger generation diversity. Here we analyze
the (x̃

(j)
0 , y) that could not be sampled during the score estimation stage in the Eq. 14. For fixed

little threshold probability ps:

13
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i) for the small q(xt|x̃(j)
0 , y) < ps, the final scores almost are not affected by these samples.

ii) for the q(xt|x̃(j)
0 , y) ≥ ps, then we make a assumption that, there exists (x(j′)

0 , y
(j′)
0 ) that:

∇xt
log q(xt|x(j′)

0 , y
(j′)
0 ) ≈ ∇xt

log q(xt|x̃(j)
0 , y) (x

(j′)
0 , y

(j′)
0 ) ∼ q(x0, y0). (15)

We make a little justification of the assumption. Suppose xt is obtained by adding sampled noise
with probability p1 to (x1

0, y), then we consider another sample (x̃2
0, y) ∼ q(x0|y) with probability

q(xt|x̃2
0, y) ≥ ps. Under the q(x0|xt, y) ∝ C exp(− ||x0−xt||22

2σ2
t

). We could easily check the similar-
ity between x1 and x̃2

0, ||x1 − x̃2
0||22 ≤ −2σ2

t (log p1 + log ps) following the similar procedure in
Proposition. G.1. x̃2

0 lies in a ball with radius r = −2σ2
t (log p1 + log ps) center at x1.

If there exists a (x2′

0 , y2
′

0 ) ∼ q(x0, y0) in the ball, which could be sampled during the training stage
with a another label y2

′

0 . We could approximately substitute x̃2
0 with x2′

0 for probability and score.
The substitution error of probability could be bounded with the |q(xt|x2′

0 , y2
′

0 ) − q(xt|x̃2
0, y)| ≤

max(q(xt|x̃2
0, y), q(xt|x2′

0 , y2
′

0 ))(log p1 + r
2σ2

t
). And the substitution error of scores could be

bounded with ||∇xt log q(xt|x2′

0 , y2
′

0 ) − ∇xt log q(xt|x̃2
0, y)||22 ≤ r

σt
. The both substitution errors

are suppressed at larger timesteps with larger σt.

We broad the distribution of q(x0|y) to entire distribution q(x0) as reference:

∇xt
log q(xt|y) ≈

N∑
i=1

q(xt|x(i)
0 , y)∑

j q(xt|x(j)
0 , y)

∇xt
log q(xt|x(i)

0 , y); (x
(i)
0 , y

(i)
0 ) ∼ q(x0, y0) (16)

Note that in practice we can evaluate the density with q(xt|x(j)
0 ) as the diffusion process is not related

to the label. So we here abuse the notation a little with substituting q(xt|x(j)
0 , y) with q(xt|x(j)

0 , y
(j)
0 )

to represent the correspondence between x
(j)
0 and y

(j)
0 :

∇xt
log q(xt|y) ≈

N∑
i=1

q(xt|x(i)
0 , y)∑

j q(xt|x(j)
0 , y

(j)
0 )

∇xt
log q(xt|x(i)

0 , y); (x
(i)
0 , y

(i)
0 ) ∼ q(x0, y0) (17)

Note that the sampling is initially operated with label y instead of y(j)0 .

C THE PROOF FOR THE PROPOSITION 3.1

Proposition C.1 Let q(xt|x(i)
0 , y

(i)
0 ) ∝ B q(y

(i)
0 )β exp(− ||xt−x

(i)
0 ||22

2σ2
t

), then:

E
q(xt|x(i)

0 ,y
(i)
0 )

q(xt|x(j)
0 , y

(j)
0 )∑

k q(xt|x(j)
0 , y

(j)
0 )

≤ B

2
(q(y

(i)
0 ) q(y

(j)
0 ))β exp(−||x(i)

0 − x
(j)
0 ||22

8σ2
t

)

Proof C.1

E
q(xt|x(i)

0 ,y
(i)
0 )

q(xt|x(j)
0 , y

(j)
0 )∑

k q(xt|x(j)
0 , y

(j)
0 )

=

∫
q(xt|x(i)

0 , y
(i)
0 )q(xt|x(j)

0 , y
(j)
0 )∑

k q(xt|x(j)
0 , y

(j)
0 )

dxt

while the term in the integral of the right side could be transformed into:

q(xt|x(i)
0 , y

(i)
0 )q(xt|x(j)

0 , y
(j)
0 )∑

k q(xt|x(j)
0 , y

(j)
0 )

≤
∫

q(xt|x(i)
0 , y

(i)
0 )q(xt|x(j)

0 , y
(j)
0 )

q(xt|x(i)
0 , y

(i)
0 ) + q(xt|x(j)

0 , y
(j)
0 )

=
1

2

∫
2

1

q(xt|x(i)
0 ,y

(i)
0 )

+ 1

q(xt|x(j)
0 ,y

(j)
0 )

≤ 1

2

√
q(xt|x(i)

0 , y
(i)
0 )p(xt|x(j)

0 , y
(j)
0 )
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Here we substitute the assumption q(xt|x(i)
0 , y

(i)
0 ) ∝ B q(y

(i)
0 )β exp(− ||xt−x

(i)
0 ||22

2σ2
t

) into the for-
mula:

1

2

√
q(xt|x(i)

0 , y
(i)
0 )q(xt|x(j)

0 , y
(j)
0 ) =

B

2

√
q(y

(i)
0 )β exp(−||xt − x

(i)
0 ||22

2σ2
t

q(y
(j)
0 )β exp(−||xt − x

(j)
0 ||22

2σ2
t

)

=
B

2
(q(y

(i)
0 )q(y

(j)
0 ))β

√
exp(−||xt − x

(i)
0 ||22 + ||xt − x

(j)
0 ||22

2σ2
t

)

Here we take a twice look at the integral and exclude terms unrelated to xt:∫
B

2
(q(y

(i)
0 )q(y

(j)
0 ))β

√
exp(−||xt − x

(i)
0 ||22 + ||xt − x

(j)
0 ||22

2σ2
t

)dxt

=
B

2
(q(y

(i)
0 )q(y

(j)
0 ))β

∫
exp(−||xt − x

(i)
0 ||22 + ||xt − x

(j)
0 ||22

4σ2
t

)dxt

We will extract the numerator term from the exponential:

||xt − x
(i)
0 ||22 + ||xt − x

(j)
0 ||22 = (xt − x

(i)
0 )T (xt − x

(i)
0 ) + (xt − x

(j)
0 )T (xt − x

(j)
0 )

= 2xtx
T
t − 2xT

t (x
(i)
0 + x

(j)
0 ) + x

(i)T
0 x

(i)
0 + x

(j)T
0 x

(j)
0

= 2||xt −
x
(i)
0 + x

(j)
0

2
||22 + x

(i)T
0 x

(i)
0 + x

(j)T
0 x

(j)
0 − (x

(i)
0 + x

(j)
0 )T (x

(i)
0 + x

(j)
0 )

2

Since the first term related to xt could be integral to a constant K which do not include x(i)
0 and x

(j)
0 .∫

exp(−
||xt − x

(i)
0 +x

(j)
0

2 ||22
2σ2

t

)dxt = K

owing to the Gaussian distribution normalization. Then the left term:

x
(i)T
0 x

(i)
0 + x

(j)T
0 x

(j)
0 − (x

(i)
0 + x

(j)T
0 ) (x

(i)
0 + x

(j)
0 )

2
=

1

2
(x

(i)T
0 x

(i)
0 + x

(j)T
0 x

(j)
0 − 2 x

(i)T
0 x

(j)
0 )

=
1

2
||x(i)

0 − x
(j)
0 ||22

Substitute in the initial formula, we obtain:

E
q(xt|x(i)

0 ,y
(i)
0 )

q(xt|x(j)
0 , y

(j)
0 )∑

k q(xt|x(j)
0 , y

(j)
0 )

≤ B

2
(q(y

(i)
0 )q(y

(j)
0 ))β

∫
exp(−||xt − x

(i)
0 ||22 + ||xt − x

(j)
0 ||22

4σ2
t

)dxt

=
B

2
(q(y

(i)
0 )q(y

(j)
0 ))β

∫
exp(−

||xt − x
(i)
0 +x

(j)
0

2 ||22
2σ2

t

)dxt × exp(−||x(i)
0 − x

(j)
0 ||22

8σ2
t

)

=
BK

2
(q(y

(i)
0 ) q(y

(j)
0 ))β exp(−||x(i)

0 − x
(j)
0 ||22

8σ2
t

)

The K is absorbed in constant B, we finish the proof.

D THE RELATION WITH CBDM LOSS AND ANALYSIS

Proposition D.1 When the diffusion model converges, the optimal minimizer ϵ∗(xt, y) for the
CBDM loss:

LCBDM (xt, y, t, ϵ) = ||ϵθ(xt, y)− ϵ||2 + τt

|Y|
∑
y′∈Y

||ϵθ(xt, y)− ϵθ(xt, y
′)||2

could be denoted as:

ϵ∗(xt, y) =
1

1 + tτ
ϵ+

t τ

(1 + t τ) |Y|
∑
y′

ϵθ(xt, y
′)
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Proof D.1 When the diffusion model converges, for specific label y, the score ϵθ(xt, y
′) for other

label y′ is fixed. When the loss is minimized:

LCBDM (xt, y, t, ϵ) = ||ϵθ(xt, y)− ϵ||2 + τt

|Y|
∑
y′∈Y

||ϵθ(xt, y)− ϵθ(xt, y
′)||2

= ϵθ(xt, y)
T ϵθ(xt, y) + ϵT ϵ− 2ϵθ(xt, y)

T ϵ+

τt

|Y|
∑
y′∈Y

(ϵθ(xt, y)
T ϵθ(xt, y) + ϵθ(xt, y

′)T ϵθ(xt, y
′)− 2ϵθ(xt, y)

T ϵθ(xt, y
′))

= (1 + τt)ϵθ(xt, y)
T ϵθ(xt, y)− 2ϵθ(xt, y)

T (ϵ+
τt

|Y|
∑
y′∈Y

ϵθ(xt, y
′)) + Const

where the Const has no relation with ϵθ(xt, y). The term related with ϵθ(xt, y) could be expressed
as a quadratic form:

LCBDM (xt, y, t, ϵ) = (1 + τt)ϵθ(xt, y)
T ϵθ(xt, y)− 2ϵθ(xt, y)

T (ϵ+
τt

|Y|
∑
y′∈Y

ϵθ(xt, y
′))

= (1 + τt)[ϵθ(xt, y)
T ϵθ(xt, y)− 2 ϵθ(xt, y)

T
ϵ+ τt

|Y|
∑

y′∈Y ϵθ(xt, y
′)

(1 + τt)
]

= (1 + τt)[||ϵθ(xt, y)−
ϵ+ τt

|Y|
∑

y′∈Y ϵθ(xt, y
′)

(1 + τt)
||22] + const′

When the LCBDM converges to the minimum, the L2 norm should approximately near zero, so that
we have:

ϵ∗(xt, y) ≈
1

1 + tτ
ϵ+

t τ

(1 + t τ) |Y|
∑
y′

ϵθ(xt, y
′)

Analysis This approach has two limitations. Firstly, referring to scores from other labels requires
training the entire model within a conditional generation framework, thus restricting its applicability.
Secondly, relying on scores from other labels for the same input (xt) introduces potential biases,
particularly when there is a substantial semantic difference between the two classes. This can lead
to some degree of offset. In contrast, our method addresses these limitations. First, it can be used in
both conditional and unconditional generation scenarios. Second, we utilize the inherent similarity
of data in the L2 space where the diffusion model operates. For example, in Figure. 2, we consider
the similarity between the red airplane and the red car, ensuring that our enhancement is more
logically grounded.

E CLASS-WISE FID SCORES OF T2H COMPARISON TO BASE DDPM.

We calculate the FID score using 5k images of T2H and base DDPM for each class on cifar10LT
datasets. The final column of the table is overall performance utilizing 50k images.

Table 4: Class-wise FID scores of T2H comparison to base DDPM.

Class Airpl Auto Bird Cat Deer Dog Frog Horse Ship Truck All

Pcls 0.403 0.241 0.145 0.086 0.052 0.031 0.018 0.01 0.0067 0.004 1.0
Base 31.49 15.20 40.81 32.32 32.32 36.34 40.47 23.20 26.31 23.31 10.72
T2H 31.84 14.58 19.42 28.32 18.31 26.83 29.90 17.70 21.04 22.82 6.89(-3.83)

We have also modified the asssignment of head and tail classes based on whether they are animals
or vehicles. As shown in the table below, By altering the assignment of classes, our method demon-
strates a greater improvement compared to the baseline.
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Table 5: Class-wise FID scores of T2H comparison to base DDPM with shifted categories.

Class Horse Bird Frog Deer Dog Cat Truck Airpl Auto Ship All

Pcls 0.403 0.241 0.145 0.086 0.052 0.031 0.018 0.01 0.0067 0.004 1.0
Base 20.19 21.99 22.45 20.57 38.07 32.73 24.87 49.24 29.48 39.12 11.79
T2H 20.16 18.52 19.83 16.23 24.60 27.50 14.73 30.08 20.99 21.41 7.15(-4.64)

F THE IMPACT OF DATASET IMBALANCE ON PERFORMANCE.

We have investigated the impact of dataset balance on performance. As illustrated in the following
table, we computed the FID scores using different reference sets: one balanced and the other long-
tailed sampled. It is observable that, despite the long-tail dataset consisting of real images, its
performance metrics are inferior to those of the balanced generated dataset, due to its significant
imbalance.

Table 6: The FID (IS) scores for imbalance real dataset and generation dataset. Bal means balanced
dataset or generation, ref means reference real dataset

Bal/no Bal No Bal Bal

Method No bal ref T2H Base T2H Base

Bal ref 26.22(5.80) 45.79(7.04) 46.66(7.03) 8.38(9.62) 12.95(9.52)
No-Bal ref - 28.68 30.34 33.19 38.81

G THE VALIDATION OF TRANSFERRING TARGETS WITH T2H AND H2T.

In this section, we aim to verify the reliability and correctness of the transfer target. Suppose we
have a clean sample x0, perturbed with noise ϵ ∼ N (0, σ2

t ) obtaining the noisy sample xt with
probability pt = B exp[− ||x0−xt||22

2σ2
t

] where B ∝ 1
σt

is some normalizing constant.

Then xt is involving the T2H or H2T algorithm and transfer the target as x
(z)
0 with probability

psel(z) =
q(xt|x(z)

0 ,y
(z)
0 )∑

j q(xt|x(j)
0 ,y

(j)
0 )

where q(xt|x(z)
0 , y

(z)
0 ) = B exp[− ||x(z)

0 −xt||22
2σ2

t
] also calculated with

Gaussian kernel. Firstly, let us discuss the similarity of x0 and x
(z)
0 measured with ||x0 − x

(z)
0 ||22

with following proposition.

Proposition G.1 The L2 similarity with x0 and x
(z)
0 bounded by the pt and psel(z):

||x0 − x
(z)
0 ||22 ≤ −2σ2

t (log(pt psel(z)) + log(pt + psel(z)) + 2 log σt). (18)

Proof G.1

||x0 − x
(z)
0 ||22

1
≤ −2σ2

t (−
||x(z)

0 − xt||22
2σ2

t

− ||x0 − xt||22
2σ2

t

)

= −2σ2
t (log exp[−

||x(z)
0 − xt||22
2σ2

t

] + log exp[−||x0 − xt||22
2σ2

t

])

= −2σ2
t (log

pt psel(z)
∑

j q(xt|x(j)
0 , y

(j)
0 )

B2
)

2
≤ −2σ2

t (log(pt psel(z)) + log(pt + psel(z)) + 2 log σt)

where 1 involves utilizing the triangle inequality. And 2 comes from
∑

j q(xt|x(j)
0 , y

(j)
0 ) ≥

q(xt|x0, y0) + q(xt|x(z)
0 , y

(z)
0 ).
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As can be observed from the proposition above, the similarity x0 between and x
(z)
0 is bounded by

an upper limit. Moreover, in the sampling process, the larger the values pt and psel(z) the tighter
this bound becomes.

Furthermore, from an alternative viewpoint, we evaluate the probability of obtaining xt using a clean
x
(z)
0 within the framework of a one-to-one clean-to-noisy mapping.

Proposition G.2 The probability pzt of obtaining xt from x
(z)
0 under single denoising target sce-

nario could be:

pzt ≥ psel(z) pt
1− psel(z)

, (19)

where psel(z) comes from Equation.( 8) and q(xt|x0, y0) ∝ B exp[− ||x(z)
0 −xt||22
2σ2

t
]

Proof G.2

psel(z) =
q(xt|x(z)

0 , y
(z)
0 )∑

j q(xt|x(j)
0 , y

(j)
0 )

≤ q(xt|x(z)
0 , y

(z)
0 )

q(xt|x0, y0) + q(xt|x(j)
0 , y

(j)
0 )

,

because pt = q(xt|x0, y0) and pt = q(xt|x(z)
0 , y

(z)
0 ) under the assumption of Equation.( 8) so that:

psel(z) ≤
pzt

pzt + pt
so we obtain:

pzt ≥ psel(z) pt
1− psel(z)

.

We have obtained a lower bound for pzt . If we assume pt ≈ psel(z) ≈ 0.5 then the pzt ≥ 0.5 where
is also valid noise-clean pair for xt → x

(z)
0 under the single target scenario.

H EXPERIMENTS ON IMAGENETLT DATASET

We conduct our method on large scale datasets ImagenetLT, the performance is shown in the follow-
ing Table. 7. We generate 20k images with 1000 classes and use the balanced validation set with 20k
images as the reference set for the calculation of FID scores. As shown in the Table, Our results on
large-scale are consistent to the observations on small-scale data, which validates the effectiveness
of our method at scale.

Table 7: Experiments on large scale dataset on ImagenetLT

Method FID IS

base DDPM 26.95 15.99
CBDM 28.12 15.86

T2H (Ours) 25.42 15.96

I FINETUNING EXPERIMENTS FROM NORMAL TRAINED MODEL

We also conduct the experiments of finetuning with the model pre-trained with normal denoising
loss function. The finetuning starting step is ranging from 100k to 500k, and the results with no
pretriaining and no finetuning are also provided. The conditional model is finetuned with T2H
strategy, while the unconditional model is finetuned with H2T strategy.

As shown in the table, finetuning is capable of further improving model performance based on pre-
training. However, as the number of pretraining steps increases, the extent of improvement gradually
diminishes and eventually becomes stable.
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Table 8: Finetuning from normal pretrained models with different training steps.

Pretrained Pretrained Steps No finetune No pre-train 100k 200k 300k 400k

Base Uncond
FID 25.31 16.09 18.13 20.31 21.65 21.10
IS 7.01 8.27 7.93 7.86 7.32 7.33

Base Cond
FID 10.20 6.89 7.48 7.87 8.01 8.12
IS 9.25 9.75 9.64 9.63 9.62 9.56

J IMPLEMENTATION DETAIL OF TOY GAUSSIAN EXAMPLES IN FIGURE. 4

We random sample 10k samples from distribution N ((0, 4), 0.2I) as head samples {x(Hi)
0 }, and

0.1k samples from N ((0,−4), 0.2I) simulating tail samples {x(Tj)
0 }. The empirical distribution of

the overall dataset could be denoted as:

pdata(x) =
∑
i

δ(x− x
(Hi)
0 ) +

∑
j

δ(x− x
(Tj)
0 )

Simulating the forward diffusion process, we convolute the empirical distribution with Gaussian
noise N (0, σ2

t I):

pσt
(xt) = pdata(x) ∗ N (0, σ2

t I) =
∑
i

N (xt;x
(Hi)
0 , σ2

t I) +
∑
j

N (xt;x
(Tj)
0 , σ2

t I) (20)

The score estimation is calculated as ∇xt
log pσt

(xt), we substitute the result in Eq. (20):

∇xt log pσt(xt) = ∇xt log(
∑
i

N (xt;x
(Hi)
0 , σ2

t I) +
∑
j

N (xt;x
(Tj)
0 , σ2

t I))

=
1∑

i N (xt;x
(Hi)
0 , σ2

t I) +
∑

j N (xt;x
(Tj)
0 , σ2

t I)
×

∇xt
(
∑
i

N (xt;x
(Hi)
0 , σ2

t I) +
∑
j

N (xt;x
(Tj)
0 , σ2

t I))

= − 1

σ2
t

∑
i(xt − x

(Hi)
0 )N (xt;x

(Hi)
0 , σ2

t I) +
∑

j(xt − x
(Tj)
0 )N (xt;x

(Tj)
0 , σ2

t I)∑
i N (xt;x

(Hi)
0 , σ2

t I) +
∑

j N (xt;x
(Tj)
0 , σ2

t I)

The last step is because of:

∇xtN (xt;x, σ
2
t I) = ∇xtC exp(−||xt − x||22

2σ2
t

)

= −C exp(−||xt − x||22
2σ2

t

)∇xt

||xt − x||22
2σ2

t

= − 1

σ2
t

N (xt;x, σ
2
t I)(xt − x)

The number of points in the head class is 100 times greater than the tail class, resulting in an imbal-
ance factor of 0.01. It can be observed that the score distribution across the entire space is dominated
by the head class, leading to a highly imbalanced dataset generation.

K FUTURE WORK

Now, diffusion models are widely applied to the generation and learning research in multimodal
fields. Because the definition of the long-tail problem is not yet clear in the context of multimodal
data, more efforts can be used to define the data defects in multimodal data (Chen et al., 2023a) such
as long tail distribution, how to solve the long-tail generation problem in multimodal scenarios, and
more downstream tasks in multimodal contexts (Zhang et al., 2024).
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L VISUALIZATION RESULTS

Figure 8: Visualization of generation results of CIFAR10LT dataset with T2H conditional generation

20



Published as a conference paper at ICLR 2024

Figure 9: Visualization of generation results of CIFAR100LT dataset with T2H conditional genera-
tion
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Figure 10: Visualization of generation results of TinyImageNet200 dataset with T2H conditional
generation
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