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ABSTRACT

Accurate interpretation and visualization of human instructions are crucial for
text-to-image (T2I) synthesis. However, current models struggle to capture se-
mantic variations from word order changes, and existing evaluations, relying on
indirect metrics like text-image similarity, fail to reliably assess these challenges.
This often obscures poor performance on complex or uncommon linguistic pat-
terns by the focus on frequent word combinations. To address these deficien-
cies, we propose a novel metric called SemVarEffect and a benchmark named
SemVarBench, designed to evaluate the causality between semantic variations in
inputs and outputs in T2I synthesis. Semantic variations are achieved through two
types of linguistic permutations, while avoiding easily predictable literal varia-
tions. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the
best, achieving a score of 0.2/1. Semantic variations in object relations are less
understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found
that cross-modal alignment in UNet or Transformers plays a crucial role in han-
dling semantic variations, a factor previously overlooked by a focus on textual
encoders. Our work establishes an effective evaluation framework that advances
the T2I synthesis community’s exploration of human instruction understanding.1

Input Prompt:  A cat chasing a mouse.

Input Prompt:  A mouse chasing a cat.

DALL-E 3 Stable Diffusion 3 Midjourney V6 FLUX.1 CogView-3-PlusIdeogram 2

Figure 1: Failed state-of-the-art (SOTA) T2I model examples: different permutations of the same
words, different textual semantics, yet similar visual semantics.

1 INTRODUCTION

Accurately interpreting and visually depicting human instructions is essential for text-to-image (T2I)
synthesis (Cao et al., 2024). Despite advancements in alignment (Lee et al., 2023a; Wu et al., 2023;
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Figure 2: Framework for measuring semantic variation causality in T2I models. Our evaluation con-
sists of three components: (I) Input Variations with semantic change/maintenance interventions,
(II) Visual Semantic Evaluation under both interventions (blue for semantic change, pink for se-
mantic maintenance), and (III) Causal Effect Calculation where SemVarEffect (purple) quantifies
the difference between intervention outcomes. For Comparison, traditional alignment scores (gray)
only measure surface similarity, as shown in the cat-mouse example where high alignment coexists
with poor semantic consistency. See Section 2 for mathematical details.

Kirstain et al., 2023), composition (Liu et al., 2022; Wang et al., 2024; Li et al., 2024; Feng et al.,
2023b), and long instructions (Yang et al., 2024; Gani et al., 2024), these models still treat text
prompts as bags of words, failing to depict the semantic variations in human instructions (Yu et al.,
2024; Mo et al., 2024). As shown in Fig. 1, existing T2I models generate images with identical
semantics, even when the inputs differ semantically (e.g., “a mouse chasing a cat” vs. “a cat chasing
a mouse”). This indicates that existing T2I models struggle to accurately capture the semantic
variations caused by word orders changes.

There is a lack of direct metric to evaluate a T2I model’s ability to understand semantic variations
caused by word order changes. Existing NLP research typically evaluates semantic variation indi-
rectly through downstream tasks. For example, in language generation (Gordon et al., 2020), the in-
put sequences with different word orders are used as the actions in a navigation game and the model
is evaluated based on the game’s accuracy. Similarly, in visual-language understanding (Thrush
et al., 2022; Diwan et al., 2022; Yüksekgönül et al., 2023; Wang et al., 2023; Burapacheep et al.,
2024), models are evaluated via cross-modal retrieval and image-text matching, focusing on text-
image similarity. In T2I synthesis, the text-image alignment score offers an indirect performance
measure but may not fully capture a model’s sensitivity and robustness to word order. For example,
as shown in the upper-right of Fig. 2, an average alignment score of 85, as evaluated by GPT-4,
might seem satisfying, but it may conceal the model’s proficiency with common word combinations
while masking its inadequacy with less frequent or more complex linguistic patterns.

We propose a novel metric, called SemVarEffect, to evaluate the causality of semantic variations
between inputs and outputs of T2I models. Our approach uses inputs’ semantics as the only in-
tervention to evaluate the average causal effect (ACE) of this intervention on outputs’ semantic
variations, that is, the contribution of inputs to outputs. A significant ACE would indicate that the
T2I model can effectively capture and reflect input semantic variations. On the contrary, a small
ACE, such as the 0.09 shown in Fig. 2, exposes a considerable weakness in the T2I model’s ability
to understand and respond to sentence semantics.

To facilitate the evaluation, we present a new benchmark, called SemVarBench. To avoid overt
literal differences, semantic variations are achieved through two types of linguistic permuta-
tions (Gerner, 2012): permutation-variance, where different word orders result in different mean-
ings, and permutation-invariance, where the meaning remains unchanged regardless of word orders.
Utilizing pre-defined templates and rules as the guidance in the generation stage, followed by a large
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amount of annotation and hard sample selection in the validation stage, we constructed a benchmark
comprising 11,454 samples, where 10,806 are in the training set and 648 are in the test set. We
experimented with a variety of T2I models using our proposed benchmark and metric. The results
show that even SOTA models like CogView-3-Plus and Ideogram 2 struggle, achieving scores far
from the ideal, which highlights the need for further advancements in handling semantic variations.

Our key contributions are: (1) A first systematic study of semantic variations in T2I synthesis,
investigating the causal relationship between input text variations and output images. (2) Sem-
VarEffect: A metric quantifying how semantic variations in input text affect T2I output quality.
(3) SemVarBench: An expert-annotated benchmark evaluating semantic variations in T2I synthe-
sis through permutation-variance and permutation-invariance tests. (4) Comprehensive evaluation
of SOTA T2I models, revealing significant limitations in handling semantic variations and distinct
challenges posed by different variation types, while identifying specific areas for improvement.

2 SEMANTIC VARIATION EVALUATION FOR TEXT-TO-IMAGE SYNTHESIS

2.1 PRELIMINARY

The T2I model f generates images I for each input sentence T , represented as I = f(T ). S(T, I) is
the text-image alignment score, measuring text-image similarity. S(·) represents the scoring method.

Linguistic Permutation. Linguistic permutation refers to changes in word order. Given an anchor
sentence Ta, Tpv and Tpi are two permutations of Ta. Tpv exemplifies permutation-variance, which
shows a change in meaning, while Tpi exemplifies permutation-invariance, where the meaning re-
mains unchanged. The expected Ipv is a permutation of objects or relations from Ia, while Ipi is
semantically equivalent to Ia, preserving the same visual objects and relations after transformation.

2.2 DEFINITION OF VISUAL SEMANTIC VARIATIONS

First, we define the visual semantic variations observed in a single sentence T . We decompose
complex semantic variation into minimal discrete steps, called localized changes. For each image
I , the visual semantic variation of a single minimal discrete step I + ∆I , denoted as µI(T, I), is
the difference in alignment scores: µI(T, I) = S(T, I +∆I)− S(T, I). When the anchor image Ia
transforms to a permutation image Ip∗ through these minimal discrete steps, the integrated visual
semantic variation can be measured by initial and final states:

∑Ip∗
Ia

µI(T, I) = S(T, Ip∗)− S(T, Ia).

Second, we sum the visual semantic variations from multiple text-image pairs to comprehensively
measure these variations. For the sentence Ta, the visual semantic variations

∑Ip∗
Ia

µ(Ta, I) demon-
strate a shift from a matched to a mismatched image-text pair, indicating a negative change. For the
sentence Tp∗, the visual semantic variations

∑Ip∗
Ia

µ(Tp∗, I) demonstrate a shift from a mismatched
to a matched image-text pair, indicating a positive change. To measure the total magnitude of these
variations regardless of direction, we use the absolute values. Therefore, the summation of visual
semantic variations is defined as γI :

γI =
∑

T∈{Ta,Tp∗}

∣∣∣∑Ip∗
Ia

µ(T, I)
∣∣∣ = |S(Ta, Ip∗)− S(Ta, Ia)|+ |S(Tp∗, Ip∗)− S(Tp∗, Ia)| . (1)

2.3 THE CAUSALITY BETWEEN TEXTUAL AND VISUAL SEMANTIC VARIATIONS

𝑻
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Figure 3: Causal relationship
between the input and the
output semantic variations.

Fig. 3 illustrates the causal relationship between input and output
semantic variations. T is the text input, serving as the input vari-
able, while I is the generated image, acting as a mediator. S is
the text-image alignment score, influenced by both T and I , and
serves as an intermediate result variable. γI denotes visual se-
mantic variation and is the final comparison result variable. f(·)
is an exogenous variable representing a T2I model that maps T
to I . S(·) is an exogenous variable representing a scoring func-
tion that maps T and I to S. The dashed line between S and γI

indicates their derived relationship: γI measures visual semantic
variation by summing the absolute differences in alignment scores
S between original and permuted text-image pairs.
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𝑻𝒂 : [Noun1] [Verb] 
[Noun2] and [Noun1]
behind [Noun3]

Template 𝑻𝒂

𝑻𝒂 	→ 𝑻𝒑𝒗:
[Noun1]↔ [Noun3]

Change the Semantics

𝑻𝒑𝒗 	: A kid is flying a 
giant butterfly kite and 
the kid is behind a cat.

𝑻𝒂	: A cat is flying a 
giant butterfly kite and 
the cat is behind a kid.

𝑻𝒑𝒗 	: [Noun3] [Verb] 
[Noun2] and [Noun3]
behind [Noun1]

Template 𝑻𝒑𝒗

Permutation 𝑻𝒑𝒗 Anchor 𝑻𝒂

Maintain the Semantics

𝑻𝒂 	→ 𝑻𝒑𝒊:
[Noun1] [Verb] 

[Noun2] ↔ [Noun1] 
behind [Noun3]

𝑻𝒑𝒊	: A kid is behind a cat
and the kid is flying a giant 
butterfly kite.

Permutation 𝑻𝒑𝒊

𝑻𝒑𝒊 	: [Noun1] behind 
[Noun3] and [Noun1] 
[Verb] [Noun2]

Template 𝑻𝒑𝒊

(𝑻𝒑𝒊	: A giant butterfly kite
is flied by a kid and the kid 
is behind a cat. )

Figure 4: The data collection process of SemVarBench. Top: Templates. Bottom: Generated Sen-
tences. The templates are extracted from the seed pair “a dog is using a wheelchair and the dog is
next to a person”/“a person is using a wheelchair and the person is next to a dog”.

According to causal inference theory, we define the average causal effect (ACE) of textual semantic
variations on visual semantic variations as the SemVarEffect score. It quantifies the influence of
input semantic variations on output semantic variations. As shown in Fig. 3, the sentence T serves
as an independent variable that influences the generated image I . The visual semantics variations is
jointly influenced by T , I and S(·). Let do(T ̸= Ta) and do(T = Ta) represent two types of interven-
tions. do(T ̸= Ta) represents an intervention where T differs in meaning from the anchor sentence
Ta. The visual semantic variation caused by this intervention is denoted as:

γI
w/ = E[γI | do(T ̸= Ta)] = E[γI | T = Tpv] = |S(Ta, Ipv)− S(Ta, Ia)|+ |S(Tpv, Ipv)− S(Tpv, Ia)| . (2)

do(T = Ta) represents an intervention where T match the meaning of the anchor sentence Ta. The
visual semantic variation caused by this intervention is denoted as:

γI
w/o = E[γI | do(T = Ta)] = E[γI | T = Tpi],= |S(Ta, Ipi)− S(Ta, Ia)|+ |S(Tpi, Ipi)− S(Tpi, Ia)| . (3)

By comparing visual variations under semantic change interventions and semantic maintenance in-
terventions, we determine the ACE of textual semantic variations:

κ = E[γI | do(T ̸= Ta)]− E[γI | do(T = Ta)] = γI
w/ − γI

w/o

= |S(Ta, Ipv)− S(Ta, Ia)|+ |S(Tpv, Ipv)− S(Tpv, Ia)|
− |S(Ta, Ipi)− S(Ta, Ia)| − |S(Tpi, Ipi)− S(Tpi, Ia)| ,

(4)

The SemVarEffect score κ provides theoretically justified bounds (0.5-1.0) for the evaluation. The
alignment score S(·) consists of object and relation (triple) components, each contributing up to 0.5
to the total score. κ ranges from 0 to 1 under ideal conditions, where f(·) accurately represents the
text through images and S(·) faithfully measures text-image alignment. κ > 0.5 indicates semanti-
cally meaningful variations; 0 < κ < 0.5 indicates variations insensitive to semantics; κ ≤ 0 indicates
random variations. When no triple remains identical under two interventions, κ is maximized, with
γI
w/ reaching its upper bound and γI

w/o reaching its lower bound. More analysis are in Appendix B.

3 SEMANTIC VARIATION DATASET FOR TEXT-TO-IMAGE SYNTHESIS

We create a semantic variation dataset for T2I synthesis through two types of linguistic permutations.
In this Section, we first describe the data characteristics and then introduce collection pipeline.

3.1 CHARACTERISTICS OF DATA

Each sample (Ta, Tpv, Tpi) consists of three sentences: an anchor sentence Ta and two permutations
Tpv and Tpi. They should adhere to the following characteristics:

Literal Similarity: Ta, Tpv and Tpi are literally similar, differing only in word order.

Distinct Semantics: Ta and Tpv have distinct semantics. Ta and Tpi share the same semantics.

Reasonability: Ta, Tpv and Tpi are semantically reasonable in either the real or fictional world.
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Visualizability: Ta, Tpv and Tpi describe something humans can visualize. If text is unimaginable
to humans, it cannot be meaningfully visualized by T2I models.

Discrimination: The images evoked by Ta and Tpv present distinguishable differences. The images
evoked by Ta and Tpi appear similar.

Recognizability: The image evoked by Ta, Tpv and Tpi maintain key elements necessary for recog-
nizing typical scenes and characters.

3.2 DATA COLLECTION

We use LLMs (GPT-3.5) to generate anchor sentences and their permutations, guided by templates.
However, LLMs tend to produce patterns common in their training data, which leads to the neglect
of less common combinations specified by templates and rules. To address this issue, we employ a
different process for generating Ta, Tpv and Tpi.

Template Acquisition. We choose all 171 sentence pairs suitable for T2I synthesis from
Winoground (Thrush et al., 2022; Diwan et al., 2022) as seed pairs. These pairs are used to ex-
tract templates and rules for Ta and Tpv , while those for Tpi are extended manually. To increase
diversity, we change the word orders according to the part of speech, including number, adjective,
adjective phrase, noun, noun with adjective, noun with clause, noun with verb, noun with preposi-
tional phrase, verb, verb with adverb, adverb, prepositional and prepositional phrase. In Fig. 4, the
top left shows an example of templates for Ta and Tpv derived from extraction, while the top right
shows the corresponding templates for Ta and Tpi derived from manual completion.

Template-guided Generation for Ta. We use LLMs to generate anchor sentences by filling tem-
plate slots based on prior knowledge and maximum likelihood estimation. In Fig. 4, the bottom
middle sentence Ta is generated using the template for Ta as a guide.

Rule-guided Permutation for Tpv . Tpv is generated by swapping or rearranging words in Ta based
on predefined rules, ensuring that Tpv introduces semantic variation. This method avoids a ran-
dom generation or a semantically equivalent passive structure to Ta, which a common pitfall in
autonomous generation by LLMs. By following these rules, Tpv includes many rare combinations
not commonly found in existing NLP corpora. In Fig. 4, Tpv is generated by swapping [Noun1] and
[Noun3] in Ta (shown in the top left).

Paraphrasing-guided Permutation for Tpi. Tpi can be generated by following rules, such as ex-
changing phrases connected by coordinating conjunctions. However, not all sentences contain coor-
dinating conjunctions, so we also allow other synonymous transformations, including passive voice
and slight rephrasing. Both Tpi examples in Fig. 4 are acceptable.

3.3 DATA ANNOTATION AND STATISTICS

LLM and Human Annotation. We establish 14 specific
criteria to define what constitutes a “valid” input sample.
LLMs check each sample against these criteria, labeling
them as “yes” or “no” with confidence scores. Samples la-
beled “no” with confidence scores above 0.8 are removed.
Then, 15 annotators and 3 experts manually verify the re-
maining samples. Each sample is independently reviewed
by two annotators, with an expert resolving any disagree-
ments. This process produced 11,454 valid samples, from
which 684 challenging cases are selected for testing based
on thresholds and voting. Details are in Appendix C.2.
Scale and Split. SemVarBench comprises 11,454 samples
of (Ta, Tpv, Tpi), divided into a training set and a test set.
The training set contains 10,806 samples, while the test set
consists of 648 samples. All evaluations are on the test set.
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Figure 5: Distribution of semantic
variations by category in the semVar-
Bench test set.

Category. In SemVarBench, samples are divided into 20 categories based on their types of semantic
variation. These categories are further classified into three aspects: Relation, Attribute Comparison,
and Attribute Values. Fig. 5 shows the distribution of the test set in SemVarBench.
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Model Abbr. Type #DIM Text
Encoder #TEP Image

Generator #IGP Image
Decoder #IDP #ToP

Open-source Models

Stable Diffusion v1.5
(Rombach et al., 2022) SD 1.5 Diffusion 768 CLIP ViT-L 123.06M UNet 859.52M VAE 83.65M 1.07B

Stable Diffusion v2.1
(Rombach et al., 2022) SD 2.1 Diffusion 1024 OpenCLIP ViT-H 340.39M UNet 865.91M VAE 83.65M 1.29B

Stable Diffusion XL v1.0
(Podell et al., 2023) SD XL 1.0 Diffusion 2048 CLIP ViT-L &

OpenCLIP ViT-bigG
123.06M
694.66M UNet 4.83B VAE 83.65M 6.51B

Stable Cascade
(Pernias et al., 2024) SD CA Diffusion 1280 CLIP ViT-G 694.66M UNet 5.15B VQGAN 18.41M 6.86B

DeepFloyd IF XL
(Saharia et al., 2022) DeepFloyd Diffusion 4096 T5-XXL 4.76B UNet 6.02B VAE 55.33B 11.18B

PixArt-alpha XL
(Chen et al., 2024a) PixArt Diffusion 4096 Flan-T5-XXL 4.76B Transformer 611.35M VAE 83.65M 5.46B

Kolors
(Team, 2024) Kolors Diffusion 4096 ChatGLM3 6.24B UNet 2.58B VAE 83.65M 8.91B

Stable Diffusion 3[medium]
(Esser et al., 2024) SD 3 Diffusion 2048

CLIP ViT-L &
OpenCLIP ViT-bigG &

T5-XXL

117.92M
662.48M

4.76B
Transformer 2.03B VAE 83.82M 7.69B

FLUX.1[dev] FLUX.1 Diffusion 768 CLIP ViT-L &
T5-XXL

123.06M
4.76B Transformer 11.90B VAE 83.82M 16.87B

API-based Models

Midjourney V6 MidJ V6 Diffusion – – – – – – – –
DALL-E 3

(Betker et al., 2023) DALL-E 3 Diffusion – T5-XXL 4.76B UNet – VAE – –

CogView-3-Plus CogV3-Plus Diffusion – T5-XXL1 4.76B1 Transformer – VAE1 – –
Ideogram 2 Ideogram 2 Diffusion – – – – – – – –

1 The T5-XXL mentioned here is the text encoder of Cogview-3, which is the previous version of Cogview-3-Plus. We have not been able to find specific information about the text encoder and image decoder in
the exact materials provided.

Table 1: Mainstream T2I models. #DIM: pooled dimension of text encoders’ outputs. #TEP, #IGP,
#IDP, #ToP: parameters of text encoders, image generators, image decoders and whole models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

T2I Synthesis Models. We evaluate 13 mainstream T2I models as shown in Tab. 1. For each sen-
tence, we generate one image, resulting in a total of 684 × 3 × 13 images. Each input prompt is the
sentence itself, without any negative prompts or additional details expanded by prompt generators.

Evaluators. We use 4 MLLMs as automatic evaluators to calculate text-image alignment scores:
Gemini 1.5 Pro, Claude 3.5 Sonnet, GPT-4o and GPT-4 Turbo. Each evaluator is given a sentence
and an image and asked to assign two scores: object accuracy (0-50 points) and relation accuracy
(0-50 points). The sum of these two scores is taken as the total score, which is then normalized to
[0, 1]. To validate MLLMs’ effectiveness, we conducted human evaluation using three raters on 80
samples (20 each from Midjourney v6, DALL-E 3, CogView3Plus, and Ideogram2) with the same
scoring protocol. Then we measure the correlation coefficients of MLLMs with human preferences.

Metrics. We use 4 metrics: text-image alignment score (S̄ii), our proposed SemVar-Effect (κ),
visual semantic variation under semantic change (γI

w/) and maintenance (γI
w/o). For each sample,

S̄ii =
1

|K|
∑

i∈K S(Ti, Ii), where K = {a, pv, pi}. High S̄ii, γI
w/ and κ, coupled with low γI

w/o, indicate a
model’s strong causality of input to output. For brevity, we denote S̄ii, γI

w/, and γI
w/o as S̄, γw, and γwo.

Evaluation Dataset. We evaluate T2I models on the test set in a zero-shot manner. To demonstrate
the improvements from fine-tuning, we collected sentences and their generated images from the
training set, selecting only those with high quality, high discrimination, and consistent variations as
the training data. Details about the selection of the training data are provided in Appendix D.3.

4.2 RESULTS

The results of the influence of inputs semantic variations on outputs semantic variations in T2I
synthesis are shown in Tab. 2. The scores for S̄ range between 0.6 and 0.8. Despite the alignment
score S̄ reaching up to 0.8, this does not imply a strong grasp of semantics. The following three
metrics provide a more comprehensive view of the model’s ability to handle semantic variations.

Visual Semantic Variation with Changed Textual Semantics. As shown in Tab. 2, the values of
γw are all below 0.52 for all evaluators, significantly lower than the optimal value of 1. This indicates
that none of the T2I models perform at an acceptable level. These models are highly insensitive to
semantic variations. This finding aligns with the widely accepted notion that T2I models tend to
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Models Gemini 1.5 Pro Claude 3.5 Sonnet GPT-4o GPT-4 Turbo

S̄(↑) γw(↑) γwo(↓) κ(↑) S̄(↑) γw(↑) γwo(↓) κ(↑) S̄(↑) γw(↑) γwo(↓) κ(↑) S̄(↑) γw(↑) γwo(↓) κ(↑)
Open-source Models

SD 1.5 0.55 0.43 0.46 -0.03 0.64 0.19 0.20 -0.01 0.63 0.34 0.33 0.01 0.65 0.32 0.32 0.00
SD 2.1 0.58 0.45 0.46 -0.01 0.66 0.21 0.20 0.01 0.65 0.33 0.31 0.02 0.68 0.35 0.34 0.01

SD XL 1.0 0.62 0.39 0.39 -0.00 0.69 0.19 0.18 0.00 0.71 0.31 0.28 0.03 0.72 0.32 0.28 0.03
SD CA 0.59 0.42 0.41 0.01 0.69 0.19 0.18 0.01 0.67 0.31 0.31 -0.00 0.69 0.32 0.31 0.01

DeepFloyd 0.64 0.44 0.44 0.00 0.71 0.20 0.19 0.01 0.69 0.33 0.30 0.03 0.74 0.33 0.28 0.05
PixArt 0.60 0.35 0.32 0.02 0.69 0.17 0.15 0.02 0.70 0.29 0.26 0.03 0.71 0.29 0.27 0.02
Kolors 0.60 0.41 0.42 -0.01 0.69 0.22 0.22 -0.01 0.69 0.31 0.30 0.01 0.69 0.33 0.30 0.02
SD 3 0.67 0.45 0.40 0.05 0.76 0.23 0.19 0.04 0.75 0.36 0.29 0.07 0.76 0.33 0.28 0.05

FLUX.1 0.72 0.43 0.35 0.08 0.75 0.23 0.17 0.06 0.72 0.42 0.33 0.10 0.75 0.40 0.30 0.10

API-based Models

MidJ V6 0.68 0.46 0.39 0.07 0.73 0.24 0.21 0.03 0.72 0.40 0.33 0.07 0.73 0.38 0.32 0.06
DALL-E 3 0.75 0.46 0.33 0.14 0.80 0.25 0.18 0.06 0.82 0.36 0.22 0.13 0.83 0.35 0.30 0.10

CogV3-Plus 0.79 0.52 0.35 0.17 0.80 0.28 0.18 0.10 0.81 0.49 0.28 0.20 0.82 0.43 0.26 0.17
Ideogram 2 0.80 0.47 0.29 0.18 0.79 0.26 0.17 0.09 0.81 0.46 0.27 0.20 0.81 0.40 0.24 0.15

Table 2: Evaluations on T2I models (left column) using semantic variations under multiple MLLM
scores (top row). S̄ii(↑): text-image alignment score. κ(↑): SemVar-Effect, measuring input-to-
output variation contribution. γI

w(↑) and γI
wo(↓): visual semantic variation under semantic change and

maintenance. Bold and underline indicate 1st and 2nd optimal cases. Blue and green indicates
average SemVarEffect scores between 0.05 and 0.10, and above 0.10, respectively.

treat input text as a collection of isolated words , leading them to interpret sentences with minor
changes in word order as having the same meaning.

Visual Semantic Variation with Unchanged Textual Semantics. The values of γwo in Tab. 2
are unexpectedly much higher than the optimal value of 0. Only the models highlighted in blue
and green demonstrate slightly better performance, with γwo scores consistently lower than γw.
These T2I models illustrate potential semantic variations caused by word order through images,
yet struggle to differentiate between meaning-variant and meaning-invariant inputs. These models
primarily understand language based on word order rather than the underlying semantics.

Influence of Textual Semantics on Visual Semantic Variations. In Tab. 2, the κ values for
all evaluators are below 0.20, indicating considerable room for improvement in T2I models’ under-
standing of semantic variations. Models with higher alignment scores are more sensitive to semantic
variations caused by word orders. However, models highlighted in blue overreact to permutations
maintaining the meanings, resulting in higher γwo values and subsequently lower κ values. These
models excel at capturing common alignments but struggles to handle semantic variations.

Human Evaluation. We observe consistent performance trends between human raters and the four
MLLMs across all evaluated models. Correlation analysis on CogView3-Plus reveals moderate
(up to 0.54) correlation coefficients between machine and human scores, suggesting our selected
MLLMs can serve as a reliable proxy for human evaluation. Detais are shown in Appendix E.2.

Comparison of Metrics. SemVarEffect κ focuses on the consistency of variations, while the align-
ment score S̄ focuses on the overall output quality. Thus, a model may score high on κ even if it
consistently generates incorrect attributes (such as believing oranges are blue and bananas are green).
SemVarEffect validates the reliability of high alignment scores: high S̄ with low κ indicates limited
semantic understanding, while high S̄ with high κ suggests effective semantic understanding.

4.3 ANALYSIS

Is a superior text encoder the exclusive solution for T2I models to grasp semantic variations?
Given differences in text encoders’ ability to discriminate semantic variations, we examine whether
two metrics, alignment scores S̄ and SemVarEffect κ, offer insights beyond what text encoders cap-
ture. We use text similarity2 to measure the text encoder’s ability, and use visual semantic variation
scores γw and γwo to measure SemVarEffect, as illustrated in Fig. 6. PixArt and Kolors, utilizing
T5 and ChatGLM as text encoders, fail to transfer the results of distinguishing semantic variations
to image generators, as shown by permutation-variance (indicated by squares). However, FLUX.1,
utilizing weaker CLIP-T5 hybrid models as text encoders, achieves higher S̄ and greater differenti-
ation in γw and γwo , despite showing minimal changes in text similarity. It indicates that a model’s

2Sentences for changed textual semantics unexpectedly show higher text similarity than those for unchanged
textual semantics, likely due to the edit distance between our sentences. For further analysis, see Appendix F.
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Figure 6: Illustration of the text embedding similarity between the anchor text and the permuted text.
Squares represent permutation-variance results (with changed textual semantics), while triangles
represent permutation-invariance results (with unchanged textual semantics). The evaluator is GPT-
4o. (a) The alignment score between the anchor image Ia and a permutation Tp∗ decreases as the
text similarity between Ta and Tp∗ increases. (b) The semantic variation score γ increases as the
text similarity between Ta and Tp∗ increases. The cosine similarity for DALL-E 3, an API-driven
model, is deduced using T5-XXL, indicated by hollow shapes.

ability to distinguish semantic variations is not only dependent on text encoders, and further efforts
are needed in cross-modal alignment to effectively transfer these differences to the image generators.

Figure 7: The distribution of categories across different T2I models
based on SemVarEffect scores κ. The evaluator is GPT-4 Turbo.

Figure 8: The distribution
of SemVarEffect scores for
the SOTA model Ideogram 2
across different aspects of the
samples. The evaluator is
GPT-4 Turbo.

Does the influence of input semantic variations on output semantic variations vary by cate-
gory? As shown in Fig. 7, the SemVarEffect scores in Color consistently exceed 0.4 in many models,
while those in other categories are mostly below 0.1. This suggests that T2I models understand se-
mantic variations well only in the case of Color. We found that the SemVarEffect scores of Ideogram
2 in Relation, Attribute Comparison, and Attribute Value are 0.07, 0.13, and 0.19. To compare the
distribution of SemVarEffect scores across different aspects, we set 0.2 and 0.5 as thresholds. As
shown in Fig. 8, the proportion of high scores in Attribute Values is significantly higher than those
in Relation and Attribute Comparison. T2I models lack the capability to discriminate semantic vari-
ations, particularly in aspects emphasizing relations and comparisons. Fig. 9 shows failed examples
in Relation and Comparison. Although T2I models can generate correct images for common rela-
tions, they tend to rigidly adhere to these common relations even when semantic variations occur,
leading to incorrect images. More examples are provided in Appendix G.

Does fine-tuning improve T2I model performance on semantic variations? We examine im-
provements from fine-tuning text encoders and image generators. We use samples in the training
set to generated images and select text-images pairs with high alignment scores and high discrim-
inability as training data, details shown in Appendix D.3. As shown in Tab. 3, for categories with
sufficient high-quality data, such as Color, supervised fine-tuning (SFT) enhanced the performance
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of the T2I model. However, in categories with insufficient high-quality data, such as Direction,
SFT led to a decline in performance. Additionally, direct preference optimization (DPO) resulted in
performance drops due to failures in permutation-invariance, as evidenced by the increased rwo.

Category Models GPT-4o

S̄(↑) γw(↑) γwo(↓) κ(↑)

Color

SD XL 0.73 0.33 0.25 0.08
+ sft-unet 0.78(↑) 0.38(↑) 0.20(↓) 0.18(↑)
+ sft-text 0.73(−) 0.40(↑) 0.27(↑) 0.13(↑)

+ dpo-unet 0.69(↓) 0.43(↑) 0.27(↑) 0.17(↑)
+ dpo-text 0.68(↓) 0.47(↑) 0.29(↑) 0.18(↑)

Absolute
Location

SD XL 0.64 0.29 0.34 -0.05
+ sft-unet 0.65(↑) 0.34(↑) 0.32(↓) 0.02(↑)
+ sft-text 0.64(−) 0.31(↑) 0.36(↑) -0.05(−)

+ dpo-unet 0.60(↓) 0.29(↑) 0.31 (↓) -0.02(↑)
+ dpo-text 0.57(↓) 0.33(↑) 0.39 (↑) -0.07(↓)

Category Models GPT-4o

S̄(↑) γw(↑) γwo(↓) κ(↑)

Height

SD XL 0.77 0.34 0.23 0.10
+ sft-unet 0.77(−) 0.33(↓) 0.24(↑) 0.09(↓)
+ sft-text 0.73(↓) 0.39(↑) 0.34(↑) 0.05(↓)

+ dpo-unet 0.71(↓) 0.34(−) 0.33(↑) 0.02(↓)
+ dpo-text 0.66(↓) 0.40(↑) 0.53(↑) -0.13(↓)

Direction

SD XL 0.79 0.20 0.15 0.05
+ sft-unet 0.77(↓) 0.24(↑) 0.23(↑) 0.01(↓)
+ sft-text 0.77(↓) 0.23(↑) 0.21(↑) 0.02(↓)

+ dpo-unet 0.65(↓) 0.23(↑) 0.26(↑) -0.03(↓)
+ dpo-text 0.70(↓) 0.29(↑) 0.27(↑) 0.01(↓)

Table 3: Performance of fine-tuned models measured by the SemVarEffect score. Training candi-
dates for Color, Absolute Location, Height, and Direction are 4.4k, 1.7k, 0.2k, and 0.3k.

It is crucial to find a balance between sensitivity and robustness
to semantic changes, as this determines whether performance can
be enhanced. However, fine-tuning tends to improve sensitivity
at the expense of robustness. While T2I models become more
sensitive to permutations with different meanings, this discrim-
ination is quickly disrupted by over-sensitivity to permutations
with similar meanings, weakening the model’s ability to discern
differences. This phenomenon may be attributed to two poten-
tial limitations in Diffusion-based T2I Models. First, its cross-
attention mechanism only maps tokens to visual regions without
capturing inter-token relationships. Second, the training process
lacks semantic-level supervision. Fine-tuning improves token-
region correspondence in Tab. 4, but cannot enhance the under-
standing of semantic relationships between tokens. Thus, these
permutations, which differ only in word order but contain identi-
cal tokens, confuse the models and lead to performance declines,
especially during DPO. More validation is in Appendix F.4.

Category Model Token Accuracy
Ta Tpv Tpi

Absolute
Location

SDXL 0.709 0.640 0.716
+sft-unet 0.718 0.654 0.716

Height SDXL 0.881 0.660 0.861
+sft-unet 0.886 0.662 0.866

Table 4: Performance of fine-
tuned models measured by token
accuracy on Absolute Location
and Height. Token accuracy
refers to the ratio of tokens suc-
cessfully generated that corre-
spond to images. We filter
out meaningful tokens and verify
their visual representation in the
image using GPT-4o.

Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score
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Figure 9: Failed examples of DALL-E 3 on Relation and Attribute Comparison.
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Do T2I models’ struggles with semantic relationships stem from training data imbalance?
We conducted experiments testing performance of fine-tuned SDXL trained with balanced training
data. We used a human-crafted balanced dataset of cat↔dog chasing interactions (80 images per
direction) for fine-tuning, and tested on two unseen prompt pairs involving the same “chasing” re-
lationship between common objects. The model consistently showed poor generalization: accuracy
remained low for both anti-commonsense scenarios (mouse↔cat, 3-3/30) and plausible scenarios
(bull↔man, 4-5/30). Failure analysis revealed three main categories: (1) Relationship Understand-
ing Failures, where objects appear either without interaction or with incorrect interactions, indicating
the model’s inability to comprehend the “chasing” concept; (2) Reversed Roles, where the model
fails to properly assign who chases whom; and (3) Missing Objects, where the model fails to gen-
erate all required objects. Even among the generated images, correct relationships occurred less
frequently than these failure cases, suggesting random performance rather than true understanding.
Thus, the model’s struggles persist even with perfectly balanced training data, suggesting the core
issue lies in relationship understanding rather than data imbalance. Details are in Appendix F.3.4.

5 RELATED WORK

Evaluation of T2I synthesis. Benchmarks of T2I synthesis primarily focus on general align-
ment (Saharia et al., 2022; Yu et al., 2022; Cho et al., 2023a), composition (Park et al., 2021; Feng
et al., 2023a; Park et al., 2021; Hu et al., 2023; Cho et al., 2023b; Li et al., 2024), bias and fair-
ness (Lee et al., 2023b; Luo et al., 2024b;a), common sense (Fu et al., 2024) and creativity (Lee et al.,
2023b). In these evaluations, the quality of images is measured by detection-based or alignment-
based metrics. Recent research on T2I synthesis has explored samples involving semantic variations
caused by word orders, typically using them to evaluate reasoning abilities with alignment-based
metrics (Marcus et al., 2022; Lee et al., 2023b; Li et al., 2024). However, a significant gap in this re-
search is the underexplored area of whether the generated images consistently represent fundamental
semantic variations within the input text.

Semantic Variation Evaluation in VLMs. In VLMs, semantic variations caused by word order
has been evaluated by benchmarks like Winoground (Thrush et al., 2022) and its expansion in
specific domain (Burapacheep et al., 2024). Winoground is designed to challenge models with
visio-linguistic compositional reasoning. It requires models to accurately match two images to their
respective captions, where the two captions are different permutations of the same words, resulting
in different meanings. To enhance performance on Winoground, studies have focused on expanding
training datasets with negative samples and optimizing training strategies to handle the resulting
semantic variations (Yüksekgönül et al., 2023; Hsieh et al., 2023; Burapacheep et al., 2024).

The application of Winoground to T2I synthesis faces several limitations due to the variety and
quantity of its permutations. First, the dataset, with 400 sentence pairs, provides only 171 suitable
for text-image composition analysis (Diwan et al., 2022), where samples are classified into three cat-
egories: object, relation, and both. This limited variety is insufficient for a comprehensive evaluation
of T2I models. Second, the suitability of certain samples for T2I model evaluation is problematic.
Winoground primarily focuses on semantic distinctiveness for cross-modal retrieval (Yüksekgönül
et al., 2023; Ma et al., 2023; Cascante-Bonilla et al., 2023). It overlooks the criteria essential for
T2I synthesis, such as sentence completeness, clarity of expression, unambiguity, and specificity
in referencing image elements. All of these factors have been carefully considered in the quality
control of our benchmark annotations.

6 CONCLUSION

We comprehensively study the challenge of semantic variations in T2I synthesis, specifically fo-
cusing on causality between semantic variations of inputs and outputs. We propose a new metric,
SemVarEffect, to quantify the influence of input semantic variations on model outputs, and a novel
benchmark, SemVarBench, designed to examine T2I models’ understanding of semantic variations.
Our experiments reveal that SOTA T2I models struggle with semantic variations, scoring below 0.2
on our benchmark. Fine-tuning shows limited improvement, improving sensitivity but at the cost of
robustness. These findings underscore the need for better cross-modal understanding of relation in
semantics, particularly for capturing inter-token dependencies in T2I synthesis.
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The Appendix is organized as follows:

• Section A provides detailed illustrations of four types of semantic variation results in T2I
synthesis.

• Section B describes the data requirements, as well as the properties of the text-image align-
ment function and the SemVarEffect score.

• Section C details the construction process of the benchmark.

• Section D presents the implementation details of the evaluation.

• Section E presents more experimental results.

• Section F provides further analysis of the results.

• Section G visualizes more successful and failed examples in the evaluation.

• Section H discusses the limitations of our evaluation and benchmark.

A FOUR TYPES OF SEMANTIC VARIATIONS RESULTS IN T2I SYNTHESIS

The results of semantic variations in T2I synthesis, both in text and images, can be divided into four
types, as shown in Fig. 10.

• Image Changing Semantics with Text Changing Semantics: The consistency between
the input and output in the first quadrant suggests that the model tends to understand the
different meanings introduced by linguistic permutations. In this case, the value of semantic
variation (γw/) tends to approach 1.

• Image Maintaining Semantics with Text Changing Semantics: The inconsistency be-
tween the input and output in the fourth quadrant suggests that the model does not under-
stand the different meanings introduced by linguistic permutations. In this case, the value
of semantic variation (γw/) tends to approach 0.

• Image Changing Semantics with Text Maintaining Semantics: The consistency between
the input and output in the third quadrant suggests that the model tends to understand the
similar meanings introduced by linguistic permutations. In this case, the value of semantic
variation (γw/o) tends to approach 0.

• Image Maintaining Semantics with Text Maintaining Semantics: The inconsistency
between the input and output in the second quadrant suggests that the model does not
understand the similar meanings introduced by linguistic permutations. In this case, the
value of semantic variation (γw/o) tends to approach 1.

B PROPERTIES OF SEMVAREFFECT

B.1 PRELIMINARY

A T2I generation model f consists of one or more text encoders, image generators, and an image
decoder. The T2I generation model f generates images I ∈ I for each input textual prompt T ∈ T .
T represents the textual space, and I represents the visual space. S(T, I) denotes the alignment
score between T and I .

Let Ta be an anchor textual prompt. Let Tp∗ represent a permutation of Ta, where Tpv is a permuta-
tion with a meaning different from Ta, and Tpi is a permutation with the same meaning as Ta. Let Ia,
Ipv , and Ipi be the resulting images generated by a T2I model from Ta, Tpv , and Tpi, respectively.
We expect that Ip∗ will be a rearrangement of the objects or relations found within Ia.

B.2 TEXTUAL VS. VISUAL SEMANTIC VARIATIONS

The measurement of semantic variations in the transition from (Ta, Ia) to (Tp∗, Ip∗) can be defined
from two perspectives: (1) textual semantic variations rT , which refer to the semantic changes in
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Figure 10: Four types of semantic variation results in T2I synthesis. The images with red borders
represent incorrect outputs, while those with green borders represent correct outputs.

texts, observed through images Ia and Ip∗, and (2) visual semantic variations rI , which refer to the
semantic changes in images, observed through texts Ta and Tp∗.

Specifically, we define the textual semantic variations observed in a single image I . We decompose
complex semantic variation into minimal discrete steps, called localized changes. For each sentence
T , the textual semantic variation of a single minimal discrete step T +∆T , denoted as µT (T, I), is
the difference in alignment scores: µT (T, I) = S(T +∆T, I)−S(T, I). When the anchor sentence
Ta transforms to a permutation sentence Tp∗ through these minimal discrete steps, the integrated
textual semantic variation is:

∑Tp∗
Ta

µT (T, I) = S(Tp∗, I)− S(Ta, I). Therefore, the summation of

textual semantic variations is defined as γT =
∑

I∈{Ia,Ip∗}

∣∣∣∑Tp∗
Ta

µ(T, I)
∣∣∣.

Similarly, we define the visual semantic variation observed in a single sentence T . For each image
I , the visual semantic variation of a single minimal discrete step I + ∆I , denoted as µI(T, I), is
the difference in alignment scores: µI(T, I) = S(T, I + ∆I) − S(T, I). When the anchor image
Ia transforms to a permutation image Ip∗ through these minimal discrete steps, the integrated visual
semantic variation is:

∑Ip∗
Ia

µI(T, I) = S(T, Ip∗) − S(T, Ia). Therefore, the summation of visual

semantic variations is defined as γI =
∑

T∈{Ta,Tp∗}

∣∣∣∑Ip∗
Ia

µ(T, I)
∣∣∣.

We have not evaluated the influence by measuring the synchronicity of semantic changes between
images and text, which has been applied in VLM (Wang et al., 2023). This is because semantic
variations introduce a unique challenge in evaluating T2I synthesis: images are not independent;
they are influenced by both the input textual prompt and the inherent characteristics of the model,
complicating the independent assessment of semantic changes.
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Therefore, we conduct the evaluation by measuring the influence of external interventions on seman-
tic variations within the corresponding generated images from T2I synthesis models, while avoiding
the direct imposition of interventions on the images.

B.3 PROPERTIES OF ALIGNMENT SCORES S

Definition of Text-Image Alignment Score. To facilitate semantic analysis, we structured these
permutations by objects and triples. Changing the word order affects the arrangement of objects
or relations and leads to changes in syntactic dependencies and semantics. Let Tp∗ represent any
permutation of Ta. Ta and Tp∗ share the same set of objects, denoted as V , and the same set of
relations, denoted as R. The triple set E in Ta is a subset of V × R × V . Some triples in Tp∗ may
differ from those in Ta, but they have the same number of triples. For example, the initial triple set of
Ta contains (apple, on, box), (girl, touch, apple) and (girl, NULL, box).
After swapping box and apple, the triple set of Tp∗ contains (box, on, apple), (girl,
touch, box) and (girl, NULL, apple).

We define the alignment score S between T and I as the sum of fine-grained alignment scores for
objects and triples:

S(T, I) =

|V |∑
i=1

Sobji(T, I) +

|E|∑
j=1

Strij (T, I), (5)

where |V | is the number of objects in T and |E| is the number of triples in T . The components of
the alignment score are defined as piecewise functions:

Sobji(T, I) =

{
wvi if the i-th object matches,
0 if the i-th object does not match,

Strij (T, I) =

{
wej if the j-th triple matches,
0 if the j-th triple does not match,

(6)

where wvi and wej are the weighted matching scores for the i-th object and j-th triple, respectively.
We obtain the alignment function S that satisfies the constraints in Eq. 10. Consequently, the
alignment score of a matched text-image pair is calculated as follows:

S(Tp∗, Ip∗) = S(Ta, Ia) =
∑

vi∈VMA

wvi +
∑

ej∈EMA

wej , (7)

where VMA and EMA represent the exactly matched objects and triples between a text prompt and
its generated image, with |VMA| = |V | and |EMA| = |E|, respectively. The alignment score for a
mismatched text-image pair is calculated as follows:

S(Tp∗, Ia) = S(Ta, Ip∗) =
∑

vi∈VMI

wvi +
∑

ej∈EMI

wej , (8)

where VMI and EMI represent the partially matched objects and triples between a text prompt and
a mismatched image, with |VMI | = |V | and 0 ≤ |EMI | ≤ |E|.
Range of S. If f accurately depicts the text through images and S faithfully measures the semantic
changes between text space and the image space, then any alignment score S(T, I) is bounded by:∑

vi∈V

wvi ≤ S(T, I) ≤
∑
vi∈V

wvi +
∑
ej∈E

wej . (9)

In our implementation, we set the value of S(T, I) as an integer between 0 and 100, where the object
accuracy ranges from 0 and 50 and the triple accuracy ranges from 0 and 50. We then normalize it
into a real number within the range [0, 1]. Based on the assumption of f mentioned above, we have
0.5 ≤ S(T, I) ≤ 1.

However, limitations in the capabilities of the model f(·) and the alignment function S(·), often
prevent the alignment score values from achieving the property outlined in Eq. 10. For example,
if a model f generates a low-quality image I , it may fail to accurately depict all target objects (V ),
leading to |VMA| < |V | and |VMI | < |V |. This results in object accuracy below 0.5 (as illustrated
in the bottom case of Fig. 25) and inconsistent relation accuracy (see cases in Fig. 20 and Fig.
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21). Furthermore, inaccuracies in the scoring approach S(·) may incorrectly assess the similarity
between text prompts and generated images, causing unpredictable fluctuations in semantic variation
measurements (as illustrated in Fig. 27).

Identity Relation for S. Under ideal conditions where f accurately transforms all semantic varia-
tions from text space to image space, the alignment scores would satisfy the following constraints:

S(Ta, Ia) ≡ S(Tp∗, Ip∗) and S(Tp∗, Ia) ≡ S(Ta, Ip∗). (10)

Eq. 10 is also demonstrated under the assumption that the alignment function is an equivariant
map in the continuous textual feature space T and visual feature space I, as detailed in (Wang
et al., 2023). This assumption ensures that the alignment scores vary consistently with the semantic
changes in images or text. This property is crucial for determining the characteristics of the data in
SemVarBench and for designing the alignment functions.

However, the low-quality image I , resulting from a poorly performing model f , and the inaccura-
cies in the scoring approach S, often prevent the alignment scores from meeting the criteria in Eq.
10. These limitations make the direct comparison of textual and visual semantic variation scores
unreliable in T2I synthesis. This approach was previously explored in (Wang et al., 2023).

B.4 PROPERTY OF VISUAL SEMANTIC VARIATIONS γI

We analyze the theoretical relationship between visual semantic variations and model performance.
According to Eqs. 1, 7 and 8, we derive the visual semantic variations as follows:

γI = 2

∣∣∣∣∣∣
∑

vi∈{VMA−VMI}

wvi +
∑

ej∈{EMA−EMI}

wej

∣∣∣∣∣∣ . (11)

For both permutation-variance and permutation-invariance, the value of
∑

vi∈{VMA−VMI} wvi re-
mains constant, which we denote as C1. As a result, the visual semantic variation can be simplified
to γI = 2

∣∣∣C1 +
∑

ej∈{EMA−EMI} wej

∣∣∣, primarily depending on the size of the set EMA − EMI .
However, the size of the set varies dramatically between the two settings:

• In permutation-variance settings (Ta, Tpv), the optimal value for the set EMA − EMI is
its maximum set E, resulting in an obvious positive correlation between visual semantic
variation γI

w/ and model performance.

• In permutation-invariance settings (Ta, Tpi), the optimal value for the set EMA − EMI is
its minimum set ∅, resulting in an obvious negative correlation between visual semantic
variation γI

w/o and model performance.

Therefore, we conclude that visual semantic variations in permutation-variance and permutation-
invariance settings differ significantly.

• A higher γw/ value indicates that the model effectively captures and reflects the intended
semantic variations in the input text.

• A lower γw/o value indicates that the model maintains semantic consistency in the images
despite variations in the input text.

B.5 PROPERTY OF SEMVAREFFECT SCORE κ

The SemVarEffect score κ, is defined as the difference between two types of visual semantic vari-
ations score γI

w/ and γI
w/o. It quantifies the model’s ability to discriminate between significant and

negligible semantic changes in the text. Under ideal conditions, κ ranges from 0 to 1. κ is max-
imized when γI

w/ reaches its upper bound of 1, which occurs in extreme cases where no relation
between objects are identical, and γI

w/o reaches its optimal value of 0.

• If κ is large, it suggests that the model is sensitive to semantic changes, recognizing vari-
ations in meaning. However, this does not necessarily imply strong alignment. The model
might detect changes in semantics but still struggle to fully capture all objects and relation-
ships described in the text, indicating a gap between sensitivity and complete alignment.
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• If κ is small or close to zero, it suggests that the model either fails to reflect meaningful
semantic changes or overreacts to minor text variations. Regardless of the overall alignment
score, the model may generate similar images even in the presence of significant semantic
differences in the input text.

C CONSTRUCTION DETAILS

C.1 DATA COLLECTION

Seed Sentence Pairs from Winoground Templates & Rule

caption 0: a bird eats a snake
caption 1: a snake eats a bird

Ta: [Noun1] [Verb (vt)] [Noun2]
Tpv: [Noun2] [Verb (vt)] [Noun1]
Ta → Tpv: [Noun1] ↔ [Noun2]

caption 0: a person is in a helicopter which is in a car
caption 1: a person is in a car which is in a helicopter

Ta: [Noun1] [Verb (vi)] [Prepositional Phrase1 (location)]
which is in [Prepositional Phrase2 (location)]
Tpv: [Noun1] [Verb (vi)] [Prepositional Phrase2 (location)]
which is in [Prepositional Phrase1 (location)]
Ta → Tpv: [Prepositional Phrase1 (location)]
↔ [Prepositional Phrase2 (location)]

caption 0: there are some pineapples in boxes, and
far more pineapples than boxes
caption 1: there are some boxes containing pineapples,
and far more boxes than pineapples

Ta: ([Prepositional Phrase1 (location)], )(There be)[Noun1]
[locate in] [Noun2], and far more [Noun1] than [Noun2]
Tpv: ([Prepositional Phrase1 (location)], )(There be)[Noun2]
[contain] [Noun1], and far more [Noun2] than [Noun1]
Ta → Tpv: [Noun1] ↔ [Noun2]

caption 0: the person sitting down is supporting the
person standing up
caption 1: the person standing up is supporting the
person sitting down

Ta: [Noun1] (which) [Verb1 (vi)] [Verb (vt)] [Noun2]
(which) [Verb2 (vi)]
Tpv: [Noun1] (which) [Verb2 (vi)] [Verb (vt)] [Noun2]
(which) [Verb1 (vi)]
Ta → Tpv: [Verb1 (vi)] ↔ [Verb2 (vi)]

caption 0: the person with green legs is running quite
slowly and the red legged one runs faster
caption 1: the person with green legs is running faster
and the red legged one runs quite slowly

Ta: [Noun1] [Prepositional Phrase1/Relative Clause1
(appearance)] [Verb1 (vi)] slowly and [Noun2] [Prepositional
Phrase2/Relative Clause2 (appearance)] [Verb2 (vi)] faster
Tpv: [Noun1] [Prepositional Phrase1/Relative Clause1
(appearance)] [Verb1 (vi)] faster and [Noun2] [Prepositional
Phrase2/Relative Clause2 (appearance)] [Verb2 (vi)] slowly
Ta → Tpv: slowly ↔ faster

Table 5: Examples of extracted templates and transformation rules between templates of (Ta, Tpv).

Template Acquisition We designate 171 compositional cases in Winoground (Thrush et al., 2022),
labeled as “no-tag” in subsequent research (Diwan et al., 2022), and refer to them as SEED0 and
SEED1. The template of Tpv , the permutation with semantic changes, is extracted from each pair
of seeds by human annotators. Then, we define the rule of Tpi, which is the permutation without
semantic changes, as the original template of Tpi. An example is illustrated as follows.

Ta: [Noun1] [Verb] [Noun2] and [Noun1] behind [Noun3]
Tpv: [Noun3] [Verb] [Noun2] and [Noun3] behind [Noun1]
Tpi: [Noun1] behind [Noun3] and [Noun1] [Verb] [Noun2]

Ta → Tpv: [Noun1] ↔ [Noun3]
Ta → Tpi: [Noun1] [Verb] [Noun2]↔[Noun1] behind [Noun3]

If there is no coordinating conjunction such as and or while in the template of Tpi, the template can
be set to NULL. In this case, the permutation Tpi will be generated based on the LLM according to
other solutions.

Ta: [Noun1] [Verb1 (vi)] [Verb (vt)] [Noun2] [Verb2 (vi)]
Tpv: [Noun1] [Verb2 (vi)] [Verb (vt)] [Noun2] [Verb1 (vi)]
Tpi: NULL

Ta → Tpv: [Verb1 (vi)] ↔ [Verb2 (vi)]
Ta → Tpi: NULL
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Template-guided Generation for Ta. The prompt for generating Ta, which is guided by the tem-
plates and seed pairs, is as follows:

Assuming you are a linguist, you have the ability to create a similar sentence following the structure of given
sentences.

The given two sentences are {SEED0} and {SEED1}. The structure of them are both “{Template Ta}”. Please
create a similar “{Template Ta}” sentence as “TEXT0”, and diversify your sentence as much as possible by
using different themes, scenes, objects, predicate, verbs, and modifiers.

Output a list containing {NUM} json objects that contain the following keys: TEXT0. Use double quotes
instead of single quotes for key and value. Now, let’s start. The output json object list:

Rule-guided Permutation for Tpv . The prompt for generating Tpv based on Ta and its correspond-
ing rule, is:

Assuming you are a linguist, you have the ability to judge the structure of existing sentences and imitate more
new sentences with similar structure but varied content.

Step 1: Input some sentences structured by {Template Ta} and {Template Tpv}. We call each sentence as
“TEXT0”.
Step 2: For each “TEXT0”, perform the change which is “{RULE of Ta → Tpv}” and keep the other words
unchanged as “TEXT1”.

For example, TEXT0={TEXT0}. Only swap/move {RULE of Ta → Tpv} and keep the other words
unchanged to generate TEXT1={TEXT1}.

Output a list containing {NUM} json objects that contain the following keys: TEXT0, TEXT1. Use double
quotes instead of single quotes for key and value. Now, let’s start. The input is: {TEXT0}. The output json
object list:

Paraphrasing-guided Permutation for Tpi. The prompt for generating Tpi based on Ta and its
corresponding rule, is:

[Instruction]
Please generate a sentence that has a similar length and meaning in the following six ways:
1. Change the word order: For example, “a red and yellow dog” can be changed to “a yellow and red dog.” In
some languages, adjusting the order of words in a sentence can create a new sentence form without changing
the meaning. For instance, “I like you” can be adjusted to “You are the person I like”.
2. Passive voice: For example, “a kid is flying a yellow kite” can be changed to “a yellow kite is being flown
by a kid.”
3. Change the description: For example, “a boy is playing with a girl” can be changed by paraphrasing and
altering the sentence structure to “a boy is playing. He is near a girl.”
4. Use synonyms: Replace words in the sentence with their synonyms. For example, “happy” can be replaced
with “joyful”.
5. Use infinitive or gerund forms: For example, “He likes to run” can be changed to “He enjoys running”.
6. Simplify or expand: You can either simplify the sentence structure or add additional information
to create a new sentence. For example, “The quick, brown fox jumps over the lazy dog” can be simplified
to “The fox jumps over the dog”, or expanded to “The fox, which is quick and brown, jumps over the lazy dog”.

Now, please generate a similar sentence for input prompt given at the end. Provide one sentence for each of the
six methods. If a sentence cannot be generated using a particular method, please output “None”.
Add the results as a list of JSON objects, containing 6 JSON objects. Each object should include the keys:
number, modification method, and sentence.

[Prompt]
“{TEXT0}”

C.2 DATA ANNOTATION

Criteria for Valid Samples. The primary challenge in annotation lies in defining the criteria for
what qualifies as “valid”. For T2I synthesis models, we define “valid” input text based on 14 specific
criteria. First, we illustrate these criteria through examples of Ta and Tpv . Second, for Tpi, we
require it to apply one of the six synonymous transformations defined in the prompt for generating
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Type Valid Criteria Example ✓/×

Basic
Complete Expression

Ta: Swinging on the swing and off the metal chains.
Tpv: Swinging off the swing and on the metal chains.
Tpi: Swinging off the metal chains and on the swing.

×
×
×

Clear and Concrete Objects
Ta: A brighter sun is shining on a dimmer object.
Tpv: A dimmer sun is shining on a brighter object.
Tpi: A dimmer object is shined on by a brighter sun.

×
×
×

Reasonable Semantics
Ta: An engineer builds a bridge.
Tpv: A bridge builds an engineer.
Tpi: A bridge is built by an engineer.

✓
×
✓

Visualizable

Visually Depicted Elements
Ta: There are more salads than burgers on the menu.
Tpv: There are more burgers than salads on the menu.
Tpi: There are less burgers than salads on the menu.

×
×
×

Static Scene or
Multiple Exposure Scene

Ta: The wave is moving faster and the fish is swimming slowly.
Tpv: The fish is swimming faster and the wave is moving slowly.
Tpi: The fish is swimming slowly and the wave is moving faster.

×
×
×

Moderate Details
Ta: In the library, there are a stack of books and some more magazines.
Tpv: In the library, there are a stack of magazine and some more books.
Tpi: In the library, there are some more magazines and a stack of books.

×
×
×

Quantifiable Comparison
Ta: There are more ants than bees in the garden.
Tpv: There are more bees than ants in the garden.
Tpi: There are less bees than ants in the garden.

×
×
×

Discriminative
Modification Rules

Ta: A sharp knife is on a dull cutting board.
Tpv: A dull cutting board is under a sharp knife.
Tpi: A dull cutting board is under a sharp knife.

×
×
×

Distinct Textual Semantics
Ta: The boat is on the dock and the fisherman is on the pier.
Tpv: The boat is on the pier and the fisherman is on the dock.
Tpi: The fisherman is on the pier and the boat is on the dock.

×
×
×

Visually Distinguishable
Ta: There’s a delicious chocolate cake with a bitter coffee frosting.
Tpv: There’s a bitter chocolate cake with a delicious coffee frosting.
Tpi: There’s a bitter coffee frosting with a delicious chocolate cake.

×
×
×

Recognizable

Item-Specific Scene
Ta: There are more books than shelves in this library.
Tpv: There are more shelves than books in this library.
Tpi: There are less shelves than books in this library.

✓
×
✓

Item-Specific Character

Ta: A photographer wearing a camera strap with his lens in the air and
a videographer wearing a tripod.
Tpv: A photographer wearing a tripod with his lens in the air and a
videographer wearing a camera strap.
Tpi: A videographer wearing a tripod and a
photographer wearing a camera strap with his lens in the air.

×

×

×

Attire-based Character

Ta: The soldier in the barracks is cleaning equipment and the officer
in the office is reviewing reports.
Tpv: The soldier in the barracks is reviewing reports and the officer
in the office is cleaning equipment.
Tpi: The officer in the office is reviewing reports and the soldier
in the barracks is cleaning equipment.

×

×

×

Action-based Character
Ta: The businessman is wearing navy suit and red tie.
Tpv: The businessman is wearing red suit and navy tie.
Tpi: The businessman is wearing red tie and navy suit.

×
×
×

Table 6: Error Examples of LLM-generated permutation-based sentences (Ta, Tpv , Tpi) and the
criteria they violate.

Tpi. From a semantic perspective, Tpi must be strictly consistent with Ta, ensuring the consistency
and accuracy of the entire dataset. We list these criteria and examples in the following.

• Basic

– Complete Expression: Both sentences should be complete and free of obvious linguis-
tic errors.

– Clear and Concrete Objects: Both sentences must be clear and unambiguous, either
contextually or inherently, and specifically describe tangible objects, avoiding abstract
concepts.

– Meaningful Sentence: Both sentences must maintain logical coherence within their
respective contexts. The reasonable definition includes real-world plausibility or sce-
narios typically seen as implausible in virtual or imaginative settings (like children’s
literature, animations, or science fiction), like flying pigs or dinosaurs piloting planes.
For example, “a shorter person can reach a higher shelf while a taller one cannot” is
not reasonable in any world.

• Visualizable

23



Published as a conference paper at ICLR 2025

– Visually Depicted Element: Both sentences must convey visual elements, including
objects, scenes, actions, and attributes, ensuring that the text prompts are visually
depictable and that the image content is identifiable during evaluation.

– Static Scene or Multiple Exposure Scene: Both sentences should be visually repre-
sentable through images alone, without the need for video, audio, or other sensory
inputs such as touch and smell. Temporal aspects, procedures, and comparisons in
test cases must be conveyable within the scope of a single image.

– A Moderate Level of Detail: Sentences should maintain a moderate level of detail
with similar scales for objects and scenes. Excessive or mismatched scales can result
in sentences that are challenging to depict. For example, comparing the quantity of
books and magazines “in a library” is less suitable than comparing them “on a table”.

– Quantifiable Comparison: Comparisons in both sentences should be quantifiable, us-
ing measures like counts, areas, or volumes. For example, “There are more students
in the classroom than words on the blackboard” is difficult to compare quantitatively.

• Discriminative
– Following Permutation Rules: Generated samples Tpv must strictly follow the desig-

nated manual template, including word swapping and movement.
– Distinct Textual Semantics: Two sentences must have distinct textual semantics. Oth-

erwise, the pairs are considered invalid.
– Visually Distinguishable: Two sentences should be visually distinct, with a clear dif-

ferentiation in the visual characteristics of the objects or scenes described. Subtle
differences that require very close observation are not considered distinct visual dif-
ferences.

• Recognizable
– Item-Specific Scenes: Scenes in sentences should be identifiable, with key elements

maintained for recognition. Otherwise, identification may be challenging. For in-
stance, a sentence describing a library where “bookshelves outnumber books”
might be unrecognizable, as we typically expect a library to contain many books.

– Item-Specific Characters: When a sentence depicts a character through associations
with specific items, these items or behaviors should remain consistent for easy identi-
fication. Otherwise, the character may be hard to recognize. For instance, chefs are
usually associated with “chef’s attire, cooking utensils, and kitchens”.

– Attire-Based Characters: When a sentence presents characters identifiable by their at-
tire, such as firefighters, police officers, soldiers, doctors,
and nurses, their clothing should remain consistent for clear recognition. Changes
in attire could obscure their identities.

– Action-Based Characters: When a sentence features characters defined by specific
actions or interactions, such as bartenders (mixing drinks), businessmen (ne-
gotiating), journalists (interviewing), divers (deep-sea diving), their typical
activities should remain consistent. Altering distinctive features or placing characters
in unusual scenarios may obscure their identities.

Automatic Annotation. We employ a machine-human hybrid verification process to filter out in-
valid samples that violate any characteristic. We use LLMs to judge whether each sample violates
any of the specific criteria, labeling them “yes” or “no” and providing confidence scores. The sam-
ples whose confidence exceeds a threshold of 0.8 are removed from the dataset. We initially col-
lected 48K samples, each including 3 sentences. The automatic filtering helped eliminate over 42%
of them, resulting in a final corpus of 27K samples.

Human Annotation. We use 15 annotators and 3 experienced experts to manually verify the sam-
ples. All annotators have linguistic knowledge and are provided with detailed annotation guidelines.
Each sample is independently annotated by two annotators. Then, an experienced expert reviews the
controversial annotations and makes the final decision. After annotation, we randomly sampled 100
valid samples to assess annotation accuracy. Two experts evaluated that 99% of the samples were
valid. Finally, we obtained 11,479 valid, non-duplicated samples.

Hard Samples Selection. To effectively evaluate T2I models, it is crucial to select challenging
samples rather than simple ones. Initially, we generate images using SOTA models like DALL-E 3,
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Category Train Test Total

Relation

Absolute Location 1,716 50 1,766
Relative Location 1,111 50 1,161

Action 216 48 264
Interaction 153 43 196
Direction 342 33 375

Spatio-temporal 234 50 284

Attribute Comparison

Vague amount 1,839 50 1,889
Size 2,168 50 3,118

Height 253 50 303
Weight 5 5 10

Attribute Value

Color 4,451 50 4,501
Appearance 1,972 50 2,022

Texture 542 50 592
Shape 190 50 240
Size 516 50 566

Material 227 50 277
Manner 194 49 243

Sentiment 88 26 114
Age 22 11 33

Temperature 14 4 18
Counting 614 50 664

Total 15,518 819 14,699
Total(deduplication) 11,454 684 10,770

Table 7: Statistics of SemVarBench.

and flagging those with alignment scores below 0.7. Then, we aggregate the votes from these models
to determine the most representative candidates, and select those with the highest votes for further
filtering. To ensure diversity, we categorize these samples based on permutation types, as shown in
Fig. 5, with a maximum limit of 50 samples per category. Finally, 684 samples were included in our
benchmark.

C.3 DATA STATISTICS

Category. The samples in SemVarBench are divided into 20 categories based on their permuta-
tion types. Furthermore, these categories are further classified into three aspects based on triple
types, as illustrated in Tab. 24. These aspects are Relation, Attribute Comparison and Attribute
Value. Specifically, Relation aspect includes six categories: Action, Interaction, Absolute Location,
Relative Location, Spatial-Temporal, Direction. Attribute Contrast includes four categories: Size,
Height, Weight, Vague Amount. Attribute Value includes ten categories: Color, Counting, Texture,
Material, Shape, Age, Sentiment, Temperature, Manner, and Appearance.

Scale and Split. SemVarBench comprises 11,454 valid samples of (Ta, Tpv, Tpi), totaling 34,362
sentences. We divide it into a training set and a test set. The training set contains 10,806 samples,
while the test set consists of 648 challenging samples for effective evaluation, as shown in Tab. 7.
All our evaluations are conducted on the test set.

Distribution. Since some permutations contain multiple words, they may fall into more than one
category. In the training set, 51.06% of the permutations involve only one category, 35.12% involve
two categories, 7.35% involve three categories, and 0.5% involve more than four categories. In
the test set, 82.75% of permutations involve only one category, 14.77% involve two categories, and
2.49% involve three categories. As a result, the total count of categorized samples exceeds the actual
number of unique samples.

SemVarBench vs. Other benchmarks. Compared with existing benchmarks, SemVarBench fo-
cuses on the understanding of semantic variations for text-to-image synthesis, which includes two
types of permutations: permutation-variance and permutation-invariance. Other comparisons, such
as source, scale, annotation, and split, are illustrated in Tab. 8.
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Benchmark Concentration Data Source #Prompts Annotation Split

DrawBench (Saharia et al., 2022) General Human 200 Human Test
PartiPromps (Yu et al., 2022) General Human 1600 Human Test
PaintSkills (Cho et al., 2023a) General Template 73.3K – Train/Test
HRS-Bench (Bakr et al., 2023) General Template & LLM 45.0K Human Test

SR2D (Gokhale et al., 2022) Compositional Dataset 25.3K – Test
ABC-6K (Feng et al., 2023a) Compositional Dataset 6.4K – Test
CC-500 (Feng et al., 2023a) Compositional Template 500 – Test
TIFA v1.0 (Hu et al., 2023) Compositional Dataset 4.1K – Test

VPEval-skill (Cho et al., 2023b) Compositional Dataset 3.8K – Test
DSG-1K (Cho et al., 2024) Compositional Dataset 1.1K – Test

T2I-CompBench (Huang et al., 2023) Compositional Template & LLM 6.0K – Train/Test
Winoground (Thrush et al., 2022) Permutation-Variance Human 800 Human Test

Winoground-T2I (Zhu et al., 2023) Permutation-Variance Template & LLM 22K LLM & Human Test

SemVarBench(ours) Permutation-Variance
Permutation-Invariance Template & LLM 34K LLM & Human Train/Test

Table 8: Comparison between SemVarBench and other T2I synthesis benchmarks.

D DETAILS OF EXPERIMENT SETTING

D.1 T2I SYNTHESIS MODELS

We evaluate 13 mainstream T2I models as shown in Tab. 1. For each sentence, we generate one
image, resulting in a total of 684 × 3 × 13 images. These T2I models are Stable Diffusion v1.53

(denoted as SD 1.5), Stable Diffusion v2.14 (denoted as SD 2.1), Stable Diffusion XL v1.05 (de-
noted as SD XL 1.0), Stable Cascade6 (denoted as SD CA), DeepFloyd IF XL7 (denoted as Deep-
Floyd), PixArt-alpha XL8(denoted as PixArt), Kolors, Stable Diffusion 3 [medium]9(denoted as SD
3), FLUX.1 [dev]10 (denoted as FLUX.1), Midjourney V611 (denoted as MidJ V6), DALL-E 312,
CogView3-Plus13 (denoted as CogV3-Plus), and Ideogram 214. The schedulers for SD 1.5 and SD
2.1 are set to DPM-Solver++, while all other settings are left as default.

D.2 EVALUATOR

We use four advanced MLLMs as evaluators to demonstrate the general applicability of our proposed
evaluation metrics: Gemini 1.5 Pro, Claude 3.5 Sonnet, GPT-4o, and GPT-4 Turbo. GPT-4o and
GPT-4 Turbo have been shown to achieve near-human performance in evaluating alignment in T2I
synthesis models (Zhang et al., 2023; Chen et al., 2024b).Claude 3.5 Sonnet outperforms GPT-4o
and Gemini 1.5 Pro (Anthropic, 2024). The versions of these MLLMs used are as follows: Gemini
1.5 Pro (gemini-1.5-pro-001), Claude 3.5 Sonnet (claude-3-5-sonnet-20240620),
GPT-4o (gpt-4o-2024-05-13), and GPT-4 Turbo (gpt-4-turbo-2024-04-09). The
alignment score components follow the division outlined in (Zhang et al., 2023), with the excep-
tion of the aesthetic score component, which has been omitted. The complete prompt is as follows.

3The model used is ruwnayml/stable-diffusion-v1-5, which is now deprecated.
A mirror is available at: https://huggingface.co/stable-diffusion-v1-5/
stable-diffusion-v1-5

4https://huggingface.co/stabilityai/stable-diffusion-2-1
5https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0;https:

//huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0
6https://huggingface.co/stabilityai/stable-cascade-prior;https://

huggingface.co/stabilityai/stable-cascade
7https://huggingface.co/DeepFloyd/IF-I-XL-v1.0;https://huggingface.

co/DeepFloyd/IF-II-L-v1.0;https://huggingface.co/stabilityai/
stable-diffusion-x4-upscaler

8https://huggingface.co/PixArt-alpha/PixArt-XL-2-1024-MS
9https://huggingface.co/stabilityai/stable-diffusion-3-medium

10https://huggingface.co/black-forest-labs/FLUX.1-dev
11https://www.midjourney.com/home
12https://openai.com/index/dall-e-3/
13https://www.bigmodel.cn/dev/api/image-model/cogview
14https://about.ideogram.ai/2.0
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Does the generated image align with the given prompt?

[Instruction] Carefully assess the generated image in terms of relevance to the prompt and object accuracy.
Notice that the image is digitally created or artificially generated, and I hope you help feedback on the quality
of a generated image rather than discussing the content of a real photograph.

Use the following criteria to guide your evaluation: with Relevance (0-50 points), Object Accuracy
(0-50 points). After providing your explanation, you must rate the generated image by strictly following
this format: “[[rating]]”, for example: “Relevance (0-50 points): [[35]], Object Accuracy (0-50 points): [[30]]”.

[Prompt]
{prompt}

After receiving outputs from LLMs, we use regular expressions to extract scores. In our experiments,
the outputs from the four evaluators mentioned above consistently followed the specified format
as defined in the prompt. We also tested Qwen-VL-Chat, Qwen-VL-Plus, Qwen-VL-Max, and
LLAVA-1.6, which exhibited poor adherence to the specified format and required a more complex
extraction process. To simplify the evaluation process, we decided to adopt results exclusively from
Gemini 1.5 Pro, Claude 3.5 Sonnet, GPT-4o, and GPT-4 Turbo.

D.3 TRAINING SETTING

Training Data Selection. The training set of SemVarBench comprises 10,806 samples. We inves-
tigate the improvement from fine-tuning the T2I model Stable Diffusion XL v1.0. We select the
generated images whose alignment scores meet the requirements. These constraints are as follows.

First, the generated image should be approximately aligned with its corresponding text prompt.{
S(Ta, Ia) > C2,

S(Tpv, Ipv) > C2,
(12)

where C2 is a threshold.

Second, the alignment scores between matched text-image pairs should be higher than those between
mismatched text-image pairs. 

S(Ta, Ia) > S(Ta, Ipv),

S(Ta, Ia) > S(Tpv, Ia),

S(Tpv, Ipv) > S(Ta, Ipv),

S(Tpv, Ipv) > S(Tpv, Ia),

(13)

Third, the visual semantic variations observed from different text prompts should be the same when
the initial image and the final image are the same.

S(Ta, Ia)− S(Ta, Ipv) ≈ S(Tpv, Ipv)− S(Tpv, Ia), (14)

Similarly, the textual semantic variations observed from different images should be the same when
the initial text prompt and the final text prompt are the same.

S(Ta, Ia)− S(Tpv, Ia) ≈ S(Tpv, Ipv)− S(Ta, Ipv), (15)

By utilizing this approximate equality relationship in Eq. 14 and Eq. 15, we constrain the alignment
score using the following inequality:{

|(S(Ta, Ia)− S(Ta, Ipv))− (S(Tpv, Ipv)− S(Tpv, Ia))| < C3,

|(S(Ta, Ia)− S(Tpv, Ia))− (S(Tpv, Ipv)− S(Ta, Ipv))| < C3,
(16)

In our experiments, we utilized Stable Diffusion XL v1.0 to generate an image for each text prompt
within the training set. To select the training data, we designated C2 = 0.8 and C3 = 0.1. Ulti-
mately, we selected 327 samples, resulting in 981 sentences.

Supervised Fine-Tuning (SFT). All text-image pairs (Ti, Ii) are incorporated into the training set.
Each sample (Ta, Tpv, Tpi) results in three text-image pairs: (Ta, Ia), (Tpv, Ipv), and (Tpi, Ipi),
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which leads to a total of 981 diverse pairs. The selected set of samples is denoted as Ds. The loss
function for SFT remains unchanged (Kingma et al., 2021; Song et al., 2021), which is defined as

L(θ) = E(x,y)∈Ds

[
∥ϵ− ϵθ(zt, t, y)∥22

]
, (17)

where x, y, t, zt are the representations of the image Ii, text prompt Ti, timestamp t, and the latent
representation of the image at timestamp t, respectively. We conducted two separate fine-tuning
processes using the diffusers library15: We only fine-tuned the LoRA model either on the UNet
or the text encoder for 5,000 steps, with a training batch size of 1. Our computational resources
included an NVIDIA GeForce RTX 4090 with 25.2 GB of VRAM and a 16-core AMD EPYC 9354
processor, with 60.1 GB of system memory available. We trained the LoRA model with a rank of 4
on UNet or text encoders, and the training process took approximately 0.5 hours.

Direct Policy Optimization (DPO). We added text-image tuples of the form (Ti, Ii, Ij) to the train-
ing set, where the semantic content of Ti does not match Tj . For each input Ti, Ii represents the
chosen image and Ij the rejected one. Each sample (Ta, Tpv, Tpi) results in four text-image tuples:
(Ta, Ia, Ipv), (Tpv, Ipv, Ia), (Tpv, Ipv, Ipi), and (Tpi, Ipi, Ipv), which leads to a total of 1,308 tuples.
The loss function for DPO remains unchanged (Wallace et al., 2024), which is defined as

L(θ) = −E(xw,xl,y)∼Ds,zw
t ∼q(zw

t |xw),zl
t∼q(zl

t|xl) log σ(

−β(∥ϵw − ϵθ(z
w
t , t, y)∥

2
2 − ∥ϵw − ϵref (z

w
t , t, y)∥

2
2 −

(
∥∥ϵl − ϵθ(z

l
t, t, y)

∥∥2
2
−

∥∥ϵl − ϵref (z
l
t, t, y)

∥∥2
2
))),

(18)

where xw, xl, y, t, zwt , zlt, σ are the representations of the chosen image Ii, the rejected image Ij ,
text prompt Ti, timestamp t, the latent representation of the chosen image at timestamp t, the latent
representation of the rejected image at timestamp t, and the sigmoid function. We executed two
separate fine-tuning processes using the DiffusionDPO16: We only fine-tuned the LoRA model either
on the UNet or the text encoder for 5,000 steps, with a training batch size of 1. Our computational
resources included a Tesla V100-SXM2 with 32 GB of VRAM and an 11-core Intel(R) Xeon(R)
Platinum 8163 processor, with 88.0 GB of system memory available. We trained the LoRA model
with a rank of 4 on the UNet or text encoders, and the training process took approximately 4.5 hours.

E MORE EXPERIMENT RESULTS

E.1 RESULTS ON CATEGORIES
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Figure 11: The distribution of SemVarEffect scores across various categories for the Ideogram 2 and
the DALL-E 3 model, as evaluated by GPT-4 Turbo. Left: Ideogram 2. Right: DALL-E 3.

15The diffusers library supports fine-tuning of both the Unet and the Unet + text encoder. We made minor
modifications to support fine-tuning only the text encoder. The url of scripts provided by diffusers is: https:
//github.com/huggingface/diffusers/tree/main/examples/text_to_image/

16We used the code provided by the diffusers library, which supports fine-tuning of the Unet. We
made minor modifications to support fine-tuning only the text encoder. The url of scripts provided
by diffusers is: https://github.com/huggingface/diffusers/tree/main/examples/
research_projects/diffusion_dpo/
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Models Relation Attribute Comparison

Absolute
Location

Relative
Location Action Interaction Direction Spatial

-Temporal Size Weight Vague
Amount Height

Open Source Models

Stable Diffusion v1.5 -0.01 0.00 -0.06 -0.11 0.05 -0.01 0.11 -0.01 -0.07 0.01
Stable Diffusion v2.1 -0.01 -0.06 -0.08 0.02 -0.02 -0.00 0.03 -0.10 0.02 0.06

Stable Diffusion XL v1.0 -0.02 -0.08 -0.01 0.05 0.05 -0.05 0.07 0.16 0.03 0.09
Stable Cascade 0.02 -0.03 0.01 -0.03 0.02 0.02 -0.02 -0.09 0.08 -0.01

DeepFloyd IF XL -0.01 -0.00 0.01 -0.01 0.04 0.01 0.03 0.05 -0.04 0.03
PixArt-alpha XL 0.00 -0.01 0.03 0.00 -0.04 -0.03 0.07 0.10 0.10 0.03

Kolors -0.03 0.02 -0.07 0.02 0.03 -0.02 -0.06 -0.10 0.07 0.07
Stable Diffusion 3 -0.03 0.01 -0.02 0.05 -0.08 -0.04 0.07 -0.02 0.10 0.04

FlUX.1 -0.03 0.03 0.03 0.08 -0.04 -0.00 0.09 0.23 0.05 0.09

API-based Models

Midjourney V6 0.07 0.01 0.04 0.03 0.03 0.08 0.07 -0.12 0.07 0.02
DALL-E 3 -0.00 0.12 0.11 0.08 0.13 0.11 0.08 -0.00 0.09 0.15

CogView3-Plus 0.08 0.08 0.23 0.07 0.03 -0.01 0.23 -0.03 0.23 0.22
Ideogram 2 0.01 0.04 0.13 0.29 -0.02 -0.02 0.12 0.04 0.17 0.17

Table 9: The results of SemVarEffect scores κ on aspects Relation and Attribute Comparison. The
evaluator is GPT-4 Turbo.

Models Attribute Value AVG
Color Material Appearance Age Shape Temperature Texture Sentiment Manner Counting

Open Source Models

Stable Diffusion v1.5 0.09 0.02 0.04 -0.20 0.01 0.06 0.02 -0.06 -0.05 -0.07 -0.01
Stable Diffusion v2.1 0.12 0.10 -0.03 -0.09 -0.00 -0.06 -0.03 -0.10 -0.01 0.02 0.00

Stable Diffusion XL v1.0 0.13 0.09 -0.01 0.01 -0.01 0.05 -0.00 0.03 -0.00 0.00 0.02
Stable Cascade 0.14 0.05 0.10 -0.03 -0.02 -0.15 -0.03 -0.05 0.06 0.01 0.04

DeepFloyd IF XL 0.19 0.14 0.06 -0.19 0.04 -0.02 0.05 -0.05 0.06 0.01 0.04
PixArt-alpha XL 0.11 0.09 0.00 0.15 0.01 0.13 -0.02 0.02 0.03 -0.00 0.02

Kolors 0.21 0.07 -0.01 0.01 -0.09 0.01 0.10 -0.01 -0.04 0.00 0.01
Stable Diffusion 3 0.33 0.10 0.11 0.04 0.08 0.11 0.08 0.01 0.03 0.06 0.06

FlUX.1 0.35 0.21 0.21 0.08 0.09 -0.13 0.04 -0.06 0.07 0.10 0.09

API-based Models

Midjourney V6 0.20 0.12 0.13 0.10 -0.03 -0.21 0.11 -0.05 0.09 -0.02 0.05
DALL-E 3 0.22 0.17 0.17 0.23 0.14 0.22 0.22 0.19 0.11 0.06 0.12

CogView3-Plus 0.35 0.15 0.17 0.31 0.16 0.30 0.17 0.21 0.27 0.07 0.15
Ideogram 2 0.37 0.15 0.24 0.42 0.20 0.08 0.12 0.16 0.13 0.07 0.13

Table 10: The results of SemVarEffect scores κ on aspects Attribute Value. AVG represents the
average effect score of all samples on aspect Relation, Attribute Comparison and Attribute Value.
The evaluator is GPT-4 Turbo.

Effects of Semantic Variations on Different Categories. The impact of semantic variations is not
uniform across different semantic classes, as shown in Fig. 7, with exact scores listed in Tabs. 9
and Tab. 10. For Relation, most models consistently show low scores, as indicated by the dark blue
shading in Fig. 7. This suggests that models handle samples involving Relations—such as Absolute
Location, Relative Location, and Actions—with limited accuracy. For Attribute Value, models such
as Ideogram2 perform significantly better at capturing attributes such as Color, as shown by the
prominent red shading in Fig. 7. These models demonstrate a clear advantage in both generating
and recognizing these attributes. In contrast, models such as DALL-E 3 and CogV3-Plus display
a more balanced but average performance across most categories (shaded in light orange and light
blue). For Attribute Comparison (e.g., Size, Weight, Height), most models score lower, indicating
their weaker ability to handle complex attribute comparisons.
Although most T2I models struggle with capturing semantic variations in many categories, some
categories, such as Color and Age, demonstrate slightly better performance, as indicated by higher
median values. Fig. 11 illustrates the distribution of SemVarEffect scores across various categories
for the Ideogram 2 model, while Fig. 12 shows the scores for different T2I models in the Color
and Direction categories. Most categories have medians (marked by the orange line) close to zero,
indicating that T2I models generally struggle to capture the semantic variations introduced by word
order changes, particularly in the Direction category. However, some categories, such as Weight and
Color, show slightly higher median values, indicating that semantic variation caused by word order
changes may have a minor positive effect in these instances. Categories such as Absolute Location
and Counting show greater variability in model responses, while categories such as Sentiment and
Texture show more consistent effects with narrower distributions.
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Figure 12: The distribution of SemVarEffect scores across various T2I models within the Color and
Direction categories, as evaluated by GPT-4 Turbo. Top: Color. Bottom: Direction.

E.2 RESULTS ON HUMAN EVALUATION

Human Evaluation. To validate the effectiveness of MLLMs we used, we conducted human evalu-
ation with three raters on 80 samples (20 from each of the SOTA models: Midjourney v6, DALL-E
3, CogView3-Plus, and Ideogram2) through stratified sampling (one for each category). Following
the same scoring protocol as our automatic evaluation, each rater scores the semantic alignment of
matched or mismatched image-text pairs, and we use their mean scores to calculate SemVarEffect.
The results demonstrate the reliability of our MLLM-based evaluation approach. First, we observe
consistent performance trends between human raters and the four MLLMs across all evaluated mod-
els (Tab. 11). Second, our correlation analysis on CogView3-Plus reveals moderate Pearson’s ρ,
Spearman’s ϕ, and Cohen’s Kappa κcohen coefficients between machine and human scores (Tab.
12), suggesting that our selected MLLMs can serve as a reliable proxy for human evaluation. This
validates our MLLM-based evaluation while confirming the current limitations of T2I models. The
interfaces and criteria for human evaluation are shown in Fig. 13 and Tab. 13.

Models S̄(↑) γw(↑) γwo(↓) κ(↑)
Midjourney V6 0.59 0.37 0.49 -0.12

DALL-E 3 0.63 0.53 0.50 0.03
CogView3-Plus 0.69 0.52 0.33 0.19

Ideogram 2 0.74 0.50 0.31 0.19

Table 11: Human evaluation results of differ-
ent T2I models in understanding semantic vari-
ations.

Models ρ(↑) ϕ(↑) κcohen(↑)
GPT-4o 0.54 0.53 0.53
GPT-4v 0.50 0.51 0.54

Claude-3.5-Sonnet 0.42 0.37 0.37
Gemini-Pro-1.5 0.27 0.11 0.23

Table 12: Correlation coefficients between
GPT-4o, GPT-4v, Claude 3.5 Sonnet, Gemini
Pro 1.5 and human evaluations of the SemVar-
Effect for CogView3-Plus.

F MORE ANALYSIS

F.1 TEXT ENCODER

Do different text encoders themselves distinguish semantic variations caused by linguistic per-
mutations in the text space? We explore the efficacy of diverse text encoders in discerning such
nuances. Fig. 14 compares the text similarity between Ta and Tpv across models utilizing different
text encoder models. SD 1.5, SD 2.1, SD XL v1.0, and SC utilize CLIP series models as text en-
coders, while DeepFloyd, PixArt, and DALL-E 3 utilize T5 series models. The similarity metric is
depicted as 1− cosine(Ta, Tpv), with higher values indicating a stronger ability of the text encoder
to differentiate between the semantics of the two sentences. This indicates that the choice of text
encoder significantly influences the model’s semantic discrimination capabilities.
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Figure 13: Interface for the human evaluation

Score 1: Object Accuracy (0-50 points): The existence and attributes of objects.
50 Perfectly Accurate (All objects exist, and their attributes are described correctly).
40 Highly Accurate (All objects exist, but some minor details may differ slightly).
30 Partially Accurate (Most objects exist, but there are noticeable errors in appearance, color, or shape).
20 Mostly Inaccurate (Significant deviation from the description, with multiple attribute errors).
10 Severely Inaccurate (Most object details contradict the description).
0 Completely Inaccurate (Objects described are missing or entirely replaced by different objects).
Score 2: Relevance (0-50 points): Relationships, positions, and interactions between objects.
50 Perfect Match (Object positions and interactions fully align with the description).

40 Highly Matched (Most object positions and relationships align, with minor mismatches that do not
affect overall understanding).

30 Partially Matched (Key objects exist, but there are significant mismatches in position or relationships,
leading to a slightly different overall context).

20 Mostly Mismatched (Object relationships do not align with the description).
10 Severely Misaligned (Most object relationships are chaotic).
0 Completely Mismatched (All Object relationships are completely different from the description).

Table 13: Criteria for the human evaluation

Figure 14: The semantic discrimination capabilities of different text encoders measured by 1 −
cosine(Ta, Tpv).

31



Published as a conference paper at ICLR 2025

Category (Ta, Tpv) (Ta, Tpi) (Ta, Trandom)

Relation

Absolute Location 11.94 27.24 52.40
Relative Location 12.26 28.62 46.98

Action 13.94 31.85 48.35
Interaction 13.56 29.58 44.26
Direction 12.03 27.18 50.21

Spatio-temporal 17.40 42.74 59.94

Attribute Comparison

Vague amount 19.38 36.56 50.38
Size 11.38 26.00 46.82

Height 13.04 23.00 31.22
Weight 10.00 26.20 22.20

Attribute Value

Color 11.80 30.86 46.90
Material 12.40 28.42 41.92

Appearance 13.86 44.14 59.14
Age 14.73 34.73 46.64

Shape 13.34 33.48 40.98
Temperature 11.00 27.50 38.50

Texture 11.74 31.20 54.22
Sentiment 11.96 33.15 48.65
Manner 13.37 33.71 52.90

Counting 8.44 29.06 44.18

Average 13.12 31.65 54.30

Table 14: The average edit distance between sentences in different categories.

Why do permutations without semantic changes exhibit higher text similarity scores compared
to those with semantic changes? This phenomenon is closely related to our dataset’s construction
methodology, where Tpi is generated by swapping two long phrases located on either side of a
coordinating conjunction or a predicate, such as the and in Fig. 4. We observed that permutations
with semantic changes in our benchmark have significantly smaller edit distances from the anchor
sentence compared to synonymous sentences, as shown in Tab. 14. The average edit distances
between (Ta, Tpv), (Ta, Tpi) and (Ta, Trandom) are 13, 32, and 53. As our analysis does not rely on
the similarity scores of synonymous sentences, this does not affect our previous findings.

F.2 EVALUATION METRICS

F.2.1 ALIAGNMENT SCORE & SEMVAREFFECT SCORE

Detailed Analysis on Text-image Alignment Scores vs. SemVarEffect Score Fig. 15 illustrates
that although the distributions of the SemVarEffect score and the alignment score are similar, the
SemVarEffect score demonstrates a higher degree of differentiation, especially when distinguishing
between FLUX.1 and SD 3. Based on the alignment score, it could be concluded that FLUX.1,
SD 3, and SD XL 1.0 have comparable performance levels and may be grouped into the same
cluster. However, based on the SemVarEffect score, it becomes evident that FLUX.1 and SD 3 differ
distinctly from SD XL 1.0. SD XL 1.0 responds more similarly to semantic variations caused by
word order changes in a manner similar to SD 1.5, SD 2.1, and SD CA. Correspondingly, we observe
that when using the T5-XXL series model as the text encoder, the difference between DALL-E 3
and other models, such as PixArt and DeepFloyd, becomes more pronounced when assessed by the
SemVarEffect score.
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Figure 15: A comparison of alignment scores and the SemVarEffect score under the same conditions
of text similarity. The squares are results of permutations of permutation-variance. The evaluator is
GPT-4 Turbo.

It should be noted that SemVarEffect is not intended to challenge alignment evaluation, but rather to
serve as a complementary metric to alignment score S̄. This metric focuses only on the consistency
of variations rather than the absolute quality of generations. Thus, a model could still score well on
SemVarEffect even if it consistently generates incorrect attributes (such as believing oranges are blue
and bananas are green), as long as it maintains consistent semantic variations. SemVarEffect helps
validate the reliability of high alignment scores S̄: high S̄ with low κ indicates limited semantic
understanding, while high S̄ with high κ suggests effective semantic understanding.

F.3 TRAINING DATA

F.3.1 DATA FILTER CHOICES

How do the filtering standards of training data using MMLM potentially affect the evaluation
results, particularly for categories with limited samples? We examine filtering standards across
data-rich and data-limited categories to study the effects of data scale and data quality. The filtering
criteria are as follows:

• Alignment Score Thresholds: Values of 0.8 and 0.6 for C2 (defined in Eq. 12)
• Existence of Strict Filtering on Semantic Variations: Clear distinction between matched

and unmatched text-image pairs through strict filtering criteria (defined in Eq. 13-16).
– High filtering. High filtering standards can reduce the available data in categories with limited
data, leading to decreased alignment scores and SemVarEffect scores. Given the same initial data
size, Absolute location has lower alignment scores (> 0.6) than Height/Direction (> 0.7) due to
stricter filtering effects, as shown in Tab. 3. However, due to its large initial data pool (1.7k candi-
dates), Absolute location retains sufficient high-quality samples for effective fine-tuning under the
“0.8+strict” setting, despite the low retention rate, as shown in Tabl. 15. This comparison between
categories with different data scales demonstrates that initial data volume is crucial for achieving
improvements.
– Relaxing filtering. Results show that relaxing filtering criteria to allow more training data leads
to worse performance compared to the strictest standards. Removing “0.8+strict filtering” leads to
decreased performance across all categories, even those with sufficient data like Color and Abso-
lute location, as shown in Tab. 15. For categories with limited data, “0.8+strict filtering” minimizes
the decrease in both alignment scores and semantic variation effects, as shown in Tab. 16. This
demonstrates that even with limited data, lowering filtering standards is not a viable solution.

F.3.2 COMMONSENSE BIASES

Is the model’s insensitivity to word order variations caused by commonsense biases in training
data? To investigate this question, we conducted controlled experiments with balanced training
data containing both commonsense and anti-commonsense examples, and evaluated the model’s
generalization to novel object pairs. For training, we created a balanced dataset consisting of 40
plausible images for “cat chasing mouse” (human-selected from DALL-E 3 generations) and 40
anti-commonsense images for “mouse chasing cat”. The anti-commonsense images were manually
created, where 31 images were generated via DALL-E 3 and professionally edited by designers, and
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Filter Constrains S̄(↑) γw(↑) γwo(↓) κ(↑)
zeroshot 0.73 0.33 0.25 0.08

0.8 + strict filtering 0.78(↑) 0.44(↑) 0.24(↓) 0.20(↑)
0.8 + no filtering 0.70(↓) 0.42(↑) 0.29(↑) 0.14(↑)

0.6 + strict filtering 0.73(-) 0.44(↑) 0.23(↓) 0.22(↑)
0.6 + no filtering 0.72(↓) 0.44(↑) 0.27(↑) 0.19(↑)

Filter Constrains S̄(↑) γw(↑) γwo(↓) κ(↑)
zeroshot 0.64 0.29 0.34 -0.05

0.8 + strict filtering 0.65(↑) 0.42(↑) 0.35(↑) 0.07(↑)
0.8 + no filtering 0.54(↓) 0.25(↓) 0.31(↓) -0.05(-)

0.6 + strict filtering 0.56(↓) 0.36(↑) 0.38(↑) -0.02(↑)
0.6 + no filtering 0.57(↓) 0.31(↑) 0.40(↑) -0.09(↓)

Table 15: Fine-tuning Results on Color (left) and Absolute Location (right) with different data fil-
tering standard.

Filter Constrains S̄(↑) γw(↑) γwo(↓) κ(↑)
zeroshot 0.77 0.34 0.23 0.10

0.8 + strict filtering 0.77(-) 0.27(↓) 0.09(↓) 0.07(↓)
0.8 + no filtering 0.74(↓) 0.32(↓) 0.28(↑) 0.04(↓)

0.6 + strict filtering 0.72(↓) 0.29(↓) 0.38(↑) 0.05(↓)
0.6 + no filtering 0.73(↓) 0.33(↓) 0.29(↑) 0.04(↓)

Filter Constrains S̄(↑) γw(↑) γwo(↓) κ(↑)
zeroshot 0.79 0.20 0.15 0.05

0.8 + strict filtering 0.77(↓) 0.25(↑) 0.24(↑) 0.02(↓)
0.8 + no filtering 0.75(↓) 0.24(↑) 0.24(↑) 0.00(↓)

0.6 + strict filtering 0.75(↓) 0.19(↓) 0.28(↑) -0.09(↓)
0.8 + no filtering 0.74(↓) 0.20(-) 0.27(↑) -0.07(↓)

Table 16: Fine-tuning Results on Height (left) and Direction (right) with different data filtering
standard.

9 images were created using vector graphics compositing, as shown in Figure 16. To evaluate the
model’s performance, we categorized generation errors into five types:

• Missing Objects: generated images lacking one or more required objects.
• No Interaction: all objects present but without any interaction.
• Wrong Interaction: objects interacting but not performing the required chasing action.
• Wrong Direction: objects running but not in a chasing formation (e.g., running in opposite

directions).
• Reversed Roles: correct chasing action but with reversed subject-object roles (e.g., mouse

chasing cat when cat chasing mouse was required).
Our training performance results showed that while generation quality improved (the number of
right cases increased from 0-2 to 10-14), Reversed Role errors also increased, suggesting that the
model learned to generate chase scenes but struggled with directional semantics, as shown in Tab.
17. When testing on novel object pairs with the same “chasing” relationship (both plausible pairs
like “hippo↔elephant” and “bull↔man”), we observed consistently poor performance across all
new pairs, with similar increasing trends in No Interaction errors and Reversed Roles, as shown
in Tab. 18 and Tab. 19. Notably, there was no significant difference between plausible and anti-
commonsense scenarios. These findings suggest that the core challenge isn’t commonsense bias,
but rather a fundamental limitation in processing directional relationships. The model struggles
equally with both plausible and anti-commonsense scenarios, indicating an inability to establish
proper subject-object relationships regardless of semantic plausibility.

F.3.3 PLAUSIBLE SCENARIOS

Can current T2I models effectively distinguish different semantic relations in plausible scenar-
ios? We investigate the ability of advanced commercial T2I models to handle semantic variations
through two plausible scenarios: “A cat chasing a dog” and “A dog chasing a cat”. Both scenarios are

Class Reasons SD XL FT SD XL (trained on mouse↔cat)
mouse→cat cat→mouse mouse→cat cat→mouse

Wrong

Missing Objects 12 14 4 2
No Interaction 3 1 7 7

Wrong Interaction 4 5 3 2
Wrong Direction 7 8 0 5
Reversed Role 2 0 6 0

Right Partial/Full Match 0 2 10 14

Table 17: Training performance of SD XL before and after fine-tuning on the balanced mouse↔cat
data.
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Figure 16: Examples of an anti-commonsense scenario “a mouse chasing a cat”. Top: DALL-
E 3 generated images with professional designer editing in Photoshop. Bottom: Vector graphics
compositions.

Class Reasons SD XL FT (trained on mouse↔cat)
bull→man man→bull bull→man man→bull

Wrong

Missing Objects 0 0 0 0
No Interaction 6 12 14 15

Wrong Interaction 5 2 4 3
Wrong Direction 16 12 8 3
Reversed Role 2 2 2 6

Right Partial/Full Match 1 2 2 3

Table 18: Testing performance on unseen bull↔man pairs after fine-tuning SD XL on the balanced
mouse↔cat data.

possible in real life. Using DALL-E 3 and CogView3-Plus, we generated 30 images for each prompt
and evaluated them based on strict criteria: (a) both animals, (b) running, (c) in the same direction,
(d) clear spatial relationships (chaser behind chased), and (e) proper chase interaction. Results show
significant performance differences, as shown in Tab. 20. For “A dog chasing a cat”, DALL-E 3
achieved 70% accuracy (21/30). However, for “A cat chasing a dog”, performance dropped dramat-
ically. DALL-E 3 achieved only 13.3% accuracy while CogView3-Plus failed completely. Failed
cases either involved No Interaction or Reversed Role errors. Even though these scenarios are more
plausible than “a mouse chasing a cat”, particularly “a cat chasing a dog”, current advanced T2I
models still struggle with semantic role reversals.

F.3.4 DATA IMBALANCE

Do T2I models’ struggles with semantic relationships stem from training data imbalance? We
conducted experiments to test the performance of fine-tuned SDXL trained with balanced train-
ing data. We used a human-filtered balanced dataset of cat↔dog chasing interactions for training,
with 80 images for “a dog chasing a cat” and 80 images for “a cat chasing a dog”, selected from

Class Reasons SD XL FT (trained on mouse↔cat)
hippo→elephant elephant→hippo hippo→elephant elephant→hippo

Wrong

Missing Objects 11 16 4 9
No Interaction 11 10 16 14

Wrong Interaction 7 3 4 2
Wrong Direction 0 1 0 0
Reversed Role 1 0 4 1

Right Partial/Full Match 0 0 2 4

Table 19: Testing performance on unseen hippo↔elephant pairs after fine-tuning SD XL on the
balanced mouse↔cat data.
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Class Reasons DALL-E 3 Cogview3-Plus
cat→dog dog→cat cat→dog dog→cat

Wrong

Miss Objects 0 0 0 0
No Interaction 17 5 12 22

Wrong Interaction 0 0 0 0
Wrong Direction 0 3 0 0
Reversed Role 9 1 18 0

Right Partial/Full Match 4 21 0 8

Table 20: Error analysis of advanced commercial text-to-image models (DALL-E 3 and Cogview3-
Plus) in generating directional relationships.

Class Reasons SD XL FT SD XL (trained on cat↔dog)
mouse→cat cat→mouse mouse→cat cat→mouse

Wrong

Missing Objects 12 14 12 21
No Interaction 4 5 2 1

Wrong Interaction 3 1 4 2
Wrong Direction 7 8 4 1
Reversed Role 2 0 5 2

Right Partial/Full Match 0 2 3 3

Table 21: Testing performance on unseen mouse↔cat pairs after fine-tuning SD XL on the balanced
cat↔dog data.

DALL-E 3 generations. We used two unseen prompt pairs involving the same “chasing” relation-
ship between common objects for testing. The experiment results are shown in Tab. 21 and Tab. 22.
Despite balanced training, the model showed consistently poor generalization: accuracy remained
low for both anti-commonsense scenarios (mouse↔cat, 3-3/30) and plausible scenarios (bull↔man,
4-5/30). Failure analysis revealed three main categories: (1) Missing Objects, where the model fails
to generate all required objects; (2) Relationship Understanding Failures, where objects appear ei-
ther without interaction or with incorrect interactions (e.g. No Interaction, Wrong Interaction, and
Wrong Direction), indicating the model’s inability to comprehend the “chasing” concept; and (3)
Reversed Roles, where the model fails to properly assign who chases whom. Even among generated
images, correct relationships occurred less frequently than these failure cases, suggesting random
performance rather than true understanding. Thus, the models’ struggles persist even with perfectly
balanced training data, suggesting the core issue lies in relationship understanding rather than data
imbalance.

F.4 TRAINING MECHANISM

F.4.1 TOKEN-LEVEL IMPROVEMENT VS. SEMANTIC-LEVEL IMPROVEMENT

Does fine-tuning enhance token-level or semantic-level understanding? The semantic perfor-
mance of fine-tuned SD XL is shown in Tab. 3. To distinguish between improvements in token-level
or semantic level, we additionally conducted experiments at token level. We instructed GPT-4 to
verify whether “words with specific meaning” (including nouns, verbs, adjectives, adverbs, and
relationship-describing prepositions) from the input text are reflected in the generated image. For
example, in “a dog chasing a cat”, GPT-4 would identify three content words (“dog”, “chasing”,
“cat”) and verify their presence independently. Our analysis of the Absolute location and Height

Class Reasons SD XL FT SD XL (trained on cat↔dog)
bull→man man→bull bull→man man→bull

Wrong

Missing Objects 0 0 0 0
No Interaction 6 12 6 13

Wrong Interaction 5 2 0 0
Wrong Direction 16 12 11 9
Reversed Role 2 2 9 3

Right Partial/Full Match 1 2 4 5

Table 22: Testing performance on unseen bull↔man pairs after fine-tuning SD XL on the balanced
cat↔dog data.
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categories revealed improved token-level accuracy after fine-tuning, as shown in Tab. 4. While
fine-tuning improves token accuracy for the Height category, it actually leads to a degradation in
semantic understanding. This pattern suggests that the model, while better at incorporating individ-
ual tokens from the prompt after fine-tuning, fails to maintain or improve its understanding of the
semantic relationships between these elements.
This phenomenon is further illustrated in Figure 17, where the fine-tuned model successfully in-
cludes most prompted elements (e.g., “shirt”, “mannequin”, “dress”, “hanger”, “floral” and “polka
dot”) but fails to establish correct semantic relationships between them. For instance, while both
clothing items and patterns appear in the generated images, their associations are incorrect, demon-
strating enhanced token-level accuracy but persistent semantic relationship errors. These findings
indicate that current fine-tuning approaches may prioritize token-level matching over semantic com-
prehension, suggesting a need for training strategies that better preserve and enhance semantic un-
derstanding. More examples are illustrated in Figure 18.

The shirt on the mannequin 
has a floral pattern and the 
dress on the hanger has a 
polka dot pattern.

The shirt on the mannequin 
has a polka dot pattern and 
the dress on the hanger has a 
floral pattern.

The dress on the hanger has 
a polka dot pattern and the 
shirt on the mannequin has 
a floral pattern.

SD XL

FT SD XL

Figure 17: Qualitative comparison showing the disconnect between token presence and semantic un-
derstanding after fine-tuning: while fine-tuning improves token presence (e.g., “shirt”,“mannequin”,
“dress”, “hanger”, “floral” and “polka dot” all appear in the image), the model fails to capture cor-
rect semantic relationships between these tokens. This illustrates enhanced token-level accuracy but
persistent semantic relationship errors.

F.4.2 SHORTCUT LEARNING PHENOMENON IN DATA-LIMITED CATEGORIES DURING
FINE-TUNING

We observed a “shortcut” phenomenon during fine-tuning models, where some improvement in the
average alignment score is misleading. For data-limited categories like Direction, we generated 8
images per prompt and constructed multiple test samples using various image combinations. The
results reveal inconsistent patterns, where average alignment scores S̄ (averaged across Ta, Tpv , and
Tpi) increased in 4 sets (Imageset 2,3,6,8) but decreased in 4 sets (Imageset 1,4,5,7) of experiments,
as shown in Tab. 23. For all improved results, they consistently exhibited substantial gains in
alignment score of the original text Ta and decreases in alignment score of the permutations Tpv and
Tpi. The magnitude of anchor improvements was so large that it artificially inflated all other average
alignment metrics, masking performance issues in other aspects, as shown in the bold in Tab. 23.
This finding raises concerns about evaluation methods in current literature, which often evaluate gen-
eration using only the average of alignment scores. Improvements in alignment scores may be mis-
leading. For instance, the fine-tuned model shows higher average scores(0.780/0.780/0.784/0.799
on Imageset 2/3/6/8) compared to zeroshot(0.774). However, our deeper analysis using SemVarEf-
fect κ scores revealed consistent declines, primarily due to γwo not decreasing as expected, indicat-
ing the model fails to understand true semantics.
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Model Testset S̄(↑) Sa,a(↑) Spv,pv(↑) Spi,pi(↑) (Sa,a + Spv,pv)/2(↑) (Sa,a + Spi,pi)/2(↑) γw(↑) γwo(↓) κ(↑)
SD XL – 0.786 0.768 0.779 0.809 0.774 0.788 0.201 0.155 0.046

FT SD XL

Imageset 2 0.784(↓) 0.802(↑) 0.758(↓) 0.793(↓) 0.780(↑) 0.797(↑) 0.244(↑) 0.205(↑) 0.038(↓)
Imageset 3 0.790(↑) 0.806(↑) 0.754(↓) 0.809(-) 0.780(↑) 0.807(↑) 0.209(↑) 0.262(↑) -0.053(↓)
Imageset 6 0.787(↑) 0.800(↑) 0.768(↓) 0.794(↓) 0.784(↑) 0.797(↑) 0.244(↑) 0.224(↑) 0.02(↓)
Imageset 8 0.798(↑) 0.841(↑) 0.756(↓) 0.797(↓) 0.799(↑) 0.819(↑) 0.230(↑) 0.269(↑) -0.04(↓)

Table 23: Analysis of alignment metrics revealing the shortcut phenomenon in fine-tuning on Di-
rection category. While anchor scores (Sa,a) show consistent improvements (↑) across different
Imagesets, permutation scores (Spv,pv , Spi,pi) remain unchanged or decrease after fine-tuning SD
XL (FT SD XL). The blue items deceptively indicates an improvement in results achieved through
shortcut learning methods, but in reality, there has been no actual enhancement. The bold shows
that magnitude of anchor improvements was so large that it artificially inflated all other average
alignment metrics, masking performance issues in other aspects.

G MORE CASE STUDIES

In this section, we present examples that demonstrate an understanding of semantic variations and
examples that do not. These examples are all generated from the advanced commercial T2I model
DALL-E 3. Examples that grasp semantic variations typically have high alignment scores (S̄ii) and
high effect scores (κ), as illustrated in Fig. 19. Conversely, examples that lack this understanding
often have high alignment scores (S̄ii) but low effect scores (κ), as depicted in Figures 20 and
21. The SemVarEffect scores allow us to distinguish the models’ abilities to accurately interpret and
visually represent semantic variations. However, in practice, evaluation accuracy can be significantly
affected by errors in generated images or biases in evaluators’ ratings. Severe errors can particularly
distort the evaluation’s accuracy, as evidenced in Figures 25 and 27. To enhance the accuracy of our
evaluations, we will utilize more precise evaluators in future work.

H LIMITATION

We would like to highlight that the size of SemVarBench is constrained by the necessity for manual
verification due to the unsatisfactory accuracy of LLM’s validation, which incurs high costs. Fur-
thermore, the scale of evaluation is limited by the high costs of image generation and LLM-based
evaluation, both in terms of time and money, thus restricting the extent of such evaluations.
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Aspect Category Example

Relation

Action
Ta: A dog sits and a cat stands.
Tpv: A dog stands and a cat sits.
Tpi: A cat stands and a dog sits.

Interaction
Ta: An old person kisses a young person.
Tpv: A young person kisses an old person.
Tpi: A young person is kissed by an old person.

Absolute Location
Ta: The soft teddy bear is on the bed and the hard toy car is on the shelf.
Tpv: The soft teddy bear is on the shelf and the hard toy car is on the bed.
Tpi: The hard toy car is on the shelf and the soft teddy bear is on the bed.

Relative Location
Ta: A green apple sits atop a red leaf.
Tpv: A red leaf sits atop a green apple.
Tpi: A red leaf sits below a green apple.

Spatial-Temporal
Ta: Sushi roll; first put the fish on the seaweed, and then put the rice on top.
Tpv: Sushi roll; first put the rice on the seaweed, and then put the fish on top.
Tpi: Sushi roll; first apply the fish on the seaweed, and then place the rice on top.

Direction
Ta: A boy jumps away from the fence and towards the river.
Tpv: A boy jumps away from the river and towards the fence.
Tpi: A boy towards the river and jumps away from the fence.

Attribute
Comparison

Size
Ta: The cake and the plate; the cake is too big for the plate.
Tpv: The cake and the plate; the plate is too big for the cake.
Tpi: The plate and the cake; the place is too small for the cake.

Height
Ta: A dinosaur towering over a human.
Tpv: A human towering over a dinosaur.
Tpi: A human being towered over by a dinosaur.

Weight

Ta: The athlete with a heavy backpack is walking quite slowly and the one with a light
bag is running faster.
Tpv: The athlete with a light backpack is walking quite slowly and the one with a heavy
bag is running faster.
Tpi: The athlete with a light bag is running faster and the one with a heavy backpack is
walking quite slowly.

Vague Amount
Ta: A cake with more frosting on the top than on the slides.
Tpv: A cake with more frosting on the slides than on the top.
Tpi: A cake with less frosting on the slides than on the top.

Attribute
Values

Color
Ta: A man in a purple shirt is carrying a brown suitcase.
Tpv: A man in a brown shirt is carrying a purple suitcase.
Tpi: A brown suitcase is being carried by a man in a purple shirt.

Counting
Ta: Four dogs in a doghouse and one dog barking outside.
Tpv: One dogs in a doghouse and four dog barking outside.
Tpi: One dog barking outside and four dogs in a doghouse.

Texture
Ta: Two fish; the one in the tank has stripes and the one in the bowl doesn’t.
Tpv: Two fish; the one in the bowl has stripes and the one in the tank doesn’t.
Tpi: Two fish; the one in the bowl has no stripes and the one in the tank does.

Material
Ta: There’s a satin teddy bear with a furry bow.
Tpv: There’s a furry teddy bear with a satin bow.
Tpi: A satin teddy bear has a furry bow.

Shape
Ta: The circular suitcase has an oblong lock.
Tpv: The oblong suitcase has an circular lock.
Tpi: An oblong lock is on the circular suitcase.

Age
Ta: The person on the left is old and the person on the right is young.
Tpv: The person on the right is old and the person on the left is young.
Tpi: The person on the right is young and the person on the left is old.

Sentiment
Ta: The happy child is playing next to a sad clown.
Tpv: The sad child is playing next to a happy clown.
Tpi: Next to a sad clown, a happy child is playing.

Temperature
Ta: Iced coffee and steaming tea.
Tpv: Steaming coffee and iced tea.
Tpi: Steaming tea and iced coffee.

Manner

Ta: The building on the corner has a modern design and the monument in the park has
a classic design.
Tpv: The building on the corner has a classic design and the monument in the park has
a modern design.
Tpi: The monument in the park has a classic design and the building on the corner has
a modern design.

Appearance
Ta: The boy with a blue shirt has long hair and the girl in the pink dress has short hair.
Tpv: The boy with a blue shirt has short hair and the girl in the pink dress has long hair.
Tpi: The girl in the pink dress has short hair and the boy with a blue shirt has long hair.

Table 24: Permutation-based valid sentences (Ta, Tpv, Tpi) in diverse categories.
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The mountain in the distance 
has snowy peak and the hill by 
the river has green peak.

The mountain in the distance 
has green peak and the hill by 
the river has snowy peak.

The hill by the river has a green 
peak and the mountain in the 
distance has a snowy peak.

SD XL

FT SD XL

The person in the front is short 
while the person in the back is 
tall.

The person in the back is short 
while the person in the front is 
tall.

The person in the back is tall while 
the person in the front is short.

SD XL

FT SD XL

The car in the garage is red 
and the car in the driveway is 
blue.

The car in the garage is blue 
and the car in the driveway is 
red.

The car in the garage is red, 
and the car in the driveway is 
blue.

SD XL

FT SD XL

Figure 18: More examples for qualitative comparison showing the disconnect between token pres-
ence and semantic understanding after fine-tuning.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

There are more smiles than 
frowns in the photograph.

There are more frowns than 
smiles in the photograph.

In the photograph, there are 
more smiles than frowns.

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.45
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.97

𝛾%/' 	= 0.93
𝛾%/(' = 0.03

𝜅 = 0.90

GPT-4 Turbo

In the pool, there are four 
floaties and one diving 
board.

In the pool, there are one 
floatie and four diving 
boards.

In the pool, there is one 
diving board and four 
floaties. 

The camels are taller than 
the horses.

The horses are taller than 
the camels.

The horses are shorter than 
the camels.

𝑆 𝑇! , 𝐼! = 0.96
𝑆 𝑇"# , 𝐼"# 	= 0.82	
𝑆 𝑇"$ , 𝐼"$ 	= 1.00	

𝑆 𝑇"# , 𝐼! = 0.35
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.93

𝛾%/' 	= 0.78
𝛾%/(' = 0.04

𝜅 = 0.74

𝑆 𝑇! , 𝐼! = 0.93
𝑆 𝑇"# , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.55
𝑆 𝑇! , 𝐼"# 	= 0.59	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.98	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/
' 	= 0.74

𝛾%/(
' = 0.08

𝜅 = 0.66

Copper pots with ceramic 
plates.

Ceramic pots with copper 
plates.

Ceramic plates with copper 
pots.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼"$ 	= 1.00	

𝑆 𝑇"# , 𝐼! = 0.66
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.96

𝛾%/' 	= 0.68
𝛾%/(' = 0.05

𝜅 = 0.63

There's a sleek, modern 
phone with an old, clunky 
computer.

There's an old, clunky 
phone with a sleek, 
modern computer.

There's an old, clunky 
computer with a sleek, 
modern phone.

𝑆 𝑇! , 𝐼! = 0.93
𝑆 𝑇"# , 𝐼"# 	= 0.75	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.33	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.87

𝛾%/' = 0.70
𝛾%/(' = 0.09

𝜅 = 0.61

The happy dog is wagging 
its tail while the cat is 
sleeping.

The happy dog is sleeping 
while the cat is wagging 
its tail.

While the cat is sleeping, 
the happy dog is wagging 
its tail.

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.87	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.75	
𝑆 𝑇"$ , 𝐼! 	= 0.87	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.93

𝛾%/' = 0.51
𝛾%/(' = 0.05

𝜅 = 0.46

Figure 19: The cases which understand semantic variations.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

At the park, few benches 
and many trees.

At the park, few trees and 
many benches.

At the park, many trees 
and few benches.

𝑆 𝑇! , 𝐼! = 0.93
𝑆 𝑇"# , 𝐼"# 	= 0.60	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.60
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.94	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.83

𝛾%/' = 0.28
𝛾%/(' = 0.01

𝜅 = 0.27

GPT-4 Turbo

The bag on the hook is 
heavy and the one on the 
table is not.

The bag on the table is 
heavy and the one on the 
hook is not.

The one on the table is not 
heavy and the bag on the 
hook is.

Baked potato; first put the 
butter on the baked potato, 
and then put the sour 
cream on top.

Baked potato; first put the 
sour cream on the baked 
potato, and then put the 
butter on top.

Baked potato; first put the 
butter on the baked potato, 
then top it with sour cream.

𝑆 𝑇! , 𝐼! = 0.89
𝑆 𝑇"# , 𝐼"# 	= 0.85	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.85
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.90	
𝑆 𝑇! , 𝐼"$ 	= 0.82	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.89

𝛾%/' = 0.34
𝛾%/(' = 0.10

𝜅 = 0.24

𝑆 𝑇! , 𝐼! = 0.94
𝑆 𝑇"# , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.87
𝑆 𝑇! , 𝐼"# 	= 0.75	
𝑆 𝑇"$ , 𝐼! 	= 0.94	
𝑆 𝑇! , 𝐼"$ 	= 0.89	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/' = 0.27
𝛾%/(' = 0.06

𝜅 = 0.21

The computer is on the 
desk and the phone is on 
the nightstand.

The computer is on the 
nightstand and the phone 
is on the desk.

The phone is on the 
nightstand and the 
computer is on the desk.

𝑆 𝑇! , 𝐼! = 0.82
𝑆 𝑇"# , 𝐼"# 	= 0.45	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.71
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.85	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.74

𝛾%/' = 0.43
𝛾%/(' = 0.23

𝜅 = 0.20

A happy family is walking 
next to a sad ghost.

A sad family is walking 
next to a happy ghost.

Next to a sad ghost, a 
happy family is walking.

𝑆 𝑇! , 𝐼! = 0.94
𝑆 𝑇"# , 𝐼"# 	= 0.78	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.83	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.90	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.88

𝛾%/' = 0.24
𝛾%/(' = 0.06

𝜅 = 0.18

The paintings on the wall 
are realistic and the ones 
on the floor are abstract.

The paintings on the wall are 
abstract and the ones on the 
floor are realistic.

The ones on the floor are 
abstract and the paintings 
on the wall are realistic.

𝑆 𝑇! , 𝐼! = 0.65
𝑆 𝑇"# , 𝐼"# 	= 0.45	
𝑆 𝑇"$ , 𝐼"$ 	= 1.00	

𝑆 𝑇"# , 𝐼! = 0.35
𝑆 𝑇! , 𝐼"# 	= 0.45	
𝑆 𝑇"$ , 𝐼! 	= 0.30	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.70

𝛾%/
' = 0.30

𝛾%/(
' = 1.00

𝜅 = −0.70

Figure 20: The cases which don’t understand semantic variations.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

The baby crawls and the 
parent walks.

The baby walks and the 
parent crawls.

The parent walks and the 
baby crawls.

A full glass is next to an 
empty plate.

An empty glass is next to a 
full plate.

An empty plate is next to a 
full glass.

𝑆 𝑇! , 𝐼! = 0.94
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.70
𝑆 𝑇! , 𝐼"# 	= 0.96	
𝑆 𝑇"$ , 𝐼! 	= 0.93	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/' = 0.25
𝛾%/(' = 0.06

𝜅 = 0.19

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.85	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.80	
𝑆 𝑇"$ , 𝐼! 	= 0.87	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.93

𝛾%/' = 0.35
𝛾%/(' = 0.16

𝜅 = 0.19

GPT-4 Turbo

The skater wears a denim 
vest over a graphic t-shirt 
with a round neck collar.

The skater wears a graphic 
vest over a denim t-shirt 
with a round neck collar.

A denim vest is worn by the 
skater over a graphic t-shirt 
with a round neck collar.

The elder teacher's hand is 
on the young student's 
shoulder.

The young student's hand 
is on the elder teacher's 
shoulder.

The young student's 
shoulder is under the elder 
teacher's hand.

The mountain in the 
distance has snowy peak 
and the hill by the river has 
green peak.

The mountain in the 
distance has green peak 
and the hill by the river has 
snowy peak.

The hill by the river has a 
green peak and the 
mountain in the distance 
has a snowy peak.

𝑆 𝑇! , 𝐼! = 0.97
𝑆 𝑇"# , 𝐼"# 	= 0.82	
𝑆 𝑇"$ , 𝐼"$ 	= 0.89	

𝑆 𝑇"# , 𝐼! = 0.98
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 0.99	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.89

𝛾%/' = 0.20
𝛾%/(' = 0.13

𝜅 = 0.07

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.90	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.85
𝑆 𝑇! , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.93

𝛾%/
' = 0.05

𝛾%/(
' = 0.02

𝜅 = 0.03

𝑆 𝑇! , 𝐼! = 0.89
𝑆 𝑇"# , 𝐼"# 	= 0.79	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.75
𝑆 𝑇! , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.88

𝛾%/' = 0.09
𝛾%/(' = 0.06

𝜅 = 0.03

A robot is serving tea to a 
group of children next to a 
parent.

A parent is serving tea to a 
group of children next to a 
robot.

A robot next to a parent is 
serving tea to a group of 
children.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.95
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.85

𝛾%/' = 0.03
𝛾%/(' = 0.00

𝜅 = 0.03

Figure 21: More cases which don’t understand semantic variations.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

Four kids riding bikes on 
the street and one kid 
skateboarding.

One kid riding bikes on 
the street and four kids 
skateboarding.

On the street, four kids are 
riding bikes and one kid is 
skateboarding.

𝑆 𝑇! , 𝐼! = 0.80
𝑆 𝑇"# , 𝐼"# 	= 0.83	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.30
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.90	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.85

𝛾%/
' = 0.78

𝛾%/(' = 0.16

𝜅 = 0.62

GPT-4 Turbo

The child in the stroller is 
sleeping and the adult on 
the bench is reading.

The child in the stroller is 
reading and the adult on the 
bench is sleeping.

The adult on the bench is 
reading and the child in the 
stroller is sleeping.

There's a plastic cup with a 
ceramic saucer.

There's a ceramic cup with 
a plastic saucer.

With a ceramic saucer, there's 
a plastic cup. 

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.80	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.50
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.92	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.92

𝛾%/' = 0.63
𝛾%/(' = 0.11

𝜅 = 0.52

𝑆 𝑇! , 𝐼! = 0.75
𝑆 𝑇"# , 𝐼"# 	= 0.80	
𝑆 𝑇"$ , 𝐼"$ 	= 0.89	

𝑆 𝑇"# , 𝐼! = 0.35
𝑆 𝑇! , 𝐼"# 	= 0.50	
𝑆 𝑇"$ , 𝐼! 	= 0.93	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.81

𝛾%/' = 0.70
𝛾%/(' = 0.24

𝜅 = 0.45

The child on the swing is 
higher than the other 
children on the seesaw.

The child on the swing is 
lower than the other 
children on the seesaw.

The other children on the 
seesaw are lower than the child 
on the swing. 

The athlete with a medal 
celebrates and the athlete 
without a medal applauds.

The athlete with a medal 
applauds and the athlete 
without a medal celebrates.

The athlete without a medal 
applauds and the athlete 
with a medal celebrates.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.25	
𝑆 𝑇"$ , 𝐼"$ 	= 0.92	

𝑆 𝑇"# , 𝐼! = 0.89
𝑆 𝑇! , 𝐼"# 	= 0.91	
𝑆 𝑇"$ , 𝐼! 	= 0.65	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.71

𝛾%/' = 0.68
𝛾%/(' = 0.29

𝜅 = 0.39

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.45	
𝑆 𝑇"$ , 𝐼"$ 	= 0.65	

𝑆 𝑇"# , 𝐼! = 0.95
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 0.71	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.68

𝛾%/' = 0.90
𝛾%/(' = 0.57

𝜅 = 0.33

The waiter is covering the 
eyes of the customer with 
a menu.

The customer is covering 
the eyes of the waiter with 
a menu.

The waiter is covering the 
customer's eyes with a 
menu.

𝑆 𝑇! , 𝐼! = 0.90
𝑆 𝑇"# , 𝐼"# 	= 0.60	
𝑆 𝑇"$ , 𝐼"$ 	= 0.70	

𝑆 𝑇"# , 𝐼! = 0.30
𝑆 𝑇! , 𝐼"# 	= 0.45	
𝑆 𝑇"$ , 𝐼! 	= 0.65	
𝑆 𝑇! , 𝐼"$ 	= 0.60	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.73

𝛾%/
' = 0.75

𝛾%/(' = 0.35

𝜅 = 0.40

Figure 22: Cases with minor errors which understand semantic variations.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

A child wearing a 
superhero cape with their 
fists in the air and a parent 
wearing a business suit.

A child wearing a business 
suit with their fists in the 
air and a parent wearing a 
superhero cape.

A parent wearing a 
business suit and a child 
wearing a superhero cape 
with their fists in the air.

𝑆 𝑇! , 𝐼! = 0.88
𝑆 𝑇"# , 𝐼"# 	= 0.60	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.15
𝑆 𝑇! , 𝐼"# 	= 0.98	
𝑆 𝑇"$ , 𝐼! 	= 0.82	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.81

𝛾%/
' = 0.55

𝛾%/(
' = 0.20

𝜅 = 0.35

GPT-4 Turbo

The baby's foot is on the 
mother's chest.

The mother's foot is on 
the baby's chest.

The mother's chest is under 
the baby's foot. 

𝑆 𝑇! , 𝐼! = 0.75
𝑆 𝑇"# , 𝐼"# 	= 0.53	
𝑆 𝑇"$ , 𝐼"$ 	= 0.55	

𝑆 𝑇"# , 𝐼! = 0.30
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.60	
𝑆 𝑇! , 𝐼"$ 	= 0.65	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.61

𝛾%/' = 0.33
𝛾%/(' = 0.15

𝜅 = 0.18

The waiter is wearing a 
black vest over a white 
shirt.

The waiter is wearing a 
white vest over a black 
shirt.

A black vest is being worn 
by the waiter over a white 
shirt.

𝑆 𝑇! , 𝐼! = 1.00
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/' = 0.35
𝛾%/(' = 0.07

𝜅 = 0.28

Two balloons tied to a chair 
and three balloons floating 
in the air.

Three balloons tied to a 
chair and two balloons 
floating in the air.

Two balloons are tied to a 
chair, and in the air, three 
balloons are floating.

Chefs in white uniforms 
with a golden frying pan in 
their hands.

Chefs in golden uniforms 
with a white frying pan in 
their hands.

In white uniforms with a 
golden frying pan in their 
hands, chefs.

𝑆 𝑇! , 𝐼! = 0.65
𝑆 𝑇"# , 𝐼"# 	= 0.70	
𝑆 𝑇"$ , 𝐼"$ 	= 0.65	

𝑆 𝑇"# , 𝐼! = 0.65
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.65	
𝑆 𝑇! , 𝐼"$ 	= 0.65	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.67

𝛾%/' = 0.05
𝛾%/(' = 0.00

𝜅 = 0.05

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼"$ 	= 0.81	

𝑆 𝑇"# , 𝐼! = 0.55
𝑆 𝑇! , 𝐼"# 	= 0.78	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 0.83	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.77

𝛾%/' = 0.17
𝛾%/(' = 0.29

𝜅 = −0.12

A younger child is hugging 
the leg of an older parent.

An older parent is hugging 
the leg of a younger child.

The leg of an older parent is 
being hugged by a younger 
child.

𝑆 𝑇! , 𝐼! = 0.70
𝑆 𝑇"# , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.35
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.70	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.77

𝛾%/' = 0.35
𝛾%/(' = 0.50

𝜅 = −0.15

Figure 23: Cases with minor errors which don’t understand semantic variations. Several alignment
scores, which are incorrect according to GPT-4V, are labeled in red.
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Anchor Text Permutation-Variance Permutation-Variance SemVarEffect Score

A girl wearing a pink dress 
with her hair in the air and 
a boy wearing blue shorts 
playing in the sand.

A girl wearing blue shorts 
with her hair in the air and 
a boy wearing a pink dress 
playing in the sand.

A boy wearing blue shorts 
and a girl wearing a pink 
dress with her hair in the air 
are playing in the sand.

𝑆 𝑇! , 𝐼! = 0.94
𝑆 𝑇"# , 𝐼"# 	= 0.85	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.78
𝑆 𝑇! , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼! 	= 0.92	
𝑆 𝑇! , 𝐼"$ 	= 0.85	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.91

𝛾%/' = 0.07
𝛾%/(' = 0.10

𝜅 = −0.03

GPT-4 Turbo

There's a steel knife with a 
wooden handle.

There's a wooden knife 
with a steel handle.

There's a knife with a wooden 
handle, made of steel.

The giraffe is taller than the 
zebra.

The zebra is taller than the 
giraffe.

The zebra is shorter than the 
giraffe.

𝑆 𝑇! , 𝐼! = 1.00
𝑆 𝑇"# , 𝐼"# 	= 0.60	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.60
𝑆 𝑇! , 𝐼"# 	= 0.98	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.84

𝛾%/' = 0.02
𝛾%/(' = 0.05

𝜅 = −0.03

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼"$ 	= 0.85	

𝑆 𝑇"# , 𝐼! = 0.55
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 0.98	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.79

𝛾%/' = 0.05
𝛾%/(' = 0.15

𝜅 = −0.10

A robot is serving tea to a 
group of children next to a 
parent.

A parent is serving tea to a 
group of children next to a 
robot.

A robot next to a parent is 
serving tea to a group of 
children.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.95
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.85

𝛾%/' = 0.03
𝛾%/(' = 0.00

𝜅 = 0.03

Figure 24: Examples of acceptable outliers include negative SemVarEffect (κ) values that are close
to zero. Outliers with a SemVarEffect score (κ) slightly below 0 are acceptable.
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The person in the hat is 
smiling and the person 
without a hat is frowning.

The person in the hat is 
frowning and the person 
without a hat is smiling.

The person without a hat is 
frowning and the person in 
the hat is smiling.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.40	
𝑆 𝑇"$ , 𝐼"$ 	= 0.30	

𝑆 𝑇"# , 𝐼! = 1.00
𝑆 𝑇! , 𝐼"# 	= 1.00	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 0.60	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.55

𝛾%/' = 0.65
𝛾%/(' = 1.05

𝜅 = −0.40

GPT-4 Turbo

All people eat with a fork 
except for one who eats 
with chopsticks.

All people eat with 
chopsticks except for one 
who eats with a fork.

Except for one who eats 
with chopsticks, all people 
eat with a fork.

𝑆 𝑇! , 𝐼! = 0.55
𝑆 𝑇"# , 𝐼"# 	= 0.98	
𝑆 𝑇"$ , 𝐼"$ 	= 0.10	

𝑆 𝑇"# , 𝐼! = 0.80
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 0.55	
𝑆 𝑇! , 𝐼"$ 	= 0.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.54

𝛾%/' = 0.56
𝛾%/(' = 1.00

𝜅 = −0.44

The wooden spoon is in the 
drawer and the metal 
spatula is on the counter.

The metal spoon is in the 
drawer and the wooden 
spatula is on the counter.

The metal spatula is on the 
counter and the wooden 
spoon is in the drawer.

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼"$ 	= 0.35	

𝑆 𝑇"# , 𝐼! = 0.75
𝑆 𝑇! , 𝐼"# 	= 0.70	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 0.30	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.66

𝛾%/' = 0.38
𝛾%/(' = 1.31

𝜅 = −0.93

The hot coffee is in the 
mug and the cold tea is in 
the glass.

The cold tea is in the mug 
and the hot coffee is in the 
glass.

The cold tea is in the glass 
and the hot coffee is in the 
mug. 

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.25	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.95
𝑆 𝑇! , 𝐼"# 	= 0.50	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.73

𝛾%/' = 1.18
𝛾%/(' = 0.07

𝜅 = 1.11

The ice cream in the cone is 
melting while the ice cream 
in the cup is frozen.

The ice cream in the cup is 
melting while the ice cream 
in the cone is frozen.

The ice cream in the cup is 
frozen while the ice cream in 
the cone is melting.

𝑆 𝑇! , 𝐼! = 0.45
𝑆 𝑇"# , 𝐼"# 	= 0.35	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.60
𝑆 𝑇! , 𝐼"# 	= 0.65	
𝑆 𝑇"$ , 𝐼! 	= 0.65	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.58

𝛾%/' = 0.45
𝛾%/(' = 0.83

𝜅 = −0.38

The pockets on the left side 
of the jacket are big and 
the ones on the right side 
are small.

The pockets on the left side 
of the jacket are small and 
the ones on the right side 
are big.

The jacket has big pockets 
on the left side and small 
ones on the right side.

𝑆 𝑇! , 𝐼! = 0.80
𝑆 𝑇"# , 𝐼"# 	= 0.70	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.70
𝑆 𝑇! , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼! 	= 0.65	
𝑆 𝑇! , 𝐼"$ 	= 0.91	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.83

𝛾%/
' = 0.15

𝛾%/(
' = 0.44

𝜅 = −0.29

Figure 25: Examples of acceptable outliers include negative κ values that are with a SemVarEffect
score outside the range [0,1], being considered unacceptable. This discrepancy may be due to incor-
rect text-image alignment scores provided by evaluators or low quality images.
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GPT-4 TurboA shiny ring is next to a dull 
watch.

A dull ring is next to a shiny 
watch.

A dull watch is next to a shiny 
ring. 

𝑆 𝑇! , 𝐼! = 0.93
𝑆 𝑇"# , 𝐼"# 	= 0.50	
𝑆 𝑇"$ , 𝐼"$ 	= 0.88	

𝑆 𝑇"# , 𝐼! = 0.85
𝑆 𝑇! , 𝐼"# 	= 0.30	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.98	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.77

𝛾%/' = 0.98
𝛾%/(' = 0.12

𝜅 = 0.86

A police officer in a black 
uniform is holding a white 
flashlight.

A police officer in a white 
uniform is holding a black 
flashlight.

A police officer is holding a 
white flashlight in a black 
uniform. 

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.62	
𝑆 𝑇"$ , 𝐼"$ 	= 0.98	

𝑆 𝑇"# , 𝐼! = 0.73
𝑆 𝑇! , 𝐼"# 	= 0.35	
𝑆 𝑇"$ , 𝐼! 	= 0.85	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.86

𝛾%/' = 0.74
𝛾%/(' = 0.18

𝜅 = 0.56

A green apple with a brown 
stem.

A brown apple with a green 
stem.

A brown stem with a green 
apple.

𝑆 𝑇! , 𝐼! = 0.99
𝑆 𝑇"# , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.55
𝑆 𝑇! , 𝐼"# 	= 0.35	
𝑆 𝑇"$ , 𝐼! 	= 1.00	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.83

𝛾%/' = 0.64
𝛾%/(' = 0.11

𝜅 = 0.53

The pizza on the tray is 
round and the sandwich 
on the plate is square.

The pizza on the tray is 
square and the sandwich 
on the plate is round.

The sandwich on the plate 
is square and the pizza on 
the tray is round.

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.93	

𝑆 𝑇"# , 𝐼! = 0.50
𝑆 𝑇! , 𝐼"# 	= 0.90	
𝑆 𝑇"$ , 𝐼! 	= 0.93	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/' = 0.52
𝛾%/(' = 0.03

𝜅 = 0.48

The happy child is in the 
pool and the worried 
parent is at the edge.

The worried child is in the 
pool and the happy parent 
is at the edge.

The worried parent is at the 
edge and the happy child is 
in the pool.

A bird with colorful feathers 
is flying above a bird 
without feathers.

A bird without feathers is 
flying above a bird with 
colorful feathers.

Above a bird without 
feathers, a bird with colorful 
feathers is flying.

𝑆 𝑇! , 𝐼! = 0.94
𝑆 𝑇"# , 𝐼"# 	= 0.92	
𝑆 𝑇"$ , 𝐼"$ 	= 0.91	

𝑆 𝑇"# , 𝐼! = 0.50
𝑆 𝑇! , 𝐼"# 	= 0.85	
𝑆 𝑇"$ , 𝐼! 	= 0.98	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.92

𝛾%/' = 0.51
𝛾%/(' = 0.08

𝜅 = 0.43

𝑆 𝑇! , 𝐼! = 0.85
𝑆 𝑇"# , 𝐼"# 	= 0.60	
𝑆 𝑇"$ , 𝐼"$ 	= 0.89	

𝑆 𝑇"# , 𝐼! = 0.82
𝑆 𝑇! , 𝐼"# 	= 0.55	
𝑆 𝑇"$ , 𝐼! 	= 0.90	
𝑆 𝑇! , 𝐼"$ 	= 0.93	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.78

𝛾%/' = 0.52
𝛾%/(' = 0.09

𝜅 = 0.43

Figure 26: Errors only due to incorrect scoring by GPT-4V, where images are essentially correct.
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The happy couple is at the 
restaurant and the grumpy 
waiter is at the table.

The grumpy couple is at the 
restaurant and the happy 
waiter is at the table.

At the restaurant, the happy 
couple and the grumpy 
waiter are at the table.

𝑆 𝑇! , 𝐼! = 0.98
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.94	

𝑆 𝑇"# , 𝐼! = 0.60
𝑆 𝑇! , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼! 	= 0.97	
𝑆 𝑇! , 𝐼"$ 	= 0.95	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.95

𝛾%/' = 0.38
𝛾%/(' = 0.06

𝜅 = 0.32

GPT-4 Turbo

A giant squid attacking a 
ship, and the squid is 
bigger than the ship.

A ship attacking a giant 
squid, and the ship is bigger 
than the squid.

A squid, bigger than the 
ship, is attacking a ship.

𝑆 𝑇! , 𝐼! = 0.93
𝑆 𝑇"# , 𝐼"# 	= 0.93	
𝑆 𝑇"$ , 𝐼"$ 	= 0.95	

𝑆 𝑇"# , 𝐼! = 0.75
𝑆 𝑇! , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼! 	= 0.93	
𝑆 𝑇! , 𝐼"$ 	= 0.98	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.94

𝛾%/' = 0.19
𝛾%/(' = 0.07

𝜅 = 0.12

The swimmer in the pool 
is swimming towards the 
edge.

The swimmer is at the edge 
swimming towards the pool.

Towards the edge, the 
swimmer in the pool is 
swimming.

𝑆 𝑇! , 𝐼! = 1.00
𝑆 𝑇"# , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼"$ 	= 0.80	

𝑆 𝑇"# , 𝐼! = 0.70
𝑆 𝑇! , 𝐼"# 	= 0.95	
𝑆 𝑇"$ , 𝐼! 	= 0.90	
𝑆 𝑇! , 𝐼"$ 	= 0.85	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.92

𝛾%/' = 0.30
𝛾%/(' = 0.25

𝜅 = 0.05

There's a silver spoon 
with a gold handle.

There's a gold spoon with a 
silver handle.

There's a gold handle 
with a silver spoon.

𝑆 𝑇! , 𝐼! = 0.95
𝑆 𝑇"# , 𝐼"# 	= 0.50	
𝑆 𝑇"$ , 𝐼"$ 	= 0.60	

𝑆 𝑇"# , 𝐼! = 0.91
𝑆 𝑇! , 𝐼"# 	= 1.00	
𝑆 𝑇"$ , 𝐼! 	= 0.97	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.68

𝛾%/' = 0.46
𝛾%/(' = 0.42

𝜅 = 0.04

The coffee in the mug is 
black and the tea in the 
cup is green.

The coffee in the mug is 
green and the tea in the 
cup is black.

The tea in the cup is 
green and the coffee in 
the mug is black.

𝑆 𝑇! , 𝐼! = 1.00
𝑆 𝑇"# , 𝐼"# 	= 0.90	
𝑆 𝑇"$ , 𝐼"$ 	= 0.99	

𝑆 𝑇"# , 𝐼! = 0.85
𝑆 𝑇! , 𝐼"# 	= 0.94	
𝑆 𝑇"$ , 𝐼! 	= 0.83	
𝑆 𝑇! , 𝐼"$ 	= 1.00	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.96

𝛾%/' = 0.11
𝛾%/(' = 0.16

𝜅 = −0.05

The happy baby is in the 
crib and the unhappy 
baby is in the stroller.

The unhappy baby is in the 
crib and the happy baby is 
in the stroller.

The unhappy baby is in 
the stroller and the happy 
baby is in the crib.

𝑆 𝑇! , 𝐼! = 1.00
𝑆 𝑇"# , 𝐼"# 	= 0.99	
𝑆 𝑇"$ , 𝐼"$ 	= 0.80	

𝑆 𝑇"# , 𝐼! = 1.00
𝑆 𝑇! , 𝐼"# 	= 1.00	
𝑆 𝑇"$ , 𝐼! 	= 0.95	
𝑆 𝑇! , 𝐼"$ 	= 0.98	

Matched
pairs

Mismatched
pairs

𝑆$$ = 0.93

𝛾%/' = 0.01
𝛾%/(' = 0.17

𝜅 = −0.16

Figure 27: Errors only due to incorrect scoring by GPT-4V, where images are essentially correct.
The errors heavily influence the SemVarEffect scores.
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