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ABSTRACT

The recent retraction of large-scale biometric datasets, prompted by strict privacy
regulations, presents a critical challenge for future biometric research. This is
evident with the face recognition task, for which large-scale datasets were often
gathered through web-scraping without the consent of subjects. A potential solu-
tion entails the creation of synthetic data, suitable for training recognition models,
with deep generative models. Existing generative approaches rely on conditioning
and fine-tuning of powerful pretrained diffusion models to achieve the synthesis
of realistic images of a desired identity. Yet, these methods often do not consider
the identity of subjects during training, leading to poor consistency between gen-
erated and intended identities. In contrast, methods that employ identity-based
training objectives tend to overfit on various aspects of the identity, and in turn,
lower the diversity of images that can be generated. To address these issues, we
present the ID-Booth fine-tuning framework, which utilizes a novel triplet identity
training objective and enables identity-consistent image generation while retain-
ing the synthesis capabilities of pretrained models. Experiments across two latent
diffusion models with varying prompt complexity reveal that our method facili-
tates better intra-identity consistency and inter-identity separability while achiev-
ing higher image diversity. In turn, the produced data enables the training of
better-performing recognition models than even real-world datasets of a similar
scale gathered with suitable consent. The source code for the ID-Booth frame-
work is available at omitted_for_review.

1 INTRODUCTION

Deep neural networks are nowadays utilized as backbones in a variety of recognition systems (Bai
et al., 2021). To achieve state-of-the-art performance these models require diverse large-scale train-
ing datasets, which are commonly gathered through web-scraping. However, this process presents
an inadequate solution in the field of image-based biometrics, where strict regulations accompany
the collection, distribution and use of data without the proper consent of subjects (Jasserand, 2018;
Meden et al., 2021). This is especially evident when considering the face modality, for which sev-
eral recognition datasets have already been retracted since the introduction of recent privacy acts and
data-protection legislation, e.g. the GDPR (Hoofnagle et al., 2019). Meanwhile, manually gathering
suitable datasets with the proper consent of subjects presents a time consuming process and often
results in small-scale datasets captured in a constrained setting with limited diversity.

To ensure the future development of face recognition systems, researchers have proposed to instead
rely on synthetic data for training (Boutros et al., 2023c). Nowadays diverse datasets of high-quality
synthetic images can be generated with deep generative models, which have experienced rapid devel-
opment in the past decade (Karras et al., 2019; Ho et al., 2020). Diffusion models currently represent
the state-of-the-art among image generation models, as they offer unparalleled synthesis capabilities
in terms of quality and diversity, while enabling synthesis guided by text prompts (Rombach et al.,
2022). Recently, diffusion models have also been utilized to produce biometric datasets suitable
for recognition tasks, i.e. containing images of multiple identities with multiple samples each. To
this end, approaches rely on identity-conditioning (Ye et al., 2023; Papantoniou et al., 2024; Wang
et al., 2024) and fine-tuning (Ruiz et al., 2023; Peng et al., 2024) of pretrained models. Nevertheless,
most solutions focus mainly on image reconstruction during training, resulting in poor consistency
between desired identities and generated ones. To address this issue, PortraitBooth (Peng et al.,
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Real ID-Booth samples

Figure 1: Samples generated with the proposed ID-Booth framework. The framework enables
fine-tuning of pretrained diffusion models for generating diverse identity-consistent images based
on images gathered in a constrained setting with the consent of subjects.

2024) recently extended the fine-tuning DreamBooth (Ruiz et al., 2023) method with an identity-
based training objective. However, the proposed solution only considers the similarity between real
samples of the desired identity and the generated samples during training. In turn, it tends to overfit
on input identities, resulting in lower diversity of generated images.

In this paper, we present a solution for the outlined issues, in the form of a new fine-tuning frame-
work, called ID-Booth. The proposed framework utilizes a novel triplet identity objective, which
considers both positive and negative identity samples during training, to facilitate the generation of
identity-consistent images while retaining the synthesis capabilities of pretrained models. Through-
out the experiments, we explore the suitability of ID-Booth for addressing privacy concerns by
generating diverse synthetic in-the-wild images of identities from the Tufts Face Database (Panetta
et al., 2018), which contains images gathered in a constrained setting with the consent of subjects,
as shown in Figure 1. We perform fine-tuning of two state-of-the-art diffusion models conditioned
on text prompts of varying complexity and compare synthesis results with DreamBooth (Ruiz et al.,
2023) and PortraitBooth (Peng et al., 2024) in terms of image quality, fidelity and diversity as well
as intra-identity consistency and inter-identity separability. Furthermore, we investigate the util-
ity of synthetic data by utilizing produced datasets to train face recognition models and evaluating
their performance on five real-world verification benchmarks. We demonstrate that our fine-tuning
framework enables the generation of datasets with better intra-identity consistency and inter-identity
separability, both among synthetic samples or between synthetic and real ones. Consequently, this
results in the training of more powerful recognition models than even with real-world datasets of a
similar scale. Overall, the paper makes the following contributions:

• We introduce ID-Booth, a new fine-tuning framework for generating highly-diverse
identity-consistent privacy-preserving images based on training images captured in a con-
strained setting with the consent of subjects.

• We propose a novel triplet identity training objective that improves identity consistency
while better retaining the diversity and text-based control of pretrained diffusion models.

• We demonstrate the suitability of the produced datasets for training recognition models that
outperform those trained on similar-scale real-world datasets gathered with consent.

2 RELATED WORK

Image generation. The field of image synthesis has undergone rapid development since the intro-
duction of deep generative models. Generative Adversarial Networks (GANs) (Goodfellow et al.,
2014) were the initial models to achieve the synthesis of convincing images, with a generator and a
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discriminator network. Extensive improvements followed, namely StyleGAN (Karras et al., 2019)
facilitated higher image quality and better control over the generation process. However, the syn-
thesis capabilities of GANs have nowadays been surpassed by recent diffusion models (Dhariwal
& Nichol, 2021), which generate images by gradually removing noise from initial noisy samples.
This denoising process is learned with a convolutional encoder-decoder by predicting the noise that
is added to training samples at different scales (Ho et al., 2020). Recently, Latent Diffusion Models
(LDMs) (Rombach et al., 2022) achieved improved efficiency and efficacy by moving the denois-
ing process from the pixel space to a lower-dimensionality latent space of a pretrained variational
autoencoder. Their remarkable synthesis capabilities and conditioning on text prompts via a pre-
trained text encoder have led to their broad adoption, namely of the open-source Stable Diffusion
model (Rombach et al., 2022). Image resolution has also been further improved with Stable Diffu-
sion XL (SD-XL) (Podell et al., 2024), which utilizes a larger U-Net backbone along with two text
encoders and additional conditioning schemes. Recent approaches have further enhanced control
over the generation process, e.g. ControlNet (Zhang et al., 2023) conditions the model on seg-
mentation masks or depth maps via an auxiliary trainable copy of the model, while IP-Adapter (Ye
et al., 2023) incorporates image features as a condition through a decoupled cross-attention mecha-
nism. Fine-tuning approaches have also been developed to incorporate new concepts into pretrained
diffusion models by training on a minimal set of input images (Ruiz et al., 2023).

Generating synthetic face recognition data. Strict privacy regulations nowadays restrict the use
and distribution of biometric data gathered without consent (Hoofnagle et al., 2019). Due to this,
valuable datasets of web-scrapped face images are being retracted (Jasserand, 2022), which presents
a challenge for developing face recognition models. As a solution, researchers are exploring creation
of synthetic data with deep generative models (Boutros et al., 2023c). To enable control over various
characteristics of generated faces, Deng et al. (2020) conditioned StyleGAN (Karras et al., 2019) on
input 3D face priors. However, recognition models trained on the generated data achieved worse
performance than those trained on real-world data. To tackle this, Qiu et al. (2021) introduced iden-
tity and domain mixup of synthetic and real data during training. Boutros et al. (2022) proposed to
condition StyleGAN2 (Karras et al., 2020) on one-hot encoded identity labels. This improved intra-
identity diversity at the cost of lowered inter-identity separability and a limited amount of possible
identities. To address this, Tomašević et al. (2024) instead utilized identity features from a pretrained
face recognition model as the condition, in addition to enabling the generation of multispectral data.

Recently, Boutros et al. (2023b) achieved the generation of identity-specific images with latent dif-
fusion models by conditioning the denoising network on face recognition features. The proposed
contextual partial dropout also prevented overfitting on identities and enabled control over inter-
identity separability and intra-identity diversity. Differently, more recent approaches relied on pre-
trained diffusion models (Rombach et al., 2022) rather than training the models from scratch. Ruiz
et al. (2023) presented the DreamBooth method that can associate a new identity to a rare text token
through fine-tuning on images of the identity. During training, face images generated by the pre-
trained model are also used to preserve prior synthesis capabilities. Arc2Face (Papantoniou et al.,
2024) instead replaces the identity token with recognition features and fine-tunes the model on a
large-scale dataset. The textual-part of the prompt is also frozen so that control is tied primar-
ily to the identity features, thus enabling more consistent generation of input identities. However,
this comes at the cost of losing powerful prompt-based control. The recent IP-Adapter (Ye et al.,
2023) has also been modified to use identity features as the condition while retaining control of text
prompts through decoupled cross-attention. InstantID (Wang et al., 2024) extends these capabilities
by incorporating spatial control with an auxiliary ControlNet-based (Zhang et al., 2023) module
conditioned on facial landmarks and features. Despite advancements, identity consistency remained
problematic, as the identity aspect was not considered in training objectives. To address this, Peng
et al. (2024) introduced PortraitBooth, which incorporates an identity-based objective into the fine-
tuning of DreamBooth (Ruiz et al., 2023). However, the solution only relies on the identity similarity
of training images and generated noisy images, despite the success of more refined objectives on face
recognition tasks (Trigueros et al., 2018). As a result, the approach tends to overfit on characteristics
of training identities, e.g., the expression or pose, which lowers the diversity of produced images.
Differently, our proposed ID-Booth fine-tuning framework utilizes a triplet objective that relies on
the identity similarity between generated images and both training images (i.e., positive samples)
and prior images produced by the initial model (i.e., negative samples). This enables better identity
consistency while retaining the synthesis capabilities of pretrained latent diffusion models.
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Figure 2: Overview of the ID-Booth framework. Fine-tuning of a pretrained diffusion model
is performed with three training objectives. LLDM and LPR are aimed at the reconstruction of
training and prior images. Differently, the proposed triplet identity objective LTID focuses on
the identity similarity between generated samples and both training and prior samples, to improve
identity consistency without impacting the capabilities of the pretrained model.

3 METHODOLOGY

In the following sections, we delve into the inner-workings of latent diffusion models and existing
approaches for fine-tuning them. Finally, we present the fine-tuning methodology of our proposed
ID-Booth framework, which is showcased in Figure 2.

3.1 IMAGE GENERATION WITH LATENT DIFFUSION MODELS

Diffusion models (DMs) are a form of deep generative models that are trained to reverse a nois-
ing process that gradually degrades training images by adding noise at different scales. Denoising
Diffusion Probabilistic Models (DDPMs) represent the most fundamental class of modern diffusion
models (Sohl-Dickstein et al., 2015). They estimate the real data distribution from a noise-filled
standard Gaussian distribution. This entails gradually denoising a noisy image xT ∼ N (0, I) to less
noisy samples xt until a denoised data sample x0 is reached.

First, we define the noising process in which a real data sample x0 ∼ p(x0) is corrupted into its
noised versions x1, ..., xT through a Markov chain of length T , as follows:

xt = N (
√
αtxt−1, 1− αt), ∀t ∈ 1, ..., T , (1)

where α1, ..., αT represent a fixed variance schedule. Any step of the noised sample can also be
efficiently produced directly from the input x0 (Ho et al., 2020) as follows:

xt =
√
ᾱtx0, (1− ᾱt)ϵ, (2)

with ᾱt :=
∏t

s=0 αs, which enables uniform sampling of t during training. The diffusion model
learns to reverse the noising process with a denoising autoencoder ϵθ(xt, t), typically a U-Net net-
work (Ronneberger et al., 2015), which predicts the noise ϵ that is added. The denoising network
can then be trained by following the reweighted optimization objective (Ho et al., 2020):

LDM = Ex,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(xt, t)∥22

]
. (3)

With recent Latent Diffusion Models (LDMs) (Rombach et al., 2022), the denoising process is
instead carried out in the more efficient latent space of a pretrained Variational AutoEncoder (VAE)
rather than the pixel space. The input sample x0 is thus first mapped through the encoder model E to
z0, before the above-described operations are performed. In addition, the denoising process is also
conditioned on encoded text prompts c through the cross-attention mechanism, to improve control
over the generation process. The training objective of LDMs can thus be defined as:

LLDM = Ez∼E(x),ϵ∼N (0,1),t,c

[
∥ϵ− ϵθ(zt, t, c)∥22

]
. (4)

Data generation can then be performed by randomly sampling a noisy sample zT in the latent space,
denoising it with the predictor ϵθ considering the provided prompt, and then mapping the denoised
sample z0 back to the pixel space through the VAE decoder D.
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3.2 FINE-TUNING OF DIFFUSION MODELS

Recent latent diffusion models provide unparalleled text-guided synthesis capabilities, owing to
their training on various datasets of unprecedented scale (Rombach et al., 2022). However, their
knowledge of very specific concepts and styles remains limited. This is also true for their ability to
create images of a desired identity as prompting for a specific non-celebrity identity can be difficult
or even impossible. To address this, Ruiz et al. (2023) propose to fine-tune a pretrained model on a
small set of input images of a desired concept e.g. images of an identity, with the original training
objective LLDM . However, this typically leads to overfitting on the input images and the loss of
prior knowledge, e.g. the concept of what a person is. To prevent this, the authors introduce an
additional training objective that is aimed at the preservation of prior knowledge. The pretrained
diffusion model is first utilized to produce a set of prior images xpr,0 related to the concept to be
introduced, which are then used during training to retain the synthesis capabilities of the model. The
proposed DreamBooth (Ruiz et al., 2023) approach, thus fine-tunes the model with LLDM along
with the following prior preservation objective:

LPR = Ezpr,cpr,ϵ′,t′
[
ϵpr − ϵθ(zpr,t′ , t

′, cpr)∥22
]
, (5)

where the pr notation represents factors related to prior images generated with the initial model. In
practice, fine-tuning of diffusion models is commonly performed by training solely the denoising
network, while other components (e.g. the VAE and the text encoder) remain frozen. Methods often
also rely on the use of the Low-rank adaptation method (LoRA) (Hu et al., 2022), which introduces
new trainable layers at specific locations in the denoising network. During training only these layers
are trained, leaving other pretrained weights unchanged. This facilitates faster training and more
efficient storage of fine-tuned model weights, while still enabling the introduction of new concepts
into the model or fine-tuning the model for a specific style.

3.3 FINE-TUNING WITH IDENTITY-BASED OBJECTIVES

Existing fine-tuning techniques have shown to be suitable for generating images of desired iden-
tities (Ruiz et al., 2023). However, the consistency of synthetic identities remains a prominent
problem, both when considering consistency with desired input identities or synthetic identities in
other generated samples. The likely cause are the training objectives, defined in Equations 4 and 5,
which are focused solely on image reconstruction. To address this the identity aspect can also be in-
corporated into the training process through identity features extracted from face images with deep
models for face recognition (Peng et al., 2024). However, the training of latent diffusion models
does not entail the decoding of latent data back to the pixel space, since it is not required for either
LLDM or LPR. To produce suitable images at each step during training, the denoised latent ẑ0 must
first be estimated. This can be achieved using the predicted noise ϵθ(zt, t, c) and the noisy sample
zt as follows:

ẑ0 =
zt −

√
1− ᾱtϵθ√
ᾱt

. (6)

Afterward, the estimated denoised latent ẑ0 can be decoded to the estimated input image in the
pixel space with x̂0 = D(ẑ0). Then the facial region must be extracted with a face detector model
for both the estimated and the input training image, denoted as x̂f

0 and xf
0 respectively. Finally,

the identity features for each image can be extracted with a face recognition model φ. A simple
additional objective for training can then be constructed based on the cosine similarity Sim of
extracted identity features, as proposed with PortraitBooth (Peng et al., 2024):

LID = 1− Sim(φ(xf
0 ), φ(x̂

f
0 )). (7)

Despite its simplicity the objective is effective at guiding the diffusion model to better identity
preservation. However, it can lead to overfitting on facial characteristics that might leak into the
training identity embeddings, e.g. the expression or pose of subjects.

3.4 TRIPLET IDENTITY TRAINING OBJECTIVE

To address issues of previous methods, we propose to instead form a triplet objective based on the
identity features extracted with a pretrained face recognition model φ. The proposed triplet identity
objective LTID utilizes identity features of the reconstructed sample x̂0 as the anchor, the input
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image x0 as a positive example of an identity and the prior images xpr,0 as a negative example.
Formally, our triplet identity objective can be defined as follows:

LTID = max{Sim(φ(xf
0 ), φ(x̂

f
0 ))− Sim(φ(xf

pr,0), φ(x̂
f
0 )) +m, 0}, (8)

where the notations introduced before apply. In addition, m represents a non-negative margin, i.e.
the minimum difference between positive and negative similarities that is required for the loss to
be zero. Compared to LID, employing a triplet-based objective reduces the risk of overfitting on
unintentional characteristics of training identities as they are also present in negative examples.
Overall, our proposed ID-Booth framework utilizes the following training objective for fine-tuning:

LTotal = LLDM + LPR + LTID, (9)
as illustrated in Figure 2. The framework is designed to improve identity consistency through fine-
tuning while retaining the synthesis capabilities of pretrained models.

4 EXPERIMENTS AND RESULTS

Datasets. To fine-tune the diffusion models we utilize the Tufts Face Database (TFD) (Panetta
et al., 2018), which contains images captured in a constrained laboratory setting with the consent
of subjects. Following the preprocessing steps outlined in the supplementary material, the dataset
comprises 2213 images of 105 subjects. To evaluate the generated images we also rely on the Flickr
Faces High-Quality (FFHQ) (Karras et al., 2019) dataset of 70, 000 diverse in-the-wild face images.

Implementation. We evaluate the suitability of our fine-tuning method on two pretrained diffu-
sion models, Stable Diffusion 2.1 (SD-2.1) (Rombach et al., 2022) and its successor Stable Diffu-
sion XL (SD-XL) (Podell et al., 2024), with the LoRA method (Hu et al., 2022). For fine-tuning
we utilize the objectives specified by either DreamBooth (Ruiz et al., 2023) (i.e. LLDM + LPR),
PortraitBooth (Ruiz et al., 2023) (i.e. LLDM +LPR+LID) or our proposed ID-Booth objective i.e.
LTotal. Here, the identity objectives are based on identity features extracted with the pretrained Arc-
Face recognition model (Deng et al., 2019) from face regions of noisy samples detected with the the
Multi-Task Cascaded Convolutional Neural Network (MTCNN) (Zhang et al., 2016). Fine-tuning is
performed with images of each identity from TFD (Panetta et al., 2018) along with 200 prior preser-
vation face images generated with the pretrained models. With each model we generate 21 images
per identity through 30 denoising steps and a guidance scale of 5.0, either of a resolution 512× 512
with SD-2.1 or 1024× 1024 with SD-XL. This is done either with a prompt that defines a close-up
portrait image of an identity (denoted as Base) or a prompt that in addition specifies the expres-
sion of the subject and the environment surrounding the subject (denoted as Complex). Additional
implementation details and the utilized prompts are available in the supplementary material.

Evaluation methodology. We evaluate our proposed framework based on images generated by the
fine-tuned models. For a fair comparison with TFD and FFHQ, the produced images, whose facial
regions are often smaller, are first aligned and cropped to 112×112 based on face landmarks detected
by MTCNN (Zhang et al., 2016). The quality of images is then determined with Fréchet Inception
Distance (FID) (Heusel et al., 2017) and CLIP Maximum Mean Discrepancy (CMMD) (Jayasumana
et al., 2024), while improved precision and accuracy are used to measure the fidelity and diversity
of images, respectively (Kynkäänniemi et al., 2019). These measures operate by comparing dis-
tributions of synthetic and real-world data via image features of pretrained vision models (e.g.,
Inception-v3 (Szegedy et al., 2016)). Differently, Certainty Ratio Face Image Quality Assessment
(CR-FIQA) (Boutros et al., 2023a) evaluates the relative classifiability and in turn quality of each
face image individually with a pretrained ResNet-101 backbone (He et al., 2016). Furthermore,
we investigate intra-identity consistency and inter-identity separability with genuine and imposter
distributions, formed by pairs of identity features from the ArcFace model (Deng et al., 2019). To
this end, we report the mean and standard deviation of distributions along with established metrics,
including Equal Error Rate (EER), False Match Rate at a false non-match rate of 1.0% (FMR100)
or 0.01% (FMR1000) and the Fisher Discriminant Ratio (FDR) (ISO/IEC 19795-1:2021). Lastly,
we use the produced images to train a small-scale ResNet-18 CosFace recognition model (Wang
et al., 2018) and evaluate its performance on five state-of-the-art verification benchmarks, including
Labeled Faces in the Wild (LFW) (Huang et al., 2007), its Cross-Age and Cross-Pose subsets CA-
LFW (Zheng et al., 2017) and CP-LFW (Zheng & Deng, 2018), Celebrities in Frontal-Profile in the
Wild (CFP-FP) (Sengupta et al., 2016) and AgeDB-30 (Moschoglou et al., 2017).
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Table 1: Evaluation of quality, fidelity, and diversity of image samples. Image quality is assessed
with FID (Heusel et al., 2017) and CMMD (Jayasumana et al., 2024) scores, while fidelity and
diversity are measured with precision and recall, respectively (Kynkäänniemi et al., 2019). These
measures compare synthetic distributions to real-world data of either TFD (Panetta et al., 2018) or
FFHQ (Karras et al., 2019). Meanwhile, CR-FIQA (Boutros et al., 2023a) measures the face image
quality of each synthetic sample separately so the mean and standard deviation are reported.

FID ↓ CMMD ↓ Precision ↑ Recall ↑ CR-FIQA ↑
Data from Prompt Fine-tuning TFD FFHQ TFD FFHQ TFD FFHQ TFD FFHQ −
TFD − − 17.446 79.884 0.008 0.929 0.507 0.684 0.316 0.003 2.131± 0.093
FFHQ − − 79.884 10.425 0.929 0.005 0.684 0.786 0.003 0.781 2.089± 0.145

SD-2.1

Base

− 98.010 79.240 1.485 0.923 0.002 0.413 0.356 0.317 1.737± 0.643
DreamBooth 35.285 61.511 0.530 1.242 0.178 0.614 0.462 0.040 2.079± 0.351
PortraitBooth 32.991 60.551 0.519 1.260 0.191 0.581 0.469 0.049 2.109± 0.298
ID-Booth 33.488 61.000 0.519 1.255 0.191 0.570 0.477 0.038 2.097± 0.321

Complex

− 89.890 44.860 1.514 1.048 0.000 0.513 0.497 0.475 1.857± 0.521
DreamBooth 65.758 51.901 1.432 1.115 0.001 0.597 0.438 0.186 1.991± 0.487
PortraitBooth 62.038 51.912 1.412 1.104 0.004 0.614 0.332 0.147 2.028± 0.452
ID-Booth 62.114 51.815 1.407 1.103 0.001 0.622 0.320 0.184 2.019± 0.471

SD-XL

Base

− 91.633 74.058 3.236 2.379 0.000 0.464 0.106 0.225 1.986± 0.381
DreamBooth 40.806 69.788 0.812 1.482 0.155 0.543 0.306 0.007 2.178± 0.106
PortraitBooth 41.664 72.679 0.807 1.454 0.135 0.515 0.226 0.007 2.175± 0.102
ID-Booth 41.637 72.865 0.809 1.458 0.129 0.531 0.175 0.009 2.175± 0.097

Complex

− 86.399 41.411 2.328 1.590 0.001 0.663 0.314 0.296 2.083± 0.210
DreamBooth 67.919 51.590 0.722 0.982 0.015 0.494 0.488 0.155 2.139± 0.228
PortraitBooth 66.278 53.502 0.710 0.999 0.016 0.466 0.531 0.102 2.141± 0.227
ID-Booth 66.259 53.488 0.709 0.999 0.017 0.459 0.493 0.137 2.144± 0.220

(↓) – Lower is better; (↑) – Higher is better; (Bold) – Best fine-tuning result; (Underline) – Second best fine-tuning result

4.1 EVALUATION OF GENERATED IMAGES

Image quality. We begin our evaluation by assessing the overall quality of images, produced
by either DreamBooth (Ruiz et al., 2023), PortraitBooth (Peng et al., 2024) or the proposed ID-
Booth framework, in terms of FID (Heusel et al., 2017), CMMD (Jayasumana et al., 2024) and
CR-FIQA (Boutros et al., 2023a). From results reported in Table 1, we can observe that the data gen-
erated with base prompts better resembles the real-world constrained-setting images of TFD (Panetta
et al., 2018). Meanwhile data generated with complex prompts, which define the environment and
expression, better matches the in-the-wild images of FFHQ (Karras et al., 2019). Results also reveal
that all fine-tuning approaches increase the image quality of initial pretrained models, likely due to
the increased image diversity of initial models, which often generate images that do not contain the
entire face. In addition, we note that SD-2.1 has problems with unnatural face artifacts especially
with complex prompts, as exhibited by lower CR-FIQA scores with a drastically higher standard
deviation than SD-XL. Importantly, we observe notable differences between models trained with
or without identity-based objectives. This is supported by CMMD and CR-FIQA scores, where
PortraitBooth and ID-Booth both achieve better quality than DreamBooth. In comparison, the dif-
ference between PortraitBooth or ID-Booth tends to be minimal. Overall, our proposed ID-Booth
framework does not negatively impact the quality of generated images and often even achieves better
quality than existing fine-tuning approaches. Figures 1 and 4 allow for a qualitative evaluation of
samples generated by a fine-tuned SD-XL model with complex prompts.

Fidelity and diversity. Next, we analyse the produced images in terms of fidelity, i.e., the degree
to which they resemble real samples, and diversity, i.e., how well they cover the variability of real
samples (Sajjadi et al., 2018). To this end, we rely on the precision and the accuracy metric, respec-
tively (Kynkäänniemi et al., 2019), in addition to qualitative samples in Figures 1 and 4. With both
diffusion models base prompts achieve drastically better precision on TFD (Panetta et al., 2018), as
they tend to generate subjects with a neutral expression in a constrained setting similar to the real-
world images. Meanwhile, complex prompts result in better recall on FFHQ (Karras et al., 2019), as
they facilitate the generation of more diverse images. SD-2.1 often attains better precision and recall
than SD-XL, however, this likely due to less consistent quality and possible artifacts, as reported
by quality-based measures. Interestingly, fine-tuning the pretrained models often results in better
precision and recall not only on the training TFD images but in certain cases even on FFHQ. Impor-
tantly, when comparing the different fine-tuning methods, we observe that PortraitBooth (Peng et al.,
2024) achieves drastically worse recall with complex prompts on the FFHQ dataset than Dream-
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Figure 3: Plots of genuine and imposter distributions either between synthetic and real-world
samples or only among synthetic samples. Distributions are based on the cosine similarity between
identity features of synthetic samples and either samples from the corresponding identity (genuine
pair) or a different identity (imposter pair), from either the real-world TFD dataset (Panetta et al.,
2018) or the same synthetic dataset. For each dataset, all possible genuine pairs are formed, along
with an equal amount of randomly sampled imposter pairs. Identity features are obtained with the
pretrained ArcFace recognition model (Deng et al., 2019).

Booth (Ruiz et al., 2023). This drop in diversity may be attributed to lower prompt adherence, as
seen in Figure 1, where compared to DreamBooth, PortraitBooth subjects tend to lose the desired
expression or default to a front-facing pose. In comparison, our proposed ID-Booth framework does
not display the same issues with complex prompts, as it achieves notably higher recall scores, more
similar to DreamBooth (Ruiz et al., 2023), as also observed in Figure 1. This ability for generating
diverse images is crucial for creating synthetic datasets suitable for training face recognition models.

4.2 RECOGNITION-BASED EXPERIMENTS

Identity consistency and separability. To determine the suitability of generated images for form-
ing face recognition datasets we must also examine the consistency and separability of identities in
the images. To this end, we first analyse the similarity of synthetic identities to either their corre-
sponding or a different training identity, based on identity features from the ArcFace recognition
model Deng et al. (2019). From genuine and imposter distributions on the left in Figure 3 and verifi-
cation results in Table 2, we can observe that the SD-2.1 model achieves notably worse identity con-
sistency, i.e. the similarity between corresponding synthetic and real identities, across all scenarios
than the SD-XL model. The same can be observed for inter-identity separability, i.e. the similarity
between different synthetic and real identities, as the overlap between imposter and genuine distri-
butions is larger. This is especially true when utilizing complex prompts, which highly affect the
identities generated with SD-2.1. Importantly, results indicate that employing identity-based objec-
tives greatly improves both consistency and separability between synthetic and real identities. Fine-
tuning with the proposed ID-Booth framework ensures comparable results to PortraitBooth (Peng
et al., 2024) when paired with SD-2.1, while providing notable improvements with SD-XL. Figure 4
further demonstrates that ID-Booth achieves better identity consistency than DreamBooth (Ruiz
et al., 2023), while maintaining better text-based control over the generation process and in turn
higher image diversity than PortraitBooth (Peng et al., 2024).

Furthermore, we investigate the similarity among synthetic samples of the same identity and the sim-
ilarity among samples of different synthetic identities. Distributions on the right in Figure 3 as well
as results in Table 2 reveal a similar trend as before. Notably, ID-Booth achieves the highest consis-
tency among generated samples of the same identity and the largest separability between synthetic
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Table 2: Evaluation of identity consistency and separability between synthetic and real-world
identities. Reported are verification measures of genuine and imposter distributions in Figure 3.

Data from Prompt Fine-tuning EER ↓ FMR100 ↓ FMR1000 ↓ Imposter µ± σ ↓ Genuine µ± σ ↑ FDR ↑
TFD − − 0.001 0.001 0.001 0.021± 0.073 0.871± 0.065 75.753

vs
.r

ea
li

de
nt

iti
es

SD-2.1

Base
DreamBooth 0.039 0.052 0.066 0.022± 0.075 0.638± 0.170 10.916
PortraitBooth 0.029 0.034 0.041 0.024± 0.073 0.653± 0.148 14.531
ID-Booth 0.031 0.038 0.044 0.023± 0.073 0.650± 0.154 13.541

Complex
DreamBooth 0.153 0.364 0.500 0.014± 0.072 0.244± 0.144 2.030
PortraitBooth 0.137 0.322 0.489 0.015± 0.072 0.255± 0.142 2.268
ID-Booth 0.137 0.326 0.465 0.016± 0.071 0.254± 0.141 2.260

SD-XL

Base
DreamBooth 0.002 0.002 0.002 0.022± 0.074 0.782± 0.071 54.952
PortraitBooth 0.003 0.003 0.003 0.021± 0.075 0.786± 0.074 53.233
ID-Booth 0.002 0.002 0.002 0.021± 0.074 0.786± 0.067 58.578

Complex
DreamBooth 0.019 0.023 0.035 0.019± 0.074 0.635± 0.144 14.537
PortraitBooth 0.016 0.018 0.031 0.019± 0.074 0.646± 0.138 16.087
ID-Booth 0.015 0.016 0.024 0.019± 0.074 0.647± 0.135 16.473

vs
.s

yn
th

et
ic

id
en

tit
ie

s

SD-2.1

Base
DreamBooth 0.067 0.090 0.106 0.057± 0.079 0.684± 0.224 6.955
PortraitBooth 0.052 0.063 0.071 0.062± 0.077 0.713± 0.196 9.596
ID-Booth 0.061 0.073 0.082 0.061± 0.079 0.702± 0.209 8.224

Complex
DreamBooth 0.242 0.596 0.803 0.087± 0.098 0.285± 0.174 0.985
PortraitBooth 0.227 0.544 0.766 0.097± 0.100 0.314± 0.176 1.138
ID-Booth 0.226 0.529 0.734 0.096± 0.099 0.312± 0.177 1.139

SD-XL

Base
DreamBooth 0.002 0.002 0.002 0.040± 0.075 0.851± 0.078 56.614
PortraitBooth 0.003 0.003 0.003 0.037± 0.075 0.856± 0.073 61.196
ID-Booth 0.001 0.001 0.002 0.037± 0.075 0.856± 0.066 67.493

Complex
DreamBooth 0.037 0.052 0.078 0.051± 0.077 0.629± 0.176 9.045
PortraitBooth 0.035 0.047 0.072 0.050± 0.078 0.643± 0.173 9.715
ID-Booth 0.031 0.040 0.063 0.050± 0.078 0.648± 0.167 10.492

(↓) – Lower is better; (↑) – Higher is better; (Bold) – Best result; (Underline) – Second best result
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Figure 4: Comparison of training and generated identities. ID-Booth achieves better identity
consistency than DreamBooth (Ruiz et al., 2023) while retaining better prompt adherence and diver-
sity of the pretrained SD-XL (Podell et al., 2024) than PortraitBooth (Peng et al., 2024). Reported
is the cosine similarity of identity features extracted with the ArcFace model (Deng et al., 2019).

samples of different identities. Overall, the presented results showcase that the proposed ID-Booth
fine-tuning framework drastically improves the ability to generate consistent desired identities with
pretrained diffusion models. This aspect is important for ensuring the generation of privacy preserv-
ing synthetic datasets, which contain only identities that match those in the training set, for which
we have consent from subjects.
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Table 3: Verification performance of recognition models trained on different synthetic datasets.
Reported is the accuracy of a trained CosFace model (Wang et al., 2018) on 5 real-world verification
benchmarks. During training the LFW benchmark (Huang et al., 2007) is used for validation.

Training setting Val. ↑ Verification accuracy on benchmarks ↑
Data from Prompt Fine-tuning LFW AgeDB-30 CA-LFW CFP-FP CP-LFW Average
TFD − − 0.672 0.501 0.548 0.598 0.542 0.547± 0.034

SD-2.1

Base
DreamBooth 0.665 0.525 0.539 0.572 0.542 0.544± 0.017
PortraitBooth 0.664 0.507 0.532 0.602 0.548 0.547± 0.035
ID-Booth 0.664 0.509 0.541 0.579 0.565 0.548± 0.027

Complex
DreamBooth 0.681 0.499 0.553 0.591 0.565 0.552± 0.034
PortraitBooth 0.682 0.492 0.551 0.615 0.552 0.553± 0.043
ID-Booth 0.668 0.500 0.537 0.602 0.561 0.550± 0.037

SD-XL

Base
DreamBooth 0.674 0.515 0.550 0.582 0.540 0.547± 0.024
PortraitBooth 0.679 0.491 0.558 0.611 0.555 0.554± 0.042
ID-Booth 0.688 0.529 0.550 0.611 0.539 0.557± 0.032

Complex
DreamBooth 0.745 0.496 0.579 0.615 0.579 0.567± 0.044
PortraitBooth 0.726 0.507 0.584 0.608 0.569 0.567± 0.037
ID-Booth 0.732 0.532 0.599 0.605 0.567 0.575± 0.029

(↑) – Higher is better; (Bold) – Best result; (Underline) – Second best result

Training face recognition models. Finally, we also explore the utility of the generated data in a
real-world scenario, namely for training deep face recognition models. To this end, we train a Cos-
Face recognition model (Wang et al., 2018) on the synthetic datasets and evaluate its performance on
state-of-the-art face verification benchmarks. From results reported in Table 3 we can discern that
training data generated by SD-XL enables better verification performance than data of the SD-2.1
model. A notable improvement can also be observed when training on data generated with complex
prompts, due to the higher diversity of images. Importantly, our method produces training data,
which results in recognition models that achieve the highest average verification accuracy across
all benchmarks. This is especially evident with SD-XL on the AgeDB-30 benchmark (Moschoglou
et al., 2017), likely due to the improved diversity of images and identity consistency that our method
provides compared to existing approaches. Furthermore, with our proposed method, we achieve
drastically better verification performance than when training recognition models on the real-world
Tufts Face Database (TFD) (Panetta et al., 2018), despite the similar scale in terms of the number of
identities and images in our produced synthetic datasets.

5 CONCLUSION

In this paper, we presented ID-Booth, a new framework for fine-tuning pretrained diffusion models
to facilitate the generation of diverse high-quality identity-consistent images. To this end, ID-Booth
relies on a novel triplet identity training objective that improves both intra-identity consistency and
inter-identity separability, while better retaining the image diversity of pretrained models. This
applies when exploring identity similarity either between synthetic and real images or only among
synthetic ones. Throughout the experiments, we demonstrate the suitability of our fine-tuning frame-
work on two state-of-the-art diffusion models with text prompts of varying complexity. In addition,
we showcase that training recognition models on data produced by our method results in better
performance across five verification benchmarks than when utilizing a real-world dataset of simi-
lar scale or synthetic datasets of existing approaches. Overall, the ID-Booth framework presents
a potential solution for creating diverse privacy-preserving recognition datasets based on existing
small-scale training datasets collected with suitable consent. However, our work also highlights the
challenges with training recognition models on privacy-preserving datasets. With regards to future
work, we aim to investigate the applicability of identity-based objectives in the training of condi-
tioning approaches and exploring the creation of larger-scale datasets.
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