
A Factor Baselines

As shown in the main text, under the assumption that the influence network is unbiased, our factor
baselines are indeed valid control variates. We prove this result below, repeating the statement itself
for posterity and providing a supplementary lemma on control variates as a restatement of known
results.
Lemma A.1 (Control Variate). LetX , Y andZ be random variables where the law ofX conditional
on Z is denoted Pθ(X|Z), and Y is independent of X conditioned on Z; i.e. X |= Y | Z. Then, we
have that E[Y ∇θ lnPθ(X)] = 0.

Proof. The proof follows from the law of iterated expectations:

E[Y ∇θ lnPθ(X)] = E[E[Y ∇θ lnPθ(X) |Z]] = E[E[Y |Z]E[∇θ lnPθ(X) |Z]] = 0,

since E[∇θ lnPθ(X) |Z] = 0. �

Lemma 4.1. Factor baselines are valid control variates if GΣ is true to the MDP (i.e. unbiased).

Proof. Consider an objective J(θ) of the form defined in Equation 3, a factored influence network
GΣ and a Σ-factored policy πθ(a | s) .

=
∏n
i=1 πi,θ(σπi (a) | s). Now, let us define a stochastic policy

gradient estimator

∇θJ(θ) = Eπθ,ρπθ

[
g(s,a)

.
=

n∑
i=1

[
ψ(s,a) + bC

i (s, σ̄πi (a))
]
zi

]
,

where zi
.
= ∇θ lnπi,θ(σπi (a) | s) and bC

i (s, σ̄πi (a)) is the ith factor baseline (see Definition 4.1).
If GΣ is unbiased then we have mutual independence between each action partition and, since
bC
i (s, σ̄πi (a)) depends only on s and σ̄πi (a) — i.e. the action elements that are not in the support of
πi,θ — we can readily apply Lemma A.1, thus concluding the proof. �

A.1 Optimality

In contrast to the factor baselines, solving for the optimal baseline in general is a non-trivial challenge.
Indeed, the results presented by Wu et al. [57] rely on a key assumption that the policy factors do not
share parameters in order to simplify the analysis; i.e. that 〈zi, zj〉 ≈ 0 for any i, j ∈ [|Σ|]. Below
we explain why this is a difficult problem, and leave it to future work to find the solution.

For notational convenience, let g(s,a)
.
=
∑n
i=1 gi(s,a) such that the total variance on the gradient

is given by

V[g(s,a)] =

n∑
i=1

n∑
j=1

Cov[gi(s,a) , gj(s,a)] . (9)

The n optimal baselines are given by the values that minimise Equation 9; i.e. b?i (s, σ̄
π
i (a))

.
=

arg minbi V[g(s,a)] for all i ∈ [n]. To solve this problem, we first apply the factor baseline decom-
position such that b?i (s, σ̄

π
i (a)) = bV

i (s, σ̄πi (a)) + bC
i (s, σ̄πi (a)). This implies that the optimisation

problem can be reduced to finding arg minbV
i
V[g(s,a)] when bi is replaced with b?i for all i ∈ [n].

Now, let xi
.
= [KΣψ(s,a)]i zi and yi

.
= bV

i (s, σ̄πi (a)) zi such that gi(s,a) = xi + yi. Note
that while yi depends on the full action, xi depends only on the actions influencing the targets in
[KΣψ(s,a)]i. Removing terms that are independent of bV

i thus yields the following:

arg minbV
i
V[g] = arg minbV

i

V[gi] +

n∑
j 6=i

Cov[gi, gj ]

 ,

= arg minbV
i

V[xi] + V[yi] + 2 Cov[xi,yi] +

n∑
j 6=i

Cov[xi,xj ] + Cov[xi,yj ] + Cov[yi,xj ] + Cov[yi,yj ]

 ,

= arg minbV
i

V[yi] + 2 Cov[xi,yi] +

n∑
j 6=i

Cov[xi,yj ] + Cov[yi,xj ] + Cov[yi,yj ]

 .
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To solve the equation above, we first expand each component and remove any redundant terms. For
the variance on yi, we have that

V[yi] = Ea
[(
bV
i

)2 〈zi, zi〉]+
〈
Ea
[
bV
i zi
]
,Ea

[
bV
i zi
]〉
,

= Ea
[(
bV
i

)2 〈zi, zi〉]+
〈
Eσ̄πi (a)

[
bV
i

]
Eσπi (a)[zi] ,Eσ̄πi (a)

[
bV
i

]
,Eσπi (a)[zi]

〉
,

= Ea
[(
bV
i

)2 〈zi, zi〉] ,
= Eσπi (a)[〈zi, zi〉]Eσ̄πi (a)

[(
bV
i

)2]
. (10)

It follows from this analysis that the covariance between yi and yj for any i, j ∈ [|Σ|], with i 6= j, is
given by

Cov[yi,yj ] = Ea
[
bV
i b

V
j 〈zi, zj〉

]
. (11)

Finally, we can expand the covariance between xi and yi,

Cov[xi,yi] = Ea
[
[KΣψ]i b

V
i 〈zi, zi〉

]
+
〈
Ea[[KΣψ]i zi] ,Ea

[
bV
i zi
]〉
,

= Ea
[
[KΣψ]i b

V
i 〈zi, zi〉

]
+
〈
Ea[[KΣψ]i zi] ,Eσ̄πi (a)

[
bV
i

]
Eσπi (a)[zi]

〉
,

= Ea
[
[KΣψ]i b

V
i 〈zi, zi〉

]
,

= Eσ̄πi (a)

[
bV
i

]
Eσπi (a)[[KΣψ]i 〈zi, zi〉] , (12)

and similarly resolve the cross-covariance terms:

Cov[xi,yj ] =
〈
Eσ̄πi (a)

[
bV
i zi
]
,Eσπi (a)[[KΣψ]i zj ]

〉
. (13)

The quantities above provide us with a platform to find solutions. For example, the optimal baseline
approximation proposed by Wu et al. [57] can be found if we assume that 〈zi, zj〉 ≈ 0 since
Equation 11 and Equation 12 go to zero. However, in the general case the problem is not quite so
simple. The reason for this is that the baselines interact via the cross-covariance term in Equation 11.
As a result, we cannot solve for each bV

i independently of the others. Instead, we have a system of
polynomial equations which may not have a unique solution. In fact, since each equation has degree
d = 2, it follows the number of solutions can be as large d|Σ|. In general, there are very few methods
that can solve these type of systems, and those that can are limited to bounds of approximately
d|Σ| ≈ 20. It seems reasonable to assume that any solution, while viable, would be computationally
impractical, but we leave it to future work to establish this result formally.

B Factored Policy Gradients

The validity of factor baselines, as shown in the previous section, extends to policy gradient themselves.
As discussed in the main text, we can show that FPGs are unbiased and satisfy certain variance
bounds compared with conventional policy gradients. We restate the original propositions below and
provide the proofs in full.
Proposition 1. Take a Σ-factored policy πθ(a|s) and |θ| × |Σ| matrix of scores S(s,a). Then, for
target vector ψ(s,a) and multipliers λ, the FPG estimator

gC(s,a)
.
= S(s,a)KΣ λ ◦ψ(s,a) ,

is an unbiased estimator of the true policy gradient; i.e.∇θJ(θ) = Eπθ,ρπθ

[
gC(s,a)

]
.

Proof. Let GΣ denote an Σ-factored influence network with policy πθ(a | s) .
=
∏n
i=1 πi,θ(σπi (a) | s),

and global target function ψ(s,a) =
∑m
j=1 λjψj(s, σj(a)) = 〈λ,ψ(s,a)〉. The score matrix,

S(s,a)
.
=
[
z>i , . . . ,z

>
n

]>
, then has size |θ| × n, where zi

.
= ∇θ lnπi,θ(σπi (a) | s). From this

we can express the conventional policy gradient with no baseline as the linear product g(s,a) =
S(s,a)Jn,mψ(s,a), where Jn,m is the n×m all-ones matrix. By Lemma 4.1 the factor baselines,
[(1−KΣ)ψ(s,a)]i, are valid control variates and thus have expected value of zero under π. This
means that they can be subtracted without introducing bias in the policy gradient, yielding

g(s,a) = S(s,a)Jn,mψ(s,a)︸ ︷︷ ︸
Vanilla PG

−S(s,a) (1−KΣ)ψ(s,a)︸ ︷︷ ︸
Factor Correction

= S(s,a)KΣψ(s,a) .
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It follows that∇θJ(θ) = Eπθ,ρπθ

[
gC(s,a)

]
since Eπθ,ρπθ

[
gV(s,a)

]
= Eπθ,ρπθ

[
gC(s,a)

]
which

concludes the proof. �

Proposition 2. Let gi denote a gradient estimate for the ith factor of a Σ-factored policy πθ (Equa-
tion 5). Then, ∆Vi

.
= V

[
gV
i

]
− V

[
gC
i

]
, satisfies

∆Vi = αi Eσ̄πi (a)

[(
bC
i

)2]
+ 2βiEσ̄πi (a)

[
bC
i

]
,

where zi
.
= ∇θ lnπi,θ(a | s), αi

.
= Eσπi (a)[〈zi, zi〉] ≥ 0 and βi

.
= Eσπi (a)

[
〈zi, zi〉

(
ψ + bC

i

)]
.

Proof. First, let us denote byX and Y two (possibly dependent) random variables, withZ .
= X−Y

such that
∆V .

= V[X]− V[Y ] = V[Z + Y ]− V[Y ] ,

= V[Z] + V[Y ] + 2Cov[Y ,Z]− V[Y ] ,

= V[Z] + 2 Cov[Y ,Z] .

From Proposition 1, we can express the vanilla and factored policy gradient estimators for the ith
factor as ψS·,i and

(
ψ − bC

i

)
S·,i, respectively, where the function arguments have been omitted for

clarity. Assigning these values toX and Y we arrive at the equality relations

V[Z] = V
[
bC
i zi
]

= Eπ
[
〈zi, zi〉

(
bC
i

)2]
Cov[Y ,Z] = Cov

[(
ψ − bC

i

)
zi, b

C
i zi
]

= Eπ
[
〈zi, zi〉

(
ψ − bC

i

)
bC
i

]
.

The former follows from the fact that Eπ[S·,i] = 0 for all i, and latter by noting that E[Z] = 0 due to
Lemma 4.1. We can now exploit the independencies implied by the influence network, GΣ, to give

∆Vi = Eσπi (a)[〈zi, zi〉]Eσ̄πi (a)

[(
bC
i

)2]
+ 2Eσπi (a)

[
〈zi, zi〉

(
ψ − bC

i

)]
Eσ̄πi (a)

[
bC
i

]
,

This is the desired result and thus concludes the proof. �

Corollary 4.1. Let ψ(s,a) be of the form in Equation 3. If ψj(s,a) ≥ ψj for all (s,a) ∈ S × A

and j ∈ [m], with
∣∣∣ψj∣∣∣ <∞, then there exists a linear translation, ψi → ψi −

∑m
j=1 λjψj , which

leaves the gradient unbiased but yields ∆Vi ≥ 0.

Proof. Take a target set Ψ and let ψj
.
= infS,A ψj for each ψ ∈ Ψ. The unbiasedness claim follows

from the fact that these terms go to zero in expectation when weighted by the score functions; they
are constants. The variance claim is also trivial, since ψj +

∑m
k=1 λk infS,A ψk are non-negative and,

due to the summation over all k ∈ [m], no CB can yield a negative value. Each term in Equation 8
(Proposition 2) must also be non-negative, which concludes the proof. �

C Minimum Factorisation

The minimum factorisation of an influence network provides a natural way of partitioning action nodes
into independent policy distributions. In the main text it was also stated that such a characterisation is
natural to the problems we study. We repeat this result below and provide the proof herein.
Theorem 4.1. The MF Σ?G always exists and is unique.

Proof. Bipartite graphs always have at least one valid biclique and thus MF. Now, for uniqueness,
let G denote an influence network. If G is complete, then we automatically satisfy the uniqueness
property since the MF will contain a single biclique that covers all vertices in IA. If G is incomplete,
then the proof can be shown through contradiction. Suppose that A and B are both MFs and therefore
correspond to minimum biclique vertex covers, disjoint amongst IA. We know then that A and B
must have the same dimensionality since they are optimal — i.e. contain the same number of bicliques
— but, if they are distinct, then there must also exist at least one biclique a ∈ A that is not in B. Since
both MFs are defined over the same graph G, the elements of a must be distributed between at least 2
distinct bicliques in B. However, if this is the case, the union of these subgraphs would also form a
valid biclique. The new cover, B′, containing the merged bicliques is valid and has dimensionality
|B′| < |B| = |A|. This implies that neither A nor B can be MFs. Since the same must be true for
any A and B, it follows that there can be only one MF, thus concluding the proof. �
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D Search Bandit

The search bandit was designed to exhibit an influence network as illustrated in Figure 6. Below we
summarise the hyperparameters for the two key experiments — namely the baseline comparison (BC)
and aliasing demonstration (AD):

BC All algorithms were trained using a learning rate of 0.5 except for VPGs w/o a baseline which
was only stable with a step size of 0.001. The state-based (i.e. scalar) baselines, b(s) = b,
were trained using temporal-difference methods with a learning rate of 0.1. The action-
dependent baseline, b(s, a)

.
= − ||a−w||1 / |A|, was similarly trained using SARSA with

a learning rate of 0.1.4 An additional 1000 episodes were also used at the start of each run
to pre-train the baseline if used.

AD In the aliasing experiment, both VPGs and FPGs were trained for a 100-dimensional action-space
with a regularisation penalty of λ = 0.01 on the first 99 action-components. VPGs were
instantiated with a learning rate of 0.001, and FPGs with a rate of 0.01.

Additional results. In addition to the results presented in the paper, we also include Figures 7-9.
These explore the impact of the factor baseline across a set of dimensionalities and learning rates.
We show that VPGs are very sensitive to the learning rate, especially when |A| is large. FPGs, on
the other hand, converge on the optimal solution consistently regardless of the problem instance.
Similarly, we show that the mean number of steps required to reach such a solution for a finite budget
is much lower for FPGs compared with VPGs.

Implications for MDPs. The search bandit is an interesting problem environment because, in many
ways, it can emulate the learning process in arbitrary MDPs. This follows because, without loss of
generality, we can always transform an MDP into a (possibly infinite) set of continuum multi-armed
bandits, one occupying every unique state s ∈ S. The question is how to define the cost function in
order to achieve some form of equivalence. For example, if we consider deterministic policies, then
we can clearly define the cost to be Cost(a)

.
= ||a− π?(s)||p, for p ≥ 1, and have the same solution

set as given under Bellman optimality. This implies that the performance observed in the search
bandit it likely to tell us about the performance in full MDPs. The results presented in Section 5.1
may thus provide evidence that FPGs will outperform VPGs for arbitrarily challenging MDPs.

· · ·∆1 ∆2 ∆n−1 ∆n

a1 a2 an−1 an· · ·

ζ

Figure 6: Influence network of the search bandit problem with optional coupling term.

E Traffic Systems

The traffic experiment were kept as close as possible to the benchmark specifica-
tion for the grid problem provided by Flow [56]. In particular, we based the
code of the “examples/exp_configs/rl/multiagent/multiagent_traffic_light_grid.py” and “exam-
ples/exp_configs/rl/signleagent/singleagent_traffic_light_grid.py” files on commit ID 4e47f7a. The

4In this formalism we only have sub-derivatives. For simplicity we simply assigned the gradient when a
given action was equal to the weight.
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(a) FPGs (b) VPGs

Figure 7: Mean optimality gap after 2× 105 training iterations. The z-axis is given in a log scale and
each point was computed from 16 random samples under the assumption of a Gamma distribution
(optimality gap is lower bounded at zero).

(a) FPGs (b) VPGs

Figure 8: Mean number of time steps required to reach an optimality gap of 0.1, up to a limit of
5× 105 training iterations; see Figure 7. The z-axis is given in a log scale, and unfilled (grey) regions
depict either divergence or a failure to terminate in the allotted time. Each point was computed from
16 random samples under the assumption of a Gamma distribution (time is lower bounded at zero).

(a) ξn(a) = ||a||2 and λ = 0.01 (b) ξn/2(a) =
√∑n/2

i=1 a
2
i and λ = 0.01

Figure 9: Ratio between the mean optimality gaps for FPGs over VPGs after 2 × 105 training
iterations. Smaller values indicate that FPGs achieved a lower error relative to VPGs. Each point
is the ratio of the two means, each computed using 16 random samples under the assumption of a
Gamma distribution (optimality gaps are lower bounded at zero).

only changes that were made were to update the topology of the grid (i.e. 3× 3 and 2× 6), and to
unify the reward function. We outline all the specific details below.

Reward functions. In order to unify the reward function across domains we implemented a custom
variant of the “mean delay” case that worked for single- or multi-agent approaches. In particular,
we changed the summation to only consider a subset of the edges in the network which allowed for
localised computation. This can be done very easily in the Flow framework.
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Traffic system parameters. The traffic intersection problem was instantiated with either a 3× 3
topology, or a 2 × 6 topology, depending on the experiment. In all cases, an edge inflow of 300
was used, with initial speed of 30. The inner edges were given a length of 300, with the final edge
in a route having length 100, and starting edge having length 300. Cars were created using the
SimCarFollowingController, and SumoCarFollowingParams with a minimum gap of 2.5, maximum
speed of 30, decelleration rate of 7.5 and “right of way” speed mode. The environment itself was
initialised with target velocity of 50, switch time of 3, number of locally observed cars at 2, “actuated”
TL type, and 4 locally observed edges.

Learning hyperparameters. In all cases we leveraged RLLIB’s implementation of PPO with
GAE [21] using discount factor of 0.999, a Monte-Carlo interpolation rate of λ = 0.97, KL-target
of 0.02, value function clipping bound at 104, and learning rate of 5 × 10−4. The policy was
parameterised using a three-layer neural network with 32 units at each of the three hidden layers. A
total of 50 CPUs were used, each generating a single rollout at each iteration with a horizon of 400
steps.
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