
Locally Hierarchical Auto-Regressive Modeling for
Image Generation

Supplementary Document

A Implementation Details

A.1 HQ-VAE

For designing HQ-VAE, we modify the encoder and decoder architectures of VQ-GAN [A1]; we set
the stride of the first convolution layer in the encoder and the last transposed convolution layer in the
decoder as two as mentioned in the main paper. The encoder takes an image x and returns encoded
feature map z. We adopt HQ-VAE equipped with pixel-unshuffle and -shuffle for resampling. We use
HQ-VAE (16× 16) with f = 16 for the two-level HQ-TVAE implementation, which gives concise
visual codes for efficient training of HQ-Transformer.

We train HQ-VAE (16×16) for 50 epochs on the ImageNet training split. We use the Adam optimizer
with (β1, β2) = (0.9, 0.5) and batch size 128. We set the learning rate 4× 10−5 with a warm-up for
0.5 epochs starting from a zero learning rate.

A.2 HQ-Transformer

Table A presents the hyperparameters for HQ-transformer, where de and ne denote the embedding
dimension and the number of heads of the transformer, respectively.

Table A: Hyperparamters for implementing HQ-Transformer.
Dataset Model # params NIET NMT NPHT Ltop Llocal d de ne τ

ImageNet
HQ-Transformer (S) 530 M 1 12 4 64 5 256 1536 24 1.0
HQ-Transformer (M) 870 M 1 24 4 64 5 256 1536 24 1.0
HQ-Transformer (L) 1437 M 1 42 6 64 5 256 1536 24 1.0

CC-15M HQ-Transformer (S) 579 M 1 12 4 128 5 256 1536 24 1.0

The input of the main transformer starts with the start-of-sentence (SOS) token. A class-conditional
image generation employs a class-specific SOS token while a text-conditional image generation uses
a sequence of text tokens given by the byte pair encoding [A2, A3]. The length of text tokens is at
most 64.

We train HQ-Transformer for 100 epochs on the ImageNet training split and 20 epochs on CC-15M,
the aggregated training splits of CC-12M and CC-3M. Training HQ-transformer (S), (M), and (L) on
ImageNet takes 35, 45, and 75 minutes per epoch with four NVIDIA Tesla A100 GPUs, respectively,
while training HQ-transformer (S) on CC-15M requires 452 minutes per epoch in the same GPU
environment. We use HQ-VAE trained on ImageNet for experiments on class- and text-conditional
image generation. We use AdamW with (β1, β2) = (0.9, 0.95), batch size 512, and weight decay
coefficient 1×10−4. We adopt two policies for learning rate schedule, warm-up and cosine annealing.
At the first epoch, learning rate is warmed up gradually from lrinit = 1 × 10−5 to lrpeak. In the
remaining training epochs, we adopt the cosine annealing from the peak learning rate lrpeak to zero.
We set lrpeak to 5× 10−4 for ImageNet and 3× 10−4 for CC-15M and clip gradients at 1.0 for stable
training.

Figure A and B demonstrate the performances of the baseline and rejection sampling by varying
hyperparameters such as top-k, softmax temperature, and acceptance ratio. For the baseline sampling
in ImageNet, the hyperparameter setting with k = 2048 and temperature t = 0.95 achieves the
best FID performance in the small and medium models and the second-best performance in the
large model. When the rejection sampling is employed in ImageNet, the setting with k = 8192,

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

1.0 0.95 0.9
temperature

2048

4096

8192

to
p-

k

7.40 7.15 7.23

9.54 8.02 7.13

15.59 11.14 8.33

baseline sampling

1.0 0.95 0.9
temperature

2048

4096

8192

to
p-

k

5.688 6.168 6.766

4.544 4.908 5.463

4.682 4.351 4.726

rejection sampling
 (acceptance ratio=0.25)

1.0 0.95 0.9
temperature

0.5

0.25

0.125

ac
ce

pt
an

ce
 ra

tio

6.545 4.948 4.479

4.682 4.351 4.726

4.610 4.904 5.593

rejection sampling
 (top-k=8192)

Figure A: The performance of HQ-TVAE (L) on the ImageNet training split in terms of FID with
diverse configurations with top-k, softmax temperature, and acceptance ratio.

0.8 0.85 0.9 0.95 1.0
temperature

2048

4096

8192

to
p-

k

13.61 14.01 15.15 17.27 19.80

13.97 13.01 12.88 14.13 16.54

18.24 14.77 12.86 13.16 15.11

FID

0.8 0.85 0.9 0.95 1.0
temperature

2048

4096

8192
to

p-
k

0.259 0.260 0.259 0.259 0.258

0.257 0.258 0.259 0.259 0.258

0.252 0.255 0.257 0.259 0.258

CLIP-score

Figure B: The performance of HQ-TVAE (S) on the CC-3M validation split measured by FID and
CLIP-score with diverse set of (top-k, softmax temperature).

temperature t = 0.9 and acceptance ratio 0.25 achieves the best FID score. The setting with k = 8192
and temperature t = 0.9 for the baseline sampling leads to the best FID performance and comparable
CLIP-score on the CC-3M validation split.

A.3 Libraries and Code Repository

Our implementation is based on PyTorch 1.10 1 with CUDA 11.3 and PyTorch Lightning 1.5.7 2. The
major routines of our codes are based on the code repositories of VQ-GAN 3, minDALL-E 4, and
RQ-Transformer 5.

B Ablation study

B.1 Details of Resizing Layers in HQ-VAE

We present the detailed analysis of down- and up-sampling operations on HQ-VAE and its effect on
HQ-TVAE in Table B. When learning the resizing operations, we apply two different loss functions,
pixel-wise `2 reconstruction loss and perceptual compression loss to the reconstructed image based
only on the top codes. According to our experiments, without such appropriate loss functions, the
images only with top codes collapse as illustrated in the top of Figure C.

We observe that both reconstruction FIDs with multi-level codes and top code only rFID, denoted
respectively by rFID and rFID-top, should be strong for achieving good image generation performance.
Unfortunately, both metrics have the trade-off in most cases but the resizing based on pixel-shuffle
is more effective for better image generation. Note that the convolution-based resizing operations

1PyTorch (https://pytorch.org)
2PyTorch Lightning (https://www.pytorchlightning.ai)
3VQ-GAN (https://github.com/CompVis/taming-transformers)
4minDALL-E (https://github.com/kakaobrain/minDALL-E)
5RQ-VAE and RQ-Transformer (https://github.com/kakaobrain/rq-vae-transformer)

2

https://pytorch.org
https://www.pytorchlightning.ai
https://github.com/CompVis/taming-transformers
https://github.com/kakaobrain/minDALL-E
https://github.com/kakaobrain/rq-vae-transformer

Table B: Ablation study about down- and up-sampling operations in HQ-VAE and their impacts on
the performances of HQ-TVAE.

Resizing operation Epochs rFID ↓ rFID (top) ↓ FID ↓ Precision ↑ Recall ↑
Conv2 + Deconv2 (Perceptual compression loss) 15 3.72 18.36 15.68 0.67 0.52

Conv2 + Deconv2 (Pixel-wise reconstruction loss) 15 3.10 98.29 16.23 0.66 0.51
Avg. Pooling + NN interpolation 15 3.67 240.97 21.87 0.60 0.52

PixelShuffle + Unshuffle 15 3.14 83.45 13.59 0.67 0.52
PixelShuffle + Unshuffle 50 2.61 71.27 11.03 0.70 0.55

Figure C: Examples of reconstructed images using HQ-VAE with the learnable down- and up-
sampling layers. Reconstructed images at the top are given by HQ-VAE trained without the recon-
struction losses applied to top codes images while the images at the bottom are with the reconstruction
losses. Note that the reconstruction only with top codes shown at the top-left corner fails in this
example while the image at the bottom-left corner exhibits reasonable quality with high-level contents.

requires extra training time; HQ-VAE with the above learnable down- and up-sampling layer takes
about 300 minutes per epoch, while HQ-VAE with pixel-shuffle takes about 170 minutes per epoch
with four NVIDIA Tesla A100 GPUs.

B.2 Input Embedding of HQ-Transformer

The ablation study in Table C(a) analyzes the effects on input embedding. We test two types of input
embedding: addition and the input embedding transformer (IET) in (10) of the main paper. The
addition method fuses the embeddings of top and bottom codes and the position embedding of the
top code, which is given by

ui = etop,in
i + Concatenation

(
ebot,in
(i,1) , · · · , e

bot,in
(i,r2)

)
+ PEtop[i], i > 0, (1)

where Concatenation(·, · · · , ·) denotes the channel-wise concatenation for bottom code embeddings.
We set the number of self-attention blocks in IET to 1 or 2, i.e., NIET = 1 or 2. We observe that a
single layer for IET outperforms the other settings in terms of FID and recall.

B.3 Prediction Head Transformer (PHT)

We propose locally hierarchical decoding in PHT contrary to the standard sequential approach by
assuming the conditional independence among bottom codes given a top code. Specifically, the
locally hierarchical decoding first sample a single top code and then predicts all bottom codes at the
same time conditioned on the top code. The ablation study Table C(b) demonstrates the benefit of our
decoding strategy in the PHT with respect to image generation quality. Note that the proposed locally
hierarchical decoding also has an advantage in speed.

3

Table C: Ablation study on the architecture of HQ-Transformer. We use the smallest model HQ-
Transformer (S) to verify architectural choices.

Input embedding Decoding policy Label type (top-k, t) FID ↓ Precision ↑ Recall ↑

(a)
Addition

Locally hierarchical conditioning One-hot label
(2048, 0.9) 11.03 0.70 0.55

IET NIET = 1 (2048, 0.95) 10.01 0.69 0.55
IET NIET = 2 (2048, 1.0) 11.86 0.70 0.51

(b) IET NIET = 1
Locally hierarchical conditioning

One-hot label (2048, 0.95)
10.01 0.69 0.55

Locally sequential conditioning 11.33 0.68 0.55
Without local conditioning 26.72 0.52 0.59

(c) IET NIET = 1 Locally hierarchical conditioning One-hot label
(2048, 0.95)

10.01 0.69 0.55
Soft-label (τ = 1) 9.36 0.69 0.55

PixelUnShuffle

Quantizemid

PixelShuffle

Quantizebot

Encoder

Decoder

-

4w × 4h × d

2w × 2h × 4d

4w × 4h × d

PixelUnShuffle

Quantizetop

PixelShuffle

w × h × 16d -

+

+

top code (w × h)

middle code (2w × 2h)

bottom code (4w × 4h)

(a) HQ-VAE with three-level codes.
(b) Self-attention mask for three-level
locally hierarchical decoding

Figure D: Multi-level extension for HQ-VAE (a) and self-attention mask for three-level locally
hierarchical decoding in HQ-Transformer (b). We use pixel-shuffle and -unshuffle for resizing
operations as illustrated in (a) while recursively quantizing hierarchical feature maps to acquire
three-level codes—top, middle, and bottom. We also extend a self-attention mask to support locally
hierarchical decoding for three-level codes as shown in (b).

B.4 Soft-Labeling in HQ-Transformer

Table C(c) shows that soft-labeling improves FID compared to one-hot labeling.

B.5 Multi-Level Extension of HQ-TVAE

We extend the default two-level HQ-VAE into a three-level network. Figure Da presents the archi-
tecture of three-level HQ-VAE while Figure E illustrates how the three-level HQ-VAE disentangles
information into top, middle and bottom codes.

Locally hierarchical autoregressive model for three-level codes is easily extended from the two-level
case. We introduce an additional conditional independence assumption among bottom codes given
the associated top and middle codes for the multi-level extension, which is given by

Pθ(ti,mi,bi|t<i,m<i,b<i)

=Pθ(bi|ti,mi, t<i,m<i,b<i) · Pθ(mi|ti, t<i,m<i,b<i) · Pθ(ti|t<i,m<i,b<i)
(2)

where bi = (b(i,1), · · · b(i,4r2)) and mi = (m(i,1), · · ·m(i,r2)). This multi-level extension of (6) of
the main paper is simply given by applying an additional chain rule to (5) of the main paper for
introducing the middle code. HQ-Transformer with three-level codes is implemented by plugging in
a self-attention mask for three-level locally hierarchical decoding in HQ-Transformer as illustrated in
Figure Db.

We set the hyperparameters for decoding as follows: k = 2048 and temperature (0.80, 0.81, 0.82) for
three-level codes with resolution (4 × 4 + 8 × 8 + 16 × 16) and (0.90, 0.91, 0.92) for three-level
codes with resolution (8× 8 + 16× 16 + 32× 32). The generation performance of the three-level

4

original image top code only middle code only bottom code only top+middle top+middle+bottom

Figure E: Visualization of reconstructed images by HQ-VAE with three-level codes (4× 4 + 8× 8 +
16× 16). The first column shows the original image and the remaining columns show reconstructed
images from top code only, middle code only, bottom code only, top+middle, and all the three-
level codes. We can observe information disentangled in the top, middle and bottom codes in the
visualization.

HQ-TVAE is improved by using lower temperatures on middle and bottom codes, but fails to reach
the performance of the two-level counterpart.

C Additional Image Generation Examples

We demonstrate additional samples for class- and text-conditional image generation in Figure F and
G, respectively. In both figures, a set of examples in three consecutive rows show the reconstructed
images based on top, bottom, and two-level codes. All the generated samples in each class and each
prompt are acquired by fixing a random seed to 0.

Based on generated samples from class- and text-conditional image generation, we also conduct
top code-conditional image generation shown in Figure H and Figure I. Figure H shows top code-
conditional image generation by both class- and text-conditional generated images. Figure I shows
23 generated images from only the single given top code, which demonstrates the diversity in detail
generation of our models.

D Limitations and Negative Societal Impacts

D.1 Limitations

Two-stage auto-regressive (AR) models have some artifacts in a small region with details. Figure J
shows failure cases due to a scene with a small size of the face. Synthesized images only from the
top code in Figure J contain the solid color of the face rather than the rough structure of a human
face, such as mouth, nose, or eyes. Solid color on the face without the structure might degrade
details created with the independence assumption. To solve this problem, more information should
be injected into the top code without distortion even in the small region. Note that other two-stage
AR models [A1, A4, A5] also experience the similar problems as reported in their supplementary
materials. We believe that introducing expressive visual codes is still a promising solution to this
problem.

The three-level extensions of our approaches have limitations over two-level baselines. First, the three-
level HQ-VAE has lower effective top code usage, which results in poor performance compared to its
two-level counterparts. Second, the three-level model requires tuning additional hyperparameters for
locally hierarchical decoding.

5

D.2 Negative Societal Impacts

Unknown biases or unfiltered inappropriate samples in large-scale datasets might contribute to the
generation of biased or harmful content and our method also shares the core of these issues. We
believe that more research is needed on those problems for large-scale image generation.

References
[A1] Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In CVPR.

(2021)

[A2] Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. In
ACL. (2016)

[A3] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R.,
Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T.,
Gugger, S., Drame, M., Lhoest, Q., Rush, A.: Transformers: State-of-the-art natural language processing.
In EMNLP. (2020)

[A4] Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with vq-vae-2. In
NeurIPS. (2019)

[A5] Lee, D., Kim, C., Kim, S., Cho, M., Han, W.S.: Autoregressive image generation using residual
quantization. In CVPR. (2022)

6

Figure F: Examples of class-conditional image generation with an ImageNet class hen-of-the-woods
(996), monarch butterfly (323), tiger shark (3) and goldfish (1). The first row shows samples
synthesized only from the top codes, the second row from the bottom codes only, and the third row
shows our final generation samples.

7

CLIP-score 0.376 CLIP-score 0.375 CLIP-score 0.374 CLIP-score 0.373 CLIP-score 0.373 CLIP-score 0.372 CLIP-score 0.371 CLIP-score 0.370
Eiffel tower on a t-shirt.

CLIP-score 0.346 CLIP-score 0.339 CLIP-score 0.336 CLIP-score 0.336 CLIP-score 0.330 CLIP-score 0.330 CLIP-score 0.329 CLIP-score 0.329
A painting of a cathedral.

Figure G: Examples of text-conditional image generation from text prompts written in the top of each
case. We visualize 8 samples out of 128 for each prompt using CLIP re-ranking. At the top of each
column, we present the CLIP score between an image and a text prompt. The first and second rows
show the images synthesized only with the top and bottom codes, respectively, and the third row
illustrates the generated images with both the codes.

8

Figure H: Examples of top code-conditional image generation with generated images by conditioning
ImageNet classes monarch butterfly (323), vase (883), hen-of-the-woods (996) shown in top-to-
bottom. The images at the top-left corner in red bounding boxes visualize images synthesized from
the top codes only while the images in green bounding boxes are corresponding images with full
codes. The images except the first column are the generated images by varying the bottom codes
with the top code fixed.

9

Figure I: An example of images generated using the identical top code in an ImageNet class lorikeet
(90). The image in red bounding boxes visualize the image synthesized from the top codes only
while the image in green bounding boxes are corresponding images with full codes. The remaining
examples show the generated images by varying the bottom codes with the same top code. Note that
every example exhibits various details under the same structure corresponding to the top code.

Figure J: A failure case of class-conditional image generation from an ImageNet class doctor fish or
tench (0). The first and second rows show the images synthesized only with the top and bottom codes,
respectively, and the third row illustrates the generated images with both the codes. The structure of
human face are severely distorted in the first row images.

10

	Implementation Details
	HQ-VAE
	HQ-Transformer
	Libraries and Code Repository

	Ablation study
	Details of Resizing Layers in HQ-VAE
	Input Embedding of HQ-Transformer
	Prediction Head Transformer (PHT)
	Soft-Labeling in HQ-Transformer
	Multi-Level Extension of HQ-TVAE

	Additional Image Generation Examples
	Limitations and Negative Societal Impacts
	Limitations
	Negative Societal Impacts

