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Figure 1: GIM overview. We propose an effective framework for learning generalizable image
matching (GIM) from videos. (a): GIM can be applied to various architectures and scales well as
the amount of data (i.e., internet videos) increases. (b): The improved performance transfers well to
various downstream tasks such as 3D reconstruction. (c): Our best model GIMpky also generalizes
to challenging out-of-domain data like Bird Eye View (BEV) images of projected point clouds.

ABSTRACT

Image matching is a fundamental computer vision problem. While learning-based
methods achieve state-of-the-art performance on existing benchmarks, they gener-
alize poorly to in-the-wild images. Such methods typically need to train separate
models for different scene types (e.g., indoor vs. outdoor) and are impractical
when the scene type is unknown in advance. One of the underlying problems is
the limited scalability of existing data construction pipelines, which limits the di-
versity of standard image matching datasets. To address this problem, we propose
GIM, a self-training framework for learning a single generalizable model based
on any image matching architecture using internet videos, an abundant and diverse
data source. Given an architecture, GIM first trains it on standard domain-specific
datasets and then combines it with complementary matching methods to create
dense labels on nearby frames of novel videos. These labels are filtered by robust
fitting, and then enhanced by propagating them to distant frames. The final model
is trained on propagated data with strong augmentations. Not relying on complex
3D reconstruction makes GIM much more efficient and less likely to fail than stan-
dard SfM-and-MVS based frameworks. We also propose ZEB, the first zero-shot
evaluation benchmark for image matching. By mixing data from diverse domains,
ZEB can thoroughly assess the cross-domain generalization performance of differ-
ent methods. Experiments demonstrate the effectiveness and generality of GIM.
Applying GIM consistently improves the zero-shot performance of 3 state-of-the-
art image matching architectures as the number of downloaded videos increases
(Fig. 1 (a)); with 50 hours of YouTube videos, the relative zero-shot performance
improves by 6.9% — 18.1%. GIM also enables generalization to extreme cross-
domain data such as Bird Eye View (BEV) images of projected 3D point clouds
(Fig. 1 (c)). More importantly, our single zero-shot model consistently outper-
forms domain-specific baselines when evaluated on downstream tasks inherent to
their respective domains. The source code, a demo, and the benchmark are avail-
able at https://xuelunshen.com/gim.
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1 INTRODUCTION

Image matching is a fundamental computer vision task, the backbone for many applications such
as 3D reconstruction Ullman (1979), visual localization Sattler et al. (2018) and autonomous driv-
ing (Yurtsever et al., 2020).

Hand-crafted methods (Lowe, 2004; Bay et al., 2006) utilize predefined heuristics to compute and
match features. Though widely adopted, these methods often yield limited matching recall and den-
sity on challenging scenarios, such as long-baselines and extreme weather. Learning-based methods
have emerged as a promising alternative with a much higher accuracy (Sarlin et al., 2020; Sun et al.,
2021) and matching density (Edstedt et al., 2023). However, due to the scarcity of diverse multi-
view data with ground-truth correspondences, current approaches typically train separate indoor and
outdoor models on ScanNet and MegaDepth respectively. Such domain-specific training limits their
generalization to unseen scenarios, and makes them impractical for applications with unknown scene
types. Moreover, existing data construction methods, which rely on RGBD scans (Dai et al., 2017)
or Structure-from-Motion (SfM) + Multi-view Stereo (MVS) (Li & Snavely, 2018), have limited
efficiency and applicability, making them ineffective for scaling up the data and model training.

To address these issues, we propose GIM, the first framework that can learn a single image matcher
generalizable to in-the-wild data from different domains. Inspired by foundation models for com-
puter vision (Radford et al., 2021; Ranftl et al., 2020; Kirillov et al., 2023), GIM achieves zero-
shot generalization by self-training (Grandvalet & Bengio, 2004; Arazo et al., 2020) on diverse and
large-scale visual data. We use internet videos as they are easy to obtain, diverse, and practically
unlimited. Given any image matching architecture, GIM first trains it on standard domain-specific
datasets (Li & Snavely, 2018; Dai et al., 2017). Then, the trained model is combined with multiple
complementary image matching methods to generate candidate correspondences on nearby frames
of downloaded videos. The final labels are generated by removing outlier correspondences using
robust fitting, and propagating the correspondences to distant video frames. Strong data augmenta-
tions are applied when training the final generalizable model. Standard SfM and MVS based label
generation pipelines (Li & Snavely, 2018) have limited efficiency and are prone to fail on in-the-wild
videos (see Sec. 4.2 for details). Instead, GIM can efficiently generate reliable supervision signals
on diverse internet videos and effectively improve the generalization of state-of-the-art models.

To thoroughly evaluate the generalization performance of different methods, we also construct the
first zero-shot evaluation benchmark ZEB, consisting of data from 8 real-world and 4 simulated do-
mains. The diverse cross-domain data allow ZEB to identify the in-the-wild generalization gap of ex-
isting domain-specific models. For example, we found that advanced hand-crafted methods (Arand-
jelovié¢ & Zisserman, 2012) perform better than recent learning-based methods Sarlin et al. (2020);
Sun et al. (2021) on several domains of ZEB.

Experiments demonstrate the significance and generality of GIM. Using 50 hours of YouTube
videos, GIM achieves a relative zero-shot performance improvement of 9.9%, 18.1% and 6.9%
respectively for SuperGlue (Sarlin et al., 2020) LoFTR (Sun et al., 2021) and DKM (Edstedt et al.,
2023). The performance improves consistently with the amount of video data (Fig. 1 (a)). De-
spite trained only on normal RGB images, our model generalizes well to extreme cross-domain data
such as BEV images of projected 3D point clouds (Fig. 1 (c)). Besides image matching robustness,
a single GIM model achieves cross-the-board performance improvements on various down-stream
tasks such as visual localization, homography estimation and 3D reconstruction, even comparing to
in-domain baselines on their specific domains. In summary, the contributions of this work include:

* GIM, the first framework that can learn a generalizable image matcher from internet videos.

* ZEB, the first zero-shot image matching evaluation benchmark.

» Experiments showing the effectiveness and generality of GIM for both image matching and
various downstream tasks.

2 RELATED WORK

Image matching methods: Hand-crafted methods (Lowe, 2004; Bay et al., 2006; Rublee et al.,
2011) use predefined heuristics to compute local features and perform matching. RootSIFT (Arand-
jelovi¢ & Zisserman, 2012) combined with the ratio test has achieved superior performance (Jin
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et al., 2020). Though robust, hand-crafted methods only produce sparse key-point matches, which
contain many outliers for challenging inputs such as low overlapping images. Many methods (Tian
et al., 2017; Mishchuk et al., 2017; Dusmanu et al., 2019; Revaud et al., 2019; Tyszkiewicz et al.,
2020) have been proposed recently to learn better single-image local features from data. Sarlin et al.
(2020) pioneered the use of Transformers (Vaswani et al., 2017) with two images as the input and
achieved significant performance improvement. The output density has also been significantly im-
proved by state-of-the-art semi-dense (Sun et al., 2021) and dense matching methods (Edstedt et al.,
2023). However, existing learning-based methods train indoor and outdoor models separately, mak-
ing them generalize poorly on in-the-wild data. We find that RootSIFT performs better than recent
learning-based methods (Sarlin et al., 2020; Sun et al., 2021) in many in-the-wild scenarios. We
show that domain-specific training and evaluation are the cause of the poor robustness, and propose
a novel framework GIM that can learn generalizable image matching from internet videos. Similar
to GIM, SGP (Yang et al., 2021) also applied self-training (using RANSAC + SIFT). However, it
was not designed to improve generalization and still trained models on domain-specific data. Em-
pirical results (Sec. 4.2) show that simple robust fitting without further label enhancement cannot
improve generalization effectively.

Image matching datasets: Existing image matching methods typically train separate models for
indoor and outdoor scenes using MegaDepth (Li & Snavely, 2018) and ScanNet (Dai et al., 2017) re-
spectively. These models are then evaluated on test data from the same domain. MegaDepth consists
of 196 scenes reconstructed from 1 million internet photos using COLMAP (Schonberger & Frahm,
2016). The diversity is limited since most scenes are of famous tourist attractions and hence revolve
around a central object. ScanNet consists of 1613 different scenes reconstructed from RGBD images
using BundleFusion. ScanNet only covers indoor scenes in schools and it is difficult to use RGBD
scans to obtain diverse images from different places of the world. In contrast, we propose to use
internet videos, a virtually unlimited and diverse data source to complement the scenes not covered
by existing datasets. The in-domain test data used in existing methods is also limited since they
lack cross-domain data with diverse scene conditions, such as aerial photography, outdoor natural
environments, weather variations, and seasonal changes. To address this problem and fully measure
the generalization ability of a model, we propose ZEB, a novel zero-shot evaluation benchmark for
image matching with diverse in-the-wild data.

Zero-shot computer vision models: Learning generalizable models has been an important research
topic recently. CLIP (Radford et al., 2021) was trained on 400 million image-text pairs collected
from the internet. This massive corpus provided strong supervision, enabling the model to learn a
wide range of visual-textual concepts. Ranftl et al. (2020) mixed various existing depth estimation
datasets and complementing them with frames and disparity labels from 3D movies. This allowed
the depth estimation model to first time generalize across different environments. SAM (Kirillov
et al., 2023) was trained on SA-1B containing over 1 billion masks from 11 million diverse images.
This training data was collected using a “data engine”, a three-stage process involving assisted-
manual, semi-automatic, and fully automatic annotation with the model in the loop. A common
approach for all these methods is to efficiently generate diverse and large scale training data. This
work applies a similar idea to learn generalizable image matching. We propose GIM, a self-training
framework to efficiently create supervision signals on diverse internet videos.

3 METHODOLOGY

Training image matching models requires multi-view images and ground-truth correspondences.
Data diversity and scale have been the key towards generalizable models in other computer vision
problems (Radford et al., 2021; Ranftl et al., 2020; Kirillov et al., 2023). Inspired by this observa-
tion, we propose GIM (Fig. 2), a self-training framework utilizing internet videos to learn a single
generalizable model based on any image matching architecture.

Though other video sources are also applicable, GIM uses internet videos since they are naturally
diverse and nearly infinite. To experiment with commonly accessible data, we download 50 hours
(hundreds of hours available) of tourism videos with the Creative Commons License from YouTube,
covering 26 countries, 43 cities, various lightning conditions, dynamic objects and scene types. See
Appendix D for details.
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Figure 2: GIM framework. We start by downloading a large amount of internet videos. Then, given
a selected architecture, we first train it on standard datasets, and generate correspondences between
nearby frames by using the trained model with multiple complementary image matching methods.
The self-training signal is then enhanced by 1) filtering outlier correspondences with robust fitting,
2) propagating correspondences to distant frames and 3) injecting strong data augmentations.

Standard image matching benchmarks are created by RGBD scans Dai et al. (2017) or COLMAP
(SfM + MVS) (Schonberger & Frahm, 2016; Li & Snavely, 2018). RGBD scans require physical
access to the scene, making it hard to obtain data from diverse environments. COLMAP is effective
for landmark-type scenes with dense view coverage, however, it has limited efficiency and often fails
on in-the-wild data with arbitrary motions. As a result, although millions of images are available in
these datasets, the diversity is limited since thousands of images come from one (small) scene. In
contrast, internet videos are not landmark-centric. A one hour tourism video typically covers a range
of several kilometers (e.g., a city), and has widely spread view points. As discussed later in Sec. 3.1,
the temporal information in videos also allows us to enhance the supervision signal significantly.

3.1 SELF-TRAINING

A naive approach to learn from video data is to generate labels using the standard COLMAP-based
pipeline (Li & Snavely, 2018); however, preliminary experiments show that it is inefficient and prone
to fail on in-the-wild videos (see Sec. 4.2 for details). To better scale up video training, GIM relies
on self-training (Grandvalet & Bengio, 2004), which first trains a model on standard labeled data
and then utilizes the enhanced output (on videos) of the trained model to boost the generalization of
the same architecture.

Multi-method matching: Given an image matching architecture, GIM first trains it on standard
(domain-specific) datasets (Li & Snavely, 2018; Dai et al., 2017), and uses the trained model as
the ‘base label generator’. As shown in Fig. 2, for each video, we uniformly sample images every
20 frames to reduce redundancy. For each frame X, we generate base correspondences between
{X,X + 20}, {X, X +40} and {X, X + 80}. The base correspondences are generated by running
robust fitting Barath et al. (2019) on the output of the base label generator. We fuse these labels with
the outputs of different complementary matching methods to significantly enhance the label density.
These methods can either be hand-crafted algorithms, or other architectures trained on standard
datasets; see Sec. 4 for details.

Label propagation: Existing image matching methods typically require strong supervision signals
from images with small overlaps (Sarlin et al., 2020). However, this cannot be achieved by multi-
method matching since the correspondences generated by existing methods are not reliable beyond
an interval of 80 frames, even with state-of-the-art robust fitting algorithms for outlier filtering.
An important benefit of learning from videos is that the dense correspondences between a video
frame and different nearby frames often locate at common pixels. This allows us to propagate the
correspondences to distant frames, which significantly enhances the supervision signal (see Sec. 4.2

. A . .
for an analysis). Formally, we define C4Z € {0,1}" xr? as the correspondence matrix of image
I* and I®, where r# and r® are the number of pixels in I and I”. A matrix element ¢;5? =
means that pixel 7 in 4 has a corresponding pixel j in 72, Given the correspondences C4Z and

CP€, to obtain the propagated correspondences CA, for each ¢37 in C4? that is 1, if we can also
find a cﬁg = 1in CBY, and the distance between j and j’ in image I? is less than 1 pixel, we set

cA¢ = 11in CAC. Intuitively, this means that for pixel j (or j/) in image 7, it matches to both pixel

iin I and pixel k in I¢. Hence image I and 7€ have a correspondence at location (i, k).
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To obtain strong supervision signals, we propagate the correspondences as far as possible as long
as we have more than 1024 correspondences between two images. The propagation is executed on
each sampled frame (with 20 frame interval) separately. After each propagation step, we double the
frame interval for each image pair that has correspondences. As an example, initially we have base
correspondences between every 20, 40 and 80 frames. After 1 round of propagation, we propagate
the base correspondences from every 20 frames to every 40 frames and merge the propagated corre-
spondences with the base ones. Now we have the merged correspondences for every 40 frames, we
perform the same operation to generate the merged correspondences for every 80 frames. Since we
have no base correspondence beyond 80 frames, the remaining propagation rounds do not perform
the merging operation and keep doubling the frame interval until we do not have more than 1024
correspondences . The reason we enforce the minimum number of correspondences is to balance
the difficulty of the learning problem, so that the model is not biased towards hard or easy sam-
ples. Though the standard approach of uniform sampling from different overlapping ratios (Sun
et al., 2021) can also be applied, we find it more space and computation friendly to simply limit the
number of correspondences and save the most distant image pairs as the final training data.

Strong data augmentation: To experiment with various existing architectures, we apply the same
loss used for domain-specific training to train the final GIM model, but only calculate the loss on
the pixels with correspondences. Empirically, we find that strong data augmentations on video data
provide better supervision signals (see Sec. 4.2 for the effect). Specifically, for each pair of video
frames, we perform random perspective transformations beyond standard augmentations used in
existing methods. We conjecture that applying perspective transformation alleviates the problem
where the camera model of two video frames is the same and the cameras are mostly positioned
front-facing without too much “roll” rotation.

In practice, the major computation for generating video training data lies in running matching meth-
ods, and the average processing time per frame does not increase significantly w.r.t. the input video
length. The efficiency and generality allows GIM to effectively scale up training on internet videos.
It can process 12.5 hours of videos per day using 16 A100 GPUs, achieving a non-trivial perfor-
mance boost for various state-of-the-art architectures.

3.2 ZEB:ZERO-SHOT EVALUATION BENCHMARK FOR IMAGE MATCHING

Existing image matching frameworks (Sarlin et al., 2020; Sun et al., 2021; Edstedt et al., 2023)
typically train and evaluate models on the same in-domain dataset (MegaDepth (Li & Snavely, 2018)
for outdoor models and ScanNet (Dai et al., 2017) for indoor models). To analyze the robustness of
individual models on in-the-wild data, we construct a new evaluation benchmark ZEB by merging
8 real-world datasets and 4 simulated datasets with diverse image resolutions, scene conditions and
view points (see Appendix E for details).

For each dataset, we sample approximately 3800 evaluation image pairs uniformly from 5 image
overlap ratios (from 10% to 50%). These ratios are computed using ground truth poses and depth
maps. The final ZEB benchmark thus contains 46K evaluation image pairs from various scenes and
overlap ratios, which has a much larger diversity and scale comparing to the 1500 in-domain image
pairs used in existing methods.

Metrics: Following the standard evaluation protocol (Edstedt et al., 2023), we report the AUC of
the relative pose error within 5°, where the pose error is the maximum between the rotation angular
error and translation angular error. The relative poses are obtained by estimating the essential matrix
using the output correspondences from an image matching method and RANSAC (Fischler & Bolles,
1981). Following the zero-shot computer vision literature (Ranftl et al., 2020; Yin et al., 2023), we
also provide the average performance ranking across the twelve cross-domain datasets.

4 EXPERIMENTS

We first demonstrate in Sec. 4.1 the effectiveness of GIM on the basic image matching task —
relative pose estimation. We evaluate different methods on both our zero-shot benchmark ZEB
and the standard in-domain benchmarks (Sarlin et al., 2020). In Sec. 4.2, we validate our design
choices with ablation studies. Finally, we apply the trained image matching models to various
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Table 1: Zero-shot matching performance. GIM significantly improved the generalization of all 3
state-of-the-art architectures. IN means indoor model and OUT means outdoor model.

Method Mean Meanr\ ) Real Simulate
Rank | AUC@5°(%) * GL3 BLE ETI ETO KIT WEA SEA NIG MUL SCE ICL GTA
Handcrafted
ROOTSIFT 7.1 31.8 435 336 499 487 352 214 441 147 334 7.6 148 351
Sparse Matching
SUPERGLUE (IN) 9.3 21.6 192 160 382 377 220 208 408 137 214 08 9.6 188
SUPERGLUE (OUT) 6.6 31.2 29.7 242 523 593 280 282 480 209 334 45 166 293
GIMgyperGLuE 5.9 343 432 342 587 61.0 290 283 484 188 348 28 154 365
Semi-dense Matching
LOFTR (IN) 9.6 10.7 5.6 5.1 11.8 75 172 6.4 9.7 35 224 1.3 149 234
LOFTR (0UT) 5.6 33.1 293 225 511 60.1 361 297 486 194 370 131 205 303
GIMLoFTR 35 39.1 506 439 626 61.6 359 268 475 176 414 102 25.6 45.0
Dense Matching
DKM (IN) 2.6 46.2 444 370 657 733 402 328 51.0 23.1 547 33.0 43.6 557
DKM (ouT) 23 45.8 457 370 668 758 41.7 335 514 229 563 273 378 529
GIMpgm 14 494 583 478 727 745 421 346 52.0 251 537 323 388 60.6
GIMpgwm with 100 hours of video
GIMpkwm 51.2 633 530 739 767 434 346 525 245 56.6 322 425 61.6

downstream tasks (Sec. 4.3). To demonstrate the generality of GIM, we apply it to 3 state-of-the-art
image matching architectures with varied output density, namely, SuperGlue (Sarlin et al., 2020),
LoFTR (Sun et al., 2021) and DKM (Edstedt et al., 2023).

Implementation details: We take the official indoor and outdoor models of each architecture as
the baselines. Note that the indoor model of DKM is trained on both indoor and outdoor data. For
fair comparisons, we only allow the use of complementary methods that perform worse than the
baseline during multi-method matching. Specifically, we use RootSIFT, RootSIFT+SuperGlue and
RootSIFT+SuperGlue+LoFTR respectively to complement SuperGlue, LoOFTR and DKM. We use
the outdoor official model of each architecture as the base label generator in GIM. Unless otherwise
stated, we use 50 hours of YouTube videos in all experiments, which provide roughly 180K pairs
of training images. The GIM label generation on our videos takes 4 days on 16 A100 GPUs. To
achieve the best in-domain and cross-domain performance with a single model, we train all GIM
models from scratch using a mixture of original in-domain data and our video data (sampled with
equal probabilities). The training code and hyper-parameters of GIM strictly follow the original
repositories of the individual architectures.

4.1 MAIN RESULTS

Zero-shot generalization: We use the proposed ZEB benchmark to evaluate the zero-shot general-
ization performance. For all three architectures (Tab. 1), applying GIM produces a single zero-shot
model with a significantly better performance compared to the best in-domain baseline. Specifically,
the AUC improvement for SuperGlue, LoFTR and DKM is respectively 31.2 — 34.3, 33.1 — 39.1
and 46.2 — 49.4. GIMgyperiue performs even better than LoFTR (IN)/(OUT), despite using a less
advanced architecture. Interestingly, the hand-crafted method RootSIFT (Arandjelovi¢ & Zisser-
man, 2012) performs better or on-par with the in-domain models on non-trivial number of ZEB
subsets, e.g., GL3, BLE, KIT and GTA. GIM successfully improved the performance on these sub-
sets, resulting in a significantly better robustness across the board. Note that the performance of
GIM did not saturate yet (Fig. 1), and further improvements can be achieved by simply download-
ing more internet videos. For example, using 100 hours of videos (Table 1, last row) we further
improved the performance of GIMpgy to 51.2% AUC.

Two-view geometry: Qualitatively, GIM also provides much better two-view match-
ing/reconstruction on challenging data. As shown in Fig. 3, the best in-domain baseline DKM (IN)
failed to find correct matches on data with large view changes or small overlaps (both indoor and
outdoor), resulting in erroneous reconstructed point clouds. Instead, GIMpky finds a large number
of reliable correspondences and manages to reconstruct dense and accurate 3D point clouds. In-
terestingly, the robustness of GIM also allows it to be applied to inputs completely unseen during
training. In Fig. 4, we apply GIMpkum to Bird Eye View (BEV) images generated by projecting
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Figure 3: Two-view reconstruction. DKM returns many incorrect matches (red lines) on challeng-
ing scenes resulting in erroneous reconstruction. Applying GIM to the same architecture signifi-
cantly improves matching and reconstruction quality.

BEV

DKM (IN)
Matches image pair

DKM (IN)
Warp

GIMpkm
Matches

‘Warp

GIMpkMm

Figure 4: Point cloud BEV image matching. GIMpgy even successfully matches BEV images
projected from point clouds despite never being trained for it.

the top-down view of two point clouds into 2D RGB images. The data comes from a real mapping
application where we want to align the point clouds of different building levels in the same hor-
izontal plane. Unlike the best baseline DKM (IN) that fails catastrophically, our model GIMpgwm
successfully registers all three pairs of point clouds even though BEV images of point clouds were
never seen during training. Due to the space limit, we show the qualitative results for the other
architectures in Appendix G.

Multi-view Reconstruction: GIM also performs well for multi-view reconstruction. To demon-
strate the performance on in-the-wild data, we download internet videos for both indoor and outdoor
scenes, extract roughly 200 frames for each video, and run COLMAP (Schonberger & Frahm, 2016)
reconstruction but replace the SIFT matches with the ones from our experimented models. As shown
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DKM (IN) Sample frames

GIMpkm

Figure 5: Multi-view reconstruction. GIM significantly improved the reconstruction coverage and
accuracy.

Table 2: Ablation study. Table 3: Homography estimation.
Models AUC@5°(%)  Method AUC (%) — @3px @5px  @10px
GIMpg 494 SUPERGLUE (OUT) 539 683 817
1) replace 50h video to 25h 48.3 GIMsuperGlue 54.4 68.8 82.3
2) replace 50h video to 12.5h 47.4
3) only use RootSIFT to generate labels 49.3 LOFTR (ouT) 65.9 75.6 84.6
4)  wl/o data augmentation 492 GIM| orTR 70.6 79.8 88.0
5)  wl/o propagation 47.1
6) use COLMAP labels, same computation and time as 2)  46.5 DKM (ouT) 71.3 80.6 83.5
7)  wlo video 46.2 GIMpkm 715 809  89.1

in Fig. 5, applying GIM allows DKM to reconstruct a much larger portion of the captured scene with
denser and less noisy point clouds.

In-domain performance: We also evaluate different methods on the standard in-domain datasets.
Due to the space limit, we report the result in Appendix F. Though the improvement is not as
significant as in ZEB because individual baselines overfit well to the in-domain data, GIM still
performs the best on average (over the indoor and outdoor scenes). This result also shows the
importance of ZEB for measuring the generalization capability more accurately.

4.2 ABLATION STUDY

To analyze the effect of different GIM components, we perform an ablation study on our best-
performing model GIMpky. As shown in row 1, 2 and 7 of Tab. 2, the performance of GIM consis-
tently decreases with the reduction of the video data size. Meanwhile, adding only a small amount
(12.5h) of videos already provides a reasonable improvement compared to the baseline (46.2% to
47.4%). This shows the importance of generating supervision signals on diverse videos. Using only
RootSIFT Arandjelovi¢ & Zisserman (2012) to generate video labels, the performance of GIM re-
duces slightly. Comparing the performance between rows 3 and 1, we can see that generating labels
on more diverse images is more important than having advanced base label generators. Removing
label propagation reduces the performance more than lack of data augmentations and base label
generation methods. Specifically, using 50 hours of videos without label propagation performs even
worse than using the full GIM method on only 12.5 hours of videos.

We also experiment with the standard COLMAP-based label generation pipeline (Li & Snavely,
2018) (row 6). Specifically, we separate the downloaded videos into clips of 4000 frames and
uniformly sample 200 frames for label generation. We apply the same GPU and time (roughly 1
day) as row 2 to run COLMAP StM+MVS. COLMAP only manages to process 3.9 hours of videos,
and fails to reconstruct 44.3% of them, resulting in only 2.2 hours of labeled videos (vs. 12.5 hours
from GIM), and a low performance improvement of 46.2% to 46.5%.
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Table 5: Indoor visual localization. Unit: % of
correctly localized queries (1)

Table 4: Outdoor visual localization. Unit: %
of correctly localized queries (7).

Day Night DUCI1 DuUC2
Method (0.25m,2°)/ (0.5m,5%) / (1.0m,10°) Method (0.25m,10°) / (0.5m,10°) / (1.0m, 10°)
SUPERGLUE (0UT) 89.8/96.1/994 77.0/90.6/100.0  SUPERGLUE (IN) 49.0/68.7/80.8 53.4/77.1/824
GIMsuperGioe 90.3/96.4/99.4 78.0/90.6/100.0  GIMsyrexioe  53.5/76.8/86.9 61.8/85.5/87.8
LOFTR (0UT) 88.7/956/99.0 785/90.6/ 990  LOFTR (IN) 475/722/848 542/748/855
GIMyorrx 90.0/96.2/99.4 79.1/91.6/100.0  GIMoprs 54.5/783/87.4 63.4/83.2/87.0
DKM (0UT) 848/92.7/97.1 702/901/ 974 DKM (IN) 515/753/869 63.4/824/8738
GIMpky 89.7/95.9/99.2 77.0/90.1/ 995  GIMpy 57.1/788/884 70.2/91.6/92.4

4.3 APPLICATIONS

Homography estimation: As a classical down-stream application (Edstedt et al., 2023), we con-
duct experiments on homography estimation. We use the widely adopted HPatches dataset, which
contains 52 outdoor sequences under significant illumination changes and 56 sequences that exhibit
large variation in viewpoints. Following previous methods Dusmanu et al. (2019), we use OpenCV
to compute the homography matrix with RANSAC after the matching procedure. Then, we com-
pute the mean reprojection error of the four corners between the images warped with the estimated
and the ground-truth homography as a correctness identifier. Finally, we report the area under the
cumulative curve (AUC) of the corner error up to 3, 5, and 10 pixels. We take the numbers from the
original paper for each baseline.

As illustrated in Tab. 3, the GIM models consistently outperform the baselines, even though the
baselines are trained for outdoor scenes already. Among all architectures, GIM achieves the most
pronounced improvement on LoFTR, achieving an absolute performance increase of 4.7%, 4.2%,
and 3.4% in the three metrics.

Visual localization: Visual localization is another important down-stream task of image matching.
The goal is to estimate the 6-DoF poses of an image with respect to a 3D scene model. Following
standard approaches (Sun et al., 2021), we evaluate matching models on two tracks of the Long-
Term Visual Localization benchmark, namely, the Aachen-Day-Night v1.1 dataset (Sattler et al.,
2018) for outdoor scenes and the InLLoc dataset (Taira et al., 2018) for indoor scenes. We use the
standard localization pipeline HLoc (Balntas et al., 2017) with the matches extracted by correspond-
ing models to perform visual localization. We take the numbers from the original paper for each
baseline. Since DKM did not report the result on the outdoor case, we use the outdoor baseline to
obtain the performance number.

With a single model, GIM consistently and significantly out-performs the domain-specific baselines
for both indoor (Tab. 5) and outdoor (Tab. 4) scenes. For example, we improve the absolute pose
accuracy of DKM by > 5% for the (0.25m, 2°) metric in both indoor and outdoor datasets. For
indoor scenarios, GIMpkuy reaches a remarkable performance of 57.1 / 78.8 / 88.4 on DUCI and
70.2/91.6 / 92.4 on DUC2. These results show that without the need of domain-specific training, a
single GIM model can be effectively deployed to different environments.

5 CONCLUSION

We have introduced a novel approach GIM, that leverages abundant internet videos to learn gen-
eralizable image matching. The key idea is to perform self-training, where we use the enhanced
output of domain-specific models to train the same architecture, and improve generalization by con-
suming a large amount of diverse videos. We have also constructed a novel zero-shot benchmark
ZEB that allows thorough evaluation of an image matching model in in-the-wild environments. We
have successfully applied GIM to 3 state-of-the-art architectures. The performance improvement
increases steadily with the video data size. The improved image matching performance also benefits
various downstream tasks such as visual localization and 3D reconstruction. A single GIM model
generalizes to applications from different domains.
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A TRAINING DETAILS

Given 8 A100 GPUs, it takes about 4, 5, and 7.5 days to train GIMsyperGiue, GIMLorTR, and GIMpgm
respectively. For small memory GPUs, we have tried 4 RTX-3090. It takes 15 days to generate
training signals on 50 hours of videos. And for training, it takes 9.5, 12, and 19 days to train
GIMsuperGiue» GIMLorTR, and GIMpgwm respectively. Gradient accumulation is needed when using
the RTX-3090 GPU to ensure the same training batch size as on the A100 GPU.

B PREVENT OVERFITTING

Preventing overfitting is crucial when training GIM with large-scale video data. Overfitting can
occur if the training videos are not diverse enough and biased towards certain types of scenes. To
address this issue, we employ an effective and implicit regularization technique in GIM by carefully
selecting video data from diverse geo-locations and scene conditions. We focus on YouTube tourism
videos and describe our search and filter strategies in Sec. 3 of the paper. Table 6 provides detailed
statistics of the selected videos, showcasing the diversity of the training data.

Another factor that helps prevent overfitting is the continually growing amount and diversity of inter-
net videos. As the training data expands, the risk of overfitting is effectively reduced. Additionally,
we apply strong data augmentations during GIM training to make the model resistant to noise. The
effectiveness of this implicit regularization approach is demonstrated by our experimental results in
the Zero-shot Evaluation Benchmark (ZEB).

Although not used in our video selection process, evaluating the trained model on the ZEB bench-
mark can also serve as a verification tool to determine whether a set of candidate videos are po-
tentially biased or noisy. By assessing the model’s performance on the diverse and challenging
scenarios present in the ZEB, we can gain insights into the generalization capability of GIM and
identify any potential overfitting issues.

C HANDLING NOISY AND LOW-QUALITY DATA

When selecting internet videos for GIM, we recommend choosing videos with high resolution, clear
images, long duration, and a small number of scene transitions. To ensure these criteria are met,
we focus on tourism videos, which are generally 0.5-2 hours long and feature a person holding
the camera and recording their travel, mostly without transitions. We also remove the first and the
last 5 minutes of each video. This preprocessing step is performed because the beginning and the
end of tourism videos often contain quick previews or summaries, which can include non-smooth
scene transitions. These strategies helps to minimize the impact of noise and low-quality data on the
training process.

GIM also exhibits some inherent robustness to transitions in the video. Drastic changes from one
frame to another make it very difficult for matches to survive after robust fitting. Even if a few
matches manage to survive, it is challenging for the label propagation to continue. This property of
GIM helps to mitigate the effects of sudden scene changes and transitions in the training videos.

Furthermore, GIM incorporates strong data augmentations during training, which introduces noise
to make the model more resistant to various sources of error in the input data. By exposing the
model to a wide range of augmentations, such as random cropping, flipping, and color jittering, we
can improve its robustness to noise and low-quality data that may be present in the internet videos.

Despite these measures, it is important to acknowledge that the quality of the training data can still
have an impact on the performance of GIM. While our video selection strategy and the model’s in-
herent robustness help to mitigate the effects of noise and low-quality data, it is essential to strive for
high-quality and diverse training videos whenever possible to ensure the best possible performance
of GIM.
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Figure 6: Sample video data and the generated labels (for GIMpkn).

Table 6: Video statistics. The downloaded videos cover a wide range of scene types from 26
countries around the world, ensuring the diversity of the training data in GIM.

Country (26)

City (43)

Scenario (39)

Italy, China, Korea, Bosnia,
Greece, Poland, Turkey,
Germany, Vietnam, Romania,
Croatia, Austria, Albania,
Hungary, America,
Cambodia, Slovenia,
Slovakia, Bulgaria, Thailand,
Lithuania, Singapore,
Montenegro, Herzegovina,
Switzerland, Czech Republic

Rome, Seoul, Gdynia, Sopot,
Gdask, Karpacz, Krakow,
Trento, Tropea, Myslecinek,
Bangkok, Santorini, Hoi An,
Travnik, Singapore, Side,
Brasov, Kampot, Bautzen,
Ljubljana, Rovinj, Salzburg,
Hue, Cottbus, Shkodr, Kemer,
Bern, Prague, ilina, Budva,
Debrecen, Vilnius, Kotor,
Bodrum, Geneva, Varna,
Shanghai, Milano,
Dusseldorf, Busan, Los
Angeles, Las Vegas, Irvine

Daytime, Driving, Suburbs,
From Day to Night, Beach,
Cave, Market, Sunny Day,
Dock, Mountainous Area,
Evening, Coast, Lights,
Night, Park, Outskirts,
Planetarium, Indoor and
Outdoor Transition,
Wilderness, Indoor, Storm
rain, Lakeside, Chinatown,
Street, Factory, Outdoor,
Mountain Climbing,
Mountain Road, City,
Building, Shopping Mall,
Small Town, Forest, Heavy
Rain, Historic Building,
Hollywood, Overcast Day,
Historical Relics, Subway
Station

D DETAILS OF VIDEO DATA

In this section, we show details of our video data. Tab. 6 shows the diverse geo-locations and scene
types of our downloaded videos. Fig. 6 provides example training data (images and correspon-

13



Published as a conference paper at ICLR 2024

dences) generated on video data, which covers both indoor and outdoor scenes, urban and natural
environments, various illumination conditions.

E DETAILS OF ZEB

Image Type Dataset Name Scenario Image Size
GL3D Shen et al. (2018) aerial / wild 1000 x 1000
BlendedMVS Yao et al. (2020) objects 1000 x 1000
ETH3D Indoor Schops et al. (2017) basement / corridor 6000 x 4136

Real Images ETH3D Outdoor Schops et al. (2017) school / park 6000 x 4136
KITTI Geiger et al. (2012) driving 1226 x 370
RobotcarWeather Maddern et al. (2017) weather changes 1280 x 960
RobotcarSeason Maddern et al. (2017) seasonal changes 1280 x 960
RobotcarNight Maddern et al. (2017) sunlight changes 1280 x 960
Multi-FoV Zhang et al. (2016) driving 640 x 480

Simulated Images SceneNet RGB-D McCormac et al. (2017)  living house 320 x 240
ICL-NUIM Handa et al. (2014) hotel / office 640 x 480
GTA-SfM Wang & Shen (2020) aerial / wild 640 x 480

Table 7: Datasets used to construct our zero-shot evaluation benchmark ZEB. They contain
varied image resolutions and scene conditions, with challenging view points (e.g., aerial images).
They also cover both real and simulated images.

Figure 7: Sample images of our zero-shot evaluation benchmark ZEB. Various scene types,
view points and lightning conditions are included to ensure a thorough evaluation of the matching
robustness.

This section shows the details of the proposed ZEB benchmark. Specifically, Tab. 7 shows the 12
datasets used to construct ZEB, and the diverse scene conditions and images resolution covered by
these datasets. We also show in Fig. 7 sampled image pairs in ZEB, covering varied scene types,
view points and lightning conditions.

F IN-DOMAIN EVALUATION RESULT

As mentioned in Sec. 4.1, we also compared GIM with baselines on standard in-domain evaluation
data, i.e., MegaDepth-1500 (Edstedt et al., 2023) and ScanNet-1500 (Edstedt et al., 2023). The
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Table 8: In-domain results (7). GIM still achieved the best overall performance on in-domain data.

MegaDepth-1500 ScanNet-1500

Mean
Method AUC —» @5° @10° @20° @5° @10° @20°
SUPERGLUE (IN) 31.9 46.4 57.6 16.2 33.8 51.8 39.62
SUPERGLUE (OUT) 42.2 61.2 76.0 15.5 329 499 46.28
GIMSsypErGLUE 41.3 60.7 759 15.8 33.1 51.2 46.33
LOFTR (IN) 4.0 9.3 184 22.1 40.8 57.6 25.37
LOFTR (ouT) 52.8 69.2 81.2 18.0 34.6 50.5 51.05
GIM| oFTR 51.3 68.5 81.1 19.5 37.3 55.1 5213
DKM (IN) 59.2 74.1 84.7 294 50.7 68.3 61.07
DKM (ouT) 60.4 74.9 85.1 264 46.6 63.7 59.52
GIMpkm 60.7 75.5 859 27.6 49.5 67.7 61.15

evaluation metric follows existing methods (Edstedt et al., 2023; Sun et al., 2021), and we take
the numbers from the paper for each in-domain baseline. As shown in Tab. 8, though in-domain
baselines already overfitted well on their trained domains, GIM still achieved the best average per-
formance over indoor and outdoor scenes. The smaller performance gap comparing to the zero-shot
scenario also shows the importance of the proposed ZEB benchmark, which can clearly reflect the
generalization performance.

G FURTHER QUALITATIVE RESULTS

LOFTR (0UT)
Matches Image pair

LOFTR (0OUT)
Reconstruction

SUPERGLUE (OUT)
Matches

SUPERGLUE (OUT)
Reconstruction

Figure 8: Two-view reconstruction of other baselines. We take the in-domain baseline that per-
forms the best on ZEB for qualitative evaluation. Both LoFTR and SuperGlue generalize poorly on
challenging in-the-wild data.

In Sec. 4.1, we only have space to show baseline results for the best architecture DKM. Here we
provide the ones also for LOFTR and SuperGlue. Fig. 8 shows the two-view reconstruction results on
in-the-wild images. Similar to DKM, the in-domain LoFTR and SuperGlue models also generalizes
poorly on challenging in-the-wild data. Fig. 9 shows the results on BEV point cloud registration.
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Figure 9: Point cloud BEV image matching of other baselines. The in-domain models of Su-
perGlue and LoFTR also failed to find reliable correspondences, resulting in wrong point cloud

warping.

The in-domain LoFTR and SuperGlue models failed to find reliable matches and the correct relative
transformations between two point clouds.
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