
A Key Information about GraphGT712

A.1 Dataset Documentation713

We provide detailed documentation of dataset collection, processing, task for each dataset both in714

section C and in our website. We provide statistics, taxonomy, detailed description, and task for each715

dataset and can be tracked in our website https://graphgt.github.io/.716

A.2 Intended Use717

GraphGT is intended for the deep graph learning as well as specific domain (e.g. physics, biology,718

chemistry, etc.) community to use and develop machine learning algorithms to advance applications719

in various domains.720

A.3 URLs721

Official website (https://graphgt.github.io/) contains all references of GraphGT, including722

dataset taxonomy, task, evaluation, visualization, tutorials, papers, GitHub, and other useful resources.723

GitHub repository (https://github.com/yuanqidu/GraphGT) hosts all source codes, installation724

instructions, and tutorials of GraphGT.725

A.4 Hosting and Maintenance Plan726

Our GraphGT Python library is regularly maintained and version-tracked via GitHub. All datasets are727

currently hosted on Dropbox and will be transferred to Emory University server soon. Our dataset is728

both directly downloadable with a Dropbox link or from our Python APIs. Our core team commit729

to maintain this initiative for at least five years. In the meantime, we will expand the community in730

multiple dimensions and attract external contributors from the whole community. We will regularly731

update new dataset, task, evaluation and visualization methods to GraphGT.732

A.5 Limitations733

Graph generation and transformation is a fast-growing, vast, and promising field and their applications734

cover a wide range of applications. We start this initiative to build the infrastructure for the community735

which includes most of the mainstream datasets in the graph generation and transformation field and736

many more new datasets. However, it is an ongoing effort and we strive to continuously include more737

datasets, evaluation and visualization methods to advance the field.738

A.6 Potential Negative Societal Impacts739

Graph generation and transformation are motivated by generating novel graph-structured data and740

understanding the graph-structured data; thus, they have vast applications, such as drug discovery,741

protein design, mobility synthesis, etc., which could potentially lead to better designed drug, traffic742

network, etc., and save lives, time, etc. We envision that GraphGT can facilitate algorithmic743

and scientific advances in various domains across subjects and accelerate machine learning model744

development and application for real-world use. GraphGT neither involves human subject research745

nor contains personally identifiable information.746

B Dataset Format747

We store each of the dataset in a Numpy3 array format. For different datasets with different information748

available as shown in Table 1. For all the datasets, each has at most five types of features available749

including adjacency matrices, node features, edge features, spatial features, and labels. Among750

all the features, adjacency matrices denote the edge connections between pairs of nodes, node751

features denote features attaching to each node, edge features denote features attaching to each edge752

connection, spatial features denote the spatial geometry of a graph (in most of the cases, they are753

coordinates attaching to each node), labels denote either node-level or graph-level labels of a graph.754

For temporal graphs, we store two versions of the graphs, which one flattens and shuffles all the755

snapshots of the temporal graphs, and the other one keeps the temporal dimension and order. For756

graph transformation datasets, we store both the source and the target graph and available features757

separately.758

C Dataset Details759

We list detailed information for each of the datasets in GraphGT.760

3https://numpy.org/doc/
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C.1 Molecules761

We have 6 molecule datasets, in which 4 (QM9 [44], ZINC250K [45], MOSES [46], ChEMBL [48])762

for graph generation and 2 (MolOpt [47], ChemReact [31]) for graph transformation. For all of the763

molecule datasets, we store adjacency matrix, node feature (i.e. atoms), edge feature (i.e. bonds),764

spatial feature (i.e. geometry), and smiles (i.e. string representation). There are in total 4 types of765

atoms in QM9, 0 = H, 1 = C, 2 = N, 3 = O, 4 = F. There are in total 14 types of atoms in ZINC250K766

dataset, MOSES, and ChEMBL dataset, 0 = Br, 1 = C, 2 = Cl, 3 = F, 4 = H, 5 = I, 6 = N, 7 = N, 8 =767

N, 9 = O, 10 = O, 11 = S, 12 = S, 13 = S. There are in total 4 types of bonds in all the datasets, and768

we represent them as follows: 0 = Single, 1 = Double, 2 = Triple, 3 = Aromatic.769

QM9 [44] dataset is an enumeration of around 134,000 stable organic molecules with up to 9 heavy770

atoms (carbon, oxygen, nitrogen and fluorine). As no filtering is applied, the molecules in this dataset771

only reflect basic structural constraints. In QM9 dataset, each graph contains approximately 9 nodes772

and 19 edges. A node in QM9 represents an atom with atom type as the node feature. An edge773

in QM9 dataset represents a bond in the molecule with bond type as the edge feature. Moreover,774

QM9 dataset contains the 3D spatial feature for each graph. In GraphGT, the QM9 dataset has been775

reformatted as adj.npy, edge_feat.npy, label.npy, node_feat.npy and spatial.npy that contain molecular776

structure information, node features, edge features and spatial features.777

The information of QM9 is initially stored in .xyz files separately for each molecule. We use Python778

to process the SMILE of each molecule and convert the molecule graph to Numpy formats.779

ZINC250K [45] dataset is a curated set of 250k commercially available drug-like chemical com-780

pounds. On average, these molecules are bigger (about 23 heavy atoms) and structurally more781

complex than the molecules in QM9 dataset. Each graph in ZINC250K dataset contains approxi-782

mated 23 nodes and 50 edges. In ZINC250K dataset, each node represents an atom, with atom type783

as the node feature. An edge in 250K dataset represents a bond in the molecule with bond type as784

the edge feature. 250K dataset also contains 3D spatial feature for each graph. In GraphGT, the785

ZINC250K dataset has been reformatted as adj.npy, edge_feat.npy, label.npy, node_feat.npy and786

spatial.npy that contain molecular structure information, node features, edge features and spatial787

features.788

ZINC dataset is stored in one .csv file including 249,455 molecules. After reading the data by Python,789

we process the SMILE of each molecule to convert the data to a graph. And all the graphs are saved790

in .npy format.791

Molecular Sets (MOSES) [46] is a benchmark platform for distribution learning based molecule792

generation. Within this benchmark, MOSES provides a cleaned dataset of molecules that are ideal of793

optimization. It is processed from the ZINC Clean Leads dataset, and contains 193,696 molecules in794

total. Each graph in the dataset contains around 22 nodes and 47 edges. In MOSES dataset, each795

node represents an atom, with atom type as the node feature. An edge in MOSES dataset represents796

the bond in the molecule with bond type as the edge feature. MOSES datasets also contains 3D797

spatial features.798

The data is originally stored in a .txt file. We first read the data and then process the SMILE of the799

molecule based on the Python rdkit library. The final data format is saved as .npy files.800

ChEMBL [48] dataset is a manually curated database of bioactive molecules with drug-like properties.801

It brings together chemical, bioactivity and genomic data to aid the translation of genomic information802

into effective new drugs. ChEMBL contains 1,799,433 graphs in total. Each graph in the dataset803

contains around 27 nodes and 58 edges. In ChEMBL dataset, each node represents an atom, with804

atom type as the node feature. An edge in ChEMBL dataset represents the bond in the molecule with805

bond type as the edge feature. This datasets also contains 3D spatial features.806

ChEMBL is originally stored in a .txt file containing all the molecules. We first read the data and807

then process the SMILE of the molecule based on the Python rdkit library. The final data format is808

saved as .npy files.809

MolOpt [47] dataset extracts translation pairs from the ZINC database in terms of three molecular810

properties, Penalized logP, Drug-likeness, and Dopamine Receptor. MolOpt contains 229,473 pairs811

of graphs in total. Each graph in the dataset contains around 24 nodes and 53 edges. In MolOpt812

dataset, each node represents an atom, with atom type as the node feature. An edge in ChEMBL813

dataset represents the bond in the molecule with bond type as the edge feature. This datasets also814

contains 3D spatial features.815

This dataset is originally stored in several .csv files and the format of the dataset has been preprocessed.816

We read the .csv files and convert the SMILE molecules to graphs and then save them as .npy files.817
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ChemReact [31] dataset has totally 7180 pairs of reactant and product molecule graph in the dataset818

derived from USPTO dataset. Each graph in the dataset contains around 20 nodes and 16 edges. In819

ChemReact dataset, each node represents an atom, with atom type as the node feature. An edge in820

ChemReact dataset represents the bond in the molecule with bond type as the edge feature. This821

datasets also contains 3D spatial features. [95].822

Chemical Reaction dataset is originally stored in several .txt files. The first step for processing the823

data is to aggregate data from different sources. Then we convert the SMILE of molecules to graph824

formats, and then save them in .npy files.825

C.1.1 License826

QM9: CC BY-NC-SA 4.0.827

ZINC250K: Free to use for everyone.828

MOSES: The dataset is generated by [46], which is under MIT License. The license of the dataset is829

not specified.830

ChEMBL: CC BY-NC-SA 3.0.831

MolOpt: Extracted from ZINC Database.832

ChemReact: Not specified.833

C.2 Proteins834

We have three protein datasets available in GraphGT, which includes protein structures, Enzyme and835

dynamic protein folding process.836

Protein [30] dataset contains 918 protein graphs. Each protein is represented by a graph in Protein837

dataset, where nodes are amino acids and two nodes are connected if they are less than 6 Angstroms838

apart. Proteins dataset contains 1,113 graphs in total. Each graph in the dataset contains around 39839

nodes and 73 edges. Node feature is contained in the dataset representing the type of amino acids.840

Protein dataset can be used for attributed graph generation.841

Protein dataset is originally stored in several .txt files with the unit of node. We read all .txt files to842

generate graphs, convert them to Numpy arrays and save them in .npy format.843

Enzyme [28] dataset contains protein tertiary structures representing 600 Enzyme. Nodes in a graph844

(protein) represent secondary structure elements, and two nodes are connected if the corresponding845

elements are interacting. The node labels indicate the type of secondary structure, which is either846

helices, turns, or sheets. Each graph in the dataset contains around 33 nodes and 62 edges. The node847

features in the graph represent type of amino acids. This dataset can be employed for attributed graph848

generation.849

Enzyme dataset is originally stored in several .txt files with the unit of node. We read all .txt files to850

generate graphs, convert them to Numpy arrays and save them in .npy format.851

ProFold [29] dataset contains dynamic folding processes of a protein peptide with sequence852

AGAAAAGA in 38 steps. ProFold contains 76,000 graphs in total. Each graph has 8 nodes853

and around 40 edges. The node represents amino acid of the protein, and the edge represent the bond854

between amino acids. The node feature of each protein is the sequence (AGAAAAGA) along with855

the spatial locations of each amino acid, and the edge feature of each protein is an adjacency matrix856

constructed by connecting all pairs of nodes with distance < 8 Å. This dataset can be used for either857

attributed graph generation or temporal graph generation.858

C.2.1 License859

Enzyme: CC-BY-4.0.860

ProFold: The dataset is collected by [29]. The license is not specified.861

Protein: CC-BY-4.0.862

C.3 Brain Networks863

The Brain dataset comes from the human connectome project (HCP) [31] and has a few branches:864

restingstate, emotion, gambling, language, motor, relational, social and wm according to different865

tasks. In this dataset, the source graphs reflect the structural connectivity (SC), and the target graphs866

represent the functional connectivity [31]. Specifically, both types of connectivities are processed867

from the magnetic resonance imaging (MRI) data from HCP. SC is obtained by applying probabilistic868

tracking on the diffusion MRI data by Probtrackx tool from the FMRIB Software Library [96] with869

68 regions of insterest (ROI). The edge attributes of FC are defined as Pearson’s correlation between870

two ROIs blood oxygen level-dependent time obtained from the resting-state functional MRI data.871
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Node attributes is a one-hot vector representing index of each node. In total, 823 pairs of SC and872

FC samples are enrolled in the dataset. The dataset has been splitted into 8 categories for 8 specific873

domains, including Brain-restingstate, Brain-emotion, Brain-gambling, Brain-language, Brain-motor,874

Brain-relational, Brain-social and Brain-wm. All of these datasets can be employed for eight weighted875

graph transformation or signed graph transformation tasks.876

Originally, data is a group of .npz files, containing the structural connectivities for each subject,877

functional connectivities for each subject, and list of subject IDs for each task using different878

correlations. Unfortunately, the subjects used are not universal for all tasks, and so we eliminate879

all but those that appeared in every single task. From there, we simply concatenate all of the880

functional connectivities from all of the various tasks using FC correlation, and concatenated all881

of the structural connectivities from all of the various tasks using FC correlation, thus creating882

FC_concatenated_edge_feat and SC_concatenated_edge_feat. For the adjacency matrix containing883

.npy arrays, we encounter a small issue; the adjacency matrix is required to be formatted with a884

specific shape, but that shape is not compatible with the edge feature shape, and so we make the885

adjacency matrix a placeholder basically. For details please refer to readme.txt.886

C.3.1 License887

Brain: This dataset comes from the human connectome project. Data collection and sharing for this888

project was provided by the MGH-USC Human Connectome Project (HCP; Principal Investigators:889

Bruce Rosen, M.D., Ph.D., Arthur W. Toga, Ph.D., Van J. Weeden, MD). HCP funding was provided890

by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute of891

Mental Health (NIMH), and the National Institute of Neurological Disorders and Stroke (NINDS).892

HCP data are disseminated by the Laboratory of Neuro Imaging at the University of Southern893

California.894

C.4 Physical Simulations895

N-body-charged [49] dataset simulates a system containing 5 particles with positive or negative896

charges. Particles are located in 2D coordinates without any external forces except attracting force897

and repelling force. The quantity of electrical charges is sampled from uniform probability. Each898

particle interacts via Coulomb forces. Every two particles interact, either attract or repel each other.899

The temporal length of each sequence is 49, which obtains from sub-sampling every 100 steps in900

a trajectory. N-body-charged dataset contains 3,430,000 graphs in total, each of which contains 25901

nodes with around 3 edges. Each node represents a particle and each edge represents interaction902

between nodes. Node attribute represents node input. 2d spatial features and temporal are included903

in the dataset. N-body-charged can be used for either attributed graph transformation, spatial graph904

transformation or temporal graph transformation.905

Originally, for the charged dataset, there are separate numpy files for the velocities, edges, and906

locations of each particle for train, validation, and testing. Then, all velocity arrays(train, valid, test)907

for the charged dataset were merged into a single one, and the same was done for all of the location908

arrays, and all of the edge arrays. To convert the charged edge features into adjacency matrices, all909

nonzero values were turned to ones, and since all particles had some form of connection, that meant910

all adjacency matrices ended up being all ones for the charged dataset. Then, for each new temporal911

array we had here, we created a new version: a non-temporal one, where we concatenated the first912

two dimensions of the array, as the second dimension represented the different temporal instances.913

For details information, please refer to readme.txt.914

N-body-spring [49] dataset simulates a system containing 5 particles connected by springs. Particles915

are located in 2D coordinates without any external forces except elastic collisions. Particles are916

connected via springs with probability of 0.5, and interactions between springs follow Hooke’s law.917

The initial location of each particle is sampled from a Gaussian distribution and the initial velocity of918

each particle is a random vector of norm 0.5. The trajectories of all springs are calculated by solving919

Newton’s equations of motion PDE. The temporal length of each sequence is 49, which obtains from920

sub-sampling every 100 steps in a trajectory. N-body-spring dataset contains 3,430,000 graphs in921

total, each of which contains 5 nodes with around 10 edges. Each node represents a particle and each922

edge represents interaction between nodes. Node attribute represents node input. 2D spatial features923

and temporal features are included in the dataset. N-body-spring can be used for either attributed924

graph transformation, spatial graph transformation or temporal graph transformation.925

Originally, for the spring dataset, there were separate numpy files for the velocities, edges, and926

locations of each particle for train, validation, and testing. There are 5 particles, 5 springs in each927

graph. Then, all velocity arrays(train, valid, test) for the spring dataset were merged into a single one,928
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and the same was done for all of the location arrays, and all of the edge arrays. For the springs dataset,929

we had only ones and zeroes in the edges: connection or no connection, and so we simply took this930

as our adjacency matrix as well for each matrix in the springs dataset. Then, for each new temporal931

array we had here, we created a new version: a non-temporal one, where we concatenated the first932

two dimensions of the array, as the second dimension represented the different temporal instances.933

C.4.1 License934

N-body-charged: The dataset is simulated by [49], which is under MIT License. The license of the935

dataset is not specified.936

N-body-spring: The dataset is simulated by [49], which is under MIT License. The license of the937

dataset is not specified.938

C.5 Collaboration Networks939

CollabNet [55] dataset is collected from DBLP-Citation-network V12, which contains around 4.9940

million papers and 45 million citation relationships. We construct graphs by selecting authors as941

nodes and co-authorships as edges during the time period from 1990 to 2019. To cut the graphs into942

pieces, we generate sub-graphs based on the Fields of Study attribute from papers. For each field, we943

generate one spatio-temporal graph. We generate 2361 spatio-tempora graphs with a total of 303,308944

nodes and a total of 207,632 of edges. This dataset contains temporal and GCS spatial features, so945

that the dataset can be used for spatial graph generation and temporal graph generation.946

C.5.1 License947

CollabNet: The dataset is collected from DBLP-Citation-network V12. The license is not specified.948

C.6 Traffic Networks949

METR-LA [53] dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-950

Metro), and processed by University of Southern California’s Integrated Media Systems Center. This951

dataset contains traffic information collected from 207 loop detectors in the highway of Los Angeles952

County for 4 months (from Mar 1st 2012 to Jun 30th 2012). Each sensor records traffic speed value953

per 5 minutes. The dataset contains 34,272 graphs, each of which has 325 nodes and 2,369 edges. In954

METR-LA, each node represent a speed senor and each edge represents a road. The node features955

of the dataset represent the traffic speed captured by the sensor. The dataset contains GCS spatial956

features and temporal features. METR-LA can be used for spatial graph generation, temporal graph957

generation, attributed graph generation and weighted graph generation.958

The information of the METR-LA dataset is stored in three files with different formats. We borrow959

Python to read these data, and convert them to Numpy formats. We then save the data in .npy format.960

PeMS-BAY [54] dataset is collected by California Transportation Agencies (CalTrans) Performance961

Measurement System (PeMS). PeMS-BAY dataset collects traffic information in the Bay Area. The962

dataset contains traffic information of 325 sensors within 5 months (From Jan 1st 2017 to May 31st963

2017). Each sensor records traffic speed value per 5 minutes. The dataset contains 50,221 graphs,964

each of which has 207 nodes and 1,515 edges. In PeMS-BAY, each node represent a speed senor and965

each edge represents a road. The node features of the dataset represent the traffic speed captured by966

the sensor. The dataset contains GCS spatial features and temporal features. PeMS-BAY can be used967

for spatial graph generation, temporal graph generation, attributed graph generation and weighted968

graph generation.969

The information of the PeMS-BAY dataset is stored in three files with different formats. We borrow970

Python to read these data, and convert them to Numpy formats. We then save the data in .npy format.971

C.6.1 License972

METR-LA: The dataset is collected by Los Angeles Metropolitan Transportation Authority (LA-973

Metro), and processed by University of Southern California’s Integrated Media Systems Center. The974

license is not specified.975

PeMS-BAY: The dataset is collected by California Transportation Agencies (CalTrans) Performance976

Measurement System (PeMS). The license is not specified.977

C.7 Authentication Networks978

AuthNet dataset includes the authentication activities of users on their computers and servers in their979

enterprise computer network and is published by Los Alamos National Laboratory (LANL). [97, 41].980

There are two subsets of different sizes of graphs (e.g., 50 and 300) in AuthNet dataset with 114 and981

412 graphs, respectively. For each subset, we train and test folder separately. Train set contains the982
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graph pairs (one-to-one) which are just used for training. Test set contains data for each user. For983

each user, there are several input graphs (e.g., regular user authentication activity graph) and several984

target graphs (e.g., malware user authentication activity graph). Input and target graphs in test set985

are not one-to-one, which can be tested by indirect evaluation. There are no node attributes for this986

dataset, and only edge attribute is considered. For each graph, the value of the i� th row and the987

j � th column refers to the edge attribute of node i and j (0 refers to no links). This dataset can be988

employed for weighted graph generation.989

C.7.1 License990

AuthNet: The dataset is publically released by LANL [97]. To the extent possible under law,991

LANL has waived all copyright and related or neighboring rights to User-Computer Authentication992

Associations in Time. This work is published from: United States.993

We collect this dataset from DBLP-Citation-network V12. We chose authors with affiliations, papers994

with more than one authors, and the time period from 1990 to 2019. To cut the graphs into pieces,995

we generate sub-graphs based on the fields of study of papers. For each field, we generate one996

spatio-temporal graph. Then we concatenate and pad all graphs, and save them into Numpy arrays.997

We save the graphs in .npy format.998

C.8 IoT Networks999

IoTNet is the malware dataset collected for malware confinement prediction [31]. There are three1000

sets of IoT nodes at different amounts (20, 40 and 60) encompassing temperature sensors connected1001

with Intel ATLASEDGE Board and Beagle Boards (BeagleBone Blue), communicating via Bluetooth1002

protocol. Benign and malware activities are executed on these devices to generate the initial attacked1003

networks (i.e., the Internet of Things) as input graphs. Benign activities include MiBench [98] and1004

SPEC2006 [99], Linux system programs, and word processors. The nodes represent devices and node1005

attribute is a binary value referring to whether the device is compromised or not. Edge represents the1006

connection of two devices and the edge attribute is a continuous value reflecting the distance of two1007

devices. The real target graphs are generated by the classical malware confinement method: stochastic1008

controlling with malware detection [100, 101, 102]. We collect 334 pairs of input and target graphs1009

with different contextual parameters (infection rate, recovery rate and decay rate) for each of the three1010

datasets. In this dataset, there are both nodes attributes and edge attributes considered. IoTNet can be1011

used for attributed graph generation and weighted graph generation.1012

The original format of IoTNet contains 1,029 .csv files, we convert them to .npy files, input_adj.npy,1013

input_edge.npy, input_node.npy, target_adj.npy, target_edge.npy, target_node.npy, Iot_20_labels.npy,1014

Iot_40_labels.npy and Iot_60_labels.npy, to contain structure, node features, edge features and1015

labels and to be easily read by Python. The detailed information of the data can be found in the1016

corresponding readme.txt file. To reformat the data, we use glob to read in all .csv files from the1017

directory, and separate the original .csv files into input data and target data; For both input and target1018

data, we get edge feature from the original .csv files, get node feature(0 or 1 for IoTNet) from the1019

diagonals of each file, and get adjacent matrix from the edge feature while setting the diagonals to1020

be 0. For IoTNet, we also split the name and get labels from the name of each .csv file. We then1021

reshaped all arrays into the required dimensions and converted them to NumPy files.1022

C.8.1 License1023

IoTNet: The dataset is generated by [31]. The license is not specified.1024

C.9 Skeleton Graphs1025

Kinetics [51] dataset is a large-scale human action dataset with 300000 videos clips in 400 classes.1026

Those video clips are from YouTube with a great variety. The raw Kinetics dataset doesn’t contain1027

skeleton data, and [51] uses OpenPose toolbox to generate skeleton with 18 joints on every frame.1028

Kinetics-Skeleton contains 240000 clips of training data and 20000 clips of test data. This dataset1029

does not contain node or edge attributes, but contain temporal and 2D spatial features to be used in1030

spatial graph generation and temporal graph generation tasks.1031

The raw Kinetics dataset is stored in a few .json files, and each json file contains information of a1032

single video clip. We traverse all .json files, and concatenate their contents into several Numpy arrays1033

with paddings for short video clips. We then remove extra skeletons, and leave each video clip only1034

one skeleton. Finally, we save the data in .npy array.1035

NTU-RGB+D [52] dataset is a large and widely used action recognition dataset with 56000 action1036

clips in 60 classes. These clips are performed by 40 volunteers captured in a constrained lab1037

environment, with three camera views recorded simultaneously. The dataset provides 3D joint1038
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locations of each frame and 25 joints for each subject. NTU-RGB+D does not contain node or edge1039

attributes, but contain temporal and 3D spatial features to be used in 3D spatial graph generation and1040

temporal graph generation tasks.1041

We process this dataset by the code from github. The dataset is originally stored in a few files, and1042

each contains information of one single video clip. After the same processing process as we do for1043

Kinetics dataset, we save the data in .npy format.1044

C.9.1 License1045

Skeleton (Kinectics): CC BY 4.0.1046

Skeleton (NTU-RGB+D): Not specified.1047

C.10 Social Networks1048

Ego: Ego dataset contains 757 3-hop ego networks extracted from the Citeseer [103]. The number of1049

nodes of the graph in Ego dataset ranges from 50 to 399, and 145 in average. Each graph in Edo has1050

around 335 edges. Nodes represent documents and edges represent citation relationships [34]. Ego1051

does not contain node or edge attributes, and can be used for graph generation tasks.1052

TwitterNet: The dataset is processed by [56] and obtained from 5 different countries in Latin1053

America, namely Brazil, Colombia, Mexico, Paraguay, and Venezuela. Data sources from Twitter are1054

adopted as the model inputs. In each case the data for the period from July 1, 2013 to February 9,1055

2014 is used for training and validation, where the validation set consists of a randomly chosen 30%1056

of the data, and the rest is used for training; the data from February 10, 2014 to December 31, 2014 is1057

used for the performance evaluation. TwitterNet contains 2,580 graphs in total, each of which has1058

300 nodes and 0.5 edges in average. This dataset can be employed in graph transformation tasks.1059

C.10.1 License1060

Ego: This dataset is extracted from Citeseer [103]. Citeserr is under CC BY-NC-SA 3.0.1061

TwitterNet: The dataset is obtained from [104]. The license is not specified.1062

C.11 Scene Graphs1063

CLEVR [50] dataset provides a dataset for visual question answer, which can be formalized as a1064

spatial-graph dataset. CLEVR dataset contains 85,000 graphs in total. There are 10 objects in the1065

image with different 3D locations. Each object is identified by its shape, such as sphere, cylinder, and1066

cube. The relationship between two objects can be categorized into four types: right, behind, front,1067

left, with directions. Thus, each image can be formalized as a labeled directed graph with different1068

edge types and node types. Thus, the spatial information of each nodes is closely correlated with the1069

edge types between each pair of nodes. As a result, CLEVR dataset can be employed for attributed1070

graph generation, weighted graph generation and spatial graph generation.1071

C.11.1 License1072

CLEVR: CC BY 4.0.1073

C.12 Synthetic Graphs1074

Barab’asi-Albert Graphs: This dataset is generated by the Barab’asi-Albert model [31]. It fits the1075

"one-to-one" mapping problem of graph translation. It contains pairs of input and target graphs. The1076

target graph topology is the 2-hop connection of the input graph, where each edge in the target graph1077

refers to the 3-hop reachability in the input graph (e.g., if node i is 3-hop reachable to node j in the1078

input graph, then they are connected in the target graph). There are edge and node attributes for graphs1079

in this dataset: the edge attribute E(i,j) denotes the existence of the edge, and the node attributes1080

are continuous values computed following the polynomial function: f(x) : y = ax2 + bx + c1081

(a = 0; b = 1; c = 5), where x is the node degree and f(x) is the node attribute. Here we provide the1082

datasets with three different node sizes. Barab’asi-Albert Graphs dataset can be used for attributed1083

graph transformation.1084

The original Barab’asi-Albert Graphs dataset contains 3,000 .csv files. We reformat them into .npy1085

files, including input_adj.npy, input_edge.npy, input_node.npy, target_adj.npy and target_edge.npy,1086

target_node.npy for the community to use. To reformat the data, we use glob to read in all .csv files1087

from the directory, and separate the original .csv files into input data and target data; For both input1088

and target data, we get edge feature from the original .csv files, get node feature from the diagonals1089

of each file, and get adjacent matrix from the edge feature while setting the diagonals to be 0. We1090

then reshaped all arrays into the required dimensions and converted them to NumPy files.1091
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Community: This dataset is generate by [34] and contains 3,000 two-community graphs, each of1092

which has 64 nodes and around 340 edges. Each community is generated by the Erdos-Renyi model1093

(E-R) [105] with |V |
2 nodes and the edge probability of 0.3. Then add 0.05|V | inter-community edges1094

are added with uniform probability. This dataset does not have node or edge attributes. Community1095

can be used for graph generation tasks.1096

Erdos-Renyi Graphs: This dataset is generated by the Erdos-Renyi model with the edge probability1097

of 0.2 [31]. It fits the "one-to-one" mapping problem of graph translation. It contains pairs of (input,1098

target) graphs. The target graph topology is the 2-hop connection of the input graph, where each1099

edge in the target graph refers to the 2-hop reachability in the input graph (e.g., if node i is 2-hop1100

reachable to node j in the input graph, then they are connected in the target graph). There are1101

edge and node attributes for graphs in this dataset: the edge attribute E(i,j) denotes the existence of1102

the edge, and node attributes are continuous values computed following the polynomial function:1103

f(x) : y = ax2 + bx + c (a = 0; b = 1; c = 5), where x is the node degree and f(x) is the node1104

attribute. This dataset contains 1,000 graphs in total, and can be used for attributed graph generation.1105

The original Erdos-Renyi Graphs dataset contains 3,000 .csv files. We reformat them into .npy1106

files, including input_adj.npy, input_edge.npy, input_node.npy, target_adj.npy and target_edge.npy,1107

target_node.npy for the community to use. Detailed information can be found in ER_Readme.trf. To1108

reformat the data, we use glob to read in all .csv files from the directory, and separate the original1109

.csv files into input data and target data; For both input and target data, we get edge feature from1110

the original .csv files, get node feature from the diagonals of each file, and get adjacent matrix from1111

the edge feature while setting the diagonals to be 0. We then reshaped all arrays into the required1112

dimensions and converted them to NumPy files.1113

Scale-free: This dataset is generated as a directed scale-free network [41], which is a network1114

whose degree distribution follows power-law property [83]. It fits the "one-to-many" mapping graph1115

translation problem. There are no node features in this dataset, and the goal is to learn the mapping1116

from the input graph’s topology to the target graph’s topology. To generate a target graph, a node1117

will by selected as target node with probability proportional to its in-degree, which will be linked to1118

a new source node with probability of 0.41. Similarly, a node will be selected as the source node1119

with the probability proportional to its out-degree, which will be linked to a new target node with1120

the probability of 0.54. Then, a corresponding target graph is generated by adding m (number of1121

nodes of the input graph) edges between two nodes. Thus, both input and target graphs are directed1122

scale-free graphs. This dataset contains 10,000 graphs in total, and can be splitted into subsets that1123

contains 10, 20, 50, 100, 150 nodes along with 20, 40, 100, 200 and 320 edges, respectively.1124

The original Scale-free dataset contains 10,000 .csv files and we convert it to .npy files for peo-1125

ple to read in Python. The detailed information of the data can be found in the corresponding1126

scale_free_Readne.rtf. To reformat the data, we use glob to read in all .csv files from the directory,1127

and separate the original .csv files into input data and target data; For both input and target data, we1128

get edge feature from the original .csv files, get node feature from the diagonals of each file, and get1129

adjacent matrix from the edge feature while setting the diagonals to be 0. Due to the massive .csv files1130

in the Scale-free Graphs, we optimize to reduce the time complexity in order to process the dataset1131

faster. We then reshaped all arrays into the required dimensions and converted them to NumPy files.1132

Waxman Graphs: This datase contains graphs generated by the Waxman random graph model that1133

places n nodes uniformly at random in a rectangular domain [106, 29]. There are three types of1134

factors that are related to the generation of Waxman graphs: the independent graph factor b that1135

controls node attributes, the independent spatial factor p that controls the overall node positions,1136

and the graph-spatial correlated factor s that controls both graph and spatial density [29]. There are1137

80,000 samples for training and 80,000 for testing. Each graph in the dataset contains 25 nodes and1138

around 250 edges. Waxman Graphs dataset can be used for a few tasks, including attributed graph1139

generation, spatial graph generation and temporal graph generation.1140

The original Waxman Graphs dataset contains 96,000 graph files saved in Numpy array.1141

We reformat them into .npy files, including adj.npy, edge_feat.npy, label.npy, node_feat.npy,1142

spatial.npy, temporal_adj.npy, temporal_edge.npy, temporal_label.npy, temporal_node.npy and1143

temporal_spatial.npy. The detailed informatiom can be found in waxman_Readme.rtf. To reformat1144

these files, we load the testing and training dataset and converted the sparse matrices to dense matrices.1145

we concatenate the testing and training datasets and reshape them into the required dimensions. To1146

get the version of datasets with temporal dimension, we flattened the NumPy arrays. All datasets1147

were saved as NumPy files eventually.1148
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Random Geometric Graphs: This datase contains graphs generated by the random geometric graph1149

model that places n nodes uniformly at random in a rectangular domain [29]. Two nodes are joined1150

by an edge if their distance is larger than a threshold � = 12. The node attributes among a graph1151

are generated in the same rule as that for generating Waxman graphs. There are 8,000 samples for1152

training and 1,600 for testing in this dataset. Each graph in the dataset contains 25 nodes and around1153

350 edges. Random Geometric Graphs dataset can be used for a few tasks, including attributed graph1154

generation, spatial graph generation and temporal graph generation.1155

The original Random Geometric Graphs dataset contains 96,000 graph files saved in Numpy ar-1156

ray. We reformat them into .npy files, including adj.npy, edge_feat.npy, label.npy, node_feat.npy,1157

spatial.npy, temporal_adj.npy, temporal_edge.npy, temporal_label.npy, temporal_node.npy and1158

temporal_spatial.npy. The detailed informatiom can be found in random_geo_Readme.rtf. To1159

reformat these files, we load the testing and training dataset and converted the sparse matrices to1160

dense matrices. we concatenate the testing and training datasets and reshape them into the required1161

dimensions. To get the version of datasets with temporal dimension, we flattened the NumPy arrays.1162

All datasets were saved as NumPy files eventually.1163

C.12.1 License1164

Barab’asi-Albert Graphs: The dataset is generated by [31]. The license is not specified.1165

Community: The dataset is generated by [34], which is under MIT License. The license of the1166

dataset is not specified.1167

Erdos-Renyi graphs: The dataset is generated by [31]. The license is not specified.1168

Scale-free: The dataset is generated by [41]. The license is not specified.1169

Waxman graphs: The dataset is generated by [29]. The license is not specified.1170

Random geometric: The dataset is generated by [29]. The license is not specified.1171

D Benchmark Results1172

We benchmark all the datasets with graph generation and transformation models. For graph generation1173

task, we conduct experiments on three models, GraphRNN [34], GraphVAE [18], GraphGMG [8].1174

For graph transformation task, we conduct experiments on two models, Interaction Networks [38]1175

and NEC-DGT [31].1176

D.1 Molecule Generation Results.1177

As mentioned above, graph generation task could be very domain-specific, meaning that each domain1178

has specific expectations over the generative tasks. Our first benchmark focuses on one of the most1179

developed areas, molecular graph generation, which is motivated by drug and material discovery. For1180

molecule generation task, we utilize the above mentioned self-quality based evaluation, where the1181

validity, uniqueness and novelty are measured. We survey a list of state-of-the-art deep generative1182

models on molecules and report the performance regarding validity, novelty, and uniqueness on1183

two popular benchmark datasets (QM9 [44] and ZINC250K [45]) in the original paper as shown1184

in Table 4. In Table 4, it is clearly to observe that the state-of-the-art models, such as MoFlow,1185

GraphEBM, GraphDF, almost perform perfectly on the two common benchmarked datasets. As1186

described in the following section, one key point to generate good molecular graphs is to handle the1187

valency constraints. Some models utilize sequential generation, some utilize valency check, some1188

design regularization, but overall, the best-performing models handle the valency constraint properly.1189

However, it is not the end of the area. The molecule space being searched currently is small with1190

very limited set of atoms and bonds and small size of molecules. Thus, benchmark datasets with1191

larger molecules and molecules with more diverse atom and bond types are urgent to advance the1192

field. From another perspective, it is important to generate molecules with desired properties which1193

more domain-specific analyses and explorations could be done.1194

D.2 Baseline Models1195

GraphRNN [34]. GraphRNN represents graph generation as an auto-regressive process and builds1196

an generative RNN model to generate nodes and edges sequentially.1197

GraphVAE [18]. GraphVAE represents each graph by its adjacency matrix and feature vectors1198

and utilizes graph neural network to encode the graphs into a vector space. Then, the model learns1199

the distribution of the graphs via a VAE setting which minimizes the distance between the latent1200

distribution and Gaussian distribution. Finally, the model decodes the latent vectors to reconstruct1201

graphs.1202
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Table 4: Quantitative evaluation and comparison on molecular graph generation tasks by different deep
generative models on graphs (“Valid.” is short for validness. “Novel.” is short for novelty. “Unique.” is short for
uniqueness.).

Method! QM9 ZINC250K
Dataset# Valid. Novel. Unique. Valid. Novel. Unique.

GrammarVAE [107] 31.00% 100.00% 10.76% 30.00% 95.44% 9.30%
GraphVAE [18] 14.00% 100.00% 31.60% 61.00% 85.00% 40.90%
CGVAE [108] 100.00% 100.00% 99.82% 100.00% 94.35% 98.54%
GraphNVP[86] 74.30% 100.00% 94.80% 90.10% 54.00% 97.30%

GRF [109] 73.40% 100.00% 53.70% 84.50% 58.60% 66.00%
GraphAF[35] 100.00% 100.00% 99.10% 100.00% 88.83% 94.51%

CGSVAE [110] 34.90% 100.00% - 96.60% 97.50% -
JT-VAE [20] 100.00% 100.00% 99.80% - - -
GCPN [93] 100.00% 100.00% 99.97% - - -

MolecularRNN [36] 100.00% 100.00% 99.89% - - -
MolGAN [19] - - - 98.10% 94.10% 10.40%

MPGVAE [111] - - - 91.00% 54.00% 68.00%
SCAT [112] - - - 47.40% 92.00% 98.30%
MoFlow [32] 100.00% 98.03% 99.20% 100.00% 100.00% 99.99%

GraphEBM [33] 100.00% 97.01% 97.90% 99.96% 100.00% 98.79%
GraphDF [37] 100.00% 98.10% 97.62% 100.00% 100.00% 99.55%

GraphGMG [8]. GraphGMG first learns a node-level embedding of a given graph, then learns1203

a probability distribution over possible outcomes for each generation step. During the generation1204

process, the model sequentially connects nodes and edges to a new graph.1205

GrammarVAE [107]. GrammarVAE is one of the first deep generative models that learn to generative1206

novel molecules with a string representation.1207

GraphVAE [18]. GraphVAE is a VAE-based graph generative models that generates graphs in an1208

one-shot fashion.1209

CGVAE [108]. CGVAE is a VAE-based graph generative model that formulates the generation1210

process as an iterative process.1211

GraphNVP [86]. GraphNVP first introduces the idea of invertible normalizing flow-based methods1212

to molecular graph generation in an one-shot generation way.1213

GRF [109]. GRF introduces residual flows for molecular graph generation which circumvents the1214

requirement of partitioning of the latent vector in GraphNVP.1215

GraphAF [35]. GraphAF takes one step further than GraphNVP to formulate the problem as a1216

sequential generation problem.1217

CGSVAE [110]. CGSVAE is a VAE-based graph generative models that proposes a regularization1218

method that encourages the model to generate valid molecules.1219

JT-VAE [20]. JT-VAE is motivated to explicitly model substructures in the generative models that1220

introduces an extra junction tree encoder-decoder part which each node denotes a substructure rather1221

than an atom in a molecule.1222

GCPN [93]. GCPN formulates molecular graph generation as a reinforcement learning problem1223

where each state is a generation step, every step, it takes the action to connect two atoms and labels1224

the edges by bond types. It stops when no atoms are connected.1225

MolecularRNN [36]. MolecularRNN follows the idea of GraphRNN and adopts it for the molecular1226

graph generation task.1227

MolGAN [19]. MolGAN is a GAN-based molecular graph generation method that implements a1228

GAN model to generate molecular graphs in an one-shot fashion.1229

MPGVAE [111]. MPGVAE designs a VAE-based which follows Graphite [113] and generate1230

molecular graphs in an one-shot way.1231

SCAT [112]. SCAT takes a scattering transform and gaussianization as an encoder and utilizes a1232

MLP as a decoder to generate novel molecular graphs in an one-shot way.1233

MoFlow [32]. MoFlow improves over GraphNVP by introducing a valency correction mechanism in1234

the framework.1235
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Table 5: Hyper-parameters for graph generation benchmark.
Method Learning Rate Epoch Batch Size # graphs

GraphRNN 3⇥10�3 1,000 32 1,000
GraphVAE 1⇥10�3 10 1 1,000
GraphGMG 1⇥10�3 10 1 1,000

Table 6: Hyper-parameters for graph transformation benchmark. Due the capacity of our memory, for the graph
transformation task, we sampled a subset from a few datasets for evaluation. The size of the subset depends on
the graph size and total number of graphs contained in the dataset.

Dataset Interaction Networks NEC-DGT
Learning Rate Epoch #graphs Learning Rate Epoch #graphs

AuthNet 1⇥10�2 100 412 1⇥10�4 500 412
Barab’asi-Albert Graphs 1⇥10�2 100 1,000 1⇥10�4 500 1,000

Brain-restingstate 1⇥10�2 100 823 1⇥10�4 500 823
Brain-emotion 1⇥10�2 100 811 1⇥10�4 500 811

Brain-grambling 1⇥10�2 100 818 1⇥10�4 500 818
Brain-language 1⇥10�2 100 816 1⇥10�4 500 816

Brain-motor 1⇥10�2 100 816 1⇥10�4 500 816
Brain-relational 1⇥10�2 100 808 1⇥10�4 500 808

Brain-social 1⇥10�2 100 816 1⇥10�4 500 816
Brain-wm 1⇥10�2 100 812 1⇥10�4 500 812
Scale-free 1⇥10�2 100 250 1⇥10�4 500 250
TwitterNet 1⇥10�2 100 250 1⇥10�4 500 250

N-body-charged 1⇥10�2 100 150 1⇥10�4 500 150
N-body-spring 1⇥10�2 100 150 1⇥10�4 500 150

ChemReact 1⇥10�2 100 1,000 1⇥10�4 500 1,000
IoTNet 1⇥10�2 100 343 1⇥10�4 500 343
MolOpt 1⇥10�2 100 500 1⇥10�4 500 500

GraphEBM [33]. GraphEBM is an energy-based generative model that utilizes Langevin Dynamics1236

to sample novel molecules.1237

GraphDF [37]. GraphDF improves over GraphAF by learning discrete latent variables rather than1238

continuous latent variables as in most of the Flow and VAE-based methods.1239

Interaction Network [38]. Physical domain is the target for Interaction Networks, the input of which1240

is a graph that represents a system of objects and relations. Interaction Networks instantiates the1241

pairwise interaction and compute its effects via a relational model. The effects are then aggregated1242

and combined with the objects and external effects to generate the input for an object model, which1243

predicts how the interactions and dynamics influence the objects.1244

NEC-DGT [31]. In NEC-DGT, the node and edge attributes of input graphs are inputted to the1245

model. The model outputs node attributes and edges attributes of the generated target graphs via1246

several blocks, which have edge and node translation paths co-evolved and combined by a graph1247

regularization during training process.1248

D.3 Hyper-parameters1249

All experiments are conducted on a 64-bit machine with a 6 core Intel CPU i9-9820X, 32GB RAM,1250

and an NVIDIA GPU (GeForce RTX 2080ti, 1545MHz, 11GB GDDR6). The detailed hyper-1251

parameters can be found in Table 5 and Table 6. For the molecular graph generation benchmark, we1252

take experiment results from the original reports.1253

E Tutorials1254

We provide data processors, evaluators, as well as visualizers which simplify the pipeline for graph1255

generation and transformation, as shown in Fig. 4, 5 and 6, respectively.1256
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Figure 4: Loading generation dataset.

Figure 5: Loading transforamtion dataset.

Figure 6: Evaluation APIs.
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