
A Appendix
A.1 Additional results
In this section, we present additional results that help clarify details of our method.

A.1.1 Higher order derivatives
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Figure 1: Autograd properties as a function of network depth s. The figure shows (a) effect of neural
network depth s on the relative error (with respect to fp64 autograd) and (b) time taken for one
application of autograd on fp32 and fp64, compared to the time taken for SpMV using RBF-FD for
computing ∆2u(x) in d = 2. Error bars over 15 random runs are shown.

We also study the effect of PINN depth on computing the biharmonic operator ∆2 of the output with
respect to the spatial variable x using either autograd or RBF-FD. We compute errors against fp64
autograd for fp32 autograd and for RBF-FD with p = 2, 3, 4, and 5. All errors were computed on
N = 4977 quasi-uniform collocation points. The results are in shown in Figure 1a. We see that fp32
autograd is the most accurate, and similar to the Laplacian ∆, increasing p increases the accuracy
of RBF-FD by about two orders of magnitude. In Figure 1b, we report the time taken for the same
test. It is clear that RBF-FD offers even greater speedups for approximating high-order differential
operators.

A.1.2 fp32 DT-PINN
Figure 2 shows results for fp32 DT-PINNs on the linear Poisson equation. While speedups over
vanilla-PINNs are similar to fp64 DT-PINNs, they suffer from a degradation in accuracy for all
values of p compared to both fp64 DT-PINNs and vanilla-PINNs. These results demonstrate that
the combination of fp64 and discrete training is key to achieving training speedups without a loss in
accuracy, but that fp32 DT-PINNs are also viable alternatives to vanilla-PINNs.

A.1.3 Star shaped domain
In Figure 3a, we show N = 2180 interior and boundary collocation points on a star-shaped domain
from (3). Figure 3b shows the manufactured solution as specified in (19). In Figure 4 we present
results for fp64 DT-PINNs and fp32 vanilla-PINN on the linear Poisson equation with a star shaped
domain. DT-PINNs with p > 2 achieve the same relative errors as vanilla-PINN. DT-PINNs also
obtain a maximum of 2x speedup over vanilla-PINN ignoring p = 2. Similar to the results in unit disk
domain, DT-PINNs are faster than vanilla-PINNs while getting competitive or even better accuracies.

A.2 Implementation
From a practical implementation standpoint, DT-PINNs differ from vanilla-PINNs in several ways
beyond the replacement of autograd with differentiation matrices. We discuss some of the details of
our implementation within the PyTorch framework (2).
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Figure 2: fp32 DT-PINNs on the linear Poisson equation (3) for different numbers of collocation
points (N ) and orders of accuracy (p). We show (a) the relative error in the PINN solution; (b) the
time taken to converge to lowest relative error; and (c) the speedup attained by fp32 DT-PINNs
relative to fp32 vanilla-PINN for those times.
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Figure 3: Quasi-uniform collocation points and the true solution on a star-shaped domain. The figure
shows (a) N = 2180 interior and boundary collocation points and (b) the manufactured solution
given by (19) and used in Section 4.2.

Efficient sparse matrix storage and operations on the GPU Since DT-PINNs replace all autograd
computations in the loss function with an SpMV, we use the compressed sparse row (CSR) format for
storing L and B; this ensures both ease of parallelization and compact storage. As of this writing,
PyTorch support for SpMV operations in the CSR format on the GPU is limited and somewhat
inefficient. To overcome this limitation, we used the CuPy library (1) for all SpMV operations. We
also use the DLPack library to enable memory and context sharing between CuPy and PyTorch.

Custom autograd implementation As of this writing, PyTorch is in general unable to apply autograd
with respect to the weight vector w to loss terms involving CuPy CSR matrices. To overcome this
issue, we wrote custom autograd classes in PyTorch. Consider the second term in (12), ∥Lũ− f∥22.
According to the PyTorch API, a custom autograd class for handling this term must supply two
methods: a forward method that tells PyTorch how to evaluate it, and a backward method that tells
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Figure 4: fp64 DT-PINNs on the linear Poisson equation (3) for different numbers of collocation
points (N ) and orders of accuracy (p) with a star shaped domain. We show (a) the relative error in the
PINN solution; (b) the time taken to converge to lowest relative error; and (c) the speedup attained by
fp32 DT-PINNs relative to fp32 vanilla-PINN for those times. Results shown over a single random
seed.

PyTorch how to compute the product (∇ũ (Lũ− f)) (∇wũ). As ∇ũ (Lũ− f) = LT , our custom
PyTorch backward method can be expressed as a CuPy-based SpMV of LT and ∇wũ, the latter of
which PyTorch automatically supplies; loss terms involving B are handled similarly. The forward
method to evaluate the loss term is also an SpMV between L and ũ. The overall procedure is similar
for the heat equation as well.

Code listings We first show the CuPy custom autograd methods for the SpMV operations in the
autograd term. The required imports are:

1 import torch
2 from torch.utils.dlpack import to_dlpack , from_dlpack
3 import cupy
4 from cupy.sparse import csr_matrix

The following Python class defines the forward and backward methods to connect the CuPy SpMV
with the native PyTorch tensors.

1 class Cupy_L(torch.autograd.Function ):
2 @staticmethod
3 def forward(ctx , pinn_pred , sparse_mat ):
4 return from_dlpack(sparse_mat.dot(
5 cupy.from_dlpack(to_dlpack(pinn_pred ))
6 ). toDlpack ())
7

8 @staticmethod
9 def backward(ctx , grad_output ):

10 return from_dlpack(L_t.dot(
11 cupy.from_dlpack(to_dlpack(grad_output ))
12 ). toDlpack ()), None
13

14 # class Cupy_B can be similarly defined

where L_t is the transpose of the L matrix:

1 L_t = csr_matrix(self.L.transpose(), dtype=np.float64)

Each DT-PINN training step in linear Poisson can then be written as follows:
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1 # we use the L-BFGS optimizer provided by PyTorch
2 def closure ():
3 self.optimizer.zero_grad ()
4 u_tilde = self.pinn_weights.forward(self.X_tilde)
5

6 pde_residual = L_mul(u_tilde , self.L) - self.f
7 bdry_residual = B_mul(u_tilde , self.B) - self.g
8

9 pde_loss = torch.mean(torch.square(torch.flatten(pde_residual )))
10 bdry_loss = torch.mean(torch.square(torch.flatten(bdry_residual )))
11

12 train_loss = interior_loss + boundary_loss
13 train_loss.backward(retain_graph=True)
14 return train_loss.item()
15

16 loss_value = self.optimizer.step(closure)

where self.X_tilde is X̃ and L_mul and B_mul are:

1 L_mul = Cupy_L.apply
2 B_mul = Cupy_B.apply
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