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Figure 1. Overview. Given a set of ordered or unordered image collections without prior knowledge of camera parameters, the proposed
Spann3R can incrementally reconstruct the 3D geometry by directly regressing the pointmap of each image in a common coordinate
system. Spann3R does not require any optimization-based alignment during inference, i.e., the 3D reconstruction of each image can be
solved by a simple forward pass with a transformer-based architecture, thus enabling online reconstruction in real-time. The qualitative
examples shown are reconstructed from some self-captured images to illustrate the generalization ability of Spann3R.

Abstract

We present Spann3R, a novel approach for dense
3D reconstruction from ordered or unordered image col-
lections. Built on the DUSt3R paradigm, Spann3R
uses a transformer-based architecture to directly regress
pointmaps from images without any prior knowledge of the
scene or camera parameters. Unlike DUSt3R, which pre-
dicts per image-pair pointmaps expressed in a local coor-
dinate frame, Spann3R predicts per-image pointmaps ex-
pressed in a global coordinate system, thus eliminating
the need for optimization-based global alignment. The
key idea behind Spann3R is to manage an external spa-
tial memory that learns to keep track of all previous rel-
evant 3D information. Spann3R then queries this spatial
memory to predict the 3D structure of the next frame in a
global coordinate system. Taking advantage of DUSt3R’s
pre-trained weights, and further fine-tuning on a subset
of datasets, Spann3R shows competitive performance and
generalization ability on various unseen datasets and can
process ordered image collections in real-time. Project
page: https://hengyiwang.github.io/projects/spanner

1. Introduction

Reconstructing dense geometry from images is one of the
fundamental problems in computer vision that has been re-
searched for decades [31]. This task offers numerous ap-
plications in autonomous driving, virtual reality, robotics,
medical imaging, and more. The inherent ambiguities
in interpreting 3D structures have led traditional solutions
evolve into various sub-fields, including keypoint detec-
tion and matching [10, 46, 47, 60], Structure-from-Motion
(SfM) [2, 19, 64, 68, 75, 84, 85], Bundle Adjustment
(BA) [3, 77, 86], Multi-View Stereo (MVS) [29, 30, 65],
Simultaneous Localization and Mapping (SLAM) [21, 41,
54], etc. Each of these sub-fields addresses different aspects
of the problem using a variety of handcrafted heuristics, re-
quiring substantial engineering effort to integrate them into
a complete dense reconstruction pipeline [64, 65].

Recent attention has shifted towards replacing hand-
crafted features with learned structural priors from large-
scale datasets [12, 22, 32, 61, 73, 79, 89, 94]. These modern
approaches typically integrate learning-based models into
each step of the traditional pipeline. Thus, the sequential
structure of traditional pipelines, involving matching, trian-
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Figure 2. Motivation. DUSt3R [81] directly regresses the pointmap of each image pair in a local coordinate system. In contrast, Spann3R
predicts a global pointmap in a common coordinate system via a spatial memory that stores all previous predictions. Thus, our method can
enable online incremental reconstruction without the need to build a dense pairwise graph and a final optimization-based alignment.

gulation, sparse reconstruction, camera parameter estima-
tion, and dense reconstruction is mostly maintained. While
these methods have made significant progress with learned
priors, the inherent limitations of this complex pipeline per-
sist, making it sensitive to noise at each step and still de-
manding substantial engineering effort for integration.

To address these issues, DUSt3R [81] introduces a radi-
cal and novel paradigm shift that was often considered im-
possible - directly regressing the pointmap, a common rep-
resentation in visual localization [13–15, 59], from a pair of
images without prior scene information. Since the pointmap
is expressed in the local coordinate system of the image
pair, a global alignment is introduced for the reconstruction
of more than just an image pair. This involves per-scene
optimization to align the predicted pointmap with a dense
pairwise graph. Trained on millions of image pairs with
ground-truth annotations for depth and camera parameters,
DUSt3R [81] shows unprecedented performance and gener-
alization across various real-world scenarios with different
camera sensors. However, operating on a pair of images and
the need for per-scene optimization-based global alignment
limit its ability for real-time incremental reconstruction and
scalability to many images.

In this paper, we present Spann3R, a framework that
adopts a Spatial Memory for 3D Reconstruction. Building
on the paradigm of DUSt3R [81], we take a step further
by eliminating the need for per-scene optimization-based
alignment (See Fig. 2). That being said, our model enables
incremental reconstruction by predicting the pointmap of
each image in a common coordinate system with a simple
forward pass on our transformer-based architecture. The
key idea is to maintain an external memory that keeps track
of previous states and learns to query all relevant informa-
tion from this memory for predicting the next frame, a con-
cept often referred to as memory networks [51, 72, 83].

We employ a lightweight transformer-based memory en-
coder to encode previous predictions as memory values.
To retrieve information from this memory, we project ge-
ometric features from two decoders into query features
and memory keys using two multilayer perceptron (MLP)
heads. Our model is trained on sequences of five frames
randomly sampled from videos, with a curriculum train-

ing strategy that adjusts the sample window size through-
out the training process. This allows Spann3R to learn
both short and long-term dependency across frames. Dur-
ing inference, we apply a memory management strategy
inspired by X-Mem [16], which mimics human memory
model [5], to maintain a compact memory representation.
Compared to DUSt3R [81], our method aligns point on-the-
fly (like a spanner) purely based on neural network (NN),
enables real-time online incremental reconstruction at over
50 frames per second (fps) without test-time optimization.
Experiments on various unseen datasets show competitive
dense reconstruction quality and generalization ability.

2. Related Works

Classic 3D Reconstruction. 3D Reconstruction from
visual signals has been investigated for decades [31].
Structure-from-motion (SfM) [2, 19, 56, 64, 68, 75, 84, 85]
is often considered the de-facto standard for obtaining
sparse geometry and accurate camera poses. Starting from
feature correspondence search (keypoint detection and de-
scription [10, 46, 47, 60], matching [2, 85], and geomet-
ric verification [64]), SfM selects an image pair for ini-
tialization, followed by image registration, triangulation,
and bundle adjustment [3, 77, 86]. Finally, multi-view
stereo [29, 30, 65] is used to obtain dense 3D geometry.
These methods usually require lengthy offline optimization.
In contrast, visual SLAM focuses on online reconstruction
in real-time. Given the calibrated cameras, visual SLAM
can perform sparse [21, 28, 41, 52] or dense [27, 54] re-
construction via minimizing either reprojection error (indi-
rect) [21, 41, 52] or photometric error (direct) [27, 28, 54].
To obtain accurate reconstruction, these methods either re-
quire a depth/LiDAR sensor [53] or careful initialization
and various assumptions about the camera motion and scene
appearance [21, 52, 54].
Learning-based 3D Reconstruction. Built upon the
success of the classic reconstruction pipeline, recent ap-
proaches usually leverage learning-based techniques to im-
prove each sub-task, i.e., feature extraction [22, 93], match-
ing [45, 61], BA [44], monocular depth estimation [23,
38, 94], multi-view depth estimation [26, 63, 89], optical



Figure 3. Overview of Spann3R. Our model uses a ViT [25] encoder and two intertwined decoders as in DUSt3R [81]. Our target decoder
outputs query features for memory read while the reference decoder predicts a pointmap and confidence based on the memory readout
using query and memory features. A lightweight memory encoder receives previously predicted pointmaps together with features from
reference decoder as input and encodes them into memory key and value features. Dashed lines indicate an operation in the next time step.

flow [76], point tracking [24, 37, 87], etc. However, classic
pipelines usually involve a sequential structure vulnerable
to noise in each sub-task. To avoid this, DUSt3R [81] uni-
fies all sub-tasks by directly learning to map an image pair
to 3D, followed by an optimization-based global alignment
to bring all image pairs into a common coordinate system.
In this work, we take a step further to replace the optimiza-
tion step with an end-to-end learning-based framework, en-
abling real-time online incremental reconstruction in a feed-
forward way.

Neural Rendering for 3D Reconstruction. Recent
progress in differentiable rendering, i.e., Neural Radiance
Field (NeRF) [50] and its follow-up works [7, 8, 33, 35,
36, 40, 80, 91] has enabled high-fidelity scene reconstruc-
tion using images with known camera parameters obtained
via SfM [64]. Several other works leverage neural ren-
dering for SfM [11] and SLAM [42, 71, 78, 95]. How-
ever, despite the significant progress in accelerating neural
rendering, these methods still require lengthy optimization
time. For instance, Gaussian splatting [40] and its variants
in SLAM [34, 39, 48] can achieve over 100fps rendering.
However, they still require minutes of test-time optimiza-
tion for scene reconstruction.

Memory Networks. Memory networks were originally in-
troduced in the context of question-answering [51, 72, 83]
in natural language processing, where an external memory
is used to reason over long-term dependencies. This archi-
tecture is naturally suitable for processing sequential data
and can thus be adapted to various vision tasks, such as
video object segmentation (VOS) [16–18, 55], video un-
derstanding [69], etc. Our work is inspired by STM [55],
the first method to employ memory networks for VOS, and
XMem [16], which further extended the idea to long video
sequences via a memory consolidation strategy that mimics
the human memory model [5].

3. Method
Fig. 3 shows an overview of Spann3R. We repurpose
DUSt3R [81] into an end-to-end incremental reconstruction
framework that regresses pointmaps in a global coordinate
frame. Specifically, given a sequence of images {It}Nt=1,
our goal is to train a network F that maps each It to its cor-
responding pointmap Xt, expressed in the coordinate frame
of I1. To enable this, we introduce a spatial memory that en-
codes previous predictions to reason about the next frame.
Sec. 3.1 describes our network architecture , Sec. 3.2 the
spatial memory, and Sec. 3.3 training and inference.

3.1. Network Architecture

Feature encoding. In each forward pass, our model takes a
frame It and a previous query fQ

t−1 as input. A ViT [25] is
used to encode the frame It into visual feature f I

t :

f I
t = EncoderI(It). (1)

The query features fQ
t−1 are used to retrieve features in our

memory bank to output the fused feature fG
t−1:

fG
t−1 = Memory read(fQ

t−1, f
K , fV ), (2)

where fK and fV are memory key and value features.
Feature decoding. The fused feature fG

t−1 and the visual
feature f I

t are fed into two intertwined decoders that process
them jointly via cross-attention. This enables the model to
reason about the spatial relationship between two features:

fH′

t , fH
t−1 = Decoder(f I

t , f
G
t−1). (3)

where H ′/H refers to features decoded by the tar-
get/reference decoders. The feature fH′

t decoded by the tar-
get decoder is fed into an MLP head to generate the query
feature for the next step:

fQ
t = headtargetquery (f

H′

t , f I
t ). (4)



The feature fH
t−1 decoded by the reference decoder is fed

into an MLP head to generate the pointmap and confidence:

Xt−1, Ct−1 = headrefout(f
H
t−1). (5)

Note that we also generate a pointmap X ′
t and confidence

C ′
t from fH′

t only for supervision.
Memory encoding. The feature and predicted pointmap of
the reference decoder are used for encoding the memory key
and value features:

fK
t−1 = headrefkey(f

H
t−1, f

I
t−1), (6)

fV
t−1 = EncoderV (Xt−1) + fK

t−1. (7)

Since memory key and value features have both geometric
and visual information, it enables memory readout based on
both appearance and distance.
Initialization. We decode two visual features for initializa-
tion, which makes the initialization identical to DUSt3R.
Discussion. Compared to DUSt3R [81], Spann3R has one
more lightweight memory encoder and two MLP heads for
encoding the query, memory key and value features. For
decoders, DUSt3R [81] contains two decoders - a reference
decoder that reconstructs the first image in the canonical
coordinate system, and a target decoder that reconstructs the
second image in the coordinate system of the first image.
In contrast, we repurpose two decoders in DUSt3R [81].
The target decoder is mainly used to produce features for
querying the memory while the reference decoder takes the
fused features from memory for reconstruction.

3.2. Spatial Memory

Fig. 4 shows an overview of the spatial memory that con-
sists of a dense working memory, a sparse long-term mem-
ory, and a memory query mechanism for extracting features
from the memory, which we will describe next.
Memory query. The spatial memory stores all key and
value feature fK , fV ∈ RBs×(T ·P )×C , where Bs, (T ·
P ), C are batch size, number of tokens and channels. To
compute fused feature fG

t−1, we apply a cross attention us-
ing query feature fQ

t−1 ∈ RBs×P×C for memory reading:

fG
t−1 = At−1f

V + fQ
t−1, (8)

where At−1 ∈ RBs×P×(T ·P ) is the attention map:

At−1 = Softmax(
fQ
t−1(f

K)⊤
√
C

). (9)

This attention map contains a dense attention weight for
each token in the current query with respect to all tokens
in memory keys (See Fig. 8). During training, We apply
an attention dropout of 0.15 to encourage the model to rea-
son the geometry from a subset of the memory values. In

Figure 4. Overview of our spatial memory. Our memory con-
tains a dense working memory chunk and a sparse long-term mem-
ory chunk. For each memory query, all tokens in both long-term
memory and working memory will be used for generating atten-
tion weight and the fused feature. We also visualize the cumulative
histogram of the values in attention weight.

practice, we observe that at inference, most of the attention
weights are relatively small, as illustrated in the cumulative
histogram of Fig. 4. However, despite their small weights,
the corresponding patches can be significantly distant from
the query patches or even outliers. In the end, their mem-
ory values might still have a non-negligible impact on the
fused features. To mitigate the impact of these outlier fea-
tures, we apply a hard clipping threshold of 5 × 10−4 and
re-normalize the attention weights at inference time.

Eq. 8 contains a weighted average of value features along
(T ·P ). Thus, the memory query mechanism, by design, can
handle features with different (T · P ). This enables us to
prune key and value features along this dimension at infer-
ence. To this end, we divide memory into working memory
and long-term memory.
Working memory. This consists of dense memory features
from the recent 5 frames. For each incoming memory fea-
ture, we first correlate its key feature with each key feature
in working memory. We only insert new key and value fea-
tures into working memory if their maximum similarity is
less than 0.95. Once the working memory is full, the oldest
memory features are drained into long-term memory.
Long-term memory. At inference, long-term memory ac-
cumulates over time, which increases GPU memory usage
and slows down speed. Inspired by XMem [16], we design a
similar strategy to sparsify long-term memory. Specifically,
for each token in long-term memory keys, we keep track of
its accumulated attention weights (i.e., A in Eq. 9). Once
the long-term memory reaches a predefined threshold, we
perform memory sparsification by retaining only the top-k
memory keys and their corresponding value features.

3.3. Training and Inference

Objective function. Following DUSt3R [81], we train our
model by a simple confidence-aware regression loss. We
additionally include a scale loss to encourage the average



FrozenRecon [88] DUSt3R† [81] Ours GT Reference

f
i
r
e
-
0
4

r
e
d
k
i
t
-
0
6

o
f
f
i
c
e
-
0
9

Figure 5. Qualitative examples. We show qualitative examples of DUSt3R† [81], FrozenRecon [88] for a comprehensive comparison.
Our method shows competitive results in comparison to other offline methods. However, since our method runs online without any
optimization-based alignment, it can potentially lead to drift issues in some challenging scenarios (See Office-09).

distance of the predicted point cloud to become smaller than
the ground truth. The overall loss is L = Lconf + Lscale.

Note that to compute Lconf , both the predicted and
ground truth pointmaps are normalized by their average dis-
tance. We tried to fix this scale based on the first two-view
prediction during initial experiments, but it does not work
well due to the presence of outliers and the unbounded na-
ture of the outdoor scene, Co3D [58], for instance.
Curriculum training. Due to GPU memory constraints,
we train our model by randomly sampling 5 frames per
video sequence. Thus, the memory bank contains only a
4-frame memory at maximum during training. To ensure
the model adapts to diverse camera motions and long-term
feature matching, we gradually increase the sample window
size throughout the training. For the last 25% epochs, we
gradually decrease the window size to ensure the training
frame interval aligns with the inference frame interval.
Inference. Our model naturally fits sequential data, i.e.
video sequence. For unordered image collections, we can
build a dense pairwise graph as in DUSt3R [81]. The pair
with the highest confidence will be used for initialization.
Then, we can either build a minimum spanning tree based
on pairwise confidence or directly feed the remaining im-
ages into our model to identify the next best image based on
the predicted confidence. Note that the confidence map in
DUSt3R [81] involves an exponential function, which tends
to overweight patches with higher confidence. In our case,
we find that map it back to a sigmoid function for view se-
lection can improve the robustness of the reconstruction.

4. Experiments

4.1. Setup

Datasets. DUSt3R [81] adopts a mixture of 8 datasets:
Habitat [62], MegaDepth [43], ARKitScenes [9], Static
Scenes 3D [49], BlendedMVS [90], ScanNet++ [92],
Co3D-v2 [58], and Waymo [74]. We choose a subset
of datasets: Habitat [62], ScanNet [20], ScanNet++ [92],
ARKitScenes [9], BlendedMVS [90], Co3D-v2 [58] for
training our model. Note that for Habitat [62], we only use
a small subset of the scenes to synthesize data for train-
ing. To demonstrate the generalization ability of our model,
we quantitatively evaluate our model on 3 unseen datasets:
7Scenes [67], NRGBD [6], and DTU [1].
Baselines. We consider DUSt3R [81] and FrozenRe-
con [88] as our baselines. FrozenRecon is a test-time op-
timization method that jointly optimizes camera parameters
with the scale and shift factor of the depth map from the
off-the-shelf monocular depth estimation model. All evalu-
ations are performed on a single NVIDIA 4090 GPU with
24GB of memory. DUSt3R† denotes running DUSt3R’s fi-
nal weight with 224×224 images as running full reconstruc-
tion on 512 × 384 images cannot fit in 24GB memory. We
include both results of DUSt3R on few-view reconstruction.
Ours⋆ denotes offline reconstruction using predicted confi-
dence for next-view selection.
Metrics. We use accuracy, completion and normal consis-
tency as in prior works [6, 78, 95]. The predicted dense



Method Optim. Onl.
7 scenes NRGBD

FPS
Acc↓ Comp↓ NC↑ Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

F-Recon [88] ✓ 0.1243 0.0762 0.0554 0.0231 0.6189 0.6885 0.2855 0.2059 0.1505 0.0631 0.6547 0.7577 <0.1
Dust3R† [81] ✓ 0.0286 0.0123 0.0280 0.0091 0.6681 0.7683 0.0544 0.0251 0.0315 0.0103 0.8024 0.9529 0.78

Ours ✓ 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625 0.0691 0.0315 0.0291 0.0110 0.7775 0.9371 65.49

Dust3R [81] (FV) ✓ 0.0188 0.0087 0.0234 0.0096 0.7851 0.8985 0.0392 0.0167 0.0342 0.0121 0.8765 0.9757 0.48
Dust3R† [81] (FV) ✓ 0.0279 0.0133 0.0276 0.0108 0.7630 0.8841 0.0591 0.0266 0.0409 0.0136 0.8305 0.9556 1.42

Ours⋆ (FV) 0.0233 0.0108 0.0246 0.0104 0.7791 0.9003 0.0587 0.0239 0.0390 0.0132 0.8384 0.9616 5.83
Ours (FV) ✓ 0.0239 0.0111 0.0247 0.0103 0.7768 0.8985 0.0611 0.0254 0.0392 0.0135 0.8330 0.9593 72.04

Table 1. Quantitative results on 7Scenes [67] and NRGBD [6] datasets. DUSt3R† indicates using DUSt3R’s final weights on 224×224
images, same as our input resolution, to fit within 24GB GPU memory. For few-view (FV) reconstruction, we use the 8-frame pairs [26]
as in SimpleRecon [63]. Note that evaluating DUSt3R at the original resolution may benefit from increased visual overlap.

Method Opt. Onl. Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

Dust3R [81] ✓ 2.114 1.159 2.033 0.914 0.749 0.849
Dust3R† [81] ✓ 2.296 1.297 2.158 1.002 0.747 0.848

Ours⋆ 2.902 1.273 2.120 0.937 0.732 0.836
Ours ✓ 4.785 2.268 2.743 1.295 0.721 0.823

Dust3R [81] (FV) ✓ 2.128 1.241 2.464 1.228 0.797 0.889
Dust3R† [81] (FV) ✓ 2.511 1.484 2.661 1.230 0.788 0.883

Ours⋆ (FV) 3.055 1.600 2.878 1.345 0.781 0.878
Ours (FV) ✓ 3.375 1.782 2.870 1.338 0.777 0.875

Table 2. Quantitative results on DTU [1] dataset. For few-view
(FV) reconstruction, we use pairs provided in MVSNet [89].

pointmap is directly compared with the back-projected per-
point depth, excluding invalid and background points if ap-
plicable. Since the reconstruction is up to an unknown
scale, we align the reconstruction following DUSt3R [81].
For DUSt3R† and our method, 224 × 224 inputs are gen-
erated using resizing and center cropping. Evaluation on
DUSt3R and FrozenRecon with full-resolution images is
restricted to the same 224 × 224 region for fairness. How-
ever, evaluating on full-resolution (4:3) may benefit from
increased visual overlapping compared to 224× 224 (1:1).
Implementation details. We initialize part of our model
with pre-trained weights from DUSt3R [81, 82] with ViT-
large [25] encoder, ViT-base decoders, and a DPT head [57].
For the memory encoder, we employ a light-weight ViT
containing 6 self-attention blocks with the embedding di-
mension of 1024. Due to the computational constraint, we
only train our model on 224 × 224 images for 120 epochs
using AdamW optimizer with a learning rate of 5e− 5 and
β = (0.9, 0.95). The training takes around 10 days on 8
V100 GPUs, each with 32GB memory. The batch size is 4
per GPU, which leads to the effective batch size of 32.

4.2. Evaluation

Scene-level reconstruction. We compare the reconstruc-
tion quality with FrozenRecon [88] and DUSt3R [81], both
of which are offline dense reconstruction methods that in-

Method Acc↓ Comp↓ NC↑

Mean Med. Mean Med. Mean Med.

w/o lm 0.2554 0.1419 0.1470 0.0872 0.5964 0.6523
w/o clip 0.0349 0.0161 0.0249 0.0090 0.6627 0.7614

Full 0.0342 0.0148 0.0241 0.0085 0.6635 0.7625

Table 3. Ablation studies on spatial memory. w/o lm: use work-
ing memory only. w/o clipping the attention weight.

volve optimization-based alignment. As shown in Tab. 1,
our model shows competitive online reconstruction qual-
ity compared to the other two offline methods while being
significantly faster. This is because our model is able to
predict the pointmap in a common coordinate system with-
out the need for test-time optimization. For few-view re-
construction, our model achieves performance on par with
DUSt3R†. However, since our model is trained on 224×224
images, it shows a performance gap compared to DUSt3R
which uses 512 × 384 images for reconstruction, espe-
cially on the NRGBD [6] dataset, which contains many thin
structures. Fig. 5 shows three qualitative examples on the
7scenes [67] dataset, where our model demonstrates com-
parable results to DUSt3R†. However, due to the absence
of bundle adjustment, our model may drift. This is shown
in Office-09, where a strong specular reflection in the corner
causes inaccurate prediction, eventually leading to drift.
Object-level reconstruction. In Tab. 2, we evaluate the
object-level reconstruction on DTU [1] dataset. DTU con-
tains a challenging camera trajectory, starting from a top-
down view, which makes online reconstruction particularly
difficult. For offline reconstruction, our method achieves
performance on par with DUSt3R† in terms of median Acc,
Comp, and NC. It is important to note that DTU contains a
black background with many thin structures (see Fig. 8). As
a result, our model may produce floaters around the edges,
which receive significant penalties in terms of mean Acc.
Run-time and memory footprint. Our default setting of
online reconstruction can run around 65fps with 11GB GPU
memory on a single 4090 GPU.
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Figure 6. Online reconstruction. We visualize the process of our online reconstruction in two indoor scenes. In both cases, our model
shows its understanding of the regularity of the indoor scene, i.e., the Manhattan World Assumption. Our model can infer the geometry of
the textureless wall based on those learned regularity. However, during loop closing, our model may not fill the geometry accurately due
to the accumulated errors and outliers (noisy points around the window in the second scene.)
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Figure 7. Ablation study on memory size. We plot Chamfer
distance against the max number of tokens in long-term memory.

4.3. Analysis

Effect of the memory bank. We conduct an ablation study
on our memory bank in Tab. 3. Without long-term memory
(w/o lm), the model tends to drift quickly when relying only
on the working memory, which consists of the most recent 5
frames. Additionally, without clipping attention weight, the
performance of our model can degrade in certain scenes.
This occurs because despite most attention weight values
being small (See Fig. 4), the corresponding memory val-
ues can still differ significantly, especially when the geom-
etry prediction contains outliers. Filtering out those small
attention weights can improve the robustness of our recon-
struction pipeline in various challenging scenarios. Fig. 7
shows the reconstruction quality with respect to different
long-term memory sizes. In practice, we find that 4000
memory tokens are sufficient for most scenes.
Online reconstruction. We visualize the online reconstruc-
tion of two indoor scenes in Fig. 6. Our method can achieve
the online reconstruction of the indoor scene even in some
challenging scenarios (textureless walls). This shows a cer-
tain level of understanding of the regularity presented in in-

Figure 8. Visualization of the attention map. We visualize the
attention weight of selected patches with respect to all tokens in
the memory. The results show robustness toward visually similar
patches (e.g., right eye/feet).

door scenes, i.e. Manhattan World Assumption. However,
one limitation is that due to the accumulated errors and out-
liers, our model may not fill the geometry correctly when
the loop closes (See last column of Fig. 6).
Visualization of affinity map. In Fig. 8, we visualize the
attention weights corresponding to different patches in the
query frame throughout the memory frames. To read out
from memory, we project visual features and geometry fea-
tures from two decoders into query features and memory
key features as in Eq. 4 and Eq. 7. This can help to distin-
guish the parts with similar appearance and semantics but



Figure 9. Qualitative examples in various real-world datasets. We visualize several reconstruction results of Spann3R on Map-free
Reloc [4], ETH3D [66], MipNeRF-360 [7], NeRF [50] and TUM-RGBD [70] datasets to demonstrate the generalization ability of our
methods on different type of scenes, including indoor, outdoor, object-level, scene-level reconstruction.

in different locations (e.g. the right eye and foot of the toy).
Generalization to other unseen datasets. We demonstrate
the generalization capability of Spann3R through qualita-
tive examples of reconstructions shown in Fig. 9. These
examples include results from the Map-free Reloc [4],
ETH3D [66], MipNeRF-360 [7], NeRF [50] and TUM-
RGBD [70] datasets. The results illustrate that Spann3R
can generalize to different types of scenes and has a certain
level of robustness across various challenging scenarios.

4.4. Discussion

Despite showing competitive results across various datasets,
our method still has some inherent limitations. We will de-
scribe several limitations and potential directions next.
Large-scale scene reconstruction. Our model can deal
with large-scale object-centric scenes fairly well. However,
in cases where the camera continuously moves forward or
reconstructs large multi-room scenes, our model might fail.
This limitation arises due to the limited memory size dur-
ing training. Since our training process assumes the cam-
era pose of the first frame is the identity, training on just 5
frames typically spans only a limited spatial region. To ad-
dress this issue, one approach could be to restart our model
every few frames and then align the different fragments us-
ing PnP-RANSAC. Alternatively, a more scalable sampling
strategy in training or a more structured memory system at
inference is needed to overcome this challenge.
Bundle adjustment. For an incremental reconstruction
pipeline, bundle adjustment is usually of great importance
for mitigating error accumulation. In the case of Spann3R,
the question would be: Can we learn to update and fuse
our memory when incorporating new observations? Alter-
natively, since the concept of Spann3R is to predict the next
frame based on previous predictions, we could potentially
integrate traditional bundle adjustment techniques to correct

the geometry. The model could then encode this corrected
geometry into the spatial memory, leading to more accurate
predictions in subsequent frames.
Training data. Due to the constraint of the computational
resources, we only train our model across 6 datasets using
five 224×224 images sampled from the entire sequence. We
expect training on the entire datasets of DUSt3R [81], either
with more than five images or at a higher 512 resolution,
could further improve the accuracy. Moreover, the current
model relies on a substantial amount of posed RGB-D data.
It is worth exploring how to effectively learn data-driven
prior from casual videos using self-supervised training.

5. Conclusion
We have presented Spann3R, a model capable of achiev-
ing incremental reconstruction from RGB images with-
out requiring prior knowledge of the camera parameters.
By introducing the concept of spatial memory, which en-
codes previous states for next-frame prediction, Spann3R
reconstructs scenes through a simple forward pass with
a transformer-based architecture, eliminating the need for
test-time optimization. This enables online reconstruc-
tion in real time. Trained on various large-scale datasets,
Spann3R demonstrates competitive reconstruction quality
and generalization ability across various scenarios. Future
work includes extending our method to handle large-scale
scenes, incorporating bundle adjustment techniques, and
exploring self-supervised training on casual videos.
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