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Emphasizing Semantic Consistency of Salient Posture for
Speech-Driven Gesture Generation

Anonymous Authors

ABSTRACT
Speech-driven gesture generation aims at synthesizing a gesture
sequence synchronized with the input speech signal. Previous meth-
ods leverage neural networks to directly map a compact audio
representation to the gesture sequence, ignoring the semantic as-
sociation of different modalities and failing to deal with salient
gestures. In this paper, we propose a novel speech-driven gesture
generation method by emphasizing the semantic consistency of
salient posture. Specifically, we first learn a joint manifold space
for the individual representation of audio and body pose to exploit
the inherent semantic association between the two modalities, and
propose to enforce semantic consistency via a consistency loss.
Furthermore, we emphasize the semantic consistency of salient
postures by introducing a weakly-supervised detector to identify
salient postures, and reweighting the consistency loss to focus more
on learning the correspondence between salient postures and the
high-level semantics of speech content. In addition, we propose
to extract audio features dedicated to facial expression and body
gesture separately, and design separate branches for face and body
gesture synthesis. Extensive experiments and visualization results
demonstrate the superiority of our method over the state-of-the-art
approaches.

CCS CONCEPTS
• Computing methodologies→ Animation.

KEYWORDS
speech-driven gesture generation, semantic consistency, neural
generative model, multi-modality

1 INTRODUCTION
The task of speech-driven gesture generation aims to synthesize a
sequence of gestures line with the given speech signal, which has a
wide range of application scenarios, including online service [20,
22], virtual avatar animation [21, 39] and human-machine inter-
action [6, 30, 31]. Compared with lip motion generation, speech-
driven gestures are more implicit and metaphoric, which makes
the gesture generation task a non-trivial challenge.

Considering the significant modality gap between speech and
gestures, traditional works [8, 11, 19, 33] tackle the problem through
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Figure 1: Salient postures indicate the large pose movements
associated with the high-level semantics of speech content,
e.g., cooling down, which are hard to be generated. Our
method can synthesizemore realistic gestures than SEEG [21]
by emphasizing semantic consistency of salient postures.

rule-based generation approaches, which establish the determinis-
tic correspondence between audio syllables and gesture sets. Such
methods ignore the intrinsic connection between different modal-
ities and suffer from poor naturalness. Recent data-driven meth-
ods [21, 24] achieve better performance by utilizing deep neural
networks to extract audio representation of different semantic gran-
ularities, which is then decoded to generate a holistic gesture se-
quence. However, these methods suffer from the following major
weaknesses: (1) their pipelines are straightforward and cannot ef-
fectively achieve semantic consistency between the speech content
and the synthesized gestures, especially for the postures with large
movement scope. (2) They treat facial expressions and body move-
ments as a whole and simultaneously synthesize them with a single
pipeline, which typically leads to poor synchronization between
facial expressions and speech.

Therefore, our primary goal is to enhance the correspondence
between the generated gestures and the semantics in the speech
content. From a human gesture study [12], we identify one sig-
nificant observation: postures with large movement scope in the
sequence correspond to strong and rich semantic information of
speech audio, and postures with slight movement scope correspond
to weak semantics of speech audio. As illustrated in Figure 1, the
gesture sequence of opening and raising the arms, then folding and
lowering them is closely related to the phase cooling down. For clar-
ity, we define salient postures as the postures with large movement
scope, i.e., the movements in which the shoulders and arms have
a relatively large amplitude of motion, which are often related to
strong semantics of the speech content. Salient postures in gesture
sequences tend to be significant in conveying the intention and
emotion of speakers, and therefore the exact correspondence rela-
tionship between salient postures and speech with strong semantics
will contribute to the vivid and realistic gesture generation.

1
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Inspired by the above discussions, we propose a novel speech-
driven gesture generation method by emphasizing semantic consis-
tency of salient posture. To fully exploit the inherent semantic as-
sociation between audio and gesture, we first learn a joint manifold
space for the representations of audio and body pose to establish
a mapping between the two modalities. Through the consistency
loss, we ensure that the audio and pose features are close to each
other in the shared joint-embedding space and represent similar
semantic information.

Furthermore, we propose to emphasize the semantic consis-
tency of salient postures, i.e., postures with large movement
scope that often correspond to strong semantics. We design a
weakly-supervised salient posture detector to identify salient pos-
tures, which utilizes a temporal relation module to mine long-range
temporal dependencies among the pose features and predicts frame-
level saliency score. We then use the saliency score to reweight
the consistency loss to enforce a stronger alignment between the
salient postures and corresponding audios in the joint embedding.

In addition, facial expressions, especially lip motions, mainly
rely on articulation-related acoustic features; while body gestures
are closely correlated with strong semantics in the speech content.
Therefore, we extract audio features dedicated to facial expressions
and body gestures separately, and synthesize facial expressions
and body gestures with separate branches. Meanwhile, we enforce
the temporal alignment between the audio features extracted in
the face branch and the body branch, which effectively improves
synchronization and naturalness between the face and body parts.
Our main contributions can be summarized as follows:

• Wepropose a novel speech-driven gesture generation frame-
work with an emphasis on semantic consistency of salient
posture. We introduce the joint manifold space to learn the
inherent semantic association between audio and gesture
modalities and enforce semantic consistency via a consis-
tency loss.

• We emphasize the semantic consistency of salient postures
by introducing a weakly-supervised detector to identify
salient postures, and reweighting the consistency loss based
on saliency score to enforce a stronger alignment in the
joint manifold space.

• Observing that facial expressions rely on articulation-related
audio features while body gestures rely on semantic-related
audio features, we propose to extract separate audio fea-
tures for face and body, and design separate branches for
face and body gesture synthesis.

2 RELATEDWORK
Audio-Visual Cross-Modal Learning.Multi-modalmachine learn-
ing aims to train models capable of processing and relating informa-
tion from multiple modalities. Recent works [1, 2, 35] encode all the
modalities into a common representation space. Language2Pose [2]
learns a joint embedding of text and pose. Ahuja et al. [1] maps
the learned style embedding along with audio into a joint gesture
space. Trimodal [35] utilizes separate representations for different
modalities and handles the alignment between speech and gesture
explicitly. Compared with these methods, our method focuses on
identifying the strong semantic correlations between speech audio

and visual gestures to synthesize more natural-looking and vivid
gesture sequences.
Speech-DrivenGesture Generation. Synthesizing consistent and
natural gestures in line with speech is becoming popular in the field
of multi-modal generation. With the development of deep learning,
recent works [3, 13, 29, 32] leverage deep neural networks to gen-
erate more natural gesture sequences. Audio2Body [32] learns the
correlation between audio features and body landmarks through
an LSTM network and concentrates on predicting body motion
from specific music like piano and violin. S2G [13] incorporates
generative adversarial learning into the regression-based prediction
model to enhance the naturalness of generated results. MoGlow [3]
adapts the probabilistic model to this task to learn the distribution
of gesture motions and can effectively take control over gesture
styles. SDT [29] learns template vectors to provide extra informa-
tion for gesture generation and transform the one-to-many ambigu-
ous regression problem into a deterministic conditional regression
problem. However, these methods ignore the semantic association
of different modalities and fail to deal with habitual and salient
gestures. Our method utilizes joint manifold space to model the
mapping function and design a salient posture detector to maintain
semantic consistency of salient gestures.
Anomaly Detection. Video anomaly detection aims to identify
abnormal events in the video that do not match the normal be-
haviors. Early works [16, 18, 27, 28] focus on detecting anomalies
through manually extracting features and modeling the anomalies.
Recently, several deep learning-based methods [14, 23, 25, 26, 37]
have achieved significant performance improvement. Reconstruction-
based methods [14, 26, 37] utilize the autoencoder trained on nor-
mal datasets and detect anomalous frames which are difficult to
be reconstructed well. Prediction-based methods [23, 25] predict
future frames and utilize prediction error as an indicator to deter-
mine anomalies, considering the frames with large prediction errors
as anomalies. Different from these methods, we design a weakly-
supervised salient posture detector to identify anomaly gestures
only under the weak supervision of video-level labels. and reweight
the cross-modal association based on the predicted saliency score.

3 METHOD
3.1 Overview and Notations
To fully empower the learning of semantic association between
speech and gesture, we propose a novel speech-driven gesture
synthesis method that emphasizes semantic consistency of salient
postures, i.e., postures with large movement scope that often cor-
respond to strong semantics. Our overall architecture is shown in
Figure 2. Our model first learns a joint manifold space for different
representations of audio and body pose to explore a finer mapping
between two modalities. Then, we emphasize the semantic con-
sistency of salient postures by introducing a weakly-supervised
detector to identify salient postures, and enforcing a stronger align-
ment for the salient postures in the joint manifold space. In addition,
observing that facial expressions rely on articulation-related au-
dio features while body gestures rely on semantic-related audio
features, we extract separate audio features for face and body, and
design separate branches for face and body gesture synthesis.

2
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Figure 2: The overall architecture of our proposed method, which consists of two branches including body synthesis branch
and face synthesis branch. In the body synthesis branch, our model learns a joint manifold space of representations to enforce
semantic consistency by employing a dual-path structure, which contains the upper reconstruction path and the lower speech-
driven generation path. Furthermore, the salient posture detector is designed to identify salient gestures and reweight the
consistency loss. We then generate synchronized facial expressions using face synthesis branch. Finally, we fuse the generated
results of two branches to obtain the entire gesture sequence.

Given an audio clip 𝐴 = [𝐴1, . . . , 𝐴𝑇 ], speech-driven gesture
synthesis aims to generate a pose sequence 𝑃 = [𝑃1, . . . , 𝑃𝑇 ] syn-
chronized with the audio, where the length of sequence is𝑇 and 𝑃𝑡
is the pose at the 𝑡 th frame. Each 𝑃𝑡 is defined as the coordinates
set of 𝐽 upper-body keypoints in a frame, including face, hands,
and arms. The major challenge of synthesizing realistic gestures is
how to establish the reasonable mapping: 𝐴1:𝑇 → 𝑃1:𝑇 . Due to the
discrepancy of mapping property of different parts, we decompose
the entire pose 𝑃𝑡 into body part 𝑃𝑏𝑡 and face part 𝑃 𝑓

𝑡 . The whole
gesture sequence 𝑃 can be formulated as: 𝑃 = 𝑃𝑏 ⊕ 𝑃 𝑓 .

For the generation of body poses, we first utilize two feature
extractors to extract audio and pose latent codes respectively. Then,
we use a pose decoder to separately generate poses from these
two latent codes. The output of our pose decoder is a sequence
of 𝑇 frames. We denote the pose sequence generated from pose
latent codes as 𝑃𝑏𝑝 , and the pose sequence generated from audio
latent codes as 𝑃𝑏𝑎 . Then, for facial expressions synthesis, we extract
different audio features (articulation-related) and directly generate
a sequence of 𝑇 frames 𝑃 𝑓

𝑎 . Eventually, by fusing the synthesis
results of the two branches, we obtain the final output of the entire
gesture sequence 𝑃 = 𝑃𝑎 = 𝑃𝑏𝑎 ⊕ 𝑃

𝑓
𝑎 .

3.2 Joint Manifold Space for Speech and Gesture
Due to the high randomness of body motion, our model learns a
multi-modal joint manifold space between audio and body pose
to explore the semantic correlation between audio and pose repre-
sentations. To form the shared joint-embedding space, as shown
in the upper part of Figure 2, we employ a dual-path architecture
that consists of two parallel pipelines: the reconstruction path for

body pose and the speech-driven gesture generation path. The re-
construction path takes as input the real pose sequence of body
part 𝑃𝑏 , and uses a pose encoder 𝐸𝑛𝑐𝑝 consisting of two GRUs to
obtain a pose feature in the joint manifold space,

𝑍𝑏
𝑝 = 𝐸𝑛𝑐𝑝 (𝑃𝑏 ), (1)

where 𝑍𝑏
𝑝 ∈ R𝑇×𝐷 is the latent code of body pose and 𝐷 represents

the dimension of the latent code.
For the speech-driven gesture generation path, we first utilize

the audio encoder 𝐸𝑛𝑐𝑎 to encode the mel-spectrogram of au-
dio and concatenate it with the feature code 𝑓𝑑 extracted by the
𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑐ℎ [4] model, which is pre-trained by large numbers of
audio-transcript pairs. The integration of high-dimensional repre-
sentations of 𝐷𝑒𝑒𝑝𝑆𝑝𝑒𝑒𝑐ℎ can provide richer semantic information
for follow-up gesture generation. We further map the concatenated
feature to an audio feature in the joint manifold space using 1D
UNet translation network,

𝑍𝑏
𝑎 = 𝑈𝑁𝑒𝑡 (𝐸𝑛𝑐𝑎 (𝐴) ⊕ 𝑓𝑑 ), (2)

where 𝑍𝑏
𝑎 ∈ R𝑇×𝐷 is the latent code of audio corresponding to

body part.
To guarantee that 𝑍𝑏

𝑝 and 𝑍𝑏
𝑎 lie close to each other in the shared

joint-embedding space and represent similar semantic information,
we propose the consistency loss to constrain the latent codes. Simi-
lar to the cosine similarity function, the consistency loss calculates
the cosine similarity between the body pose latent code and audio
latent code:

𝐿𝑐𝑜𝑛 =

𝑇∑︁
𝑡=1

(1 −
𝑍𝑏
𝑝,𝑡 · 𝑍𝑏

𝑎,𝑡

max( | |𝑍𝑏
𝑝,𝑡 | | · | |𝑍𝑏

𝑎,𝑡 | |, 𝜖)
), (3)

3
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Figure 3: The detailed structure of proposed salient posture detector. We take as input the real body poses 𝑃𝑏 and extract the
initial feature 𝑋 using the ConvNet. Then, 𝑋 is fed into the temporal relation module to obtain the interaction feature 𝑌 . We
utilize a classifier to map 𝑌 to the 1D salient score 𝑆𝑏 , which is used to reweight the consistency loss of joint manifold training.

where 𝑍𝑏
𝑝,𝑡 and 𝑍

𝑏
𝑎,𝑡 are the 𝑡

th value of latent codes along time axis
respectively, and 𝜖 is a fairly small positive scalar.

Then, the decoders of the reconstruction path and generation
path learn to generate the pose sequences 𝑃𝑏𝑝 and 𝑃𝑏𝑎 from the above
two latent codes,

𝑃𝑏𝑝 = 𝐷𝑒𝑐 (𝑍𝑏
𝑝 ), 𝑃𝑏𝑎 = 𝐷𝑒𝑐 (𝑍𝑏

𝑎 ). (4)

Here, two decoders share the same network parameters and both
are denoted as 𝐷𝑒𝑐 .

3.3 Weakly-supervised Salient Posture Detector
Salient postures are the postures with a large range of motion,
which are closely related to strong semantics of the speech con-
tent. Therefore, we propose a weakly-supervised salient posture
detector to predict the saliency score of poses for each frame, which
will then be used to reweight the consistency loss. This strategy
enforces a more accurate alignment of salient pose representation
and corresponding audio representation in the joint embedding.
The architecture of the detector is depicted in Figure 3. First, we
utilize the inflated ConvNet [7] to extract the initial frame-level
feature 𝑋 ∈ R𝑇×𝐷1 , where 𝐷1 denotes the dimension of the initial
feature. Then, we feed𝑋 into a temporal relation module to capture
long-range temporal dependencies among features and transform
𝑋 into the interaction feature 𝑌 ∈ R𝑇×𝐷1 . Then, a classifier is used
to project the interaction feature into the 1D vector space to obtain
the frame-level saliency score of poses 𝑆𝑏 ∈ R𝑇 . We use the aver-
age saliency score of 𝑡𝑜𝑝-𝑘 frames as the saliency prediction for
the video sequence, and make it close to the video-sequence-level
saliency label using the binary cross-entropy loss.

3.3.1 Sequence-level Salient Label. To facilitate the network to
adaptively learn which frames are salient, we train the detector
under the weak supervision of the video-sequence-level saliency
labels. To acquire the sequence-level labels, we first derive the
resting pose (the most frequent posture) of each speaker in the
entire dataset as illustrated in the S2G [13]. For a pose sequence,
we calculate the 𝐿2 distance between the pose of each frame and
the resting pose. Then we can obtain the probability distribution of
all distances and determine whether the sequence contains salient
data points based on the triple variance criterion. Video sequences
containing salient points are assigned label 1 and otherwise 0.

Additionally, the ground truth of poses is pseudo and obtained
using OpenPose [5], therefore it is inaccurate to directly take the
saliency points as the frame-level labels. Sequence-level saliency
labels can mitigate this error and facilitate the detector and gener-
ation network to learn the exact correspondence between salient
postures and speech semantics. See the comparison results in Ta-
ble 6 of the ablation study.

3.3.2 Temporal Relation Module. Inspired by the temporal atten-
tion architecture [34], we design the temporal relation module
(TRM) to mine the most relevant information between frames to
facilitate salient posture detection. Compared with [34], our TRM
leverages the global information of a sequence instead of local
information in neighbor frames to exploit long-range temporal de-
pendencies, and capture the index prior of all frames to improve
the representation capability.

Specifically, we first compute the adjacency matrix for the initial
frame-level feature 𝑋 to measure the affinity in the embedding
space, and then normalize the matrix using softmax function along
each row. We denote the normalized adjacency matrix as weight
matrix𝑊1, which can be formulated as:

𝑊1 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜃 (𝑋 )⊤𝜑 (𝑋 )), (5)

where 𝜃 and 𝜑 denote linear transformation functions.
Then we incorporate the frame index prior into the network

to distinguish the importance of neighbor frames to the current
frame. We denote the index prior matrix as 𝐼 = [𝑖1, 𝑖2, . . . , 𝑖𝑡 , . . . , 𝑖𝑇 ],
where 𝑖𝑡 is the negative relative distance vector between the current
frame (𝑡 th) and all frames. Since frames closer to the current frame
have more relevant information, we use the softmax function to
transform the index matrix 𝐼 into another weight matrix𝑊2, where
closer frames are mapped to higher weights. We then concatenate
𝑊2 with𝑊1 to compute the final interaction feature 𝑌 :

𝑌 = 𝜙 ((𝑊1 ⊕𝑊2) × 𝑋 ), (6)

where 𝜙 denotes the transformation functions implemented by FC
layers.

3.3.3 Emphasizing Consistency for Salient Posture. After we ob-
tain the frame-level saliency score for body poses, we use the
saliency score to reweight the consistency loss in Eq.(3) to enforce
stronger semantic consistency for salient postures (as shown in the

4
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upper part of Figure 2). The reweighted consistency loss can be
re-formulated as follows:

𝐿𝑐𝑜𝑛 =

𝑇∑︁
𝑡=1

𝑆𝑏𝑡 · (1 −
𝑍𝑏
𝑝,𝑡 · 𝑍𝑏

𝑎,𝑡

max( | |𝑍𝑏
𝑝,𝑡 | | · | |𝑍𝑏

𝑎,𝑡 | |, 𝜖)
), (7)

where 𝑆𝑏𝑡 is the predicted saliency score for the body pose in the
𝑡-th frame. The reweighted consistency loss with saliency score
can effectively enforce the model to focus more on learning the
mapping between salient pose and the high-level semantics of audio
during the joint training.

3.4 Separate Face and Body Synthesis
3.4.1 Separate Audio Feature for Face and Body. Synthesizing fa-
cial expressions and body gestures as a whole often leads to poor
lip synchronization, since different audio features are required for
the generation of face and body parts: articulation-related acoustic
features are required for face and semantic-related acoustic features
for body. Therefore, we extract audio features dedicated to facial
expressions and body gestures separately, and synthesize facial ex-
pressions and body gestures with separate branches. As shown in
the lower part of Figure 2, for the face synthesis branch, we utilize
a separate audio encoder and UNet to extract the rhythmic repre-
sentation of audio 𝑍 𝑓

𝑎 ∈ R𝑇×𝐷 . Then, we decode 𝑍 𝑓
𝑎 to generate a

sequence of𝑇 frames of facial keypoints 𝑃 𝑓
𝑎 using a decoder, which

has the same network structure as the body synthesis branch but
different parameters.

3.4.2 Face-Body Feature Alignment. Although the separate body
and face branches can yield individual prediction results well aligned
with audio, the final gesture sequences generated by direct con-
catenation of the two results tend to be inconsistent and unnatural.
Therefore, we design a binary classification task at the feature
level to enforce the temporal alignment between representations of
the body branch and face branch. As shown in Figure 4, from the
semantic-related acoustic feature 𝑍𝑏

𝑎 (for body gesture synthesis)
and the articulation-related acoustic feature 𝑍 𝑓

𝑎 (for facial expres-
sion synthesis), we randomly sample body feature sequence 𝑍𝑏

𝑎,𝑡𝑏

and face feature sequence 𝑍 𝑓
𝑎,𝑡𝑓

, which have the same length of
frames𝑇𝑐 . Here, 𝑡𝑏 and 𝑡𝑓 represent the starting index of the feature
sequences respectively. We denote the one-hot label as 𝑐 ∈ R2 to
distinguish whether the audio features corresponding to the body
and face parts are well aligned over the temporal dimension. Then,
we can obtain the labeled feature pairs including the aligned posi-
tive pairs ( if 𝑡𝑏 = 𝑡𝑓 , then 𝑐 = [1, 0] ) and the unaligned negative
pairs ( if 𝑡𝑏 ≠ 𝑡𝑓 , then 𝑐 = [0, 1] ). We take the labeled feature
pairs as training data to optimize the binary classifier 𝐶 to deter-
mine whether the two input features are temporally aligned. As
depicted in Figure 4, the structure of 𝐶 consists of a GRU and three
FC layers. With this module, we can align the feature space of both
branches by self-supervised learning, resulting in realistic gesture
generation with better synchrony. Formally, the loss function of
the classification task can be formulated as:

𝐿𝑐 =
∑︁

𝑡𝑏 ,𝑡𝑓 ∈[1,𝑇−𝑇𝑐 ]
−𝑐 log𝐶 (𝑍𝑏

𝑎,𝑡𝑏
, 𝑍

𝑓
𝑎,𝑡𝑓

), (8)
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Figure 4: The detailed structure of the face-body feature align-
ment module, which is trained by a self-supervised manner.

where 𝐶 (∗, ∗) is the classification result of classifier 𝐶 .

3.5 Objective Function
Reconstruction Loss. The goal of our reconstruction path of the
body synthesis branch is to learn the pose representation space
by recovering the input body pose sequence. Here, we use 𝐿1 loss
function to measure the distance between the reconstructed body
poses 𝑃𝑏𝑝 and ground truth pose sequences 𝑃𝑏 :

𝐿𝑟𝑒𝑐𝑜𝑛 =
1
𝑇

𝑇∑︁
𝑡=1

| |𝑃𝑏𝑝,𝑡 − 𝑃𝑏𝑡 | |1 . (9)

Regression Loss. The main supervision of the training process
is imposed on the pose keypoints, including the supervision of
the overall keypoints as well as the individual part keypoints. The
supervision on the overall pose keypoints is implemented as a 𝐿1
regression loss between the entire gestures 𝑃𝑎 generated from the
given audio and ground truth gestures 𝑃 :

𝐿𝑟𝑒𝑔 =
1
𝑇

𝑇∑︁
𝑡=1

| |𝑃𝑎,𝑡 − 𝑃𝑡 | |1 . (10)

Besides, we additionally apply separate constraints on face pose
keypoints and body pose keypoints by measuring the distance be-
tween gestures 𝑃𝑏𝑎 , 𝑃

𝑓
𝑎 generated from the given audio, and ground

truth 𝑃𝑏 , 𝑃 𝑓 with Huber loss (𝐻𝐿) [17]:

𝐿𝑏𝑜𝑑𝑦 =

𝑇∑︁
𝑡=1

𝐻𝐿(𝑃𝑏𝑎,𝑡 , 𝑃𝑏𝑡 ), 𝐿𝑓 𝑎𝑐𝑒 =

𝑇∑︁
𝑡=1

𝐻𝐿(𝑃 𝑓
𝑎,𝑡 , 𝑃

𝑓
𝑡 ). (11)

Then the entire loss of face part and body part is calculated as the
mean value of 𝐿𝑓 𝑎𝑐𝑒 and 𝐿𝑏𝑜𝑑𝑦 :

𝐿ℎ𝑢𝑏𝑒𝑟 =
1
2𝑇

(𝐿𝑏𝑜𝑑𝑦 + 𝐿𝑓 𝑎𝑐𝑒 ) . (12)

Overall, the total training objective function is:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑟𝐿𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑟𝑒𝑔𝐿𝑟𝑒𝑔 + 𝜆ℎ𝐿ℎ𝑢𝑏𝑒𝑟

+ 𝜆𝑐𝑜𝑛𝐿𝑐𝑜𝑛 + 𝜆𝑐𝐿𝑐 ,
(13)

where 𝜆𝑟 , 𝜆𝑟𝑒𝑔, 𝜆ℎ, 𝜆𝑐𝑜𝑛 , and 𝜆𝑐 are hyper-parameters that can be
adjusted to control the relative significance of each loss term.
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Table 1: Quantitative comparison of all methods on four speakers (Oliver and Kubinec are from the S2G [13] dataset, Xing and
Luo are collected by SDT [29]). We use 𝐿2 dist. and FGD metrics to evaluate the accuracy and realism of generated results. BC
and PSD metrics are utilized to evaluate the synchronization.

Methods Oliver Kubinec Xing Luo
𝐿2 dist. ↓ FGD↓ BC↑ PSD↓ 𝐿2 dist. ↓ FGD↓ BC↑ PSD↓ 𝐿2 dist. ↓ FGD↓ BC↑ PSD↓ 𝐿2 dist. ↓ FGD↓ BC↑ PSD↓

Audio2Body [32] 49.7 3.48 0.27 6.29 70.9 4.51 0.23 6.20 50.9 4.75 0.19 6.41 48.4 2.70 0.21 7.81
S2G [13] 53.5 8.30 0.63 5.97 64.9 4.53 0.61 6.33 48.0 4.49 0.65 6.25 63.7 3.10 0.57 8.12
MoGlow [3] 50.6 2.28 0.32 6.23 78.1 2.49 0.29 6.39 48.4 4.94 0.35 6.34 54.8 1.47 0.30 7.86
SDT [29] 62.4 0.92 0.63 6.12 100.7 1.07 0.65 6.37 57.8 1.72 0.68 6.52 80.8 0.69 0.59 7.97
SEEG [21] 52.9 0.83 0.55 6.58 63.6 1.60 0.53 5.98 47.1 1.89 0.56 6.40 62.4 0.82 0.49 7.24
DiffGesture [38] 48.2 0.76 0.71 6.01 57.0 1.33 0.68 5.72 40.6 1.95 0.73 5.98 50.0 0.75 0.64 7.33
Ours 35.7 0.55 0.78 5.83 42.6 0.46 0.72 5.69 37.9 1.56 0.76 5.91 51.4 0.49 0.68 6.95

Table 2: Quantitative results on TED Expressive dataset. We
compare the proposed method with other recent methods
under FGD, BC, and PSD metrics.

Methods TED Expressive
FGD↓ BC↑ PSD ↓

Attention Seq2Seq [36] 54.92 0.15 7.58
S2G [13] 54.65 0.68 7.95
Joint Embedding [2] 64.56 0.13 7.52
Trimodal [35] 12.61 0.56 7.89
HA2G [24] 5.31 0.64 7.11
DiffGesture [38] 2.60 0.72 6.97
Ours 2.50 0.68 6.83

4 EXPERIMENTS
4.1 Datasets
Speech2Gesture. Speech2Gesture [13] is a speaker-specific dataset
with full body and face keypoints annotations. Following SDT [29],
we test our method on four speakers: Oliver, Kubinec, Luo, and
Xing. The number of different videos of four speakers is 113, 274,
72, and 27, with a total length of about 25 hours. All pseudo key-
point annotations are obtained by OpenPose [5], which contains
121 keypoints. We divide them into different parts, including 70
keypoints for the facial expression, 51 keypoints for the body pose.
TED Expressive. TED Expressive dataset [24] is derived from a
large-scale 3D gesture dataset TED Gesture [35]. Compared to TED
Gesture only with 10 upper body key points, TED Expressive is
more realistic and expressive of both body and finger movements.
Through 3D pose estimator ExPose [9] extracting the pose infor-
mation, TED Expressive contains the 3D coordinate annotations of
43 keypoints, including 13 upper body joints and 30 finger joints.

4.2 Implementation Details
We use the data pre-processing protocol in SDT [29] to partition
videos of 15 FPS into segments with 64 frames for training. We use
a 1-layer GRU as our pose feature extractor with the hidden size of
1024 and the dimension 𝐷 of our audio-pose joint embedding space
is 512. For the salient posture detector module, the dimension 𝐷1
and 𝐷2 of initial feature and interaction feature are set to 512 and
1024. In addition, we set the value of 𝑡𝑜𝑝-𝑘 to 16. For both training
and testing, we use a batch size of 32. We train our model with an
Adam optimizer and the learning rate is set to 0.0001. For the hyper-
parameters , we empirically set 𝜆𝑟 = 10, 𝜆𝑟𝑒𝑔 = 10, 𝜆ℎ = 20, 𝜆𝑐𝑜𝑛 = 1,
and 𝜆𝑐 = 1, which work well for both datasets.

4.3 Quantitative Evaluation
4.3.1 Evaluation Metrics. 𝑳2 Distance is commonly used to mea-
sure the distance between the generated gestures and ground truth.
Fréchet Gesture Distance (FGD) is proposed by [35] to measure
the distribution distance of ground truth gestures and generated
ones in the latent space. Note that we use the same pose feature
extractor as [29] for a fair comparison.
Beat Consistency Score (BC) is originally proposed by [24, 38]
to measure the beat correlation between audio and gesture. They
utilize the angle changes of bones to quantify the motion beat and
calculate the average distance between audio beat and its nearest
motion beat as Beat Consistency Score.
Pose-Sync Distance (PSD) is designed by us to evaluate the con-
sistency of audio and generated pose sequence. Inspired by Sync-
Net [10], we train a Pose-SyncNet using a similar contrastive loss
between the representations of audio and generated pose. We com-
pute this evaluation metric using the 𝐿2 distance between the audio
embedding and pose embedding of our pre-trained Pose-SyncNet.
Concretely, for a pose sequence p of 64 frames with correspond-
ing audio a, we evenly divide the pose sequence into 𝑁 pose clips
𝑝𝑖 of 9 frames and audio clips 𝑎𝑖 of 0.6𝑠 , and encode them using
Pose-SyncNet to obtain corresponding pose feature 𝑓𝑝𝑖 and audio
feature 𝑓𝑎𝑖 . Then, we calculate the PSD metric as follows:

𝑃𝑆𝐷 =
1
𝑁

∑︁
(𝑝𝑖 ,𝑎𝑖 ) ∈ (p,a)

| |𝑓𝑝𝑖 − 𝑓𝑎𝑖 | |2 . (14)

4.3.2 Evaluation Results. We make a comprehensive performance
comparison between ourmethod and other state-of-the-art methods
on both datasets using the above metrics. As shown in Table 1 and
Table 2, our method almost achieves the highest performance in all
evaluation metrics, which demonstrates great superiority over exist-
ing methods. In terms of 𝐿2 distance and FGD metrics, our method
outperforms Audio2Body [32], S2G [13], and MoGlow [3] by a large
margin, indicating that our method can produce more accurate pre-
diction results while better maintaining the realism and diversity
of the generated gestures. The incorporation of joint-embedding
space and salient gesture detection can effectively enforce the se-
mantic consistency between audio and gesture, which is critical for
generating vivid and realistic co-speech gestures. Compared with
SDT [29], SEEG [21], and HA2G [24], our method can generate
gestures with better synchronization for both the lip motions and
body pose movements, resulting in the higher BC and lower PSD.
This is due to the separate audio feature extraction and synthesis
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Figure 5: Visualization results of generated gesture sequence of all methods given the speech signal. Our method can synthesize
more natural and realistic gestures with better synchrony than others.

Table 3: User study results of the gesture sequences generated
by different methods on naturalness, synchronization, and
expressiveness. The rating scores range from highest (7) to
lowest (1).

Methods Expressiveness Naturalness Synchronization

GT 6.56 6.62 6.37
Audio2Body [32] 1.18 2.88 1.34
S2G [13] 2.74 1.65 3.82
MoGlow [3] 4.16 3.90 2.26
SDT [29] 3.45 3.25 3.05
SEEG [21] 4.02 4.72 4.30
DiffGesture [38] 5.15 5.36 5.04

Ours 5.89 6.01 6.12

branch for facial expressions and body gestures. Overall speaking,
with the combination of the joint manifold training and separate
synthesizing, our method generates the most plausible co-speech
gestures and achieves a better balance between synchronization
and versatility.

4.4 Qualitative Evaluation
4.4.1 Visualization Analysis. As shown in Fig. 5, we visualize the
generated gestures of all methods given the speech signal and
compare our method with other methods. In the left case of Fig. 5,
when the speaker says the verb phrase relieve pressure, he folds his

open arms down to the lower right, making a gathering movement
to express the meaning of the phrase. Only our method successfully
synthesizes this strong semantic-related gesture sincewe emphasize
the semantic consistency of salient posture in our method. The
naturalness of gestures generated by Audio2Body [32], S2G [13] and
SEEG [21] is not good enough, especially the realism of handmotion
generated by S2G [13] is visually poor and the face shape generated
by SEEG [21] is distorted and deformed.MoGlow [15], SDT [29], and
DiffGesture [38] generate less diversity in the poses. In contrast, the
distribution of poses generated by our method is much closer to the
real distribution. In addition, for the right case of Fig. 5, the speaker
lowers his raised right hand when he says the phrase go down.
Audio2Body [32] and MoGlow [15] generate gestures of similar
appearance with a small range of motion and unnatural hands. The
template of SDT [29] restricts it from generating poses with large
variation, thus failing to learn strong semantic gestures. SEEG [21]
and DiffGesture [38] generate the coarse pose appearance, but the
generated right hand is sagging when the one of ground truth is
flat. Compared with these methods, our approach can learn the
salient posture and generate more realistic results.

4.4.2 User Study. We conduct a subjective user study to compare
our method with other baselines from three aspects: naturalness,
synchronization, and expressiveness. Here, naturalness refers to
the smoothness and realism of the generated pose movements. Syn-
chronization means the temporal consistency between lip motion
and audio. Expressiveness measures the capability of gestures to
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Table 4: Effectiveness of key components of our framework.
Separate, Joint, and Detector respectively denote separate syn-
thesis, joint manifold space, and salient posture detector.

Baseline Separate Joint Detector FGD ↓ BC ↑ PSD ↓

✓ 4.27 0.53 6.56
✓ ✓ 3.95 0.68 6.33
✓ ✓ ✓ 1.78 0.71 6.02
✓ ✓ ✓ ✓ 0.46 0.72 5.69

Saliency Score

0.08 0.89 0.37

Figure 6: The illustration of the predicted saliency score of
postures. In the saliency score vector, the higher the score,
the more salient the current posture.

express the semantic information of speech. We collect anonymous
gesture videos of all methods for four characters in the dataset and
invite 25 volunteers to watch and score them based on the three
metrics described above. The rating scores range from 1 to 7, with 7
being the most plausible and 1 being the least plausible. As shown
in Table 3, our method shows significant advantages over other
approaches and even achieves comparable results against ground
truth. Compared with Audio2Body [32] and S2G [13], our method
performs better on the gesture naturalness and synchronization
due to the separate face-body synthesis framework. In addition,
the integration of salient posture detection enhances the expres-
siveness of our method, which outperforms MoGlow [3], SDT [29],
SEEG [21], and DiffGesture [38] by a large margin.

4.5 Ablation Study
We conduct extensive ablation studies to justify the contribution of
key components to the final performance of the proposed method.
Effectiveness of key components. Table 4 summarizes the per-
formance and effectiveness of different design components on the
speaker of Kubinec. We use the baseline model for a fair comparison
with other variants of our method, which only contains an audio
encoder and pose decoder and directly predicts the holistic gesture
sequence using the audio representation. From the results of the
first and second row in Table 4, we can see that compared with the
baseline, the integration of separate synthesis for facial expressions
can facilitate the significant improvement of synchronization (See
the obvious increase of BC metric). In addition, our model learns a
joint manifold space to exploit the inherent semantic association
between speech content and gesture, which helps to achieve the
lower FGD metric and effectively enhance the realism of generated
gestures. As shown in the last two rows in Table 4, the incorpora-
tion of the salient detector module can further decrease the FGD
metric with +1.32 and also achieves an obvious performance boost

Table 5: Ablation of face-body feature alignment design. W/o
alignment indicates our full method without the assistance
of face-body feature alignment.

Methods
Oliver Kubinec

FGD ↓ BC ↑ PSD ↓ FGD ↓ BC ↑ PSD ↓

Ours 0.55 0.78 5.83 0.46 0.72 5.69
-w/o alignment 0.73 0.70 5.97 0.89 0.67 5.81

Table 6: Impact of different salient label strategies.

Strategy
Oliver Kubinec

FGD ↓ BC ↑ PSD ↓ FGD ↓ BC ↑ PSD ↓

Frame-level 1.94 0.73 6.30 2.01 0.70 6.25
Squence-level 0.55 0.78 5.83 0.46 0.72 5.69

in the PSD metric. Additionally, we visualize the predicted saliency
score of an input gesture sequence in Figure 6.
Ablation of face-body feature alignment. Here, we also investi-
gate the contribution of the face-body feature alignment design to
our overall framework. From the result comparison of Table 5 on
the speakers of Oliver and Kubinec, we can see that the integration
of face-body feature alignment can facilitate the obvious improve-
ment of audio-motion synchronization (see the increase of the BC
metric). Meanwhile, better synchrony further helps to achieve the
lower FGD metric, which indicates that the alignment module also
contributes to the more realistic generated results.
Impact of different salient label strategies. We report the per-
formance of different salient label strategies using the same baseline
on Oliver and Kubinec in Table 6. Frame-level strategy means train-
ing the salient posture detector under the supervision of frame-level
salient labels. We acquire the frame-level labels according to the
distances between the poses of all frames in a sequence and the
resting pose. As shown in Table 6, we observe that compared to
the frame-level strategy, the proposed sequence-level approach can
boost performance, especially in terms of FGD and PSD metrics.
This is because sequence-level weak supervision facilitates the de-
tector and generation network to learn the exact correspondence
between salient postures and speech content, which contributes to
the enhancement of realism of generated gestures.

5 CONCLUSION
In this paper, we propose a novel co-speech gesture generation
method to enhance the learning of cross-modal association of
speech and gesture. Our model learns a joint manifold space for
different representations of audio and body pose to exploit the
inherent association between two modalities and enforce seman-
tic consistency using a consistency loss. Further, we introduce a
weakly-supervised salient posture detector to facilitate the model
to focus more on learning the mapping of salient postures and
corresponding audios with highly semantic information. Exten-
sive experiments demonstrate that the proposed method surpasses
state-of-the-arts by a large margin and can effectively enhance the
naturalness and fidelity of generated gestures.
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