23
24
25
26
27
28
29

39
40
41
42
43
44

Supplementary Material:
Emphasizing Semantic Consistency of Salient Posture for
Speech-Driven Gesture Generation

Anonymous Authors

1 OVERVIEW

This supplementary material mainly includes:

e More ablation study analysis in Section 2.

o Implementation details about the Pose-Sync Distance Metric
in Section 3.

e More visual comparisons in Section 4.

We also provide a demo video to show the video results and the
code will be publicly released.

2 ABLATION STUDY

Ablation visualization. In Section 4.5 of the main paper, we con-
duct ablation studies to justify the contribution of each module to
our overall framework and report the quantitative results in Table
3 of the manuscript. Here, we further show the qualitative visual-
ization results as depicted in Figure 1. From top to bottom row: the
input speech signal, the speech content, and the gesture sequences
from ground truth, our method without salient posture detector,
our method without separate synthesis, and our full method. With-
out the integration of salient posture detector, the crucial gestures
related to the semantics of audio fail to be captured (see the solid
red box in the second row of Figure 1). While with the salient pos-
ture detector, our model generates gestures with salient postures
related to the strong semantics, which indicates the salient gesture
detection can effectively enforce the semantic consistency between
audio and gesture, and is crucial for generating vivid and realistic
co-speech gestures. In addition, as shown in the third row of gesture
sequences, without the separate synthesis branch, the generated
facial expressions and lip motions suffer from poor naturalness and
terrible synchrony, which demonstrates the effectiveness of this
proposed structure.

Ablation of top-k frames. During the training stage of the weakly-
supervised salient posture detector, we use the average saliency
score of top-k frames as the final saliency prediction for the video
sequence and make it close to the video-sequence-level saliency
label. Here, to investigate the effect of hyper-parameter top-k on
the performance of network, we conduct an ablation study of the
value of k on the speaker Kubinec from Speech2Gesture dataset [2].
We select four sets of hyper-parameter k and report the evaluation
results in Table 1. We can see that the value of k has more significant
effect on FGD and PSD metrics than BC metric, which demonstrates
that the appropriate parameter contributes to generating more
realistic gesture sequences while synchronization is more robust to
the changes of the value k. Therefore, we empirically set k = 16 for
the best performance of the generation network.
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Figure 1: Illustration of the effectiveness of each module in
our proposed method. Detector and separate respectively de-
note salient posture detector module and separate synthesis
branch.

Table 1: Ablation study on the value of top-k.

Metric | k=4 k=8 k=16 k=32

FGD | | 1.72 078 046 052
BCT | 069 0.73 072 0.72
PSD| | 632 590 569 598

3 DETAILS OF POSE-SYNC DISTANCE METRIC

SyncNet [1] is originally proposed to evaluate the audio-video syn-
chronization between lip motion and speech. Inspired by SyncNet,
we propose Pose-Sync Net to measure the synchronization between
body gestures and speech signals. Given the audio signal and cor-
responding body pose sequence, we randomly sample aligned and
unaligned audio-pose pairs and utilize contrastive learning to train
the network.

Pose-Sync Net. The detailed structure of our PoseSyncNet is
shown in Figure 2. In order to visually evaluate the synchrony
between body gesture and speech, we transform the pose coordi-
nates into single-channel image. During the training stage, given
an audio sequence a = [Aj,...,Ar] and corresponding pose se-
quence p = [P{ s P;], we first generate contrastive training data
by randomly sampling audio clip a; = [A;, ..., Aj+s] and pose clip
pj= [P]I., .. ,,P]I. +3] With binary similarity label y € {0, 1} between
a; and pj. For positive pairs, audio clips and pose clips are aligned
(i = j,y = 1), and for negative pairs, audio clips and pose clips are
unaligned (i # j,y = 0). Then q; is transformed into the MFCC
feature and processed by an audio encoder to obtain audio feature
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Figure 2: The detailed structure of proposed Pose-Sync Net.

fa;. After that, p; is processed by a pose encoder to obtain pose
embedding f,;. Then the contrastive loss for training is computed
as:

N
- LS -y —d,0)?
LPSN—ZNkZ_ly @+ (1-y) -max(p-d 0% ()

d = fia; ~ fip,lle- @)

where N is the batch size and ¢ is a constant, d is the L, distance
between audio feature fj ,, and pose feature fk,p,— with k denoting
their index in batch.

During the evaluation process, we sample aligned audio clip and
pose clip from the generated pose sequence and use the Ly distance
d as our Pose Sync Distance (PSD) metric.

4 MORE VISUAL COMPARISONS

In this section, we show more visual comparison results with state-
of-the-art methods on both datasets in Figure 3 and Figure 4. For
the TED Expressive dataset [5], we select one representative case
and show the keyframes of all the methods in Figure 3. Compared
methods tend to generate unnatural poses and produce unreliable
and stiff results. The proposed method can generate realistic human-
like poses without resulting in mean poses that are slow and rigid.

For the Speech2Gesture [2] dataset, we select four cases contain-
ing strong semantic information from test set to demonstrate the
effectiveness of our method, and compare the generated gesture
sequences of our method with state-of-the-art methods. The results
show that only our method is capable of generating salient pos-
tures corresponding to the strong semantic information of the input
speech signal. As shown in Figure 4, (1) in the first case, when the
speaker says the word remove, his left hand makes an inward and
then outward swing to indicate the semantics of remove. SEEG [4]
only learns the outward movement while our method learns the
whole salient gesture. (2) In the second case, the speaker brings
the hands together underneath, then holds the left hand still and
raises the right hand to express the meaning of the word expand.
Audio2Body [7] learns the wrong direction of hand movement.
MoGlow [3] generates the overall gesture appearance but with little
movements. SEEG [4] slightly learns the trend of hand movement
but the generated hands are less realistic. Our method successfully
generates this salient posture with better hand shape and lip syn-
chronization. (3) In the third case, the speaker opens hands and
raises the left and right hands alternately to express the meaning
of the word change. Gestures generated by Audio2Body [7] and
MoGlow [3] only raise the left hand while gestures from SDT [6]
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Figure 3: The visual comparisons with state-of-the-art meth-
ods on the case sequence of TED Expressive dataset [5].

only raise the right hand. Gestures from S2G [2] mostly keep still
with little movement. SEEG [4] generates exceptionally small hands
and distorted faces, which seriously affect the realism of results.
Our method generates natural and realistic results with better syn-
chronization. (4) In the last case, the speaker obviously raises his
right hand and puts down his left hand when he says the phrase iso-
electronic configuration. Audio2Body [7], S2G [2], and MoGlow [3]
generate gestures of similar appearance with a small range of mo-
tion and unnatural hands. The template of SDT [6] restricts it from
generating poses with large variation, thus it fails to learn strong
semantic gestures. SEEG [4] generates the coarse pose appearance,
but the generated right hand is sagging while the one of ground
truth is flat. Compared with these methods, our approach succeeds
in learning the salient posture and generates more realistic results.
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Figure 4: The visual comparisons with state-of-the-art methods on four case sequences of Speech2Gesture [2] dataset. For
clarity, we show the key frames of the generated gestures of all methods given the speech signal. Our method can synthesize
more natural and realistic gestures with better synchrony than other methods.
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