

1 Limited Collected Data

Figure 1: (*Top*) The dynamic activities in the Harmony4D dataset cover over 95% of mesh vertices for the SMPL body model. (*Bottom*) We visualize the most frequent body parts in contact during interactions as a normalized heatmap.

2 Occlusion-based Performance Analysis

Method	Low-Occ	Medium-Occ	High-Occ
	IoU<0.2	0.2 <iou<0.5< td=""><td>0.5<iou< td=""></iou<></td></iou<0.5<>	0.5 <iou< td=""></iou<>
PARE	103.14	126.54	211.50
ROMP	114.68	131.66	146.02
BEV	102.84	126.18	138.53
BUDDI	111.07	147.44	187.16
HMR2.0	100.73	106.25	153.79
Multi-HMR	<u>88.46</u>	<u>101.71</u>	<u>117.32</u>
HMR2.0-finetune	42.27	51.81	69.30

Table 1: We report MPJPE (mm) for each method with varying degrees of occlusion on the Harmony4D test set. Images are categorized as *low*, *medium*, or *high* occlusion based on ground-truth bounding box IoUs. The method finetuned on the Harmony4D *train* set significantly improves performance with increasing occlusion.