
Supplementary Material
“Lossless” Compression of Deep Neural Networks:

A High-dimensional Neural Tangent Kernel Approach

A Proofs of theorems and auxiliary results

A.1 Proof of Theorem 1

In this section, we provide the detailed proof of Theorem 1. Before going into details of the proof,
we first recall our system model and working assumptions as follows.

We consider n data vectors x1, . . . ,xn ∈ Rp independently drawn from one of the K-class Gaussian
mixtures C1, . . . , CK and denote X = [x1, . . . ,xn] ∈ Rp×n, with class Ca having cardinality na;
that is, for xi ∈ Ca we have

xi ∼ N (µa/
√
p,Ca/p), (19)

for mean vector µa ∈ Rp and non-negative definite covariance Ca ∈ Rp×p associated with class Ca.

We position ourselves in the high-dimensional and non-trivial classification regime as stated in
Assumption 1, that is: As n→ ∞, we have, for a ∈ {1, . . . ,K} that,

(i) p/n→ c ∈ (0,∞) and na/n→ ca ∈ (0, 1); and
(ii) ∥µa∥ = O(1); and

(iii) for C◦ ≡
∑K

a=1
na

n Ca and C◦
a ≡ Ca −C◦, we have ∥Ca∥ = O(1), trC◦

a = O(
√
p) and

tr(CaCb) = O(p) for a, b ∈ {1, . . . ,K}; and

(iv) τ0 ≡
√

trC◦/p converges in (0,∞).
Remark 4 (Beyond Gaussian mixture data). Despite derived here for Gaussian mixture data, we
conjecture that our results hold more generally beyond the Gaussian setting. As concrete examples,
many results in random matrix theory and high dimensional statistics such as the popular Marc̆enko-
Pastur law [43], the semicircular law [58], as well as the circular laws [55], have all been shown
universal in the sense that they do not depend on the distribution of the (independent entries of the)
data, as long as they are normalized to have zero mean and unit variance. In a machine learning
(ML) context, such universal behavior are observed to hold beyond the above models, and extends to
nonlinear models such as kernel matrices [51] and neural nets [50], in that, say, for data drawn from
the family of concentrated random vectors [33, 41] (so not necessarily Gaussian), the performance
on those ML models are the same, in the larger n, p setting, as if they were mere Gaussian mixtures
with the same means and covariances. We refer the interested readers to [12, Chapter 8] for more
discussions on this point.

We consider the fully-connected neural network model of depthL and of successive widths d1, . . . , dL
as defined in (2), and denote Wℓ ∈ Rdℓ×dℓ−1 as well as σℓ(·) the weight matrix and activation at
layer ℓ ∈ {1, . . . , L}, respectively.

We assume that the following conditions hold for the random weight matrices Wℓs and the activation
function σℓs for ℓ ∈ {1, . . . , L}, as demanded in Assumption 2 and 3:

(i) The weight matrices Wℓs are independent and have i.i.d. entries of zero mean, unit variance,
and finite fourth-order moment.

(ii) The activations σℓs are at least four-times differentiable with respect to standard normal dis-
tribution, in the sense that maxk∈{0,1,2,3,4}{|E[σ

(k)
ℓ (ξ)]|} < C for some universal constant

C > 0 and ξ ∼ N (0, 1).

In this section, we focus on the Conjugate Kernel (CK) matrix defined via the following recursive
relation [28, 8]

[KCK,ℓ]ij = Eu,v[σℓ(u)σℓ(v)], KCK,0 = XTX, (20)
with

u, v ∼ N
(
0,

[
[KCK,ℓ−1]ii [KCK,ℓ−1]ij
[KCK,ℓ−1]ij [KCK,ℓ−1]jj

])
. (21)
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The derivation and discussion of the closely related neural tangent kernel (NTK) matrix is given in
Section A.2.

Let Assumptions 1–3 hold, and let τ0, τ1, . . . , τL ≥ 0 be a sequence of non-negative numbers
recursively defined via

τℓ =
√
E[σ2

ℓ (τℓ−1ξ)], (22)

as in (7). Further assume that the activation functions σℓ(·)s are “centered” such that E[σℓ(τℓ−1ξ)] =
0. (This assumption, as we shall see, plays a central role in our proof.)

Then, to prove Theorem 1 it suffices to show that,

(i) the CK matrix KCK,ℓ of layer ℓ ∈ {0, 1, . . . , L} defined in (4) satisfies

∥KCK,ℓ − K̃CK,ℓ∥ → 0, (23)

almost surely as n, p→ ∞, with K̃CK,ℓ taking the “universal” form

K̃CK,ℓ ≡ αℓ,1X
TX+VAℓV

T + (τ2ℓ − τ20αℓ,1 − τ40αℓ,3)In, (24)

for all ℓ ∈ {1 . . . , L}, J = [j1, . . . , jK ] ∈ Rn×K , random vector ψ = {∥xi − E[xi]∥2 −
E[∥xi − E[xi]∥2]}ni=1 ∈ Rn, t = {trC◦

a/
√
p}Ka=1 ∈ RK , T = {trCaCb/p}Ka,b=1 ∈

RK×K , and

V = [J/
√
p, ψ] ∈ Rn×(K+1), Aℓ =

[
αℓ,2tt

T + αℓ,3T αℓ,2t
αℓ,2t

T αℓ,2

]
∈ R(K+1)×(K+1);

(25)
(ii) the coefficients αℓ,1, αℓ,2, αℓ,3 are non-negative and satisfy the following recursive relations

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,1, αℓ,2 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,2 +
1

4
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,4,

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,3 +
1

2
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,1.

with αℓ,4 = αℓ−1,4E
[
(σ′

ℓ(τℓ−1ξ))
2 + σℓ(τℓ−1ξ)σ

′′
ℓ (τℓ−1ξ)

]
for ξ ∼ N (0, 1).

We will prove the above results by induction on ℓ ∈ {0, 1, . . . , L}.

We first introduce the following notations that will be consistently used in the proof: for xi,xj ∈ Rp

with i ̸= j, let
xi = µi/

√
p+ zi/

√
p, xj = µj/

√
p+ zj/

√
p, (26)

so that zi ∼ N (0,Ci), zj ∼ N (0,Cj), and

Aij ≡
1

p
zTi zj︸ ︷︷ ︸

O(p−1/2)

+
1

p
µT

i µj +
1

p
(µT

i zj + µ
T
j zi)︸ ︷︷ ︸

O(p−1)

,

ti ≡
1

p
trC◦

i = O(p−1/2), ψi =
1

p
∥zi∥2 −

1

p
trCi = O(p−1/2),

τ0 ≡
√

1

p
trC◦ = O(1),

χi ≡ ti + ψi︸ ︷︷ ︸
O(p−1/2)

+ ∥µi∥2/p+ 2µT
i zi/p︸ ︷︷ ︸

O(p−1)

= ∥xi∥2 − τ0
2,

where we note that the notations τ0, ψi and ti (with a slight abuse of notation to denote Ci = Ca for
xi ∈ Ca) are in line with those defined in Assumption 1 and Theorem 1, and we denote Sij terms of
the form

Sij ≡ Sij(γ1, γ2) =
1

p
zTi zj (γ1(ti + ψi) + γ2(tj + ψj)) , (27)

for random or deterministic scalars γ1, γ2 = O(1) (with high probability when being random). We
have Sij = O(p−1) and more importantly, it leads to, in matrix form, a matrix of spectral norm order
O(p−1/2), see [11]. This spectral norm result will be exploited in the remainder of the proof.
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Then we give the process of induction as follows.

For ℓ = 0, we have KCK,0 = XTX so that

KCK,0 = K̃CK,0 = XTX, (28)
with α0,1 = 1, α0,2 = 0, and α0,3 = 0.

We then assume ∥KCK,ℓ−1 − K̃CK,ℓ−1∥ → 0 holds at layer ℓ− 1 with

K̃CK,ℓ−1 ≡ αℓ−1,1X
TX+VAℓ−1V

T + (τ2ℓ−1 − τ20αℓ−1,1 − τ40αℓ−1,3)In,

for Aℓ−1 =

[
αℓ−1,2tt

T + αℓ−1,3T αℓ−1,2t
αℓ−1,2t

T αℓ−1,2

]
, and work on the CK matrix KCK,ℓ at layer ℓ.

By definition in (5), using the Gram-Schmidt orthogonalization procedure for standard Gaussian
random variable as in [18, 4], we write

u =
√
[KCK,ℓ−1]ii · ξi, v =

[KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj , (29)

for independent ξi, ξj ∼ N (0, 1). As such, we have, for layer ℓ that

[KCK,ℓ]ii = E
[
σ2
ℓ

(√
[KCK,ℓ−1]ii · ξi

)]
(30)

[KCK,ℓ]ij = E
[
σℓ

(√
[KCK,ℓ−1]ii · ξi

)

×σℓ

 [KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj

 , (31)

where the expectations are now taken with respect to the independent random variables ξi and ξj , and
conditioned on the random vectors xi and xj .

Based on the induction hypothesis on the layer ℓ− 1, we have

[KCK,ℓ−1]ij = αℓ−1,1Aij+αℓ−1,2(ti+ψi)(tj+ψj)+αℓ−1,3

(
1

p
zTi zj

)2

+Sij+O(p−3/2), (32)

for i ̸= j, and
[KCK,ℓ−1]ii = τ2ℓ−1 + αℓ−1,4χi + αℓ−1,5(ti + ψi)

2 +O(p−3/2). (33)

(Note that the introduction of the term Sij does not alter the form of K or K̃ in a spectral norm
sense.)

The objective is then to derive the approximation of [KCK,ℓ]ij and [KCK,ℓ]ii at layer ℓ, both to terms
of order O(p−3/2), and to subsequently derive the recursive relations between the key coefficients of
layer ℓ− 1:

{αℓ−1,1, αℓ−1,2, αℓ−1,3, αℓ−1,4, αℓ−1,5}, (34)
and those of layer ℓ

{αℓ,1, αℓ,2, αℓ,3, αℓ,4, αℓ,5}. (35)

To this end, we first focus on the diagonal entries and evaluate [KCK,ℓ]ii, then on the off-diagonal
terms [KCK,ℓ]ij for i ̸= j, and finally we conclude the proof by putting everything in matrix form.

On the diagonal. We start with the diagonal entries of KCK,ℓ, which, as per its expression in (30),
depends on the diagonal entries [KCK,ℓ−1]ii at layer ℓ− 1 as defined in (33). By Taylor-expanding√
t around the leading order term t ≃ τ2ℓ−1 = O(1), one gets√
[KCK,ℓ−1]ii =

√
τ2ℓ−1 + αℓ−1,4χi + αℓ−1,5(ti + ψi)2 +O(p−3/2)

= τℓ−1 +
1

2τℓ−1

(
αℓ−1,4χi + αℓ−1,5(ti + ψi)

2
)
−
α2
ℓ−1,4

8τ3ℓ−1

(ti + ψi)
2 +O(p−3/2)

= τℓ−1 +
1

2τℓ−1
αℓ−1,4χi +

4τ2ℓ−1αℓ−1,5 − α2
ℓ−1,4

8τ3ℓ−1

(ti + ψi)
2 +O(p−3/2).
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Further Taylor-expand σ2
ℓ (
√
[KCK,ℓ−1]ii · ξi) = f(

√
[KCK,ℓ−1]ii · ξi) around τℓ−1ξi, we get

[KCK,ℓ]ii = E
[
σ2
ℓ

(√
[KCK,ℓ−1]ii · ξ

)]
= E

[
f

(√
[KCK,ℓ−1]ii · ξ

)]
= E

[
f(τℓ−1ξ) + f ′(τℓ−1ξ)ξ

(
1

2τℓ−1
αℓ−1,4χi +

4τ2ℓ−1αℓ−1,5 − α2
ℓ−1,4

8τ3ℓ−1

(ti + ψi)
2

)]

+ E
[
1

2
f ′′(τℓ−1ξ)ξ

2

]
α2
ℓ−1,4

4τ2ℓ−1

(ti + ψi)
2 +O(p−3/2)

= E[f(τℓ−1ξ)] + E[f ′′(τℓ−1ξ)]

(
1

2
αℓ−1,4χi +

4τ2ℓ−1αℓ−1,5 − α2
ℓ−1,4

8τ2ℓ−1

(ti + ψi)
2

)

+ E
[
1

2
f ′′(τℓ−1ξ)ξ

2

]
α2
ℓ−1,4

4τ2ℓ−1

(ti + ψi)
2 +O(p−3/2)

= E[f(τℓ−1ξ)] +
αℓ−1,4

2
E[f ′′(τℓ−1ξ)]χi

+
4αℓ−1,5E[f ′′(τℓ−1ξ)] + α2

ℓ−1,4E[f ′′′′(τℓ−1ξ)]

8
(ti + ψi)

2 +O(p−3/2),

where we denote the shortcut f(x) = σ2
ℓ (x) and use the facts that

E[f ′(τℓ−1ξ)ξ] = τℓ−1E[f ′′(τℓ−1ξ)], E[f ′′(τℓ−1ξ)(ξ
2 − 1)] = τ2ℓ−1E[f ′′′′(τℓ−1ξ)], (36)

for ξ ∼ N (0, 1), as a consequence of the Gaussian integration by parts formula.

As a consequence, we obtain the following relation

τℓ =
√
E[σ2

ℓ (τℓ−1ξ)], αℓ,4 = αℓ−1,4E
[
(σ′

ℓ(τℓ−1ξ))
2 + σℓ(τℓ−1ξ)σ

′′
ℓ (τℓ−1ξ)

]
,

αℓ,5 = αℓ−1,5E
[
(σ′

ℓ(τℓ−1ξ))
2 + σℓ(τℓ−1ξ)σ

′′
ℓ (τℓ−1ξ)

]
+
α2
ℓ−1,4

4
E
[
σℓ(τℓ−1ξ)σ

′′′′
ℓ (τℓ−1ξ) + 4σ′

ℓ(τℓ−1ξ)σ
′′′
ℓ (τℓ−1ξ) + 3(σ′′

ℓ (τℓ−1ξ))
2
]
.

Off the diagonal. We now move on to the more involved non-diagonal entries of KCK,ℓ. First note,
for i ̸= j, that

[KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

=
[KCK,ℓ−1]ij

τℓ−1 +
1

2τℓ−1
αℓ−1,4χi +

4τ2
ℓ−1αℓ−1,5−α2

ℓ−1,4

8τ3
ℓ−1

(ti + ψi)2 +O(p−3/2)

= [KCK,ℓ−1]ij

(
1

τℓ−1
− 1

τ2ℓ−1

(
αℓ−1,4

2τℓ−1
(ti + ψi) +O(p−1)

))
+O(p−3/2)

=
1

τℓ−1
[KCK,ℓ−1]ij −

αℓ−1,4αℓ−1,1

2τ3ℓ−1

(ti + ψi)
1

p
zTi zj +O(p−3/2)

=
1

τℓ−1
[KCK,ℓ−1]ij + Sij +O(p−3/2) = O(p−1/2),

with

[KCK,ℓ−1]ij = αℓ−1,1Aij + αℓ−1,2(ti + ψi)(tj + ψj) + αℓ−1,3

(
1

p
zTi zj

)2

+ Sij +O(p−3/2)

= O(p−1/2),

as in Equation (32), where we recall that Sij = O(p−1) denotes a matrix of the form
1
pz

T
i zj (γ1(ti + ψi) + γ2(tj + ψj)) and of vanishing spectral norm as defined in (27).
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Then,√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

=

√
τ2ℓ−1 + αℓ−1,4χj + αℓ−1,5(tj + ψj)2 −

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2

+O(p−3/2)

= τℓ−1 +
1

2τℓ−1

(
αℓ−1,4χj + αℓ−1,5(tj + ψj)

2 −
α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2
)

−
α2
ℓ−1,4(tj + ψj)

2

8τ3ℓ−1

+O(p−3/2)

= τℓ−1 +
1

2τℓ−1

(
αℓ−1,4χj −

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2
)

+
4τ2ℓ−1αℓ−1,5 − α2

ℓ−1,4

8τ3ℓ−1

(tj + ψj)
2

+O(p−3/2).

As a consequence, we get, again by Taylor expansion that

σℓ

(√
[KCK,ℓ−1]ii · ξi

)
σℓ

 [KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj


= σℓ

(
τℓ−1ξi +

1

2τℓ−1
αℓ−1,4χiξi +

4τ2ℓ−1αℓ−1,5 − α2
ℓ−1,4

8τ3ℓ−1

(ti + ψi)
2ξi +O(p−3/2)

)

× σℓ

(
1

τℓ−1
[KCK,ℓ−1]ijξi + τℓ−1ξj +

1

2τℓ−1

(
αℓ−1,4χj −

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2
)
ξj

+
4τ2ℓ−1αℓ−1,5 − α2

ℓ−1,4

8τ3ℓ−1

(tj + ψj)
2ξj +O(p−3/2)

)

=

(
σℓ(τℓ−1ξi) + σ′

ℓ(τℓ−1ξi)ξi

(
1

2τℓ−1
αℓ−1,4χi +

4τ2ℓ−1αℓ−1,5 − α2
ℓ−1,4

8τ3ℓ−1

(ti + ψi)
2

)

+σ′′
ℓ (τℓ−1ξi)ξ

2
i

α2
ℓ−1,4

8τ2ℓ−1

(ti + ψi)
2

)

×

(
σℓ(τℓ−1ξj) + σ′

ℓ(τℓ−1ξj)

(
[KCK,ℓ−1]ij

τℓ−1
ξi +

1

2τℓ−1

(
αℓ−1,4χj −

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2
)
ξj

+
4τ2ℓ−1αℓ−1,5 − α2

ℓ−1,4

8τ3ℓ−1

(tj + ψj)
2ξj

)

+
1

2
σ′′
ℓ (τℓ−1ξj)

(
αℓ−1,1

1
pz

T
i zj

τℓ−1
ξi +

αℓ−1,4(tj + ψj)

2τℓ−1
ξj

)2
+O(p−3/2)

≡ (σℓ(τℓ−1ξi) + T1,i + T2,i) (σℓ(τℓ−1ξj) + T3,ij + T3,j + T4,ij + T4,j + Sij) +O(p−3/2),

where we denote the shortcuts:

T1,i = σ′
ℓ(τℓ−1ξi)ξi ·

αℓ−1,4

2τℓ−1
χi = O(p−1/2),

T2,i =

(
αℓ−1,5σ

′
ℓ(τℓ−1ξi)ξi

2τℓ−1
+ α2

ℓ−1,4

σ′′
ℓ (τℓ−1ξi)ξ

2
i τℓ−1 − σ′

ℓ(τℓ−1ξi)ξi
8τ3ℓ−1

)
(ti + ψi)

2 = O(p−1),
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that only depend on ξi; and

T3,ij = σ′
ℓ(τℓ−1ξj)ξi ·

[KCK,ℓ−1]ij
τℓ−1

= O(p−1/2),

T4,ij =
1

2
σ′′
ℓ (τℓ−1ξj)ξ

2
i ·

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2

= O(p−1),

that depend on both ξi and ξj ; and

T3,j = σ′
ℓ(τℓ−1ξj)ξj ·

(
αℓ−1,4

2τℓ−1
χj −

α2
ℓ−1,1

2τ3ℓ−1

(
1

p
zTi zj

)2

+
4τ2ℓ−1αℓ−1,5 − α2

ℓ−1,4

8τ3ℓ−1

(tj + ψj)
2

)
= O(p−1/2),

T4,j =
1

2
σ′′
ℓ (τℓ−1ξj)ξ

2
j ·

α2
ℓ−1,4

4τ2ℓ−1

(tj + ψj)
2 = O(p−1),

that only depend on ξj , where we particularly note that the cross terms are of the form Sij .

As such, we have

σℓ

(√
[KCK,ℓ−1]ii · ξi

)
σℓ

 [KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj


= σℓ(τℓ−1ξi)σℓ(τℓ−1ξj) + σℓ(τℓ−1ξi)(T3,ij + T4,ij) + σℓ(τℓ−1ξi)(T3,j + T4,j)

+ σℓ(τℓ−1ξj)(T1,i + T2,i) + T1,i(T3,ij + T3,j) + Sij +O(p−3/2),

with in particular

T1,i(T3,ij + T3,j) = σ′
ℓ(τℓ−1ξi)ξi ·

αℓ−1,4

2τℓ−1
(ti + ψi) · σ′

ℓ(τℓ−1ξj)ξi
αℓ−1,1

1
pz

T
i zj

τℓ−1

+ σ′
ℓ(τℓ−1ξi)ξi ·

αℓ−1,4

2τℓ−1
(ti + ψi) · σ′

ℓ(τℓ−1ξj)ξj
αℓ−1,4

2τℓ−1
(tj + ψj)

+O(p−3/2)

= σ′
ℓ(τℓ−1ξi)ξiσ

′
ℓ(τℓ−1ξj)ξj

α2
ℓ−1,4

4τ2ℓ−1

(ti + ψi)(tj + ψj) + Sij +O(p−3/2).

We thus conclude, for E[σℓ(τℓ−1ξ)] = 0 with ξ ∼ N (0, 1), that

[KCK,ℓ]ij

= E

σℓ(√[KCK,ℓ−1]ii · ξi
)
σℓ

 [KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj


= E[σℓ(τℓ−1ξi)(T3,ij + T4,ij)] + E [σ′

ℓ(τℓ−1ξi)ξiσ
′
ℓ(τℓ−1ξj)ξj ]

α2
ℓ−1,4

4τ2ℓ−1

(ti + ψi)(tj + ψj)

+ Sij +O(p−3/2)

= E
[
σℓ(τℓ−1ξi)σ

′
ℓ(τℓ−1ξj)ξi

[KCK,ℓ−1]ij
τℓ−1

]
+

1

2
E

[
σℓ(τℓ−1ξi)σ

′′
ℓ (τℓ−1ξj)ξ

2
i

α2
ℓ−1,1

τ2ℓ−1

(
1

p
zTi zj

)2
]

+ E[σ′
ℓ(τℓ−1ξi)ξi]E[σ′

ℓ(τℓ−1ξj)ξj ]
α2
ℓ−1,4

4τ2ℓ−1

(ti + ψi)(tj + ψj) + Sij +O(p−3/2)

= E[σ′
ℓ(τℓ−1ξ)]

2[KCK,ℓ−1]ij +
α2
ℓ−1,1

2
E[σ′′

ℓ (τℓ−1ξ)]
2

(
1

p
zTi zj

)2

+
α2
ℓ−1,4

4
E[σ′′

ℓ (τℓ−1ξ)]
2(ti + ψi)(tj + ψj) + Sij +O(p−3/2),

20



where we used again the fact that

E[ξf(τξ)] = τE[f ′(τξ)], E[ξ2f(τξ)] = E[(ξ2 − 1)f(τξ)] = τ2E[f ′′(τξ)], (37)

for E[f(τξ)] = 0.

This allows us to conclude that

αℓ,1 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,1, αℓ,2 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,2 +
1

4
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,4, (38)

αℓ,3 = E[σ′
ℓ(τℓ−1ξ)]

2αℓ−1,3 +
1

2
E[σ′′

ℓ (τℓ−1ξ)]
2α2

ℓ−1,1. (39)

Assembling in matrix form. Following the discussion above, we have, uniformly for all i ̸= j ∈
{1, . . . , n} that,

[KCK,ℓ]ij = αℓ,1Aij + αℓ,2(ti + ψi)(tj + ψj) + αℓ,3

(
1

p
zTi zj

)2

+ Sij +O(p−3/2), (40)

and
[KCK,ℓ]ii = τ2ℓ +O(p−1/2), (41)

so that in matrix form (by using the fact that ∥A∥ ≤ n∥A∥∞ for A ∈ Rn×n with ∥A∥∞ =

maxij |A|ij and {Sij}i,j = O∥·∥(p
− 1

2 ), see [11]):

KCK,ℓ = αℓ,1X
TX+VAℓV

T + (τ2ℓ − τ20αℓ,1 − τ40αℓ,3)In +O∥·∥(p
− 1

2 ), (42)

where O∥·∥(p
− 1

2 ) denotes matrices of spectral norm order O(p−
1
2 ), with

V = [J/
√
p, ψ] ∈ Rn×(K+1), Aℓ =

[
αℓ,2tt

T + αℓ,3T αℓ,2t
αℓ,2t

T αℓ,2

]
, (43)

and

T =

{
1

p
trCaCb

}K

a,b=1

, t =

{
1
√
p
trC◦

a

}K

a=1

, (44)

as in the statement of Theorem 1. This concludes the proof of Theorem 1.

Lemma 1 (Consistent estimation of τ0). Let Assumption 1 hold and let τ0 ≡
√

trC◦/p. Then, as
n, p→ ∞ with p/n→ c ∈ (0,∞), we have,

1

n

n∑
i=1

∥xi∥2 − τ20 → 0, (45)

almost surely.

Proof of Lemma 1. It follows from (26) that

1

n

n∑
i=1

∥xi∥2 =
1

n

K∑
a=1

na∑
i=1

(
1

p
∥µa∥

2 − 2

p
µT

azi +
1

p
∥zi∥2

)
. (46)

From Assumption 1, we have ∥µa∥ = O(1) so that 1
n

∑K
a=1

∑na

i=1
1
p ∥µa∥

2
= O

(
p−1
)
. Since

E[zi] = 0, the second term 2
pµ

T
azi of (46) is a weighted sum of independent zero mean random

variables and vanishes with probability one as n, p → ∞ by a mere application of Chebyshev’s
inequality and the Borel–Cantelli lemma. Finally, using the strong law of large numbers on the third
term of equation (46), we have almost surely,

1

n

1

p

K∑
a=1

na∑
i=1

∥zi∥2 =
1

p

K∑
a=1

na
n

trCa + o(1) = trC◦/p+ o(1), (47)

where in the last line we use trC◦
a = O(

√
p) from Assumption 1, and thus 1

n

∑n
i=1 ∥zi∥

2 − τ20 → 0
almost surely. This concludes the proof of Lemma 1.
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A.2 Proof of Theorem 2

In this section, we provide detailed proof of Theorem 2. We follows the same notations and working
assumptions as in the proof of Theorem 1 in Appendix A.1.

As already mentioned in (6), the NTK matrices KNTK,ℓ of layer ℓ can be defined, again in an iterative
manner, via the CK matrices KCK,ℓ and K′

CK,ℓ as follows [28]:

KNTK,0 = KCK,0 = XTX,

KNTK,ℓ = KCK,ℓ +KNTK,ℓ−1 ◦K′
CK,ℓ.

where ‘A ◦ B’ denotes the Hadamard product between two matrices A,B, and K′
CK,ℓ ∈ Rn×n

denotes a CK matrix with nonlinear activation σ′
ℓ(·) instead of σℓ(·) as for KCK,ℓ in (4), that is

[K′
CK,ℓ]ij = Eu,v[σ

′
ℓ(u)σ

′
ℓ(v)], u, v ∼ N

(
0,

[
[K′

CK,ℓ−1]ii [K′
CK,ℓ−1]ij

[K′
CK,ℓ−1]ij [K′

CK,ℓ−1]jj

])
. (48)

To evaluate the eigenspectral behavior of the NTK matrix KNTK,ℓ, it is crucial to assess the behavior
of the CK matrix K′

CK,ℓ with activation σ′
ℓ. This is, however, far from trivial, since one cannot apply

Theorem 1 directly (which relies on the key assumption E[σℓ (τℓ−1ξ)] = 0) by simply assuming that
both E[σℓ (τℓ−1ξ)] and E[σ′

ℓ (τℓ−1ξ)] are zero. In fact, as shown in the statement of Theorem 2, the
evaluation of the CK matrices K′

CK,ℓ leads to the different sequence τ̇ℓ that needs to be carefully
studied. In the sequel, we extend, in Section A.2.1, the result in Theorem 1 to the general case of
E [σℓ (τℓ−1ξ)] ̸= 0, which will play a key role in the proof of Theorem 2 presented in Section A.2.2.

A.2.1 Assessment of CK matrix KCK,ℓ with E [σℓ (τℓ−1ξ)] ̸= 0

In this subsection, we will extend Theorem 1 to the case of possibly non-zero E [σℓ (τℓ−1ξ)], ξ ∼
N (0, 1), which will be the key ingredient in the proof of Theorem 2 in Section A.2.2.

In the following, we recall some notations introduced in Section A.1 and will be used in the remainder
of the proof: For xi,xj ∈ Rp with i ̸= j, we have

xi = µi/
√
p+ zi/

√
p, xj = µj/

√
p+ zj/

√
p, (49)

with zi ∼ N (0,Ci), zj ∼ N (0,Cj), and

Aij ≡
1

p
zTi zj︸ ︷︷ ︸

O(p−1/2)

+
1

p
µT

i µj +
1

p
(µT

i zj + µ
T
j zi)︸ ︷︷ ︸

O(p−1)

, (50)

ti ≡
1

p
trC◦

i = O(p−1/2), ψi =
1

p
∥zi∥2 −

1

p
trCi = O(p−1/2),

χi ≡ ti + ψi︸ ︷︷ ︸
O(p−1/2)

+ ∥µi∥2/p+ 2µT
i zi/p︸ ︷︷ ︸

O(p−1)

= ∥xi∥2 − τ0
2,

τ0 ≡
√

1

p
trC◦ = O(1).

Let
Sij (γ1, γ2) =

1

p
zTi zj (γ1(ti + ψi) + γ2(tj + ψj)) , (51)

and
Pij (ρ1, . . . , ρ6) = ρ1χi + ρ2χj + ρ3(ti + ψi)

2 + ρ4(tj + ψj)
2 + ρ5(ti + ψi)(tj + ψj)

+ ρ6

(
1

p
zTi zj

)2

= O(p−1/2) (52)

for random or deterministic scalars γ1, γ2, ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 = O(1) (with high probability when
being random) with respect to n, p. We will simply denote them Sij and Pij , respectively.

We have already known from [11] and have used in the proof of Theorem 1 in Section A.1 that
Sij = O(p−1) and it leads to a matrix of vanishing spectral norm as n, p→ ∞.

In the following remark, we present a few results on the products of Pij , Sij , and Aij .
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Lemma 2 (Products between Pij , Sij , and Aij). We have, for random or deterministic scalars
ρ1, ρ2, ρ3, ρ4, ρ5, ρ6 of order O(1) (with high probability when being random), that

Pij (ρ1, . . . , ρ6) · Pij(ρ̃1, . . . , ρ̃6) = Pij(0, 0, ρ1ρ̃1, ρ2ρ̃2, ρ1ρ̃2 + ρ2ρ̃1, 0) +O(p−3/2).

We have similarly that

Pij(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6) ·Aij = Sij +O(p−3/2),

as well as

Aij ·Aij = Pij(0, 0, 0, 0, 0, 1) +O(p−3/2).

With Lemma 2, we are ready for the following result that generalizes the characterization in Theorem 1
to (possibly) non-centered activations.

Theorem 3 (Asymptotic behavior of CK matrix: general case). Let Assumptions 1–3 hold, let
τ0, τ1, . . . , τL ≥ 0 be the non-negative sequence defined in (7). Then, for the CK matrix KCK,ℓ of
layer ℓ ∈ {0, 1, . . . , L} defined in (4), we have, as n, p→ ∞, the following entry-wise result:

(i) on the diagonal, for i ∈ {1, . . . , n} that,

[KCK,ℓ]ii = τ2ℓ + Pij +O(p−3/2); (53)

(ii) off the diagonal, for i ̸= j that,

[KCK,ℓ]ij = dℓ + αℓ,1Aij + Sij + Pij +O(p−3/2), (54)

almost surely, for Aij , Sij , and Pij of the form in (50), (51), and (52), respectively, as well as dℓ, αℓ,1

satisfying

dℓ = Eξ1,ξ2

[
σℓ (τℓ−1ξ1)σℓ

(
dℓ−1

τℓ−1
ξ1 +

√
λℓ−1ξ2

)]
,

αℓ,1 = Eξ1,ξ2

[
σℓ (τℓ−1ξ1)σ

′
ℓ

(
dℓ−1

τℓ−1
ξ1 +

√
λℓ−1ξ2

)(
αℓ−1,1

τℓ−1
ξ1 −

1√
λℓ−1

dℓ−1αℓ−1,1

τ2ℓ−1

ξ2

)]
.

with d0 = 0, α0,1 = 1, and λℓ−1 = τ2ℓ−1 − d2ℓ−1/τ
2
ℓ−1 for independent ξ1, ξ2 ∼ N (0, 1).

Proof of Theorem 3. We prove Theorem 3 by induction on ℓ ∈ {0, 1, . . . , L} as follows.

For ℓ = 0, we have KCK,0 = XTX, so that

[KCK,0]ii = τ20 + χi + (ti + ψi)
2 +O(p−3/2) = τ20 + Pij +O(p−3/2),

and

[KCK,0]ij = Aij +O(p−3/2),

with d0 = 0, α0,1 = 1.

We then assume it holds for layer ℓ− 1 that

[KCK,ℓ−1]ii = τ2ℓ−1 + Pij +O(p−3/2), (55)

and for i ̸= j,

[KCK,ℓ−1]ij = dℓ−1 + αℓ−1,1Aij + Pij + Sij +O(p−3/2). (56)

Then, it suffices to show that [KCK,ℓ]ii and [KCK,ℓ]ij for layer ℓ take the same form, with coefficient
dℓ and αℓ,1 satisfying the recursive relation in Theorem 3.
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Diagonal entries [KCK,ℓ]ii. Similar to the proof of Theorem 1, we have, by Taylor-expansion that√
[KCK,ℓ−1]ii =

√
τ2ℓ−1 + Pij +O(p−3/2)

= τℓ−1 +
1

2τℓ−1
Pij −

1

8τ3ℓ−1

P 2
ij +O(p−3/2)

= τℓ−1 + Pij +O(p−3/2),

where we used the property on the product Pij × Pij in Lemma 2 in the last line. We thus have

[KCK,ℓ]ii = E
[
σ2
ℓ

(√
[KCK,ℓ−1]ii · ξ

)]
= E

[
f

(√
[KCK,ℓ−1]ii · ξ

)]
= E

[
f (τℓ−1ξ) + f ′ (τℓ−1ξ) ξPij +

1

2
f ′′ (τℓ−1ξ) ξ

2P 2
ij

]
+O(p−3/2)

= E [f (τℓ−1ξ)] + Pij +O(p−3/2)

= τ2ℓ + Pij +O(p−3/2),

with f(t) = σ2
ℓ (t) and ξ ∼ N (0, 1).

Non-diagonal entries [KCK,ℓ]ij . Since
√
[KCK,ℓ−1]ii = τℓ−1+Pij+O(p−3/2), we have, similar

to the proof of the diagonal entries [KCK,ℓ]ii above that
[KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

=
[KCK,ℓ−1]ij

τℓ−1 + Pij +O(p−3/2)

=
1

τℓ−1
[KCK,ℓ−1]ij −

1

τ2ℓ−1

Pij · [KCK,ℓ−1]ij +
2

τ3ℓ−1

P 2
ij · [KCK,ℓ−1]ij +O(p−3/2)

=
1

τℓ−1
[KCK,ℓ−1]ij + Sij + Pij +O(p−3/2)

=
dℓ−1

τℓ−1
+
αℓ−1,1

τℓ−1
Aij + Sij + Pij +O(p−3/2),

for [KCK,ℓ−1]ij of the form as defined in (56) by induction hypothesis, and√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

=

√
τ2ℓ−1 + Pij −

(
d2ℓ−1

τ2ℓ−1

+
2dℓ−1 · αℓ−1,1

τ2ℓ−1

Aij + Pij + Sij

)
+O(p−3/2)

=

√(
τ2ℓ−1 −

d2ℓ−1

τ2ℓ−1

)
− 2dℓ−1 · αℓ−1,1

τ2ℓ−1

Aij + Sij + Pij +O(p−3/2)

=
√
λℓ−1 −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

Aij + Pij + Sij +O(p−3/2).

where we denote the shortcut λℓ−1 ≡ τ2ℓ−1 −
d2
ℓ−1

τ2
ℓ−1

= O(1).

We thus get, for non-diagonal entries [KCK,ℓ]ij , i ̸= j, that
[KCK,ℓ]ij

= E

σℓ(√[KCK,ℓ−1]ii · ξi
)
σℓ

 [KCK,ℓ−1]ij√
[KCK,ℓ−1]ii

· ξi +

√
[KCK,ℓ−1]jj −

[KCK,ℓ−1]2ij
[KCK,ℓ−1]ii

· ξj


= E

[
σℓ (τℓ−1ξi + Pijξi)× σℓ

((
dℓ−1

τℓ−1
+
αℓ−1,1

τℓ−1
Aij + Sij + Pij

)
ξi

+

(√
λℓ−1 −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

Aij + Sij + Pij

)
ξj

)]
+O(p−3/2)
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= E

[(
σℓ (τℓ−1ξi) + σ′

ℓ (τℓ−1ξi)Pijξi +
1

2
σ′′
ℓ (τℓ−1ξi)P

2
ijξ

2
i

)
×
(
σℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)
+ σ′

ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)((
αℓ−1,1

τℓ−1
ξi −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

ξj

)
·Aij + Sij + Pij

)

+
1

2
σ′′
ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)
(Sij + Pij)

)]
+O(p−3/2)

= E

[
(σℓ (τℓ−1ξi) + Pij)

×
(
σℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)
+σ′

ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)(
αℓ−1,1

τℓ−1
ξi −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

ξj

)
·Aij + Sij + Pij

)]
+O(p−3/2)

= E

[
σℓ (τℓ−1ξi)× σℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)

+ σℓ (τℓ−1ξi)× σ′
ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)(
αℓ−1,1

τℓ−1
ξi −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

ξj

)
·Aij

+ Sij + Pij

]
+O(p−3/2)

= E
[
σℓ (τℓ−1ξi)× σℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)]
+ E

[
σℓ (τℓ−1ξi)× σ′

ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)(
αℓ−1,1

τℓ−1
ξi −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

ξj

)]
·Aij

+ Sij + Pij +O(p−3/2)

≡ dℓ + αℓ,1Aij + Sij + Pij +O(p−3/2),

where we recall the followings recursive relation

dℓ = E
[
σℓ (τℓ−1ξi)σℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)]
,

and

αℓ,1 = E

[
σℓ (τℓ−1ξi)σ

′
ℓ

(
dℓ−1

τℓ−1
ξi +

√
λℓ−1ξj

)(
αℓ−1,1

τℓ−1
ξi −

1√
λℓ−1

dℓ−1 · αℓ−1,1

τ2ℓ−1

ξj

)]
,

with λℓ−1 = τ2ℓ−1 − d2ℓ−1/τ
2
ℓ−1 and for independent ξi, ξj ∼ N (0, 1). This concludes the proof of

Theorem 3.

Note that in the defining equation of dℓ, one needs to take the square root of λℓ. In the following, we
show that τ4ℓ ≥ d2ℓ holds for all ℓ ∈ {0, 1, . . . , L} and the sequence dℓ above is well-defined.
Remark 5 (On the existence of dℓ). Note in Theorem 3 that the sequence dℓ, ℓ ∈ {1, . . . , L}, is
defined in a recursive manner, and needs to take the square root

√
λℓ−1 =

√
τ2ℓ − d2ℓ/τ

2
ℓ which may

not be well defined. Here, we prove that τ2ℓ − d2ℓ/τ
2
ℓ ≥ 0 holds for all ℓ, which further guarantees the

existence of the sequence dℓ.
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By definition, we have

dℓ = Eξ1,ξ2

[
σℓ (τℓ−1ξ1)σℓ

(
dℓ−1

τℓ−1
ξ1 +

√
λℓ−1ξ2

)]
, (57)

for independent ξ1, ξ2 ∼ N (0, 1), which takes a form similar to the Gram–Schmidt orthogonalization
performed in the proof of Theorem 1 in Section A.1. We thus have the following alternative definition

dℓ = Eu,v [σℓ(u)σ(v)] , (58)

for

(u, v) ∼ N
(
0,

[
τ2ℓ−1 dℓ−1

dℓ−1 τ2ℓ−1

])
, (59)

which is in essence the leading order of the non-diagonal term [KCK,ℓ]ij , i ̸= j. It then follows from
the Cauchy–Schwarz inequality that τ4ℓ−1 ≥ d2ℓ−1 and thus the conclusion.

A.2.2 Proof of Theorem 2

In the following proof, we follow the same notations and working assumptions as in the proof of
Theorem 1 and Theorem 3 in Appendix A.1 and Appendix A.2.1, respectively.

We have obtained the eigenspectral behavior (in form of a layer-by-layer recurrence relation) of the
CK matrices KCK,ℓ, for E [σℓ (τℓ−1ξ)] = 0 in Theorem 1 and more generally in Theorem 3.

As already mentioned in (6), the NTK matrices KNTK,ℓ of layer ℓ can be defined again, in an iterative
manner, via the CK matrices KCK,ℓ and K′

CK,ℓ as follows [28]

KNTK,0 = KCK,0 = XTX,

KNTK,ℓ = KCK,ℓ +KNTK,ℓ−1 ◦K′
CK,ℓ.

where ‘A ◦ B’ denotes the Hadamard product between two matrices A,B of the same size, and
K′

CK,ℓ ∈ Rn×n denotes the CK matrix with nonlinear function σ′
ℓ(·) instead of σℓ(·) (as for KCK,ℓ

in (4)), that is

[K′
CK,ℓ]ij = Eu,v[σ

′
ℓ(u)σ

′
ℓ(v)], u, v ∼ N

(
0,

[
[K′

CK,ℓ−1]ii [K′
CK,ℓ−1]ij

[K′
CK,ℓ−1]ij [K′

CK,ℓ−1]jj

])
. (60)

For E [σℓ(τℓ−1ξ)] = 0, we have, by Theorem 1, that the CK matrices KCK,ℓ ≃ K̃CK,ℓ in a spectral
sense, with specifically

[KCK,ℓ]ii = τ2ℓ +O(p−1/2), (61)
and for i ̸= j,

[KCK,ℓ]ij = αℓ,1Aij + αℓ,2(ti + ψi)(tj + ψj) + αℓ,3

(
1

p
zTi zj

)2

+ Sij +O(p−3/2). (62)

For K′
CK,ℓ, one has in general E [σ′

ℓ(τ̇ℓ−1ξ)] ̸= 0 for the sequence τ̇ℓ defined in (12) as follows:

τ̇ℓ =

√
E
[
(σ′

ℓ(τ̇ℓ−1ξ))
2
]
, ξ ∼ N (0, 1), ℓ ∈ {1, . . . , L}, (63)

with τ̇0 = τ0. We thus resort to Theorem 3 for the entries of K′
CK,ℓ. Specifically, we have that

[K′
CK,ℓ]ii = τ̇2ℓ +O(p−1/2), (64)

and for i ̸= j,
[K′

CK,ℓ]ij = ḋℓ + ˙αℓ,1Aij + Sij + Pij +O(p−3/2), (65)
with

ḋℓ = Eξ1,ξ2

[
σ′
ℓ(τ̇ℓ−1ξ1)σ

′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

)]
,

α̇ℓ,1 = Eξ1,ξ2

σ′
ℓ(τ̇ℓ−1ξ1)σ

′′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

) α̇ℓ−1,1

τ̇ℓ−1
ξ1 −

1√
λ̇ℓ−1

ḋℓ−1α̇ℓ−1,1

τ̇2ℓ−1

ξ2

 ,
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with λ̇ℓ−1 = τ̇2ℓ−1 − ḋ2ℓ−1/τ̇
2
ℓ−1 for independent ξ1, ξ2 ∼ N (0, 1).

With the above results at hand, we now proceed to the proof of Theorem 2. As in the proof of
Theorem 1 in Appendix A.1, we follow the three-step proof strategy to work on the non-diagonal, the
diagonal, and eventually the matrix form of KNTK,ℓ.

Off the diagonal. With (62) and (65), We first write the non-diagonal entries of KNTK,1 as
[KNTK,1]ij = [KCK,1]ij + [KNTK,0]ij [K

′
CK,1]ij

= α1,1Aij + α1,2(ti + ψi)(tj + ψj) + α1,3

(
1

p
zTi zj

)2

+

(
β0,1Aij + β0,2(ti + ψi)(tj + ψj) + β0,3

(
1

p
zTi zj

)2
)

×
(
ḋ1 + α̇1,1Aij + Pij + Sij

)
+O(p−3/2)

= (α1,1 + β0,1 · ḋ1)Aij + (α1,2 + β0,2 · ḋ1)(ti + ψi)(tj + ψj)

+ (α1,3 + β0,3 · ḋ1 + β0,1α̇1,1)

(
1

p
zTi zj

)2

+ Sij +O(p−3/2),

so that [KNTK,1]ij (and thus [KNTK,ℓ]ij for ℓ ∈ {1, . . . , L}) must also take the form

[KNTK,ℓ]ij = βℓ,1Aij + βℓ,2(ti + ψi)(tj + ψj) + βℓ,3

(
1

p
zTi zj

)2

+ Sij +O(p−3/2). (66)

Since
[KNTK,ℓ]ij = [KCK,ℓ]ij + [KNTK,ℓ−1]ij [K

′
CK,ℓ]ij

= αℓ,1Aij + αℓ,2(ti + ψi)(tj + ψj) + αℓ,3

(
1

p
zTi zj

)2

+

(
βℓ−1,1Aij + βℓ−1,2(ti + ψi)(tj + ψj) + βℓ−1,3

(
1

p
zTi zj

)2
)

×
(
ḋℓ + α̇ℓ,1Aij + Pij + Sij

)
+O(p−3/2)

= (αℓ,1 + βℓ−1,1 · ḋℓ)Aij + (αℓ,2 + βℓ−1,2 · ḋℓ)(ti + ψi)(tj + ψj)

+ (αℓ,3 + βℓ−1,3 · ḋℓ + βℓ−1,1 · α̇ℓ,1)

(
1

p
zTi zj

)2

+ Sij +O(p−3/2),

so that
βℓ,1 = αℓ,1 + βℓ−1,1 · ḋℓ, (67)

βℓ,2 = αℓ,2 + βℓ−1,2 · ḋℓ, (68)

βℓ,3 = αℓ,3 + βℓ−1,3 · ḋℓ + βℓ−1,1 · α̇ℓ,1, (69)
with

ḋℓ = Eξ1,ξ2

[
σ′
ℓ(τ̇ℓ−1ξ1)σ

′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

)]
,

α̇ℓ,1 = Eξ1,ξ2

σ′
ℓ(τ̇ℓ−1ξ1)σ

′′
ℓ

(
ḋℓ−1

τ̇ℓ−1
ξ1 +

√
λ̇ℓ−1ξ2

) α̇ℓ−1,1

τ̇ℓ−1
ξ1 −

1√
λ̇ℓ−1

ḋℓ−1α̇ℓ−1,1

τ̇2ℓ−1

ξ2

 ,
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with λ̇ℓ−1 = τ̇2ℓ−1 −
ḋ2
ℓ−1

τ̇2
ℓ−1

for independent ξ1, ξ2 ∼ N (0, 1).

On the diagonal. With (61) and (64), we next evaluate the diagonal entries of KNTK,ℓ as

[KNTK,ℓ]ii = [KCK,ℓ]ii + [KNTK,ℓ−1]ii · [K′
CK,ℓ]ii = τ2ℓ + κ2ℓ−1τ̇

2
ℓ +O(p−1/2),

so that we obtain the following relation

κ2ℓ = τ2ℓ + κ2ℓ−1τ̇
2
ℓ , (70)

with κ0 = τ0 =
√

trC◦/p defined in Assumption 1.

Assembling in matrix form. Following the discussion above, we have, uniformly for i ̸= j ∈
{1, . . . , n} that, Putting everything together in matrix form, we obtain, as in the proof of Theorem 1
in Appendix A.1 that

[KNTK,ℓ]ij = βℓ,1Aij + βℓ,2(ti + ψi)(tj + ψj) + βℓ,3

(
1

p
zTi zj

)2

+ Sij +O(p−3/2),

and

[KNTK,ℓ]ii = [KCK,ℓ]ii+[KNTK,ℓ−1]ii · [K′
CK,ℓ]ii = τ2ℓ +κ

2
ℓ−1τ̇

2
ℓ +O(p−1/2) ≡ κ2ℓ +O(p−1/2),

so that in matrix form:

KNTK,ℓ = βℓ,1X
TX+VBℓV

T + (κ2ℓ − τ20βℓ,1 − τ40βℓ,3)In +O∥·∥(p
− 1

2 ), (71)

where O∥·∥(p
−1/2) denotes matrices of spectral norm order O(p−1/2) as n, p→ ∞, with

V = [J/
√
p, ψ] ∈ Rn×(K+1), Bℓ =

[
βℓ,2tt

T + βℓ,3T βℓ,2t
βℓ,2t

T βℓ,2

]
, (72)

which concludes the proof of Theorem 2.

A.3 Two equivalent centering approaches in the single-hidden-layer case

In this section, we aim to show that “centering” the CK matrices KCK by pre- and post-multiplying
P = In − 1n1

T
n/n performed in [4, Theorem 1] is equivalent to take E[σ(τ0ξ)] = 0 as in our

Theorem 1 in the single-hidden-layer ℓ = 1 setting, in the sense that one has

∥P(KCK,1 − K̃CK,1)P∥ → 0, (73)

almost surely as n, p→ ∞, for the same K̃CK,1 as defined in Theorem 1 and an arbitrary choice of
E[σ(τ0ξ)] (so in particular, one may freely take E[σ(τ0ξ)] ̸= 0 which is different from the setting of
our Theorem 1). The proof is as follows.

First note that the assumption E[σ(τ0ξ)] = 0 is only used for the off-diagonal entries of the CK
matrix KCK,1, so we focus, in the sequel, only on the off-diagonal terms, while the discussions on
the on-diagonal entries are the same as in Appendix A.1.

By its definition in (5) and the fact that KCK,0 = XTX, one has

[KCK,1]ij = Eu,v[σ1(u)σ1(v)], with u, v ∼ N
(
0,

[
∥xi∥2 xT

i xj

xT
i xj ∥xj∥2

])
, (74)

so by performing a Gram-Schmidt orthogonalization procedure as in the proof of Theorem 1 in
Appendix A.1, one has

u = ∥xi∥ · ξi, v = ∥xj∥
(
∠ij · ξi +

√
1− ∠2

ij · ξj
)
, (75)

for two independent standard Gaussian random variables ξi and ξj , where we denote the shortcut

∠ij ≡ xT
i xj

∥xi∥·∥xj∥ for the “angle” between data vectors xi and xj .
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It can be checked, for xi = µi/
√
p+ zi/

√
p with E[zi] = 0 and E[zizTi ] = Ci that

∥xi∥2 =
1

p
(µi + zi)

T(µi + zi) =
1

p
∥µi∥2 +

2

p
µT

i zi +
1

p
zTi zi

=
1

p
∥µi∥2 +

2

p
µT

i zi︸ ︷︷ ︸
O(p−1)

+
1

p
trC◦︸ ︷︷ ︸

≡τ2
0=O(1)

+
1

p
trC◦

i︸ ︷︷ ︸
≡ti=O(p−1/2)

+ ψi︸︷︷︸
O(p−1/2)

,

where we recall the definition ψi ≡ 1
p∥zi∥

2 − 1
p trCi = O(p−1/2). As such, by Taylor-expanding√

∥xi∥2 around ∥xi∥2 ≃ τ20 = O(1), we get

∥xi∥ = τ0 +
1

2τ0
(∥µi∥2/p+ 2µT

i zi/p+ ti + ψi)−
1

8τ30
(ti + ψi)

2 +O(p−3/2)

≡ τ0 + θi +O(p−3/2),

where we denote the shortcut

θi ≡
1

2τ0
(∥µi∥2/p+ 2µT

i zi/p+ ti + ψi)−
1

8τ30
(ti + ψi)

2 = O(p−1/2), (76)

so that

∥xj∥∠ij =

1
p (µi + zi)

T(µj + zj)

∥xi∥

=

1
pµ

T
i µj +

1
p (µ

T
i zj + µ

T
j zi) +

1
pz

T
i zj

τ0 +
1

2τ0
(ti + ψi) +O(p−1)

+O(p−3/2)

=

(
1

τ0
− ti + ψi

2τ30
+O(p−1)

)(
1

p
µT

i µj +
1

p
(µT

i zj + µ
T
j zi) +

1

p
zTi zj

)
+O(p−3/2)

=
1

τ0

(
1

p
zTi zj +

1

p
µT

i µj +
1

p
(µT

i zj + µ
T
j zi) + Sij

)
+O(p−3/2)

=
1

τ0
Aij + Sij +O(p−3/2).

Therefore, again by Taylor-expansion,√
∥xj∥2 − (∥xj∥∠ij)2 =

√
(∥µj∥2/p+ 2µT

j zj/p+ τ20 + tj + ψj)− (Aij/τ0 + Sij)2

= τ0 +
1

2τ0
(∥µi∥2/p+ 2µT

i zi/p+ ti + ψi)−
1

8τ30
(ti + ψi)

2

− 1

2τ30

(
1

p
zTi zj

)2

+ Sij +O(p−3/2)

= τ0 + θj −
1

2τ30

(
1

p
zTi zj

)2

+ Sij +O(p−3/2).

Following the same idea, we again Taylor-expand σ1(·) in the definition of KCK,1 as

σ1(u) = σ1(τ0ξi) + σ′
1(τ0ξi)ξiθi +

1

8τ20
σ′′
1 (τ0ξi)ξ

2
i (ti + ψi)

2 +O(p−3/2),

and

σ1(v) = σ1

(
∥xj∥∠ijξj + ∥xj∥

√
1− ∠2

ijξi

)
= σ1

(
τ0ξj + ξjθj − ξj

1

2τ30

(
1

p
zTi zj

)2

+ ξi
1

τ0
Aij + Sij +O(p−3/2)

)

= σ1(τ0ξj) + σ′
1(τ0ξj)ξjθj +

1

8τ20
σ′′
1 (τ0ξj)ξ

2
j (tj + ψj)

2 +Xij +O(p−3/2),
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with

Xij =
1

τ0
ξiσ

′
1(τ0ξj)Aij +

1

2τ20

(
1

p
zTi zj

)2(
ξ2i σ

′′
1 (τ0ξj)−

1

τ0
ξjσ

′
1(τ0ξj)

)
+ Sij = O(p−1/2),

where we recall the definition

Aij =
1

p
zTi zj︸ ︷︷ ︸

O(p−1/2)

+
1

p
µT

i µj +
1

p
(µT

i zj + µ
T
j zi)︸ ︷︷ ︸

O(p−1)

= xT
i xj . (77)

For independent ξi and ξj , we denote the following coefficients

p0 = E[σ1(τ0ξ)], p1 = E[σ′
1(τ0ξ)], p2 = E[σ′′

1 (τ0ξ)], p3 = E[σ′′′
1 (τ0ξ)], (78)

so that
E[ξσ1(τ0ξ)] = τ0E[σ′

1(τ0ξ)] = τ0p1, E[ξσ′
1(τ0ξ)] = τ0p2, (79)

as well as

E[ξ2σ′′
1 (τ0ξ)] = E[(ξ2 − 1)σ′′

1 (τ0ξ)] + p2 = τ20E[σ′′′′
1 (τ0ξ)] + p2 ≡ τ20 p4 + p2, (80)

for p4 = E[σ′′′′
1 (τ0ξ)].

This further allows us to write, for Aij = O(p−1/2) and θj = O(p−1/2) that

[KCK,1]ij = Eu,v[σ1(u)σ1(v)]

=E
[
σ1(τ0ξi) + σ′

1(τ0ξi)ξiθi +
1

8τ20
σ′′
1 (τ0ξi)ξ

2
i (ti + ψi)

2

]
× E

[
σ1(τ0ξj) + σ′

1(τ0ξj)ξjθj +
1

8τ20
σ′′
1 (τ0ξj)ξ

2
j (tj + ψj)

2

]
+ E

[(
σ1(τ0ξi) + σ′

1(τ0ξi)ξiθi +
1

8τ20
σ′′
1 (τ0ξi)ξ

2
i (ti + ψi)

2

)
Xij

]
+O(p−3/2)

=

(
p0 + τ0p2θi +

τ20 p4 + p2
8τ20

(ti + ψi)
2

)(
p0 + τ0p2θj +

τ20 p4 + p2
8τ20

(tj + ψj)
2

)
+ E [σ1(τ0ξi)Xij ] + Sij +O(p−3/2),

where the expectation is taken with respect to the independent ξi and ξj (so, in fact, conditioned on
xi,xj), so that

[KCK,1]ij = Eu,v[σ1(u)σ1(v)]

=

(
p0 + τ0p2θi +

τ20 p4 + p2
8τ20

(ti + ψi)
2

)(
p0 + τ0p2θj +

τ20 p4 + p2
8τ20

(tj + ψj)
2

)
+ E

[
1

τ0
ξiσ1(τ0ξi)σ

′
1(τ0ξj)Aij +

1

2τ20

(
1

p
zTi zj

)2

(
ξ2i σ1(τ0ξi)σ

′′
1 (τ0ξj)−

1

τ0
σ1(τ0ξi)ξjσ

′
1(τ0ξj)

)]
+ Sij +O(p−3/2)

=
(
p0 +

p2
2
χi +

p4
8
(ti + ψi)

2
)(

p0 +
p2
2
χj +

p4
8
(tj + ψj)

2
)

+ p21Aij +
1

2τ20

(
1

p
zTi zj

)2

· p2
(
E[(ξ2 − 1)σ1(τ0ξ)]

)
+ Sij +O(p−3/2)

= p20 +
p0p2
2

(χi + χj) +
p0p4
8

(
(ti + ψi)

2 + (tj + ψj)
2
)
+
p22
4
(ti + ψi)(tj + ψj)

+ p21Aij +
p22
2

(
1

p
zTi zj

)2

+ Sij +O(p−3/2),
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where we recall the shortcut

θi ≡
1

2τ0
(∥µi∥2/p+2µT

i zi/p+ti+ψi)−
1

8τ20 τ0
(ti+ψi)

2 ≡ χi

2τ0
− (ti + ψi)

2

8τ20 τ0
= O(p−1/2), (81)

with
χi ≡ ti + ψi + ∥µi∥2/p+ 2µT

i zi/p = ∥xi∥2 − τ0. (82)
This gives, in matrix form,

KCK,1 = p201n1
T
n + p21

(
1

p
ZTZ+

1

p
JMTMJT +

1

p
(JMTZ+ ZTMJT)

)
+
p0p2
2

(χ1T
n + 1nχ

T) +
p0p4
8

(
({ta1na

}Ka=1 +ψ)
21T

n + 1n[({ta1na
}Ka=1 +ψ)

2]T
)

+
p22
4
({ta1na}Ka=1 +ψ)({ta1na}Ka=1 +ψ)

T +
p22
2

(
1

p
ZTZ

)◦2

+ (E[σ2
1(τ0ξ)]− p20 − τ20 p

2
1)In +O∥·∥(p

−1/2),

where we denote χ ≡ {χi}ni=1 ∈ Rn, A◦2 the entry-wise square of the matrix A ∈ Rn×n, i.e.,
[A◦2]ij = [Aij ]

2, and use again the fact that ∥A∥ ≤ n∥A∥∞ for A ∈ Rn×n with ∥A∥∞ =

maxij |A|ij , {Sij}i,j = O∥·∥(p
− 1

2 ) as well as
(

1
pZ

TZ
)◦2

= 1
pJTJT + O∥·∥(p

−1/2) according
to [11].

Finally, using the fact that for P = In − 1n1
T
n/n, we have 1T

nP = 0,P1n = 0, we conclude the
proof of (73) with the same expression of K̃CK,1 as in the statement of our Theorem 1, without the
assumption E[σ1(τ0ξ)] = 0. This, however, no longer holds in the multi-layer setting with a number
of layers L ≥ 1.

A.4 Proof and discussions of Corollary 1

To prove Corollary 1, it can be easily checked that the i.i.d. entries of the weights W defined in (17)
have zero mean and unit variance. So we focus on the design of the activations.

To ensure that the activation functions σℓ(·)s are “centered” and satisfy E[σℓ(τℓ−1ξ)] = 0, we define,
with a slight abuse of notation, for the non-negative sequence τ1, . . . , τL defined in Theorem 1,

σT (t) = a · (1t<s1 + 1t>s2), σQ(t) = b1 · (1t<r1 + 1t>r4) + b2 · 1r2≤t≤r3 , (83)

and take αℓ,0 ≡ E[σT (τℓ−1ξ)], σT (τℓ−1ξ) ≡ σ̃T (τℓ−1ξ) = σT (τℓ−1ξ)− αℓ,0, which serves as the
activation of the first ℓ = 1, . . . , L− 1 layers, and a, s1 and s2 satisfying the following equations

E[σ′
T (τℓ−1ξ)] =

a√
2πτℓ−1

·
(
e−s22/(2τ

2
ℓ−1) − e−s21/(2τ

2
ℓ−1)

)
, (84)

E[σ′′
T (τℓ−1ξ)] =

a√
2πτ3ℓ−1

·
(
s2e

−s22/(2τ
2
ℓ−1) − s1e

−s21/(2τ
2
ℓ−1)

)
, (85)

E[(σ2
T (τℓ−1ξ))

′′] =
a2 − 2a · αℓ,0√

2πτ3ℓ−1

·
(
s2e

−s22/(2τ
2
ℓ−1) − s1e

−s21/(2τ
2
ℓ−1)

)
, (86)

E[σ2
T (τℓ−1ξ)] =

a2

2

(
erf

(
s1√
2τℓ−1

)
− erf

(
s2√
2τℓ−1

)
+ 2

)
− α2

ℓ,0, (87)

and αL,0 ≡ E[σQ(τξ)], σT (τξ) ≡ σ̃T (τξ) = σT (τξ)− αL,0, which serves as the activation of the
last and Lth layer, and b1, b2, r1, r2, r3 and r4 satisfying the following equations

E[σ′
Q(τξ)] =

b1

(
e−r24/(2τ

2) − e−r22/(2τ
2)
)

√
2πτ

+
b2

(
e−r22/(2τ

2) − e−r32/(2τ
2)
)

√
2πτ

, (88)

E[σ′′
Q(τξ)] =

b1

(
r4e

−r24/(2τ
2) − r1e

−r21/(2τ
2)
)

√
2πτ3

+
b2

(
r2e

−r22/(2τ
2) − r3e

−r32/(2τ
2)
)

√
2πτ3

, (89)
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E[(σ2
Q(τξ))

′′] =
b21

(
r4e

−r24/(2τ
2) − r1e

−r21/(2τ
2)
)

√
2πτ3

+
b22

(
r2e

−r22/(2τ
2) − r3e

−r32/(2τ
2)
)

√
2πτ3

,

− 2αL,0E[(σ′′
Q(τξ))],

(90)

E[(σ2
Q(τξ))] =

b21
2

(
erf

(
r1√
2τ

)
− erf

(
r4√
2τ

))
+ b21 +

b22
2

(
erf

(
r2√
2τ

)
− erf

(
r3√
2τ

))
− α2

L,0

(91)
with τ = τL−1.

A few remarks on Corollary 1 and Algorithm 1 are as follows.

On the numerical determinations of σT and σQ. The above system of nonlinear equations does
not admit explicit solutions, but can be solved efficiently using, for example, a (numerical) least
squares method. Precisely, we use the numerical least squares method (the optimize.minimize
function of SciPy library) to solve the above system of equations, and run for 1 000 times with
random and independent initializations to get 1 000 solutions, among which we choose the optimal
parameters to determine σQ and σT .

On the two activations. Note that in Algorithm 1 we use the activation σT and σQ respectively for
the first ℓ = 1, . . . , L− 1 and the final and Lth layer, since we only need to match the key parameters
αℓ,1, αℓ,2 and αℓ,3 for the first ℓ = 1, . . . , L − 1 layer, and the additional parameter τℓ for the last
Lth, so as to obtain spectrally equivalent CK and NTK matrices for the whole network of depth L.
Also note that the proposed activation functions σT and σQ have respectively three and five (in fact
six parameters with the symmetric constraint r1 − r2 = r3 − r4 as in Figure 1) parameters that are
freely tunable. And we have respectively three and four (nonlinear) equations to determine these
parameters in the system of equations above.

B Additional experiments

In this section, we provide additional experiments to demonstrate the advantageous performance
of the proposed “lossless” compression approach. Figure 4 depicts the classification accuracies
using three different neural networks: (i) the original “dense and unquantized” nets with three fully-
connected layers of ReLU activations, (ii) the proposed sparse and quantized DNN model as per
Algorithm 1, and (iii) the “heuristically” compressed networks by (iii-i) uniformly and randomly
zeroing out 90% of the weights, as well as (iii-ii) natively binarizing using σ(t) = 1t<−1 + 1t>1, on
two tasks of MNIST data classification [31] having five classes (digits 0, 1, 2, 3, 4) and two classes
(digits 6 versus 8). This allows us to have a more qualitative assessment of the impact of data and task
on the performance of the proposed compression scheme. We see, as in Figure 3 for ten-class MNIST
and ten-class CIFAR10, that the proposed compression approach significantly outperform the two
“naive” compression approaches, and can achieve a memory compression rate of 103 and a level of
sparsity up to 90%, with virtually no performance loss. Also note that the experimental settings of
Figure 4 is almost the same as those of Figure 3 in Section 4, except that the former networks have
less neurons per layer and slightly higher level of sparsity (90% here instead of 80% in the setting of
Figure 3), to solve the simpler two-class or five-class classification problems.

In Table 1 and 2, we evaluate the impact of activation functions on the classification performance on
data of different nature, on a set of fully-connected DNN models having three hidden layers (of width
d1 = 3000, d2 = 3000, d3 = 1000 in each layer) and use the same activation σ(·) for all layers.

More precisely, Table 1 depicts the classification accuracy and the values of the key parameters α1,
α2, α3 and τ for different activations σ(·) in the asymptotic equivalent CK matrix K̃CK defined
in Theorem 1 of the third and final layer of the network, on a binary classification of MNIST data
(class 6 versus 8). Similarly, Table 2 compares the classification accuracy and α1, α2, α3, τ for
different activations, on two-class GMM data with identical mean µa = 0p and different covariance
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Figure 4: Test accuracy of classification on 2-class (top) MNIST dataset - digits 6 versus 8 and
5-class (bottom) MNIST dataset - digits (0, 1, 2, 3, 4). Blue curves represent the proposed “lossless”
compression scheme with different levels of sparsity ε ∈ {0%, 50%, 90%}, purple curves represent
the heuristic sparsification approach by uniformly zeroing out 90% of the weights, green curves
represent the heuristic quantization approach using the binary activation σ(t) = 1t<−1 + 1t>1

(only applied on the first two layers, otherwise the performance is too poor to be compared to other
curves), and red curves represent the original (dense and unquantized) network. All nets have three
fully-connected layers, and the original network uses ReLU activations for all layers. Memory varies
due to the change of layer width of the network.

Ca = (1 + 8(a− 1)/
√
p)Ip, a ∈ {1, 2}, The numerical experiments are performed on a training set

of size 12 000, a test set of 1 800, with x1, . . . ,xn/2 ∈ C1 and xn/2+1, . . . ,xn ∈ C2, for standard
Gaussian W on both MNIST and GMM data.

We observe from Table 1 and 2 that:

(i) while in theory, the key parameters α1, α2, α3 and τ (in Theorem 1) depend on both (the
statistics of) the data and the activation, the impact of the activation σ appears much more
significant;

(ii) by using some σ (with the corresponding α1, α2 and/or α3 being zero), one asymptotically
“discards” either the first-order (µa) or the second-order (t,T) statistics of the data (which,
per Theorem 1, are respectively weighted by the key parameter α1, α2 and α3), resulting in
performance degradation;

(iii) precisely, we divide commonly used activations in Table 1 and 2 into the following three
categories:

1. covariance-oriented activations with α1 = 0: this includes cos(t) and |t|; and
2. mean-oriented activations with α2 = 0 and α3 = 0: this includes 1t≥0, sign(t),

(1 + e−t)−1 [21], sin(t), linear function, and the Gaussian error function erf(t); and
3. balanced activations with nonzero α1, α2, α3: this includes ReLU activation

ReLU(t) = max(t, 0) and Leaky ReLU activation [42].

The above classification of activation functions is reminiscent of that proposed in [36],
which is, however, only valid in a single-hidden-layer setting. In line with the observations
made in [36], we see in Table 1 that covariance-oriented activations behave poorly in the
classification of MNIST data (that are known to have very different first-order statistics, see
for example [36, Table 3]), while mean-oriented activations yield unsatisfactory performance
on GMM data having different covariance structure in Table 2. In a sense, the parameter α1
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characterizes the “ability” of a given net to extract first-order data statistics and α2, α3 the
“ability” to extract second-order statistics from the input data, respectively.

Table 1: Classification accuracy and values of α1, α2, α3 and τ at the third and final layer, on MNIST
data (digits 6 versus 8).

σ(t) α1 α2 α3 τ Accuracy

max(0, t) 0.0156 0.0105 0.0112 0.1994 0.971
0.1t · 1t<0 + t · 1t≥0 0.0083 0.0097 0.0081 0.1750 0.9654

1t≥0 0.0642 0 0 0.5 0.9665
sign(t) 0.1779 0 0 0.4689 0.9715

1/(1 + e−t) 0.0002 0 0 0.0129 0.9637
sin(t) 0.1779 0 0 0.4689 0.9749
t 1 0 0 1.0021 0.981

erf(t) 0.2166 0 0 0.5053 0.9788

cos(t) 0 0.0003 0 0.0116 0.5257
|t| 0 0.0209 0 0.2195 0.5709

Table 2: Classification accuracy and values of α1, α2, α3 and τ at the third and final layer, on GMM
data.

σ(t) α1 α2 α3 τ Accuracy

max(0, t) 0.0156 0.0092 0.0099 0.2128 0.8945
0.1t · 1t<0 + t · 1t≥0 0.0083 0.0085 0.0071 0.1867 0.9079

1t≥0 0.0564 0 0 0.5 0.5028
sign(t) 0.2256 0 0 1 0.4916

1/(1 + e−t) 0.0002 0 0 0.0135 0.5173
sin(t) 0.1512 0 0 0.4729 0.5025
t 1 0 0 1.0693 0.5045

erf(t) 0.1912 0 0 0.51 0.4989

cos(t) 0 0.0003 0 0.015 0.9598
|t| 0 0.0184 0 0.2342 0.9302
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