
Supplementary to:
Geometric Neural Diffusion Processes

A Organisation of appendices

In this supplementary, we first introduce in App. B an Ornstein Uhlenbeck process on function space
(via finite marginals) along with several score approximations. Then in App. C, we show how this
methodology extend to manifold-valued inputs or outputs. Later in App. D, we derive sufficient
conditions for this introduced model to yield a group invariant process. What’s more in App. E, we
study some conditional sampling schemes. Eventually in App. F, we give a thorough description of
experimental settings along with additional empirical results.

B Ornstein Uhlenbeck on function space

B.1 Multivariate Ornstein-Uhlenbeck process

First, we aim to show that we can define a stochastic process on an infinite dimensional function space,
by defining the joint finite marginals Y(x) as the solution of a multidimensional Ornstein-Uhlenbeck
process. In particular, for any set of input x = (x1, · · · , xk) 2 X

k, we define the joint marginal as
the solution of the following SDE

dỸt(x) = (m(x)� Ỹt(x))/2 �tdt+
p
�tK(x, x)dBt . (8)

Proposition B.1. (Phillips et al., 2022) We assume we are given a data process (Y0(x))x2X and

we denote by G ⇠ GP(0, k) a Gaussian process with zero mean and covariance. Then let’s define

Yt , e� 1
2 ·
R t
s=0 �sds Y0 +

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
m+

⇣
1� e�

R t
s=0 �sds

⌘1/2
G.

Then (Yt(x))x2X is a stochastic process (by virtue of being a linear combination of stochastic

processes). We thus have that Yt
a.s.
���!
t!0

Y0 and Yt
a.s.

���!
t!1

Y1 with Y1 ⇠ GP(m, k), so

effectively (Yt(x))t2R+,x2X interpolates between the data process and this limiting Gaussian process.

Additionally, L(Yt|Y0 = y0) = GP(mt,Kt) with mt = e� 1
2 ·
R t
s=0 �sds y0+

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
m

and ⌃t =

⇣
1� e�

R t
s=0 �sds

⌘
K. Furthermore, (Yt(x))t2R+,x2X is the solution of the SDE in (8).

Proof. We aim to compute the mean and covariance of the process (Yt)t�0 described by the SDE
(3). First let’s recall the time evolution of the mean and covariance of the solution from a multivariate
Ornstein-Uhlenbeck process given by

dYt = f(Yt, t)dt+ L(Yt, t)dBt. (9)

We know that the time evolution of the mean and the covariance are given respectively by Särkkä and
Solin (2019)

dmt

dt
= E[f(Yt, t)] (10)

d⌃t

dt
= E[f(Yt, t)(mt �Yt)

>
] + E[(mt �Yt)f(Yt, t)

>
] + E[L(Yt, t)L(Yt, t)

>
]. (11)

Plugging in the drift f(Yt, t) = 1/2 · (m�Yt)�t and diffusion term L(Yt, t) =
p
�tK from (3),

we get

dmt

dt
= 1/2 · (m�Yt)�t (12)

d⌃t

dt
= �t [K � ⌃t] . (13)

1

Solving these two ODEs we get

mt = e� 1
2 ·
R t
s=0 �sdsm0 +

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
m (14)

⌃t = K + e�
R t
s=0 �sds

(⌃0 �K) (15)

with m0 , E[Y0] and ⌃0 , Cov[Y0].

Now let’s compute the first two moments of (Yt(x))x2X . We have

E[Yt] = E

h
e� 1

2 ·
R t
s=0 �sds Y0 +

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
m+

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
G
i

(16)

= e� 1
2 ·
R t
s=0 �sdsm0 +

⇣
1� e� 1

2 ·
R t
s=0 �sds

⌘
m (17)

= mt (18)

Cov[Yt] = Cov

h
e� 1

2 ·
R t
s=0 �sds Y0

i
+Cov

⇣
1� e�

R t
s=0 �sds

⌘1/2
G

�
(19)

= e�
R t
s=0 �sds

⌃0 +

⇣
1� e�

R t
s=0 �sds

⌘
K (20)

= K + e�
R t
s=0 �sds

(⌃0 �K) (21)
= ⌃t . (22)

B.2 Conditional score

Hence, condition on Y0 the score is the gradient of the log Gaussian characterised by mean mt|0 =

e� 1
2B(t)Y0 and ⌃t|0 = (1� e�B(t)

)K with B(t) =
R t
0 �(s)ds which can be derived from the above

marginal mean and covariance with m0 = Y0 and ⌃0 = 0.
rYt log pt(Yt|Y0) = rYt logN

�
Yt|mt|0,⌃t|0

�
(23)

= rYt � 1/2(Yt �mt|0)
>
⌃

�1
t|0 (Yt �mt|0) + c (24)

= �⌃
�1
t|0 (Yt �mt|0) (25)

= �L
�>
t|0 L

�1
t|0Lt|0✏ (26)

= �L
�>
t|0 ✏ (27)

where Lt|0 denotes the Cholesky decomposition of ⌃t|0 = Lt|0L
>
t|0, and Yt = mt|0 + Lt|0✏.

Then we can plugin our learnt (preconditioned) score into the backward SDE 4 which gives

dȲt|x =
⇥
�(m(x)� Ȳt)/2 + K(x, x)rȲt

log pT�t(t, x, Ȳt)
⇤
dt+

p
�tK(x, x)�tdBt (28)

B.3 Several score parametrisations

In this section, we discuss several parametrisations of the neural network and the objective.

For the sake of versatility, we opt to employ the symbol D✓ for the network instead of s✓ as mentioned
in the primary text, as it allows us to approximate not only the score but also other quantities from
which the score can be derived. In full generality, we use a residual connection, weighted by
cout, cskip : R ! R, to parameterise the network

D✓(t,Y t) = cskip(t)Y t + cout(t)F✓(t,Y t). (29)
We recall that the input to the network is time t, and the noised vector Y t = µt|0 + n, where
µt|0 = e�B(t)/2Y 0 and n ⇠ N (0,⌃t|0) with ⌃t|0 = (1 � e�B(t)

)K. The gram matrix K
corresponds to k(X,X) with k the limiting kernel. We denote by Lt|0 and S respectively the
Cholesky decomposition of ⌃t|0 = Lt|0L

>
t|0 and K = SS

>.

The denoising score matching loss weighted by ⇤(t) is given by

L(✓) = E
h
kD✓(t,Y t)�rY t log pt(Y t|Y 0)k

2
⇤(t)

i
(30)

2

Table 3: Summary of different score parametrisations as well as the values for cskip and cout that we found to be
optimal, based on the recommendation from Karras et al. (2022, Appendix B.6).

No precond. Precond. K Precond. S> Predict Y 0

cskip 0 0 0 1
cout (�t|0 + 10

�3
)
�1

(�t|0 + 10
�3

)
�1

(�t|0 + 10
�3

)
�1 1

Loss k�t|0S
>D✓ + zk2

2 k�t|0D✓ + Szk2
2 k�t|0D✓ + zk2

2 kD✓ � Y 0k2
2

Kr log pt KD✓ D✓ SD✓ �⌃
�1
t|0 (Y t � e� B(t)

2 D✓)

No preconditioning By reparametrisation, let Y t = µt|0 + Lt|0z, where z ⇠ N (0, I), the loss
from Eq. (30) can be written as

L(✓) = E
h
kD✓(t,Y t) + ⌃

�1
t|0 (Y t � µt|0)k

2
⇤(t)

i
(31)

= E
h
kD✓(t,Y t) + ⌃

�1
t|0Lt|0zk

2
⇤(t)

i
(32)

= E
h
kD✓(t,Y t) + L�>

t|0 zk2
⇤(t)

i
(33)

(34)
Choosing ⇤(t) = ⌃t|0 = Lt|0L

>
t|0 we obtain

L(✓) = E
h
kL>

t|0D✓(t,Y t) + zk2
2

i
(35)

= E
⇥
k�t|0S

>D✓(t,Y t) + zk2
2

⇤
. (36)

Preconditioning by K Alternatively, one can train the neural network to approximate the pre-
conditioned score D✓ ⇡ KrY t log pt(Y t|Y 0). The loss, weighted by ⇤ = �2

t|0I, is then given
by

L(✓) = E
h
kD✓(t,Y t) +K L�>

t|0 zk2
⇤(t)

i
(37)

= E
h
kD✓(t,Y t) + ��1

t|0Szk
2
⇤(t)

i
(38)

= E
⇥
k�t|0D✓(t,Y t) + Szk2

2

⇤
. (39)

Precondition by S> A variation of the previous one, is to precondition the score by the transpose
Cholesky of the limiting kernel gram matrix, such that D✓ ⇡ S>

rY t log pt(Y t|Y 0) .

The loss, weighted by ⇤ = �2
t|0I, becomes

L(✓) = E
h
kD✓(t,Y t) + S> L�>

t|0 zk2
⇤(t)

i
(40)

= E
h
kD✓(t,Y t) + ��1

t|0 zk
2
⇤(t)

i
(41)

= E
⇥
k�t|0D✓(t,Y t) + zk2

2

⇤
. (42)

Predicting Y 0 Finally, an alternative strategy is to predict Y 0 from a noised version Y t. In this
case, the loss takes the simple form

L(✓) = E
⇥
kD✓(t,Y t)� Y 0k

2
2

⇤
.

The score can be computed from the network’s prediction following
r log pt(Y t|Y 0) = �⌃

�1
t|0 (Y t � µt|0) (43)

= �⌃
�1
t|0 (Y t � e�B(t)/2Y 0) (44)

⇡ �⌃
�1
t|0

⇣
Y t � e�B(t)/2D✓(t,Y t)

⌘
(45)

(46)

Table 3 summarises the different options for parametrising the score as well as the values for cskip and
cout that we found to be optimal, based on the recommendation from Karras et al. (2022, Appendix
B.6). In practice, we found the precondition by K parametrisation to produce the best results, but we
refer to App. F.1.3 for a more in-depth ablation study.

3

B.4 Exact (marginal) score in Gaussian setting

Interpolating between Gaussian processes GP (m0,⌃0) and GP (m,K)

KrȲt
log pt(Yt) = �K⌃

�1
t (Yt �mt) (47)

= �K[K + e�
R t
s=0 �sds

(⌃0 �K)]
�1

(Yt �mt) (48)

= �K(LtLt
>
)
�1

(Yt �mt) (49)

= �KLt
>�1

Lt
�1

(Yt �mt) (50)
(51)

with ⌃t = K+ e�
R t
s=0 �sds

(⌃0 �K) = LtLt
> obtained via Cholesky decomposition.

B.5 Langevin dynamics

Under mild assumptions on r log pT�t (Durmus and Moulines, 2016) the following SDE

dYs =
1
2Kr log pT�t(Ys)ds+

p

KdBs (52)

admits a solution (Ys)s�0 whose law L(Ys) converges with geometric rate to pT�t for any invertible
matrix K.

B.6 Likelihood evaluation

Similarly to Song et al. (2021), we can derive a deterministic process which has the same marginal
density as the SDE (3), which is given by the following Ordinary Differential Equation (ODE)—
referred as the probability flow ODE

d

✓
Yt(x)

log pt(Yt(x))

◆
=

✓
1
2 {m(x)�Yt(x)�K(x, x)r log pt(Yt(x))}�t

�
1
2div {m(x)�Yt(x)�K(x, x)r log pt(Yt(x))}�t

◆
dt. (53)

Once the score network is learnt, we can thus use it in conjunction with an ODE solver to compute
the likelihood of the model.

B.7 Discussion consistency

So far we have defined a generative model over functions via its finite marginals Ȳ✓
T (x). These

finite marginals were to arise from a stochastic process if, as per the Kolmogorov extension theorem
(Øksendal, 2003), they satisfy exchangeability and consistency conditions. Exchangeability can
be satisfied by parametrising the score network such that the score network is equivariant w.r.t
permutation, i.e. s✓(t,� � x,� � y) = � � s✓(t, x, y) for any � 2 ⌃n. Additionally, we have that the
noising process (Yt(x))x2X is trivially consistent for any t 2 R+ since it is a stochastic process as
per Prop. B.1, and consequently so is the (true) time-reversal (Ȳt(x))x2X . Yet, when approximating
the score s✓ ⇡ r log pt, we lose the consistency over the generative process Ȳ✓

t (x) as the constraint
on the score network is non trivial to satisfy. This is actually a really strong constraint on the model
class, and as soon as one goes beyond linearity (of the posterior w.r.t. the context set), it is non trivial
to enforce without directly parameterising a stochastic process, e.g. as Phillips et al. (2022). There
thus seems to be a strong trade-off between satisfying consistency, and the model’s ability to fit
complex process and scale to large datasets.

C Manifold-valued diffusion process

C.1 Manifold-valued inputs

In the main text we dealt with a simplified case of tensor fields where the tensor fields are over
Euclidean space. Nevertheless, it is certainly possible to apply our methods to these settings.
Significant work has been done on performing convolutions on feature fields on generic manifolds
(a superset of tensor fields on generic manifolds), core references being (Cohen, 2021) for the case
of homogeneous spaces and (Weiler et al., 2021) for more general Riemannian manifolds. We

4

recommend these as excellent mathematical introductions to the topic and build on them to describe
how to formulate diffusion models over these spaces.

Tensor fields as sections of bundles. Formally the fields we are interested in modelling are sections
� of associated tensor bundles of the principle G-bundle on a manifold M . We shall denote such a
bundle BM and the space of sections �(BM). The goal, therefore, is to model random elements

from this space of sections. For a clear understanding of this definition, please see Weiler et al. (2021,
pages 73-95) for an introduction suitable to ML audiences. Prior work looking at this setting is
(Hutchinson et al., 2021) where they construct Gaussian Processes over tensor fields on manifolds.

Stochastic processes on spaces of sections. Given we can see sections as maps � : M ! BM ,
where an element in BM is a tuple (m, b), m in the base manifold and b in the typical fibre, alongside
the condition that the composition of the projection proji : (m, b) 7! m with the section is the
identity, proji �� = Id it is clear we can see distribution over sections as stochastic processes with
index set the manifold M , and output space a point in the bundle BM , with the projection condition
satisfied. The projection onto finite marginals, i.e. a finite set of points in the manifold, is defined as
⇡m1,...,mn(�) = (�(m1), ...,�(mn)).

Noising process. To define a noising process over these marginals, we can use Gaussian Processes
defined in (Hutchinson et al., 2021) over the tensor fields. The convergence results of Phillips et al.
(2022) hold still, and so using these Gaussian Processes as noising processes on the marginals also
defines a noising process on the whole section.

Reverse process. The results of (Cattiaux et al., 2021) are extremely general and continue to hold in
this case of SDEs on the space of sections. Note we don’t actually need this to be the case, we can
just work with the reverse process on the marginals themselves, which are much simpler objects. It is
good to know that it is a valid process on full sections though should one want to try and parameterise
a score function on the whole section akin to some other infinite-dimension diffusion models.

Score function. The last thing to do therefore is parameterise the score function on the marginals. If
we were trying to parameterise the score function over the whole section at once (akin to a number
of other works on infinite dimension diffusions), this could present some problems in enforcing the
smoothness of the score function. As we only deal with the score function on a finite set of marginals,
however, we need not deal with this issue and this presents a distinct advantage in simplicity for our
approach. All we need to do is pick a way of numerically representing points on the manifold and
b) pick a basis for the tangent space of each point on the manifold. This lets us represent elements
from the tangent space numerically, and therefore also elements from tensor space at each point
numerically as well. This done, we can feed these to a neural network to learn to output a numerical
representation of the score on the same basis at each point.

C.2 Manifold-valued outputs

In the setting, where one aim to model a stochastic process with manifold codomain Yt(x) =

(Yt(x1), · · · ,Yt(xn)) 2 M
n, things are less trivial as manifolds do not have a vector space

structure which is necessary to define Gaussian processes. Fortunately, We can still target a know
distribution marginally independently on each marginal, since this is well defined, and as such
revert to the Riemannian diffusion models introduced in De Bortoli et al. (2021) with n independent
Langevin noising processes

dYt(xk) = �
1
2rU(Yt(xk)) �tdt+

p
�tdB

M
t . (54)

are applied to each marginal. Hence in the limit t ! 1, Yt(x) has density (assuming it exists) which
factors as dp/dVolM((y(x1), · · · , y(xn))) /

Q
k e

�U(y(xn))). For compact manifolds, we can
target the uniform distribution by setting U(x) = 0. The reverse time process will have correlation
between different marginals, and so the score function still needs to be a function of all the points in
the marginal of interest.

D Invariant neural diffusion processes

D.1 E(n)-equivariant kernels

A kernel k : Rd
⇥ Rd

! Rd⇥d is equivariant if it satisfies the following constraints: (a) k is
stationnary, that is if for all x, x0

2 Rn

5

k(x, x0
) = k(x� x0

) , k̃(x� x0
) (55)

and if (b) it satisfies the angular constraint for any h 2 H

k(hx, hx0
) = ⇢(h)k(x, x0

)⇢(h)>. (56)

A trivial example of such an equivariant kernel is the diagonal kernel k(x, x0
) = k0(x, x0

)I (Hold-
errieth et al., 2021), with k0 stationnary. This kernel can be understood has having d independent
Gaussian process uni-dimensional output, that is, there is no inter-dimensional correlation.

Less trivial examples, are the E(n) equivariant kernels proposed in Macêdo and Castro (2010).
Namely curl-free and divergence-free kernels, allowing for instance to model electric or magnetic
fields. Formally we have kcurl = k0A and kdiv = k0B with k0 stationary, e.g. squared exponential
kernel k0(x, x0

) = �2
exp

⇣
kx�x0k2

2l2

⌘
, and A and B given by

A(x, x0
) = I�

(x� x0
)(x� x0

)
>

l2
(57)

B(x, x0
) =

(x� x0
)(x� x0

)
>

l2
+

✓
n� 1�

kx� x0
k
2

l2

◆
I. (58)

See Holderrieth et al. (Appendix C, 2021) for a proof.

D.2 Proof of Prop. 3.2

Below we give two proofs for the group invariance of the generative process, one via the probability
flow ODE and one directly via Fokker-Planck.

Proof. Reverse ODE. The reverse probability flow associated with the forward SDE (3) with approx-
imate score s✓(t, ·) ⇡ r log pt is given by

dȲt|x =
1
2

⇥
�m(x) + Ȳt +K(x, x)s✓(T � t, x, Ȳt)

⇤
dt (59)

, bODE(t, x, Ȳt)dt (60)

This ODE induces a flow �b
t : X

n
⇥ Y n

! TY n for a given integration time t, which is said to be
G-equivariant if the vector field is G�equivariant itself, i.e. b(t, g · x, ⇢(g)Ȳt) = ⇢(g)b(t, x, Ȳt).
We have that for any g 2 G

bODE(t, g · x, ⇢(g)Ȳt) =
1
2

⇥
�m(g · x) + ⇢(g)Yt +K(g · x, g · x) s✓(t, g · x, ⇢(g)Ȳt)

⇤
(61)

(1)
=

1
2

⇥
�⇢(g)m(x) + ⇢(g)Yt + ⇢(g)K(x, x)⇢(g)> s✓(t, g · x, ⇢(g)Ȳt)

⇤

(62)
(2)
=

1
2

⇥
�⇢(g)m(x) + ⇢(g)Yt + ⇢(g)K(x, x)⇢(g)>⇢(g) s✓(t, x, Ȳt)

⇤
(63)

(3)
=

1
2⇢(g)

⇥
�m(x) +Yt +K(x, x) s✓(t, x, Ȳt)

⇤
(64)

= ⇢(g)bODE(t, x, Ȳt) (65)

with (1) from the G-invariant prior GP conditions on m and k, (2) assuming that the score network
is G-equivariant and (3) assuming that ⇢(g) 2 O(n). To prove the opposite direction, we can
simply follow these computations backwards. Finally, we know that with a G-invariant probability
measure pref and G-equivariant map �, the pushforward probability measure p�1

ref � � is also G-
invariant (Köhler et al., 2020; Papamakarios et al., 2019). Assuming a G-invariant prior GP, and a
G-equivariant score network, we thus have that the generative model from Sec. 3 defines marginals
that are G-invariant.

Proof. Reverse SDE. The reverse SDE associated of the forward SDE (3) with approximate score
s✓(t, ·) ⇡ r log pt is given by

dȲt|x =
⇥
�(m(x)� Ȳt)/2 + K(x, x)s✓(T � t, x, Ȳt)

⇤
dt+

p
�tK(x, x)dBt (66)

, bSDE(t, x, Ȳt)dt+ ⌃
1/2

(t, x) dBt. (67)

6

As for the probability flow drift bODE, we have that bSDE is similarly G-equivariant, that is bSDE(t, g ·
x, ⇢(g)Ȳt) = ⇢(g)bSDE(t, x, Ȳt) for any g 2 G. Additionally, we have that diffusion matrix is also
G-equivariant as for any g 2 G we have ⌃(t, g · x) = �tK(g · x, g · x) = �t⇢(g)K(x, x)⇢(g)> =

⇢(g)⌃(t, x)⇢(g)> since K is the gram matrix of an G-equivariant kernel k.

Additionally assuming that bSDE and ⌃ are bounded, Yim et al. (Proposition 3.6, 2023) says that the
distribution of Ȳt is G-invariant, and in in particular L(Ȳ0).

D.3 Equivariant posterior maps

Theorem D.1 (Invariant prior stochastic process implies an equivariant posterior map). Using the

language of Weiler et al. (2021) our tensor fields are sections of an associated vector bundle A of a

manifold M with a G structure. Let IsomGM be the group of G-structure preserving isometries on

M . The action of this group on a section of the bundle f 2 �(A) is given by

� . f := �⇤,A � f � ��1

(Weiler et al., 2021). Let f ⇠ P , P a distribution over the space of section. Let � . P be the law of

of � . f . Let µx = L(f(x)) = ⇡x#P , the law of f evaluated at a point, where ⇡x is the canonical

projection operator onto the marginal at x, # the pushforward operator in the measure theory sense,

x 2 M and y is in the fibre of the associated bundle. Let µx0,y
x = L(f(x)|f(x0

) = y0
) = ⇡xµx0,y0

=

⇡x#L(f |f(x0
) = y0

), the conditional law of the process when given f(x0
) = y0

.

Assume that the prior is invariant under the action of IsomGM , i.e. that

� . µx = (�⇤,A)#µ��1(x) = µx

Then the conditional measures are equivariant, in the sense that

� . µx0,y0

x = (�⇤,A)#µx0,y0

��1(x) = µ��1(x),�⇤,A(y)
x = µ�.(x0,y0)

x

Proof. 8A,B test functions, � 2 IsomGM ,
E[B(f(x0

))A((� . f)(x))] = E
⇥
B(f(x0

))A
�
�⇤,A � f � ��1

(x)
�⇤

= E
⇥
B(f(x0

))E
⇥
A
�
�⇤,A

�
F (��1

(x))
�� �� F (x0

)
⇤⇤

= E


B(f(x0

))

Z
A(y)(�⇤,A)#µx0,f(x0)

��1(x) (dy)

�

=

Z
B(y0

)

Z
A(y)(�⇤,A)#µx0,f(x0)

��1(x) (dy)µx0(dy0
)

=

Z
B(y0

)

Z
A(y)

⇣
� . µx0,f(x0)

x

⌘
(dy)µx0(dy0

)

By invariance this quantity is also equal to
E
⇥
B
�
(��1 . f)(x0

)
�
A((��1 . � . f)(x))

⇤
= E

⇥
B
�
(��1 . f)(x0

)
�
E
⇥
A(f(x))

�� B
�
(��1 . f)(x0

)
�⇤⇤

= E
⇥
B
�
�⇤,A(f(��1

(x0
)))

�⇥
A(F (x))

�� �⇤,A(f(��1
(x0

)))
⇤⇤

= E


B
⇣
⌧�1
x0,gF (gx0

)

⌘Z
A(y)µ

�(x0),��1
⇤,A(y)

x

�
(dy)

=

Z
B(y0

)

Z
A(y)µ�.(x0,y)

x (dy)
⇣
��1

⇤,A

⌘

#
µ�(x0)(dy

0
)

=

Z
B(y0

)

Z
A(y)µ�.(x0,y)

x (dy)
�
��1 . µx0

�
(dy0

)

Hence ⇣
� . µx0,f(x0)

x

⌘
(dy)µx0(dy0

) = µ�.(x0,y)
x (dy)

�
��1 . µx0

�
(dy0

)

7

By the stated invariance ��1 . µx0 = µx0 , hence
⇣
� . µx0,f(x0)

x

⌘
(dy) = µ�.(x0,y)

x (dy) a.e. y0

So
� . µx0,f(x0)

x = µ�.(x0,y)
x (68)

as desired.

E Langevin corrector and the iterative procedure of REPAINT (Lugmayr
et al., 2022)

E.1 Langevin sampling scheme

Several previous schemes exist for conditional sampling from Diffusion models. Two different types
of conditional sampling exist. Those that try to sample conditional on some part of the state space
over which the diffusion model has been trained, such as in-painting or extrapolation tasks, and
those that post-hoc attempt to condition on something outside the state space that the model has been
trained on.

This first category is the one we are interested in, and in it we have:

• Replacement sampling (Song et al., 2021), where the reverse ODE or SDE is evolved but by
fixing the conditioning data during the rollout. This method does produce visually coherent
sampling in some cases, but is not an exact conditional sampling method.

• SMC-based methods (Trippe et al., 2022), which are an exact method up to the particle filter
assumption. These can produce good results but can suffer from the usual SMC methods
downsides on highly multi-model data such as particle diversity collapse.

• The RePaint scheme of (Lugmayr et al., 2022). While not originally proposed as an exact
sampling scheme, we will show later that it can in fact be shown that this method is doing a
specific instantiation of our newly proposed method, and is therefore exact.

• Amortisation methods, e.g. Phillips et al. (2022). While they can be effective, these methods
can never perform exact conditional sampling, by definition.

Our goal is to produce an exact sampling scheme that does not rely on SMC-based methods. Instead,
we base our method on Langevin dynamics. If we have a score function trained over the state space
x = [xc,x⇤

], where xc are the points we wish to condition on and xs points we wish to sample, we
exploit the following score breakdown:

rx⇤ log p(x⇤
|xc

) = rx⇤ log p([x⇤,xc
])�rx⇤ log p(xc

) = rx⇤ log p(x)

If we have access to the score on the joint variables, we, therefore, have access to the conditional
score by simply only taking the gradient of the joint score for the variable we are not conditioning on.

Given we have learnt s✓(t,x) ⇡ rx log pt(x), we could use this to perform Langevin dynamics at
t = ✏, some time very close to 0. Similar to (Song and Ermon, 2019) however, this produces the twin
issues of how to initialise the dynamics, given a random initialisation will start the sampler in a place
where the score has been badly learnt, producing slow and inaccurate sampling.

Instead, we follow a scheme of tempered Langevin sampling detailed in Alg. 1. Starting at t = T
we sample an initialisation of y⇤ based on the reference distribution. Progressing from t = T
towards t = ✏ we alternate between running a series of Lavgevin corrector steps to sample from the
distribution pt,x⇤(y⇤

|yc
), and a single backwards SDE step to sample from px(yt�� |yt) with a step

size �. At each inner and outer step, we sample a noised version of the conditioning points yc based
forward SDE applying noise to these context points, pt,xc(yc

t |y
c
). For the exactness of this scheme,

all that matters is that at the end of the sampling scheme, we are sampling from px⇤(y⇤
|yc

) (up to
the ✏ away from zero clipping of the SDE). The rest of the scheme is designed to map from the initial
sample at t = T of y⇤ to a viable sample through regions where the score has been learnt well.

Given the noising scheme applied to the context points does not actually play into the theoretical
exactness of the scheme, only the practical difficulty of staying near regions of well-learnt score, we
could make a series of different choices for how to noise the context set at each step.

8

Figure 8: Comparison of different context noising schemes for the conditional sampling.

Table 4: Comparison of complexity of different noise sampling schemes for the context set.

Scheme Closed-form noise Simulated noise

Re-sample noise at every inner step O(NI) O(N2I2
)

Re-sample noise at every outer step O(N) O(N2
)

Sampling an SDE path on the context O(N) O(N)

No noise applied - -

The choices that present themselves are

1. The initial scheme of sampling context noise from the SDE every inner and outer step.

2. Only re-sampling the context noise every outer step, and keeping it fixed to this for each
inner step associated with the outer step.

3. Instead of sampling independent marginal noise at each outer step, sampling a single noising
trajectory of the context set from the forward SDE and use this as the noise at each time.

4. Perform no noising at all. Effectively the replacement method with added Langevin sam-
pling.

These are illustrated in Fig. 8. The main trade-off of different schemes is the speed at which the
noise can be sampled vs sample diversity. In the Euclidean case, we have a closed form for the
evolution of the marginal density of the context point under the forward SDE. In this case sampling
the noise at a given time is O(1) cost. On the other hand, in some instances such as nosing SDEs on
general manifolds, we have to simulate this noise by discretising the forward SDE. In this case, it is
O(n) cost, where n is the number of discretisation steps in the SDE. For N outer steps and I inner
steps, the complexity of the different noising schemes is compared in Table 4. Note the conditional
sampling scheme other than the noise sampling is O(NI) complexity.

E.2 REPAINT (Lugmayr et al., 2022) correspondance

In this section, we show that:

9

Algorithm 1 Conditional sampling with Langevin dynamics.
Require: Score network s✓(t,x,y), conditioning points (xc,yc

), query locations x⇤

x̄ = [xc,x⇤
] . Augmented inputs set

ỹ⇤
T ⇠ N(m(x⇤

), k(x⇤,x⇤
)) . Sample initial noise

for t 2 {T, T � �, ..., ✏} do
yc
t ⇠ pt,xc(yc

t |yc
0) . Noise context outputs

Z ⇠ N (0, Id) . Sample tangent noise⇥
_, ỹ⇤

t��

⇤
= [yc

t ,y
⇤
t] + �

�
� 1

2 (m(x̄) � [yc
t ,y

⇤
t]) + K(x̄, x̄)s✓(t, x̄, [yc

t , ỹ
⇤
t])

+
p

�K(x̄, x̄)
1/2Z .

Euler-Maruyama step
for l 2 {1, . . . , L} do

yc
t�� ⇠ pt��,xc(yc

t�� |yc
0) . Noise context outputs

Z ⇠ N (0, Id) . Sample tangent noise⇥
_, ỹ⇤

t��

⇤
=
⇥
_, ỹ⇤

t��

⇤
+

�
2 K(x̄, x̄)s✓(t � �, x̄,

⇥
yc
t�� , ỹ⇤

t��

⇤
) +

p
�K(x̄, x̄)

1/2Z . Langevin step
y⇤
t�� = ỹ⇤

t��

return y⇤
✏

(a) Alg. 1 and Alg. 2 Repaint from (Lugmayr et al., 2022) are equivalent in a specific setting.
(b) There exists a continuous limit (SDE) for both procedures. This SDE targets a probability

density which does not correspond to p(xt0 |x
c
0).

(c) When t0 ! 0 this probability measure converges to p(x0|xc
0) which ensures the correctness

of the proposed sampling scheme.

We begin by recalling the conditional sampling algorithm we study in Alg. 1 and Alg. 2.

Algorithm 2 REPAINT (Lugmayr et al., 2022).
Require: Score network s✓(t,x,y), conditioning points (xc,yc

), query locations x⇤

x̄ = [xc,x⇤
] . Augmented inputs set

[yc
T ,y⇤

T] ⇠ N(m(x̄), k(x̄, x̄)) . Sample initial noise
for t 2 {T, T � �, ..., ✏} do

ỹ⇤
t = y⇤

t
for l 2 {1, . . . , L} do

yc
t ⇠ N(mt(x

c
;yc

), kt(x
c,xc

;yc
)) . Noise context outputs

Z ⇠ N(0, Id) . Sample tangent noise⇥
_, ỹ⇤

t��

⇤
= [yc

t , ỹ
⇤
t]+�

�
� 1

2 (m(x̄) � [yc
t , ỹ

⇤
t]) + K(x̄, x̄)s✓(t, x̄, [yc

t , ỹ
⇤
t])

+

p
�K(x̄, x̄)

1/2Z
. Reverse step

Z ⇠ N(0, Id) . Sample tangent noise
ỹ⇤
t = ỹ⇤

t�� + �
�

1
2

�
m(x⇤

) � ỹ⇤
t��

�
+

p
�K(x⇤,x⇤

)
1/2Z . Forward step

y⇤
t�� = ỹ⇤

t��

return y⇤
✏

First, we start by describing the RePaint algorithm (Lugmayr et al., 2022). We consider
(Z0

k , Z
1
k , Z

2
k)k2N a sequence of independent Gaussian random variable such that for any k 2 N,

Z1
k and Z2

k are d-dimensional Gaussian random variables with zero mean and identity covariance
matrix and Z0

k is a p-dimensional Gaussian random variable with zero mean and identity covariance
matrix. We assume that the whole sequence to be inferred is of size d while the context is of size p.
For simplicity, we only consider the Euclidean setting with K = Id. The proofs can be adapted to
cover the case K 6= Id without loss of generality.

Let us fix a time t0 2 [0, T]. We consider the chain (Xk)k2N given by X0 2 Rd and for any k 2 N,
we define

Xk+1/2 = e
�Xk + 2(e

�
� 1)rxk log pt0([Xk, X

c
k]) + (e

2�
� 1)

1/2Z1
k , (69)

where Xc
k = e

�t0Xc
0 + (1� e

�2t0)1/2Z0
k . Finally, we consider

Xk+1 = e
��Xk+1/2 + (1� e

�2�
)
1/2Z2

k . (70)

Note that (69) corresponds to one step of backward SDE integration and (70) corresponds to one
step of forward SDE integration. In both cases we have used the exponential integrator, see (De

10

Bortoli, 2022) for instance. While we use the exponential integrator in the proofs for simplicity other
integrators such as the classical Euler-Maruyama integration could have been used. Combining (69)
and (70), we get that for any k 2 N we have

Xk+1 = Xk + 2(1� e
��

)rxk log pt0([Xk, X
c
k]) + (1� e

�2�
)
1/2

(Z1
k + Z2

k). (71)

Remarking that (Zk)k2N = ((Z1
k + Z3

k)/
p
2)k2N is a family of d-dimensional Gaussian random

variables with zero mean and identity covariance matrix, we get that for any k 2 N

Xk+1 = Xk + 2(1� e
��

)rxk log pt0([Xk, X
c
k]) +

p
2(1� e

�2�
)
1/2Zk, (72)

where we recall that Xc
k = e

�t0Xc
0 +(1� e

�2t0)1/2Z0
k . Note that the process (72) is another version

of the Repaint algorithm (Lugmayr et al., 2022), where we have concatenated the denoising and
noising procedure. With this formulation, it is clear that Repaint is equivalent to Alg. 1. In what
follows, we identify the limitating SDE of this process.

In what follows, we describe the limiting behavior of (72) under mild assumptions on the target
distribution. In what follows, for any xt0 2 Rd, we denote

b(xt0) = 2
R
Rp rxt0

log pt0([xt0 , x
c
t0])pt0|0(x

c
t0 |x

c
0)dx

c
t0 . (73)

We emphasize that b/2 6= rxt0
log p(·|xc

0). In particular, using Tweedie’s identity, we have that for
any xt0 2 Rd

r log pt0(xt0 |x
c
0) =

R
Rp rxt0

log p([xt0 , x
c
t0]|x

c
0)p(x

c
t0 |xt0 , x

c
0)dx

c
t0 . (74)

We introduce the following assumption.

Assumption 1. There exist L, C � 0, m > 0 such that for any xc
t0 , y

c
t 2 Rp

and xt0 , yt 2 Rd

kr log pt0([xt0 , x
c
t0])�r log pt0([yt, y

c
t])k  L(kxt0 � ytk+ kxc

t0 � yc
tk). (75)

Assumption 1 ensures that there exists a unique strong solution to the SDE associated with (72). Note
that conditions under which log pt0 is Lipschitz are studied in De Bortoli (2022). In the theoretical
literature on diffusion models the Lipschitzness assumption is classical, see Lee et al. (2023) and
Chen et al. (2022).

We denote ((X�
t)t�0)�>0 the family of processes such that for any k 2 N and � > 0, we have for

any t 2 [k�, (k + 1)�), X�
t = (1� (t� k�)/�)X�

k� + (t� k�)/�X�
(k+1)� and

X�
(k+1)� = X�

k� + 2(1� e
��

)rX�
k�

log pt0([X
�
k� ,X

c,n
k�]) +

p
2(1� e

�2�
)
1/2Z�

k� , (76)

where (Z�
k�)k2N,�>0 is a family of independent d-dimensional Gaussian random variables with zero

mean and identity covariance matrix and for any k 2 N, � > 0, Xc,�
k� = e

�t0xc
0+(1�e

�2t0)1/2Z0,�
k� ,

where (Z0,�
k�)k2N,�>0 is a family of independent p-dimensional Gaussian random variables with zero

mean and identity covariance matrix. This is a linear interpolation of the Repaint algorithm in the
form of (72).

Finally, we denote (Xt)t�0 such that

dXt = b(Xt)dt+ 2Bt, X0 = x0. (77)

We recall that b depends on t0 but t0 is fixed here. This means that we are at time t0 in the diffusion
and consider a corrector at this stage. The variable t does not corresponds to the backward evolution
but to the forward evolution in the corrector stage. Under Assumption 1, (77) admits a unique strong
solution. The rest of the section is dedicated to the proof of the following result.

Theorem E.1. Assume Assumption 1. Then limn!+1(X1/n
t)t�0 = (Xt)t�0.

This result is an application of Stroock and Varadhan (2007, Theorem 11.2.3). It explicits what is the
continuous limit of the Repaint algorithm (Lugmayr et al., 2022).

11

In what follows, we verify that the assumptions of this result hold in our setting. For any � > 0 and
x 2 Rd, we define
b�(x) = (2/�)[(1� e

��
)
R
Rd rxt0

log pt0([xt0 , x
c
t0])pt0|0(x

c
t0 |x

c
0)dx

c
t0 (78)

� (1/�)E[(X�
(k+1)� �X�

k�)1kX�
(k+1)�

�X�
k�k�1 |Xk� = x], (79)

⌃�(x) = (4/�)(1� e
��

)
2
R
Rd rxt0

log pt0([xt0 , x
c
t0])

⌦2pt0|0(x
c
t0 |x

c
0)dx

c
t0 + (2/�)(1� e

�2�
) Id

(80)
� (1/�)E[(X�

(k+1)� �X�
k�)

⌦21kX�
(k+1)�

�X�
k�k�1 |Xk� = x]. (81)

Note that for any � > 0 and x 2 Rd, we have
b�(x) = E[1kX�

(k+1)�
�X�

k�k1(X
�
(k+1)� �X�

k�) |X
�
k� = x] (82)

⌃�(x) = E[1kX�
(k+1)�

�X�
k�k1(X

�
(k+1)� �X�

k�)
⌦2

|X�
k� = x] (83)

(84)
Lemma E.2. Assume Assumption 1. Then, we have that for any R, " > 0 and � 2 (0, 1)

lim
�!0

sup{k⌃�(x)� ⌃(x)k |x 2 Rd, kxk  R} = 0, (85)

lim
�!0

sup{kb�(x)� b(x)k |x 2 Rd, kxk  R} = 0, (86)

lim
�!0

(1/�) sup{P(kX�
(k+1)� �X�

k�k � " |Xk� = x) |x 2 Rd, kxk  R} = 0. (87)

Where we recall that for any x 2 Rd
,

b(x) = 2
R
Rp rxt0

log pt0([xt0 , x
c
t0])p

x
t|0(x

c
t0 |x

c
0)dx

c
t0 , ⌃(x) = 4 Id . (88)

Proof. Let R, " > 0 and � 2 (0, 1). Using Assumption 1, there exists C > 0 such that for any
xt0 2 Rd with kxt0k  R, we have krxt0

log pt0([xt0 , x
c
t0])k  C(1 + kxc

t0k). Since pc
t0|0 is

Gaussian with zero mean and covariance matrix (1 � e
�2t0) Id, we get that for any p 2 N, there

exists Ak � 0 such that for any xt0 2 Rd with kxt0k  R
R
Rd krxt0

log pt0([xt0 , x
c
t0])k

ppc
t0|0(x

c
t0 |x

c
0)dx

c
t0  Ak(1 + kxc

0k
p
). (89)

Therefore, using this result and the fact that for any s � 0, e�s
� 1 � s, we get that there exists

Bk � 0 such that for any k, p 2 N and for any xt0 2 Rd with kxt0k  R

E[kX(k+1)� �Xk�k
p
|Xk� = x]  Bk�

p/2
(1 + kxc

0k
p
). (90)

Therefore, combining this result and the Markov inequality, we get that for any xt0 2 Rd with
kxt0k  R we have

lim�!0(1/�) sup{P(kX�
(k+1)� �X�

k�k � " |Xk� = x) |x 2 Rd, kxk  R} = 0, (91)

lim�!0(1/�)kE[(X�
(k+1)� �X�

k�)1kX�
(k+1)�

�X�
k�k�1 |Xk� = x]k = 0, (92)

lim�!0(1/�)kE[(X�
(k+1)� �X�

k�)1kX�
(k+1)�

�X�
k�k�1 |Xk� = x]k = 0 (93)

In addition, we have that for any xt0 2 Rd with R > 0

|(2/�)(1� e
��

)� 2|k
R
Rd rxt0

log pt0([xt0 , x
c
t0])pt0|0(x

c
t0 |x

c
0)dx

c
t0k (94)

 A1(1 + kxc
0k)(2/�)

��e��
� 1 + �

��. (95)

We also have that for any xt0 2 Rd with R > 0

(4/�)|1� e
��

|
2
k
R
Rd rxt0

log pt0([xt0 , x
c
t0])

⌦2pt0|0(x
c
t0 |x

c
0)dx

c
t0k (96)

 A2(1 + kxc
0k

2
)(4/�)

��1� e
��

��2. (97)

Combining this result, (91), the fact that lim�!0(4/�)|1� e
��

|
2

= 0 and
lim�!0(2/�)|e��

� 1 + �| = 0, we get that lim�!0 sup{k⌃�(x)�⌃(x)k |x 2 Rd, kxk  R} = 0.
Similarly, using (91), (94) and the fact that lim�!0(4/�)|1� e

��
|
2

= 0, we get that
lim�!0 sup{kb�(x)� b(x)k |x 2 Rd, kxk  R} = 0.

12

We can now conclude the proof of Theorem E.1.

Proof. We have that x 7! b(x) and x 7! ⌃(x) are continuous. Combining this result and Lemma E.2,
we conclude the proof upon applying Stroock and Varadhan (2007, Theorem 11.2.3).

Theorem E.1 is a non-quantitative result which states what is the limit chain for the REPAINT
procedure. Note that if we do not resample, we get that

bcond
(x) = 2rxt0

log pt0([xt0 , x
c
t0]), ⌃(x) = 4 Id . (98)

Recalling (88), we get that (98) is an amortised version of bcond. Similar convergence results can
be derived in this case. Note that it is also possible to obtain quantitative discretization bounds
between (Xt)t�0 and (X1/n

t)t�0 under the `2 distance. These bounds are usually leveraged using
the Girsanov theorem (Durmus and Moulines, 2017; Dalalyan, 2017). We leave the study of such
bounds for future work.

We also remark that b(xt0) is not given by r log pt0(xt0 |x
c
0). Denoting Ut0 such that for any

xt0 2 Rd

Ut0(xt0) = �
R
Rp(log pt0(xt0 |x

c
t0))pt|0(x

c
t0 |x

c
0)dx

c
t0 , (99)

we have that rUt0(xt0) = �b(xt0), under mild integration assumptions. In addition, using Jensen’s
inequality, we have

R
Rd exp[�Ut0(xt0)]dxt0 

R
Rd

R
Rp pt0(xt0 |x

c
t0)pt|0(x

c
t0 |x

c
0)dxt0dx

c
t0  1. (100)

Hence, ⇡t0 with density proportional to x 7! exp[�Ut0(x)] defines a valid probability measure.

We make the following assumption which allows us to control the ergodicity of the process (Xt)t�0.

Assumption 2. There exist m > 0 and C � 0 such that for any xt0 2 Rd
and xc

t0 2 Rp

hrxt log pt0([xt, x
c
t]), xti  �mkxtk

2
+ C(1 + kxc

tk
2
). (101)

The following proposition ensures the ergodicity of the chain (Xt)t�0. It is a direct application of
Roberts and Tweedie (1996, Theorem 2.1).
Proposition E.3. Assume Assumption 1 and Assumption 2. Then, ⇡t0 is the unique invariant

probability measure of (Xt)t�0 and limt!0 kL(Xt)� ⇡t0kTV = 0, where L(Xt) is the distribution

of Xt.

Finally, for any t0 > 0, denoting ⇡t0 the probability measure with density Ut0 given for any xt0 2 Rd

by
Ut0(xt0) = �

R
Rp(log pt0(xt0 |x

c
t0))pt|0(x

c
t0 |x

c
0)dx

c
t0 . (102)

We show that the family of measures (⇡t0)t0>0 approximates the posterior with density x0 7!

p(x0|xc
0) when t0 is small enough.

Proposition E.4. Assume Assumption 1. We have that limt0!0 ⇡t0 = ⇡0 where ⇡0 admits a density

w.r.t. the Lebesgue measure given by x0 7! p(x0|xc
0).

Proof. This is a direct consequence of the fact that pt|0(·|x
c
0) ! �xc

0
.

This last results shows that even though we do not target xt0 7! pt0|0(xt0 |x
c
0) using this corrector

term, we still target p(x0|xc
0) as t0 ! 0 which corresponds to the desired output of the algorithm.

F Experimental details

Models, training and evaluation have been implemented in Jax (Bradbury et al., 2018). We used
Python (Van Rossum and Drake Jr, 1995) for all programming, Hydra (Yadan, 2019), Numpy
(Harris et al., 2020), Scipy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), and Pandas (McK-
inney et al., 2010). The code is publicly available at https://github.com/cambridge-mlg/
neural_diffusion_processes.

13

https://github.com/cambridge-mlg/neural_diffusion_processes
https://github.com/cambridge-mlg/neural_diffusion_processes

F.1 Regression 1d

F.1.1 Data generation

We follow the same experimental setup as Bruinsma et al. (2020) to generate the 1d synthetic data.
It consists of Gaussian (Squared Exponential (SE), MATÉRN(5

2), WEAKLY PERIODIC) and non-
Gaussian (SAWTOOTH and MIXTURE) sample paths, where MIXTURE is a combination of the other
four datasets with equal weight. Fig. 9 shows samples for each of these dataset. The Gaussian datasets
are corrupted with observation noise with variance �2

= 0.052. The left column of Fig. 9 shows
example sample paths for each of the 5 datasets.

The training data consists of 214 sample paths while the test dataset has 21
2 paths. For each test path

we sample the number of context points between 1 and 10, the number of target points are fixed to
50 for the GP datasets and 100 for the non-Gaussian datasets. The input range for the training and
interpolation datasets is [�2, 2] for both the context and target sets, while for the extrapolation task
the context and target input points are drawn from [2, 6].

Architecture. For all datasets, except SAWTOOTH, we use 5 bi-dimensional attention layers
(Dutordoir et al., 2022) with 64 hidden dimensions and 8 output heads. For SAWTOOTH, we obtained
better performance with a wider and shallower model consisting of 2 bi-dimensional attention layers
with a hidden dimensionality of 128. In all experiment, we train the NDP-based models over 300
epochs using a batch size of 256. Furthermore, we use the Adam optimiser for training with the
following learning rate schedule: linear warm-up for 10 epochs followed by a cosine decay until the
end of training.

F.1.2 Ablation Limiting Kernels

The test log-likelihoods (TLLs) reported in App. F.1.3 for the NDP models target a white limiting
kernel and train to approximate the preconditioned score Kr log pt. Overall, we found this to be the
best performing setting. App. F.1.3 shows an ablation study for different choices of limiting kernel
and score parametrisation. We refer to Table 3 for a detailed derivation of the score parametrisations.

The dataset in the top row of the figure originates from a Squared Exponential (SE) GP with
lengthscale ` = 0.25. We compare the performance of three different limiting kernels: white (blue),
a SE with a longer lengthscale ` = 1 (orange), and a SE with a shorter lengthscale ` = 0.1 (green).
As the dataset is Gaussian, we have access to the true score. We observe that, across the different
parameterisations, the white limiting kernel performance best. However, note that for the White
kernel K = I and thus the different parameterisations become identical. For non-white limiting
kernels we see a reduction in performance for both the approximate and exact score. We attribute this
to the additional complexity of learning a non-diagonal covariance.

In the bottom row of App. F.1.3 we repeat the experiment for a dataset consisting of samples from the
Periodic GP with lengthscale 0.5. We draw similar conclusions: the best performing limiting kernel,
across the different parametrisations, is the White noise kernel.

F.1.3 Ablation Conditional Sampling

Next, we focus on the empirical performance of the different noising schemes in the conditional
sampling, as discussed in Fig. 8. For this, we measure the the Kullback-Leibler (KL) divergence
between two Gaussian distributions: the true GP-based conditional distribution, and an distribution
created by drawing conditional sampling from the model and fitting a Gaussian to it using the empirical
mean and covariance. We perform this test on the 1D squared exponential dataset (described above)
as this gives us access to the true posterior. We use 2

12 samples to estimate the empirical mean and
covariance, and fix the number of context points to 3.

In Fig. 11 we keep the total number of score evaluations fixed to 5000 and vary the number of steps
in the inner (L) loop such that the number of outer steps is given by the ratio 5000/L. From the
figure, we observe that the particular choice of noising scheme is of less importance as long at least
a couple (±5) inner steps are taken. We further note that in this experiment we used the true score
(available because of the Gaussianity of the dataset), which means that these results may differ if an
approximate score network is used.

14

�2.5

0.0

2.5
SE

Data Prior Model Prior Model Posterior

True Posterior

�2.5

0.0

2.5

M
at

ér
n–

5 2

�2.5

0.0

2.5

W
ea

kl
y

Pe
rio

di
c

�0.5

0.0

0.5

Sa
w

to
ot

h

�2 �1 0 1 2

�2.5

0.0

2.5

M
ix

tu
re

�2 �1 0 1 2 �2 �1 0 1 2

Figure 9: Visualisation of 1D regression experiment.

White SE (� = 1.0) SE (� = 0.1) exact score approximate score

0 1 2 3 4 5

Precondition by K

0.50

0.75

TL
L

0 1 2 3 4 5

Precondition by S>
0 1 2 3 4 5

No preconditioning
0 1 2 3 4 5

Predict y0

(a) Squared Exponential dataset with lengthscale ` = 0.25

White Periodic (� = 1.0) Periodic (� = 0.1) exact score approximate score

0 1 2 3 4 5

Precondition by K

0.00

1.00

TL
L

0 1 2 3 4 5

Precondition by S>
0 1 2 3 4 5

No preconditioning
0 1 2 3 4 5

Predict y0

(b) Periodic dataset with lengthscale ` = 0.25

Figure 10: Ablation study targeting different limiting kernels and score parametrisations.

15

Table 5: Mean test log-likelihood (TLL) ± 1 standard error estimated over 4096 test samples are reported.
Statistically significant best non-GP model is in bold. The NP baselines (GNP, ConvCNP, ConvNP and ANP)
are quoted from Bruinsma et al. (2020). ‘*’ stands for a TLL below -10.

SE MATÉRN– 5
2 WEAKLY PER. SAWTOOTH MIXTURE

INTERPOLATION

GP (OPTIMUM) 0.70±0.00 0.31±0.00 �0.32±0.00 n/a n/a
T (1)�GEOMNDP 0.72±0.03 0.32±0.03 �0.38±0.03 3.39±0.04 0.64±0.08

NDP* 0.71±0.03 0.30±0.03 �0.37±0.03 3.39±0.04 0.64±0.08

GNP 0.70±0.01 0.30±0.01 �0.47±0.01 0.42±0.01 0.10±0.02

CONVCNP �0.80±0.01 �0.95±0.01 �1.20±0.01 0.55±0.02 �0.93±0.02

CONVNP �0.46±0.01 �0.67±0.01 �1.02±0.01 1.20±0.01 �0.50±0.02

ANP �0.61±0.01 �0.75±0.01 �1.19±0.01 0.34±0.01 �0.69±0.02

GENERALISATION

GP (OPTIMUM) 0.70±0.00 0.31±0.00 �0.32±0.00 n/a n/a
T (1)�GEOMNDP 0.70±0.02 0.31±0.02 �0.38±0.03 3.39±0.03 0.62±0.02

NDP* * * * * *
GNP 0.69±0.01 0.30±0.01 �0.47±0.01 0.42±0.01 0.10±0.02

CONVCNP �0.81±0.01 �0.95±0.01 �1.20±0.01 0.53±0.02 �0.96±0.02

CONVNP �0.46±0.01 �0.67±0.01 �1.02±0.01 1.19±0.01 �0.53±0.02

ANP �1.42±0.01 �1.34±0.01 �1.33±0.00 �0.17±0.00 �1.24±0.01

Figure 11: Ablation noising schemes for conditional sampling.

F.2 Gaussian process vector fields

Data We create synthetic datasets using samples from two-dimensional zero-mean GPs with the
following E(2)-equivariant kernels: a diagonal Squared-Exponential (SE) kernel, a zero curl (CURL-
FREE) kernel and a zero divergence (DIV-FREE) kernel, as described in App. D.1. We set the variance
to �2

= 1 and the lengthscale to ` =
p
5. We evaluate these GPs on a disk grid, created via a 2D

grid with 30⇥ 30 points regularly space on [�10, 10]2 and keeping only the points inside the disk of
radius 10. We create a training dataset of size 80⇥ 10

3. and a test dataset of size 10⇥ 10
3.

Models We compare two flavours of our model GeomNDP. One with a non-equivariant attention-
based score network (Figure C.1, Dutordoir et al., 2022), referred as NDP*. Another one with a
E(2)-equivariant score architecture, based on steerable CNNs (Thomas et al., 2018; Weiler et al.,
2018). We rely on the e3nn library (Geiger and Smidt, 2022) for implementation. A knn graph
E is built with k = 20. The pairwise distances are first embed into µ(rab) with a ‘smooth_finite’
basis of 50 elements via e3nn.soft_one_hot_linspace, and with a maximum radius of 2. The
time is mapped via a sinusoidal embedding �(t) (Vaswani et al., 2017). Then edge features are
obtained as eab =

(e)
(µ(rab)||�(t)) 8(a, b) 2 Ek with (e) an MLP with 2 hidden layers of

width 64. We use 5 e3nn.FullyConnectedTensorProduct layers with update given by V k+1
a =P

b2N (a,Ek) V
k
a ⌦

�

v
(eab||V k

a ||V k
b)

�
Y (r̂ab) with Y spherical harmonics up to order 2m

v an

16

MLP with 2 hidden layers of width 64 acting on invariant features, and node features V k having
irreps 12x0e + 12x0o + 4x1e + 4x1o. Each layer has a gate non-linearity (Weiler et al., 2018).

We also evaluate two neural processes, a translation-equivariant CONVCNP (Gordon et al., 2020) with
decoder architecture based on 2D convolutional layers (LeCun et al., 1998) and a C4n R2

⇢ E(2)-
equivariant STEERCNP (Holderrieth et al., 2021) with decoder architecture based on 2D steerable
convolutions (Weiler and Cesa, 2021). Specific details can be found in the accompanying codebase
https://github.com/PeterHolderrieth/Steerable_CNPs of Holderrieth et al. (2021).

Optimisation. Models are trained for 80k iterations, via (Kingma and Ba, 2015) with a learning
rate of 5e � 4 and a batch size of 32. The neural diffusion processes are trained unconditionally,
that is we feed GP samples evaluated on the full disk grid. Their weights are updated via with
exponential moving average, with coefficient 0.99. The diffusion coefficient is weighted by � : t 7!
�min + (�max � �min) · t, and �min = 1e� 4, �max = 15.

As standard, the neural processes are trained by splitting the training batches into a context and
evaluation set, similar to when evaluating the models. Models have been trained on A100-SXM-80GB
GPUs.

Evaluation. We measure the predictive log-likelihood of the data process samples under the model
on a held-out test dataset. The context sets are of size 25 and uniformly sampled from a disk grid
of size 648, and the models are evaluated on the complementary of the grid. For neural diffusion
processes, we estimate the likelihood by solving the associated probability flow ODE (53). The
divergence is estimated with the Hutchinson estimator, with Rademacher noise, and 8 samples, whilst
the ODE is solved with the 2nd order Heun solver, with 100 discretisation steps.

We also report the performance of the data-generating GP, and the same GP but with diagonal
posterior covariance GP (DIAG.).

F.3 Tropical cyclone trajectory prediction

Data. The data is drawn from he International Best330 Track Archive for Climate Stewardship
(IBTrACS) Project, Version 4 (Knapp et al., 2010; Knapp et al., 2018). The tracks are taken from
the ’all‘ dataset covering the tracks from all cyclone basins across the globe. The tracks are logged
at intervals of every 3 hours. From the dataset, we selected tracks of at least 50 time points long
and clipped any longer to this length, resulting in 5224 cyclones. 90% was used fro training and
10% held out for evaluation. This split was changed across seeds. More interesting schemes of
variable-length tracks or of interest, but not pursued here in this demonstrative experiment. Natively
the track locations live in latitude-longitude coordinates, although it is processed into different forms
for different models. The time stamps are processed into the number of days into the cyclone forming
and this format is used commonly between all models.

Models.
Four models were evaluated.

The GP (R ! R2) took the raw latitude-longitude data and normalised it. Using a 2-output RBF
kernel with no covariance between the latitude and longitude and taking the cyclone time as input,
placed a GP over the data. The hyperparameters of this kernel were optimised using a maximum
likelihood grid search over the data. Note that this model places density outside the bounding box
of [�90, 90]⇥ [�180, 180] that defines the range of latitude and longitude, and so does not place a
proper distribution on the space of paths on the sphere.

The STEREOGRAPHIC GP (R ! R2/{0}) instead transformed the data under a sterographicc
projection centred at the north pole, and used the same GP and optimisation as above. Since this
model only places density on a set of measure zero that does not correspond to the sphere, it does
induce a proper distribution on the space of paths on the sphere.

The NDP (R ! R2) uses the same preprocessing as GP (R ! R2) but uses a Neural Diffusion
Process from (Dutordoir et al., 2022) to model the data. This has the same shortcomings as the GP
(R ! R2) in not placing a proper density on the space of paths on the sphere. The network used for
the score function and the optimisation procedure is detailed below. A linear beta schedule was used
with �0 = 1e� 4 and �1 = 10. The reverse model was integrated back to ✏ = 5e� 4 for numerical

17

https://github.com/PeterHolderrieth/Steerable_CNPs

stability. The reference measure was a white noise kernel with a variance 0.05. ODEs and SDEs
were discretised with 1000 steps.

The GEOMNDP (R ! S
2) works with the data projected into 3d space on the surface of the sphere.

This projection makes no difference to the results of the model, but makes the computation of the
manifold functions such as the exp map easier, and makes it easier to define a smooth score function
on the sphere. This is done by outputting a vector for the score from the neural network in 3d space,
and projecting it onto the tangent space of the sphere at the given point. For the necessity of this, see
(De Bortoli et al., 2021). The network used for the score function and the optimisation procedure is
detailed below. A linear beta schedule was used with �0 = 1e� 4 and �1 = 15. The reverse model
was integrated back to ✏ = 5e� 4 for numerical stability. The reference measure was a white noise
kernel with a variance 0.05. ODEs and SDEs were discretised with 1000 steps.

Neural network. The network used to learn the score function for both NDP (R ! R2) and
GEOMNDP (R ! S

2) is a bi-attention network from Dutordoir et al. (2022) with 5 layers, hidden
size of 128 and 4 heads per layer. This results in 924k parameters.

Optimisation. NDP (R ! R2) and GEOMNDP (R ! S
2) were both optimised using (correctly

implemented) Adam for 250k steps using a batch size of 1024 and global norm clipping of 1. Batches
were drawn from the shuffled data and refreshed each time the dataset was exhausted. A learning
rate schedule was used with 1000 warmup steps linearly from 1e-5 to 1e-3, and from there a cosine
schedule decaying from 1e-3 to 1e-5. With even probability either the whole cyclone track was used
in the batch, or 20 random points were sub-sampled to train the model better for the conditional
sampling task.

Conditional sampling. The GP models used closed-form conditional sampling as described. Both
diffusion-based models used the Langevin sampling scheme described in this work. 1000 outer steps
were used with 25 inner steps. We use a = 1.0 and �0 = 2.5. In addition at the end of the Langevin
sampling, we run an additional 150 Langevin steps with t = ✏ as this visually improved performance.

Evaluation. For the model (conditional) log probabilities the GP models were computed in
closed form. For the diffusion-based models, they were computed using the auxiliary likelihood
ODE discretised over 1000 steps. The conditional probabilities were computed via the difference
between the log-likelihood of the whole trajectory and the log-likelihood of the context set only. The
mean squared errors were computed using the geodesic distance between 10 conditionally sampled
trajectories, described above.

18

	Introduction
	Background
	Geometric neural diffusion processes: GeomNDPs
	Continuous diffusion on function spaces
	Invariant neural diffusion processes
	Conditional sampling
	Likelihood evaluation

	Related work
	Experimental results
	1D regression over stationary scalar fields
	Regression over Gaussian process vector fields
	Global tropical cyclone trajectory prediction

	Discussion
	Organisation of appendices
	Ornstein Uhlenbeck on function space
	Multivariate Ornstein-Uhlenbeck process
	Conditional score
	Several score parametrisations
	Exact (marginal) score in Gaussian setting
	Langevin dynamics
	Likelihood evaluation
	Discussion consistency

	Manifold-valued diffusion process
	Manifold-valued inputs
	Manifold-valued outputs

	Invariant neural diffusion processes
	E(n)-equivariant kernels
	Proof of prop:invprior
	Equivariant posterior maps

	Langevin corrector and the iterative procedure of RePaint lugmayr2022RePaint
	Langevin sampling scheme
	RePaint lugmayr2022RePaint correspondance

	Experimental details
	Regression 1d
	Data generation
	Ablation Limiting Kernels
	Ablation Conditional Sampling

	Gaussian process vector fields
	Tropical cyclone trajectory prediction

