Hyper-parameters Value
Replay Buffer Parameters
burn-in-frames 10000
replay buffer size 131072 (2'7)
priority exponent 0.9
priority weight 0.6
maximum trajectory length 80
Optimization Parameters
optimizer Adam [22]
Ir 6.25e — 05
eps 1.5e — 5
gradient clip 5
batchsize 128
Q-learning Parameters
n step 3
discount factor 0.999
num gradient steps sync target net 2500

Table 6: Hyper-parameters for Hanabi agent training

A Experimental Details

In training every agent we use a distributed framework for simulation and training. For simulation, we
run 6400 Hanabi environments in parallel and the trajectories are batched together for efficient GPU
computation. This is done efficiently as every thread can hold many environments in which many
agents interact. Every agent chooses actions based on neural network calls, which are more intensive
and done by GPUs. By doing these calls asynchronously it allows a thread to support multiple
environments while waiting for prior agents’ actions to be computed. Therefore, by stacking multiple
environments into a thread and utilizing multiple threads we are able to maximize GPU utility and
generate a massive amount of data on the simulation side. Every environment is considered to be in a
permanent simulation loop, where at the end of the environment the entire action observation history,
consisting of action, observation, and reward is aggregated together into a trajectory, padded to a
length 80, and then added to a centralized replay buffer as done in [29]. We compute the priority of
each trajectory as & = 0.9 - max;§; + 0.1 - £ [21], where &; is the TD error per step. From the training
perspective we have a training loop that continuously samples trajectories from the replay buffer
and updates the model based on TD error. The simulation policies are updated to be the training
policy every 10 gradient steps. We utilize epsilon exploration for training agent exploration. At the

beginning of every simulated game we generate epsilon ¢; from the equation ¢; = o RT | where
a=0.1,8 =7, N = 80. For our entire training, inference infrastructure we use a machine with 30
CPU cores and 2 GPUs, one GPU for training and one GPU for simulation.

We use the same network architecture as described in [[16]]. We follow their design choices of utilizing
a 3-layer feedforward neural network to encode the entire observation and then using a one-layer
feedforward neural network followed by an LSTM to encode only the public observation. We
combine these two outputs with element-wise multiplication and use a dueling architecture [36] to
get the final Q-values. We also use double DQN as done in [34]. Other relevant hyper-parameters are
presented in table[6]

For synchronous hierarchy training, every 50 gradient steps, each client sends the weights of the
policy it is training 7; to the server and queries the server for the corresponding set of updated policies
II; that 7; is trained to be an approximate best response.

A.1 Poisson Distribution Details

For CH and SyKLRBR, each responds to a Poisson distribution over some set of agents
{mo,m1, -7 }. Concretely, each of the games played simultaneously has an agent from a set

level. We use a Poisson distribution with a PMF of ’\k*k‘fk . For SyKLRBR we use A = 1, which

means for a given level j and a hierarchy of 7 levels £ = i — j in the PMF. Therefore, a BR to a 5

15



level KLR has ~ 37% of the actors from level 5, ~ 37% from level 4, ~ 18% from level 3, ~ 6%
from level 2, ~ 1% from level 1, and < 1% from level 0.

Similarly, for CH we use A = 2, which is a standard value for CHs as noted by [4]. Thus, a CH at a
given level ¢ and partner level j, it will have k = j in the Poisson PMF for a given level j (excluding
level 0). Therefore, for a 5 level cognitive hierarchy, ~ 37% of the actors are from level 1, ~ 37%
from level 2, ~ 20% from level 3, and ~ 6% are from level 4.

B Details on Rank Bot and Color Bot

We train two distinct policies to test the ad-hoc teamplay performance of our agents. Both two policies
use the same network design as our KLR policies. The first policy is trained with the Other-Play [18]]
technique where one of the two players always observe the world, i.e. both input observation and
output action space, in a randomly permuted color space. The color permutation is sampled once at
the beginning of each episode. This method is capable of preventing the agent from learning arbitrary
conventions and previously achieved the best zero-shot coordination score in Hanabi. Empirically,
policies trained with Other-Play tends to use a rank based convention where it hints about the rank of
a playable card to indicate play and partner will often safely play a rank hinted card without knowing
the color. Therefore we refer to this policy as Rank Bot. Similarly, we may expect a color based
equivalent of the Rank Bot but in practice we find it difficult to learn such policy naturally. We
instead use a reward shaping technique where we give extra reward of 0.25 when the agent hints a
color. To wash out the artifact of the reward shaping, we first train the agent with reward shaping till
convergence and then disable the extra reward and train it for another 24 hours. However, we find
that the reward shaping may lead to inconsistent training results across different runs and thus make
it hard to reproduce. We use a simple trick of zeroing out the last action field of the observation to
stabilize the learning. Note that the last action is a shortcut to learn arbitrary conventions but it is
redundant in our setting since the agent with RNN can infer last action from the board. The policy
trained this way predominantly uses color based conventions and is referred to as Color Bot.

16



