
Published as a conference paper at ICLR 2025

TEXT2PDE: LATENT DIFFUSION MODELS FOR
ACCESSIBLE PHYSICS SIMULATION

Anthony Zhou, Zijie Li & Amir Barati Farimani ∗

Carnegie Mellon University
{ayz2, zijieli, afariman}@andrew.cmu.edu

Michael Schneier & John R. Buchanan, Jr.
Naval Nuclear Laboratory
{michael.schneier, jack.buchanan}@unnpp.gov

ABSTRACT

Recent advances in deep learning have inspired numerous works on data-driven
solutions to partial differential equation (PDE) problems. These neural PDE
solvers can often be much faster than their numerical counterparts; however, each
presents its unique limitations and generally balances training cost, numerical ac-
curacy, and ease of applicability to different problem setups. To address these lim-
itations, we introduce several methods to apply latent diffusion models to physics
simulation. Firstly, we introduce a mesh autoencoder to compress arbitrarily dis-
cretized PDE data, allowing for efficient diffusion training across various physics.
Furthermore, we investigate full spatio-temporal solution generation to mitigate
autoregressive error accumulation. Lastly, we investigate conditioning on initial
physical quantities, as well as conditioning solely on a text prompt to introduce
text2PDE generation. We show that language can be a compact, interpretable, and
accurate modality for generating physics simulations, paving the way for more
usable and accessible PDE solvers. Through experiments on both uniform and
structured grids, we show that the proposed approach is competitive with current
neural PDE solvers in both accuracy and efficiency, with promising scaling behav-
ior up to ∼3 billion parameters. By introducing a scalable, accurate, and usable
physics simulator, we hope to bring neural PDE solvers closer to practical use.

1 INTRODUCTION

Neural PDE solvers are an exciting new class of physics solvers that have the potential to improve
many aspects of conventional numerical solvers. Initial works have proposed various architectures
to accomplish this, such as graph-based (Li & Farimani, 2022; Battaglia et al., 2016), physics-
informed (Raissi et al., 2019), or convolutional approaches (Thuerey et al., 2020). Subsequent work
on developing neural operators (Li et al., 2021; Lu et al., 2021; Kovachki et al., 2023) established
them as powerful physics approximators that can quickly and accurately predict PDEs, and recent
work has focused on improving many of their different aspects. These advances have established
different models that can adapt to irregular grids (Brandstetter et al., 2023; Li et al., 2023a;c; Wu
et al., 2024), speed up model training (Li et al., 2024a; Alkin et al., 2024; Tran et al., 2023; Li et al.,
2024b; 2023b), achieve more accurate solutions (Lippe et al., 2023), or generalize to a wide variety
of parameters (McCabe et al., 2023; Hao et al., 2024; Herde et al., 2024; Zhou et al., 2024).

Despite these advances, there are still many factors that limit the practical adoption of neural PDE
solvers. Great progress has been made in addressing the accuracy and generalizability of neural
solvers, however, deploying these advances will require further work in developing new engineering
tools. Although neural solvers have become highly capable, they have also become highly spe-
cialized; increasingly, the practical use of neural solvers is limited by their inaccessibility and the
complexity of the field. Deep learning has already enabled vision and language tools designed with
productivity and usability in mind; is there a way we can create similar tools for engineers?

∗Corresponding Author.

1

Published as a conference paper at ICLR 2025

Figure 1: We introduce latent diffusion models for physics simulation, with the remarkable ability of generating
an entire PDE rollout from a text prompt. Three generated solutions are displayed with their model inputs.

Text2PDE Models In this work, we take a step towards creating more accessible physics simula-
tors by introducing language as a novel modality to interact with physics solvers, creating text2PDE
models. This has both benefits and drawbacks. One potential benefit is that language is extremely
general: while different physical phenomena usually require problem-specific meshing and solvers,
humans constantly observe and interact with physics and, as a result, build a common understanding
and vocabulary for describing these phenomena. This could reduce the barrier to entry for adopting
neural solvers by allowing practitioners to express ideas in language to prompt a physics model. In-
deed, the popularity of text2image models is partly due to the ease of expressing visual ideas in lan-
guage, rather than, for example, needing the computer vision expertise to query a class-conditional
image generation model with an ImageNet label. Beyond improving accessibility, language can also
have technical benefits. As long as the physical phenomena can be described in text, its domain
specialties can be abstracted away, such as the discretization, geometries, or boundaries; this allows
models to work with just a single modality. In addition, language can be compact: rather than need-
ing raw physical data to specify a simulation, this information can be distilled into dense textual
descriptions.

However, text2PDE models present unique challenges. Since text can describe a broad set of
physics, the text2PDE model must generate arbitrarily discretized results. Furthermore, produc-
ing high-dimensional spatio-temporal physics simulations from a low-dimensional text prompt can
be challenging. Lastly, language can be imprecise in describing many physics problems, and in
certain cases, specifying exact initial conditions may be preferred. Indeed, we envision text2PDE
models not as a replacement for current methods, but rather as an additional tool for engineers to
leverage. We hope to empower engineers with a diverse toolkit, where different neural solvers and
even numerical methods can be used together throughout the design cycle to better ideate, simulate,
and realize engineering outcomes.

Contributions To work towards this goal, we introduce methods to use latent diffusion models to
generate PDE solutions. Within this framework, we generate an entire solution trajectory at once to
avoid autoregressive error propagation and improve accuracy. We also develop a novel autoencoder
strategy to efficiently train/query models and to adapt latent diffusion to arbitrary discretizations.
We also investigate conditioning on either text or physics modalities, such as the initial frame of
a solution, to switch between an interpretable interface and a more precise one. Lastly, we scale
latent diffusion models up to nearly 3 billion parameters to show their ability to accurately generate
complex outputs from compact inputs. We believe that this scalability, accuracy, and usability can
unlock generative models that can bring neural PDE solvers closer to practical adoption. To further
this objective, all code, datasets, and pretrained models are released at: https://github.com/
anthonyzhou-1/ldm_pdes

2

https://github.com/anthonyzhou-1/ldm_pdes
https://github.com/anthonyzhou-1/ldm_pdes

Published as a conference paper at ICLR 2025

2 BACKGROUND

2.1 PROBLEM SETUP

We consider modeling solutions to time-dependent PDEs in one time dimension t = [0, T] and
multiple spatial dimensions x = [x1, x2, . . . , xD]T ∈ Ω. Following Brandstetter et al. (2023), we
can express these PDEs in the form:

∂tu = F (t,x,u, ∂xu, ∂xxu, . . .) t ∈ [0, T],x ∈ Ω (1)

Where u : [0, T]×Ω → Rdp is a quantity that is solved for with physical dimension dp. Furthermore,
the PDE can be subject to initial conditions u0(x) and boundary conditions B[u](t,x) = 0:

u(0,x) = u0(x) x ∈ Ω (2)
B[u](t,x) = 0 t ∈ [0, T],x ∈ ∂Ω (3)

In general, the solution u is discretized at a timestep t to obtain u(t,xm) collocated on M mesh
points xm ⊂ Ω for m ∈ {0, 1, . . . ,M}. Neural solvers aim to solve time-dependent PDEs by
using the solution at a current timestep to predict the solution at a future timestep u(t+∆t,xm) =
fθ(u(t,xm)). Many variants of this setup exist, whether it is to use multiple input timesteps or
to predict multiple output timesteps. Despite these variants, the dominant approach still follows
numerical solvers by autoregressively advancing the solution in time, with certain notable exceptions
(Lienen et al., 2024; Du et al., 2024).

Autoregressive solvers are a natural choice for neural solvers; they follow numerical solver prece-
dents, as well as reflect the Markovian nature of time-dependent PDEs. However, this paradigm has
many potential drawbacks, namely the stability of autoregressive solvers (Lippe et al., 2023). Al-
though many approaches have been developed to mitigate autoregressive error accumulation (Brand-
stetter et al., 2023), the fundamental problem still exists: complex PDEs require small timescales to
accurately resolve physical phenomena, yet this requires longer rollouts which increase error accu-
mulation (Lozano-Durán & Jiménez, 2014; Lienen et al., 2024). To address this issue, we leverage
spatio-temporal diffusion to directly predict an entire solution trajectory. This becomes a generative,
rather than autoregressive, problem conditioned on information about the desired PDE solution.

2.2 SPATIO-TEMPORAL DIFFUSION FOR PDES

We consider modeling the conditional probability distribution p of the discretized solution u ∈
RT×M×dp at all timesteps t ∈ [0, T] and spatial coordinates xm ⊂ Ω given the initial condition u0

and boundary condition B[u]:

pθ(u|u0, B[u]) ≈ p(u|u0, B[u]) (4)

The distribution is approximated using a denoising diffusion probabilistic model (DDPM) pθ (Ho
et al., 2020; Sohl-Dickstein et al., 2015). DDPMs act to reverse a noising process q(xn|xn−1) that
transforms a PDE roll-out u = x0 over N steps into Gaussian noise (i.e. q(xN |x0) ≈ N (0, I)).
New PDE solutions can then be generated by sampling a noise vector xN ∼ N (0, I) and iteratively
approximating the denoising distribution pθ(xn−1|xn). While this generates a random sample from
the distribution of all PDE samples (x0 ∼ p(u)), the trajectory of a single solution u is highly depen-
dent on its initial condition u0 and boundary condition B[u]. Therefore, the conditional denoising
process pθ(xn−1|xn,u

0, B[u]) is used to model the conditional distribution in Equation 4.

Latent Diffusion Since u can be extremely high-dimensional, we perform the forward and re-
verse diffusion process in a learned latent space. More specifically, given a solution u ∈ RT×M×dp ,
where T represents the temporal resolution, M represents the spatial resolution, and dp is the phys-
ical dimension, an encoder E can embed u into a latent vector z = E(u). Importantly, z is in a
compressed latent space RL×dl , where L is a latent spatio-temporal resolution smaller than T ×M ,
and dl is the latent dimension. To project latent vectors back to the physical space, a decoder D is
used to reconstruct a sample u = D(z).

3

Published as a conference paper at ICLR 2025

Figure 2: The proposed architecture. Samples are mapped to a grid through a learned aggregation before being
encoded to a latent vector and noised. A denoising process is learned, with conditioning from text or physics-
based modalities. Denoised latents are decoded to a grid and mapped to a mesh through a learned interpolation.

3 METHODS

In this section, we describe the main components of using latent diffusion models for physical
simulation. An overview of the methods can also be seen in Figure 2.

3.1 AUTOENCODERS FOR PDE DATA

Practical physics applications often discretize solutions on an unstructured mesh, which helps im-
prove the accuracy at regions of interest. This can be difficult for conventional autoencoders to
accommodate, and indeed much of the previous work is focused on compressing uniformly struc-
tured images, videos, or PDE solutions (He et al., 2021; Feichtenhofer et al., 2022; Zhou & Farimani,
2024). Therefore, we propose an autoencoder that can compress data given at arbitrary collocation
points and reconstruct them at arbitrary query points to extend diffusion models to unstructured data.

Mesh Encoder Following the problem setup, at every timestep t ∈ [0, T] we can consider M
coordinates xm ⊂ Ω for m ∈ {0, 1, . . . ,M}, where a solution vector u(t,xm) ∈ Rdp is also
defined. This framework captures solutions defined at any point in space and time. We map input
timesteps t, coordinates xm, and solutions u(t,xm) onto Tl uniform timesteps tl ∈ [0, Tl], Ml

uniform grid coordinates xl ⊂ Ω for l ∈ {0, 1, . . . ,Ml}, and latent vectors q(tl,xl) ∈ Rdp at each
uniform spatio-temporal coordinate. This is done with the following kernel integral:

q(tl,xl) =

∫
[0,T]×Ω

κ(tl,xl, t,x)u(t,x)dtdx (5)

In practice, following Li et al. (2020) and Li et al. (2023c), the domain of integration is truncated
to a spatio-temporal ball with radius r centered at tl and xl, defined as Br(tl,xl), which enforces a
constraint that latent vectors can only depend on local solutions and coordinates. Furthermore, the
kernel κ is parameterized with a network that computes a kernel value given a physical coordinate
y = concat(t,x) and a latent coordinate yl = concat(tl,xl). Lastly, the integral is approximated
by a Riemann sum over the Mb < M physical coordinates that lie within the ball Br(yl), denoted
as yb ⊂ [0, T]×Ω for b ∈ {0, 1, . . . ,Mb}. These approximations result in the following expression:

q(yl) =

∫
Br(yl)

κ(yl,y)u(y)dy ≈
Mb∑
b

κ(yl,yb)u(yb)µ(yb) (6)

where µ(yb) is the Riemann sum weight for every point yb in the ball Br(yl). This kernel integral
essentially aggregates neighboring physical solutions for every latent coordinate and has the nice
property of approximating an operator mapping from the input function u(y) to the latent function
q(yl). Additional details and visualizations of this kernel integral are provided in Appendix B.3.

4

Published as a conference paper at ICLR 2025

Convolutional Backbone Once a uniform latent grid q(yl) is calculated, we can leverage con-
ventional convolutional neural network (CNN) autoencoders to compress and reconstruct the data,
which consists of various convolutional, upsampling, downsampling, and attention layers. Specif-
ically, given a latent grid q ∈ RTl×Ml×dp , the CNN encoder will downsample the resolution by a
factor of f to produce a latent vector z ∈ RTl/f×Ml/f×dl , where dl is the latent dimension. The
CNN decoder reverses this process to decode a latent grid qd from the latent vector z.

Using this method allows our autoencoder to benefit from architecture unification, where best prac-
tices from separate domains can benefit PDE applications. In particular, we can leverage variational
or vector quantized latent spaces (Kingma & Welling, 2022; Esser et al., 2021) to avoid arbitrarily
high-variance latent spaces during training. Furthermore, to improve reconstruction quality, the au-
toencoder can benefit from incorporating a generative adversarial network (GAN) or perceptual loss
metric (Rombach et al., 2022; Zhang et al., 2018). We leave further details and ablation studies of
these modifications to Appendix B.1. As a summary, we find that GANs and perceptual guidance
can in certain cases improve reconstruction performance; however for simplicity and to ensure the
broad applicability of our framework, we omit them in our main results since they require extensive
optimization and are highly problem-dependent. Furthermore, we find that highly regularized latent
spaces reduce downstream diffusion performance due to lower reconstruction accuracy, and that dif-
fusion backbones are sufficiently parameterized to model higher-variance latent spaces. As a result,
our main results use a small Kullback–Leibler (KL) penalty during autoencoder training.

Mesh Decoder To move from the latent grid to the physical mesh, the kernel integral can be
reversed. Specifically, given a decoded latent grid qd(yl), the decoded solution can be calculated
by the Riemann sum: ud(y) =

∑Mb

b κ(y,yb)qd(yb)µ(yb). Note that in this case, the sum is
evaluated over the ball Br(y), and the coordinates yb are defined as the latent grid points yl that
lie within Br(y). This reverse process essentially aggregates neighboring latent vectors for every
physical coordinate, and also has the property of being discretization-invariant. In particular, the
latent solution can be decoded onto an arbitrary mesh by evaluating the Riemann sum at arbitrary
query points y, shown in Figure 8. Lastly, for PDE problems that are uniformly discretized, the
kernel integration can be omitted and a CNN autoencoder can be directly used.

Comparison to GNNs and Neural Fields To demonstrate the utility of our method, we draw a
comparison with previous work on processing irregular PDE data, namely using GNN or neural
field approaches (Pfaff et al., 2021; Cao et al., 2023; Immordino et al., 2024; Yin et al., 2023;
Serrano et al., 2024). Although these works do not explicitly train autoencoders, we extend these
works to construct GNN- and neural field-based autoencoders to benchmark our proposed method.
We provide additional details on these alternative methods as well as present auxiliary results in
Appendix B.2. As a summary, we believe that the lack of inductive bias in GNNs and neural fields
makes it challenging to aggressively compress and reconstruct unstructured data, which already have
very little bias. The proposed approach benefits from the locality constraints of the kernel integral
as well as the translation invariance, compositionality, and local connectivity of CNN kernels.

3.2 LATENT DIFFUSION

Once a latent space has been learned, we consider freezing the encoder and decoder to learn the latent
distribution p(z). Specifically, we train a denoising model ϵθ(zn, n), where n ∈ {0, 1, . . . , N} is
an intermediate step within the Gaussian noising process of length N , and zn is the noised latent
at step n 1. This model is trained by minimizing a reweighted variational lower bound on p(z):
L = Ez,ϵ∼N (0,I),n ∥ϵ− ϵθ(zn, n)∥22. Since the latent z0 is encoded from a uniform latent grid, we
can leverage a Unet to parameterize ϵθ (Ronneberger et al., 2015). However, recent work by Peebles
& Xie (2023) suggests that this inductive bias is not necessary and we evaluate the use of a diffusion
transformer (DiT). We find that the DiT backbone outperforms the Unet backbone; the main results
are reported with a DiT implementation, but a comparison can be found in Appendix C.2.

Additionally, recent advances in diffusion frameworks have proposed many modifications to the de-
noising process, the most straightforward of which is scaling the latent space (Rombach et al., 2022).

1We deviate from the usual notation of t representing the noising timestep to avoid overloading it with t
which is previously defined as physical time of the PDE solution u(t,x).

5

Published as a conference paper at ICLR 2025

Furthermore, Nichol & Dhariwal (2021) has shown the potential benefits of using a cosine noise
scheduler or learning the variance Σθ(zn, n) of the reverse process. Lastly, Salimans & Ho (2022)
introduced reparameterizing the reverse process to predict the velocity v =

√
ᾱnϵ −

√
1− ᾱnx0,

with ᾱn defined as in Ho et al. (2020). We implement and evaluate the effects of these modifica-
tions; for interested readers, the findings can be found in Appendix C.1. In general, we find that
these modifications can have varying effects on the performance of our model; however, we leave
optimizing the diffusion process to future work. For our main results, we scale the latent space, use
a linear noise schedule, do not learn the variance, and use an ϵ parameterization.

3.3 CONDITIONING MECHANISMS

First Frame Conditioning To sample from the conditional distribution p(u|u0, B[u]), we add the
conditional information to the denoising model ϵθ(zn, n,u0, B[u]). For current PDE benchmarks
and in many practical applications, the boundary conditions do not change between solutions; as
such, we use u(0,xm) as a proxy for both u0 and B[u]. As such, conditioning information can be
added to the denoising backbone by defining a domain-specific encoder τθ that maps the first frame
of the solution to a conditioning sequence c = τθ(u(0,xm)) ∈ RNc×dc , where Nc is the sequence
length, and dc is the conditioning dimension. Conveniently, the proposed encoder E is agnostic to
the temporal and spatial discretization of PDEs; therefore, the same architecture can be used for τθ
by flattening the downsampled latent dimension (Tl/f ×Ml/f = Nc).

Text Conditioning Another interesting conditioning domain is natural language. Although im-
precise, humans describe and understand physics through language, and in principle, the initial and
boundary conditions of a physics simulation could also be described by text. An advantage of this
modality is that it is interpretable and compact; instead of needing to specify the discretization
scheme and the physical values at every mesh point, only the important behavior driving the phys-
ical phenomena need to be described. However, a clear drawback is the underdetermined nature of
the PDE problem: for a given prompt describing the initial and boundary conditions, there may exist
many plausible solutions. Furthermore, this approach introduces the problem of captioning physics
simulations; we develop additional methods to achieve this and interested readers are directed to
Appendix D for details on PDE captioning.

Regardless, text-conditioned PDE simulators are a promising direction and to achieve this, we pro-
pose a text-specific encoder τθ based on pretrained transformer encoders (Vaswani et al., 2023;
Devlin et al., 2019). Specifically, given a tokenized and embedded prompt p ∈ RNc×dc , with se-
quence length Nc and dimension dc, a transformer encoder can produce a conditioning sequence
τθ(p) = c ∈ RNc×dc . This has the additional benefit of leveraging large, pretrained transformer
encoders; in particular, we fine-tune RoBERTa (Liu et al., 2019) to accelerate the learning of τθ.

Implementation After defining two conditioning modalities and their corresponding encoders τθ,
we consider mechanisms for incorporating the conditioning sequence c into the denoising back-
bones. For the Unet backbone, a cross-attention layer can be used between a flattened, hidden Unet
representation φ(zn) and the conditioning sequence c (Rombach et al., 2022). For the DiT back-
bone, we apply mean pooling to produce c̄ = mean(c) ∈ Rdc in order to apply the adaLN-Zero
conditioning proposed by Peebles & Xie (2023). Since mean pooling provides only global infor-
mation, we also insert a cross-attention layer after self-attention DiT layers to allow hidden DiT
representations φ(zn) to attend to the conditioning sequence c (Chen et al., 2024).

A final consideration is the use of classifier-free guidance to yield a tradeoff between sample diver-
sity and quality (Ho & Salimans, 2022). For PDEs, there is only one solution for a given initial and
boundary condition; as a result, the desired behavior is to enhance the sample quality at the cost of
diversity. We study this effect for the conditional generation of PDE samples and report findings in
Appendix D.4. We find that different weights w only noticeably affect generated samples at their
extrema (w ≈ 0, w > 10); as a result, classifier-free guidance is omitted from our main results.

4 EXPERIMENTS

We explore the proposed latent diffusion model (LDM) for three PDE datasets: 2D flows around a
cylinder (Pfaff et al., 2021), 2D buoyancy-driven smoke flows (Gupta & Brandstetter, 2022), and 3D

6

Published as a conference paper at ICLR 2025

Model Params Tflops L2 Loss

GINO 72M 0.73 0.2445
MGN 101M 32.16 0.2617
OFormer 131M 17.34 0.3386

LDMS-FF 198M 0.81 0.1522
LDMM-FF 667M 1.16 0.1309
LDMS-Text 313M 0.83 0.1796
LDMM-Text 804M 1.20 0.1476

Table 1: Cylinder Flow. Left: Model parameters, flops, and validation losses across different baselines. Right:
Sample rollouts for first frame and text conditioned models compared to the reference solution.

turbulence around geometric objects (Lienen et al., 2024). The cylinder flow dataset is discretized
on a mesh to smoothly model the cylindrical geometry and its wake; however, the smoke buoyancy
and 3D turbulence datasets are uniformly discretized. Additional dataset details can be found in
Appendix E. For each model, we report its parameter count and relative L2 loss. Since parameter
count can be a poor measure of training cost and model complexity (Peebles & Xie, 2023), we
additionally report the floating point operations per second (flops) needed for a single forward pass
during training with a batch size of 1, calculated using DeepSpeed (Rasley et al., 2020). Additional
details on training and model hyperparameters can be found in Appendix F.

4.1 CYLINDER FLOW

Dataset Following Pfaff et al. (2021), we use 1000 samples for training and 100 samples for
validation. Each sample contains approximately 2000 mesh points and is downsampled to evolve
over 25 timesteps, which is compressed to a latent size of 16×16×16. Each sample is varied in the
position and radius of the cylinder, as well as in the inlet velocity of the fluid. This results in samples
with Reynolds numbers of 100-1500 and includes Karman vortex streets (Stringer et al., 2014b). In
addition, the physical variables are velocity and pressure. Lastly, to caption this dataset, we extract
the cylinder position, radius, and Reynolds number and procedurally generate prompts based on a
template; we include further details and ablation studies in Appendix D.1.

Results We consider benchmarking against GINO (Li et al., 2023c), MeshGraphNet (MGN) (Pfaff
et al., 2021), and OFormer (Li et al., 2023a), which represent a variety of operator-, graph-, and
attention-based neural solvers. Since these are autoregressive models, we provide the initial frame of
the solution and autoregressively predict the next 24 frames. We compare this to our latent diffusion
model conditioned on both the first frame (-FF) and a text prompt (-Text), which are trained to
generate a full solution trajectory at once. Furthermore, we consider two model sizes: Small (S) and
Medium (M); the results are shown in Table 1 with relative L2 loss.

We observe that the latent diffusion model can outperform current models on this benchmark and
pressure errors are around the same as velocity errors. Notably the inclusion of flops allows for
additional insight into model efficiency. We reproduce results showing that GINO models are very
efficient (Li et al., 2023c), yet LDMs can still match this by using a latent space and diffusing an
entire rollout at once. Furthermore, our model can achieve lower errors than baselines and more
efficiently than graph- or attention-based neural surrogates. Lastly, conditioning on the first frame
outperforms text conditioning, presumably because more information is provided in the initial ve-
locity and pressure fields. Text remains an accurate conditioning modality; moreover, the latent
diffusion model shows good scaling behavior, with increased performance at larger model sizes.

4.2 BUOYANCY-DRIVEN FLOW

Dataset We additionally evaluate our model on a regular-grid benchmark of conditional buoyancy-
driven smoke rising in a square domain (Gupta & Brandstetter, 2022). We use 2496 training samples
and 608 validation samples, with varying initial conditions and buoyancy factors, and at a spatial
resolution of 128 × 128 and 48 timesteps, which is compressed to a latent dimension of 6 × 16 ×

7

Published as a conference paper at ICLR 2025

Model Params Tflops L2 Loss

FNO 510M 0.85 0.5126
Unet 580M 21.48 0.3050
Dil-Resnet 33.2M 58.75 0.4466
ACDM 404M 51.23 0.4766

LDMS-FF 243M 1.41 0.3459
LDMM-FF 725M 1.68 0.3177
LDML-FF 1.55B 2.19 0.2728
LDMS-Text 334M 1.39 0.4290∗

LDMM-Text 825M 1.65 0.3158∗

LDML-Text 2.69B 2.53 0.2944∗

Table 2: Buoyancy-Driven Flow. Left: Model parameters, flops, and validation losses. Text-conditioned
losses∗ are evaluated after re-solving the ground truth. Right: Sample rollout; variations in generated initial
states of text models can accumulate large deviations, as such, they are evaluated against a re-solved trajectory.

16. The smoke density is modeled by a passive transport equation, and as a result, the physical
variables are velocity and density. Lastly, for the smoke buoyancy problem, it is more challenging to
describe an initial condition with text. In particular, plumes may exhibit different shapes, locations,
and sizes, in addition to the initial velocity field being even less visually distinct. Nevertheless,
we investigate captioning the initial condition using a multimodal LLM. We design a prompt and
provide the density field as an image; additionally, we outline individual smoke plumes in the initial
density field using a Canny edge detector (Canny, 1986) and provide this segmented image in the
LLM prompt as well. For additional details and examples, we refer readers to Appendix D.2.

Results We consider benchmarking against the FNO, Unet, and Dilated Resnet architectures (Li
et al., 2021; Ronneberger et al., 2015; Gupta & Brandstetter, 2022; Stachenfeld et al., 2022). Ad-
ditionally, we benchmark against an autoregressive diffusion model (ACDM) (Kohl et al., 2024),
to evaluate the need for a latent space and full spatio-temporal sample generation. To ensure a fair
comparison, we provide these baselines with the initial solution and autoregressively predict the
next 47 frames. We compare this to our LDM model, conditioned on the first frame (-FF) or the text
prompt (-Text), and in different model sizes: Small (S), Medium (M), and Large (L), in Table 2.

Due to the underdetermined nature of text conditioning, we propose an additional evaluation metric.
This is motivated by the observation that text-conditioned diffusion models often generate a variety
of initial conditions that semantically satisfy a given prompt, yet this can affect the temporal rollout
significantly. Although the sampled solution may not match a specific solution in the validation
set, it still fulfills the semantic goal of text conditioning. Therefore, we sample a solution for each
text prompt in the validation set, then use the sampled initial condition to produce a ground-truth
using PhiFlow (Holl & Thuerey, 2024), which would evaluate the physical consistency of generated
solutions without restricting the diversity of the LDM simulator. The losses using this re-solved
trajectory are reported in Table 2, with additional visualizations in Appendix A.

We observe that LDM models conditioned on the first frame of a PDE solution can outperform
current models and are an efficient class of neural solvers. Additionally, density errors are around
1.5 times the velocity errors. Furthermore, text-conditioned diffusion models are able to model a
set of phenomena that both semantically satisfy the prompt and are physically consistent, although
the samples may not match the validation set. In addition, many text-conditioned samples are not
contained in the training or validation sets, indicating that the generative model has learned the un-
derlying physics to generate new samples based on a text prompt. Furthermore, for this benchmark,
the initial conditions are generated from a Gaussian distribution, which is challenging to describe
with a prompt and real-world problems often contain more structure that natural language can better
describe. Lastly, the LDM model displays good scaling behavior, with efficient training at large
parameter counts.

8

Published as a conference paper at ICLR 2025

Model Params Tflops L2 Loss DTKE

FNO 1.02B 1.62 0.862 6.524
FactFormer 41.4M 53.8 0.795 6.022
Dil-Resnet 24.8M 249 0.707 6.153

LDM-FF 2.72B 9.78 0.602 5.630
LDM-Text 2.73B 9.43 0.693 5.653

Table 3: 3D Turbulence. Left: Model parameters, flops, validation losses and log-TKE distance. Right:
Sample rollouts for first frame and text conditioned models compared to the reference solution.

4.3 3D TURBULENCE

Dataset To investigate scaling behavior to larger, more complex systems, we consider evaluating
the LDM framework on a 3D turbulence problem of air flows over various geometric objects such as
squares, elbows, U-shapes, etc. (Lienen et al., 2024). We use 36 training samples and 9 validation
samples, downsampled to a resolution of 96 × 24 × 24 and 1000 timesteps; however, we set the
prediction horizon to 48 timesteps during evaluation. The average Reynolds number is 2e5 and the
physical variables are velocity and pressure. Additionally, the simulations are manually captioned
based on the geometry of the initial condition; we include additional details in Appendix D.3.

Results We consider benchmarking against FNO3D (Li et al., 2021) as well as FactFormer (Li
et al., 2023b), a scalable attention-based neural solver, and Dil-Resnet (Stachenfeld et al., 2022), an
accurate yet computationally expensive CNN solver. In addition to relative L2 loss, we report the L2
distance between the log turbulent kinetic energy DTKE between predicted and true samples, since
chaotic and small-scale fluctuations in turbulence make it unlikely for similar samples to be close
under Euclidean distance when evolved over time (Lienen et al., 2024). It is currently challenging for
any neural surrogate to accurately model 3D turbulence, however the proposed model is able to do
so more accurately than baselines and remains efficient. Although first-frame conditioning is more
accurate, text conditioning is still an accurate conditioning modality. Lastly, there are significant
smoothing effects which seems to be the cost for temporal stability and efficient training in 3D.

4.4 DISCUSSION

Figure 3: Losses at each timestep are evaluated
for 10 samples. Average losses at each timestep
are bolded, individual sample losses are opaque.

We show that latent diffusion models can be a viable
approach to generating spatio-temporal physics sim-
ulations. Specifically, by sampling spatio-temporal
noise and leveraging the ability of diffusion models
to approximate complex distributions, an entire tra-
jectory can be generated from an initial condition.
This circumvents the traditional paradigm whereby
solvers need to evolve solutions based on a current
timestep, and aids in increasing accuracy by prevent-
ing error accumulation. We demonstrate this by plot-
ting the time-dependent prediction error for various
models in Figure 3. Additionally, the use of a la-
tent space allows this computation to be performed
efficiently and with unstructured data, and the intro-
duction of a mesh autoencoder allows latents to be decoded where solutions need to be refined (i.e.
wake regions) and onto arbitrary geometries. Lastly, the scaling behavior of the proposed model
is promising and reflects similar observations of scaling diffusion and attention-based models in
other domains (Peebles & Xie, 2023; Kaplan et al., 2020). The benchmarked datasets are relatively
small (<5000) samples; with a larger, more diverse dataset, this scaling ability could unlock unified
physics surrogates across a wide variety of phenomena.

Additionally, the introduction of text-conditioned physics simulators is an interesting and novel re-
search direction. In constrained PDE formulations, text is a compact and accurate conditioning

9

Published as a conference paper at ICLR 2025

modality, nearly matching first-frame conditioning in cylinder flow problems despite conditioning
on around 1000× less data (∼1Mb vs. ∼1Kb), and with the added advantage of being more inter-
pretable and usable. The diversity and ease of text-conditioned physics simulators could be a useful
tool for engineers and designers to quickly test different ideas without needing to define geometries,
discretizations, or generate an initial solution. After deciding on a design, the same architecture can
then be used with first-frame conditioning to precisely model the resulting physical phenomena.

5 RELATED WORKS

5.1 VIDEO DIFFUSION MODELS

Many prior works have considered using diffusion models to generate videos. Initial works have
focused on adapting image diffusion models to the video domain, proposing mechanisms to en-
sure temporal consistency or upsample spatio-temporal resolutions (Singer et al., 2022; Wu et al.,
2023; Blattmann et al., 2023b). Many approaches have investigated directly generating videos by
modifying the diffusion backbone (Ho et al., 2022b), with subsequent works improving the resolu-
tion, quality, and consistency of generated videos (Ho et al., 2022a; Bar-Tal et al., 2024). Within
these two paradigms, an abundance of research has examined the scaling of video diffusion mod-
els (Blattmann et al., 2023a), improved conditioning methods (Girdhar et al., 2023), training-free
adaptation (Khachatryan et al., 2023; Zhang et al., 2023), and video editing (Esser et al., 2023).

5.2 DIFFUSION MODELS FOR PDES

Previous works on adapting diffusion models for PDEs have worked with generating individual
timesteps and without the use of a latent space (Kohl et al., 2024; Lienen et al., 2024; Huang et al.,
2024; Yang & Sommer, 2023). To improve temporal resolution and consistency, the use of a tem-
poral interpolator has also been investigated (Cachay et al., 2023). Although not directly used to
generate PDE solutions, diffusion has also been investigated to refine PDE solutions (Lippe et al.,
2023; Serrano et al., 2024). Previous work has also considered using diffusion to accomplish al-
ternate objectives, such as unconditional generation, upsampling PDE solutions, in-painting partial
PDE solutions, or recovering solutions from sparse observations (Du et al., 2024; Shu et al., 2023)

6 CONCLUSION

Summary We have demonstrated that latent diffusion models represent a powerful class of physics
simulators. Specifically, we have developed a framework for encoding and decoding arbitrary PDE
data into a latent space to generate unstructured physics solutions. Furthermore, we have shown
that generating full spatio-temporal solutions can mitigate error accumulation to improve accuracy.
Lastly, we introduce conditioning on physics data as well as language, which is a novel modality
that can be more compact, interpretable, and accessible.

Limitations A limitation of diffusion models is the increased time and computation required for
inference. We seek to address this using a DDIM sampler, and show that by using fewer denoising
steps, diffusion models can be faster than conventional, deterministic neural solvers while main-
taining accuracy in Appendix C.3. For transparency, we also compare the inference times of using
DDPM sampling on the Cylinder Flow and Smoke Buoyancy problems in Appendix G. Future work
could expand on this to further accelerate sampling and improve sample quality, such as distillation
techniques (Salimans & Ho, 2022; Luhman & Luhman, 2021; Meng et al., 2023) and consistency
models (Song et al., 2023). An additional limitation is that the LLM captioning can sometimes
hallucinate, which degrades the quality of the smoke buoyancy captions and the resulting text2PDE
model. Lastly, diffusing an entire rollout at once fixes the temporal resolution of the generated
solution, whereas autoregressive models can generate an arbitrarily long sequence. We present pre-
liminary work to address this limitation by using the proposed LDM model autoregressively, to
alleviate the need to scale the model when predicting longer time horizons, shown in Appendix C.4.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was funded by Fluor Marine Propulsion, LLC under purchase order number 142474.
Additionally, this research used resources of the National Energy Research Scientific Computing
Center (NERSC), a Department of Energy Office of Science User Facility using a Generative AI for
Science NERSC award DDR-ERCAP-m4732 for 2024.

REFERENCES

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
tors, 2024. URL https://arxiv.org/abs/2402.12365.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver
Wang, Deqing Sun, Tali Dekel, and Inbar Mosseri. Lumiere: A space-time diffusion model for
video generation, 2024. URL https://arxiv.org/abs/2401.12945.

Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, and Koray Kavukcuoglu.
Interaction networks for learning about objects, relations and physics, 2016. URL https:
//arxiv.org/abs/1612.00222.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, Varun Jampani, and Robin Rom-
bach. Stable video diffusion: Scaling latent video diffusion models to large datasets, 2023a. URL
https://arxiv.org/abs/2311.15127.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
models, 2023b. URL https://arxiv.org/abs/2304.08818.

R D Blevins. Flow-induced vibration. 1 1990. URL https://www.osti.gov/biblio/
6168070.

Anton Bovier, Michael Eckhoff, Véronique Gayrard, and Markus Klein. Metastability in reversible
diffusion processes i: Sharp asymptotics for capacities and exit times. Journal of the European
Mathematical Society, 006(4):399–424, 2004. URL http://eudml.org/doc/277604.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers, 2023.
URL https://arxiv.org/abs/2202.03376.

Salva Rühling Cachay, Bo Zhao, Hailey Joren, and Rose Yu. Dyffusion: A dynamics-informed dif-
fusion model for spatiotemporal forecasting, 2023. URL https://arxiv.org/abs/2306.
01984.

John Canny. A computational approach to edge detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-8(6):679–698, 1986. doi: 10.1109/TPAMI.1986.4767851.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based phys-
ical simulation with bsms-gnn, 2023. URL https://arxiv.org/abs/2210.02573.

Shoei-Sheng Chen. Flow-induced vibration of circular cylindrical structures, 6 1985. URL https:
//www.osti.gov/biblio/6331788.

Shoufa Chen, Mengmeng Xu, Jiawei Ren, Yuren Cong, Sen He, Yanping Xie, Animesh Sinha, Ping
Luo, Tao Xiang, and Juan-Manuel Perez-Rua. Gentron: Diffusion transformers for image and
video generation, 2024. URL https://arxiv.org/abs/2312.04557.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding, 2019. URL https://arxiv.org/
abs/1810.04805.

11

https://arxiv.org/abs/2402.12365
https://arxiv.org/abs/2401.12945
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/2311.15127
https://arxiv.org/abs/2304.08818
https://www.osti.gov/biblio/6168070
https://www.osti.gov/biblio/6168070
http://eudml.org/doc/277604
https://arxiv.org/abs/2202.03376
https://arxiv.org/abs/2306.01984
https://arxiv.org/abs/2306.01984
https://arxiv.org/abs/2210.02573
https://www.osti.gov/biblio/6331788
https://www.osti.gov/biblio/6331788
https://arxiv.org/abs/2312.04557
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Published as a conference paper at ICLR 2025

Pan Du, Meet Hemant Parikh, Xiantao Fan, Xin-Yang Liu, and Jian-Xun Wang. Confild: Con-
ditional neural field latent diffusion model generating spatiotemporal turbulence, 2024. URL
https://arxiv.org/abs/2403.05940.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2021. URL https://arxiv.org/abs/2012.09841.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Ger-
manidis. Structure and content-guided video synthesis with diffusion models, 2023. URL
https://arxiv.org/abs/2302.03011.

Christoph Feichtenhofer, Haoqi Fan, Yanghao Li, and Kaiming He. Masked autoencoders as spa-
tiotemporal learners, 2022. URL https://arxiv.org/abs/2205.09113.

R.D. Gabbai and H. Benaroya. An overview of modeling and experiments of vortex-induced
vibration of circular cylinders. Journal of Sound and Vibration, 282(3):575–616, 2005.
ISSN 0022-460X. doi: https://doi.org/10.1016/j.jsv.2004.04.017. URL https://www.
sciencedirect.com/science/article/pii/S0022460X04004845.

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Ramb-
hatla, Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu video: Factorizing text-to-video
generation by explicit image conditioning, 11 2023. URL http://arxiv.org/abs/2311.
10709.

Jayesh K. Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
modeling, 2022. URL https://arxiv.org/abs/2209.15616.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anand-
kumar, Jian Song, and Jun Zhu. Dpot: Auto-regressive denoising operator transformer for large-
scale pde pre-training, 2024. URL https://arxiv.org/abs/2403.03542.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
autoencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111.
06377.

Maximilian Herde, Bogdan Raonić, Tobias Rohner, Roger Käppeli, Roberto Molinaro, Emmanuel
de Bézenac, and Siddhartha Mishra. Poseidon: Efficient foundation models for pdes, 2024. URL
https://arxiv.org/abs/2405.19101.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL https://arxiv.
org/abs/2207.12598.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P.
Kingma, Ben Poole, Mohammad Norouzi, David J. Fleet, and Tim Salimans. Imagen video: High
definition video generation with diffusion models, 2022a. URL https://arxiv.org/abs/
2210.02303.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models, 2022b. URL https://arxiv.org/abs/2204.03458.

Philipp Holl and Nils Thuerey. Φflow (PhiFlow): Differentiable simulations for pytorch, tensorflow
and jax. In International Conference on Machine Learning. PMLR, 2024.

Jiahe Huang, Guandao Yang, Zichen Wang, and Jeong Joon Park. Diffusionpde: Generative pde-
solving under partial observation, 2024. URL https://arxiv.org/abs/2406.17763.

Gabriele Immordino, Andrea Vaiuso, Andrea Da Ronch, and Marcello Righi. Predicting transonic
flowfields in non-homogeneous unstructured grids using autoencoder graph convolutional net-
works. 5 2024. URL http://arxiv.org/abs/2405.04396.

12

https://arxiv.org/abs/2403.05940
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/2302.03011
https://arxiv.org/abs/2205.09113
https://www.sciencedirect.com/science/article/pii/S0022460X04004845
https://www.sciencedirect.com/science/article/pii/S0022460X04004845
http://arxiv.org/abs/2311.10709
http://arxiv.org/abs/2311.10709
https://arxiv.org/abs/2209.15616
https://arxiv.org/abs/2403.03542
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2111.06377
https://arxiv.org/abs/2405.19101
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2210.02303
https://arxiv.org/abs/2204.03458
https://arxiv.org/abs/2406.17763
http://arxiv.org/abs/2405.04396

Published as a conference paper at ICLR 2025

Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals, and Joao Carreira.
Perceiver: General perception with iterative attention, 2021. URL https://arxiv.org/
abs/2103.03206.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020. URL https://arxiv.org/abs/2001.08361.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators, 2023. URL https://arxiv.org/abs/2303.13439.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Felix Koehler, Simon Niedermayr, Rüdiger Westermann, and Nils Thuerey. Apebench: A bench-
mark for autoregressive neural emulators of pdes, 2024. URL https://arxiv.org/abs/
2411.00180.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffu-
sion models for turbulent flow simulation, 2024. URL https://arxiv.org/abs/2309.
01745.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023. URL
http://jmlr.org/papers/v24/21-1524.html.

Zijie Li and Amir Barati Farimani. Graph neural network-accelerated lagrangian fluid simulation.
Computers & Graphics, 103:201–211, 2022. ISSN 0097-8493. doi: https://doi.org/10.1016/j.cag.
2022.02.004. URL https://www.sciencedirect.com/science/article/pii/
S0097849322000206.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning, 2023a. URL https://arxiv.org/abs/2205.13671.

Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling,
2023b. URL https://arxiv.org/abs/2305.17560.

Zijie Li, Saurabh Patil, Francis Ogoke, Dule Shu, Wilson Zhen, Michael Schneier, John R. Buchanan
Jr., and Amir Barati Farimani. Latent neural pde solver: a reduced-order modelling framework
for partial differential equations, 2024a. URL https://arxiv.org/abs/2402.17853.

Zijie Li, Anthony Zhou, Saurabh Patil, and Amir Barati Farimani. Cafa: Global weather forecasting
with factorized attention on sphere, 2024b. URL https://arxiv.org/abs/2405.07395.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations, 2020. URL https://arxiv.org/abs/2003.03485.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, 2021. URL https://arxiv.org/abs/2010.08895.

Zongyi Li, Nikola Borislavov Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Prakash Otta,
Mohammad Amin Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, and
Anima Anandkumar. Geometry-informed neural operator for large-scale 3d pdes, 2023c. URL
https://arxiv.org/abs/2309.00583.

Marten Lienen, David Lüdke, Jan Hansen-Palmus, and Stephan Günnemann. From zero to turbu-
lence: Generative modeling for 3d flow simulation, 2024. URL https://arxiv.org/abs/
2306.01776.

13

https://arxiv.org/abs/2103.03206
https://arxiv.org/abs/2103.03206
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2303.13439
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2411.00180
https://arxiv.org/abs/2411.00180
https://arxiv.org/abs/2309.01745
https://arxiv.org/abs/2309.01745
http://jmlr.org/papers/v24/21-1524.html
https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://www.sciencedirect.com/science/article/pii/S0097849322000206
https://arxiv.org/abs/2205.13671
https://arxiv.org/abs/2305.17560
https://arxiv.org/abs/2402.17853
https://arxiv.org/abs/2405.07395
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2309.00583
https://arxiv.org/abs/2306.01776
https://arxiv.org/abs/2306.01776

Published as a conference paper at ICLR 2025

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common diffusion noise schedules and
sample steps are flawed, 2024. URL https://arxiv.org/abs/2305.08891.

Phillip Lippe, Bastiaan S. Veeling, Paris Perdikaris, Richard E. Turner, and Johannes Brandstetter.
Pde-refiner: Achieving accurate long rollouts with neural pde solvers, 2023. URL https:
//arxiv.org/abs/2308.05732.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach, 2019. URL https://arxiv.org/abs/1907.11692.

Adrián Lozano-Durán and Javier Jiménez. Time-resolved evolution of coherent structures in turbu-
lent channels: characterization of eddies and cascades. Journal of Fluid Mechanics, 759:432–471,
2014. doi: 10.1017/jfm.2014.575.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed, 2021. URL https://arxiv.org/abs/2101.02388.

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles Cran-
mer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois Lanusse,
Mariel Pettee, Tiberiu Tesileanu, Kyunghyun Cho, and Shirley Ho. Multiple physics pretraining
for physical surrogate models, 2023. URL https://arxiv.org/abs/2310.02994.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
machine learning for fluid-related partial differential equations, 2024. URL https://arxiv.
org/abs/2407.07218.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik P. Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models, 2023. URL https://arxiv.org/
abs/2210.03142.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
https://arxiv.org/abs/2102.09672.

William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL https:
//arxiv.org/abs/2212.09748.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks, 2021. URL https://arxiv.org/abs/2010.
03409.

M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equa-
tions. Journal of Computational Physics, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.
org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/
article/pii/S0021999118307125.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
mizations enable training deep learning models with over 100 billion parameters. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
KDD ’20, pp. 3505–3506, New York, NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450379984. doi: 10.1145/3394486.3406703. URL https://doi.org/10.
1145/3394486.3406703.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022. URL https://arxiv.org/
abs/2112.10752.

14

https://arxiv.org/abs/2305.08891
https://arxiv.org/abs/2308.05732
https://arxiv.org/abs/2308.05732
https://arxiv.org/abs/1907.11692
http://dx.doi.org/10.1038/s42256-021-00302-5
https://arxiv.org/abs/2101.02388
https://arxiv.org/abs/2310.02994
https://arxiv.org/abs/2407.07218
https://arxiv.org/abs/2407.07218
https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2210.03142
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2212.09748
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2010.03409
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://www.sciencedirect.com/science/article/pii/S0021999118307125
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://arxiv.org/abs/2112.10752
https://arxiv.org/abs/2112.10752

Published as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation, 2015. URL https://arxiv.org/abs/1505.04597.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models, 2022.
URL https://arxiv.org/abs/2202.00512.

Louis Serrano, Thomas X Wang, Etienne Le Naour, Jean-Noël Vittaut, and Patrick Gallinari. Aroma:
Preserving spatial structure for latent pde modeling with local neural fields, 2024. URL https:
//arxiv.org/abs/2406.02176.

Dule Shu, Zijie Li, and Amir Barati Farimani. A physics-informed diffusion model for high-fidelity
flow field reconstruction. Journal of Computational Physics, 478:111972, April 2023. ISSN
0021-9991. doi: 10.1016/j.jcp.2023.111972. URL http://dx.doi.org/10.1016/j.
jcp.2023.111972.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data, 2022. URL https://arxiv.org/abs/
2209.14792.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics, 2015. URL https://arxiv.org/
abs/1503.03585.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022. URL
https://arxiv.org/abs/2010.02502.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models, 2023. URL
https://arxiv.org/abs/2303.01469.

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation, 2022. URL https://arxiv.org/abs/
2112.15275.

R.M. Stringer, J. Zang, and A.J. Hillis. Unsteady rans computations of flow around a cir-
cular cylinder for a wide range of reynolds numbers. Ocean Engineering, 87:1–9, 2014a.
ISSN 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2014.04.017. URL https://www.
sciencedirect.com/science/article/pii/S0029801814001565.

Robert Stringer, Jun Zang, and Andrew J. Hillis. Unsteady rans computations of flow around a
circular cylinder for a wide range of reynolds numbers. Ocean Engineering, 87:1–9, 2014b. URL
https://api.semanticscholar.org/CorpusID:122778664.

Nils Thuerey, Konstantin Weißenow, Lukas Prantl, and Xiangyu Hu. Deep learning methods for
reynolds-averaged navier–stokes simulations of airfoil flows. AIAA Journal, 58(1):25–36, January
2020. ISSN 1533-385X. doi: 10.2514/1.j058291. URL http://dx.doi.org/10.2514/
1.j058291.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators, 2023. URL https://arxiv.org/abs/2111.13802.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
org/abs/1706.03762.

Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J. Pappas, and Paris
Perdikaris. Bridging operator learning and conditioned neural fields: A unifying perspective,
2024. URL https://arxiv.org/abs/2405.13998.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries, 2024. URL https://arxiv.org/abs/
2402.02366.

15

https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/2202.00512
https://arxiv.org/abs/2406.02176
https://arxiv.org/abs/2406.02176
http://dx.doi.org/10.1016/j.jcp.2023.111972
http://dx.doi.org/10.1016/j.jcp.2023.111972
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/2209.14792
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/1503.03585
https://arxiv.org/abs/2010.02502
https://arxiv.org/abs/2303.01469
https://arxiv.org/abs/2112.15275
https://arxiv.org/abs/2112.15275
https://www.sciencedirect.com/science/article/pii/S0029801814001565
https://www.sciencedirect.com/science/article/pii/S0029801814001565
https://api.semanticscholar.org/CorpusID:122778664
http://dx.doi.org/10.2514/1.j058291
http://dx.doi.org/10.2514/1.j058291
https://arxiv.org/abs/2111.13802
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2405.13998
https://arxiv.org/abs/2402.02366
https://arxiv.org/abs/2402.02366

Published as a conference paper at ICLR 2025

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
models for text-to-video generation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pp. 7623–7633, October 2023.

Gefan Yang and Stefan Sommer. A denoising diffusion model for fluid field prediction, 2023. URL
https://arxiv.org/abs/2301.11661.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and Patrick Gal-
linari. Continuous pde dynamics forecasting with implicit neural representations, 2023. URL
https://arxiv.org/abs/2209.14855.

M.M. Zdravkovich. Conceptual overview of laminar and turbulent flows past smooth and rough
circular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 33(1):53–62, 1990.
ISSN 0167-6105. doi: https://doi.org/10.1016/0167-6105(90)90020-D. URL https://www.
sciencedirect.com/science/article/pii/016761059090020D.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric, 2018. URL https://arxiv.org/abs/
1801.03924.

Yabo Zhang, Yuxiang Wei, Dongsheng Jiang, Xiaopeng Zhang, Wangmeng Zuo, and Qi Tian. Con-
trolvideo: Training-free controllable text-to-video generation, 2023. URL https://arxiv.
org/abs/2305.13077.

Anthony Zhou and Amir Barati Farimani. Masked autoencoders are pde learners, 2024. URL
https://arxiv.org/abs/2403.17728.

Anthony Zhou, Cooper Lorsung, AmirPouya Hemmasian, and Amir Barati Farimani. Strategies for
pretraining neural operators, 2024. URL https://arxiv.org/abs/2406.08473.

16

https://arxiv.org/abs/2301.11661
https://arxiv.org/abs/2209.14855
https://www.sciencedirect.com/science/article/pii/016761059090020D
https://www.sciencedirect.com/science/article/pii/016761059090020D
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/1801.03924
https://arxiv.org/abs/2305.13077
https://arxiv.org/abs/2305.13077
https://arxiv.org/abs/2403.17728
https://arxiv.org/abs/2406.08473

Published as a conference paper at ICLR 2025

A ADDITIONAL RESULTS

Figure 4: Additional examples of text-conditioned generation of 3D turbulence samples with the velocity
magnitude rendered. The true solution is shown on top, followed by the sampled solution on the bottom. While
the generated solutions smoothen high-frequency features, the solutions remain stable and are broadly accurate.
Rendered with vAPE4D (Koehler et al., 2024).

17

Published as a conference paper at ICLR 2025

Figure 5: Additional examples of text-conditioned generation of smoke buoyancy examples. The true solution
is shown on top, followed by the sampled solution on the bottom. The model is only given a text description of
the initial frame, which is also displayed for each example with the additional observations omitted.

18

Published as a conference paper at ICLR 2025

Figure 6: Additional examples of text-conditioned generation of cylinder flow examples. The true solution is
shown on top, followed by the sampled solution on the bottom.

B AUTOENCODER DETAILS

Model L1 Loss

Base .0340
+GAN .0311
+LPIPS .0208

(a) GAN/LPIPS Ablation for
Cylinder Flow

Model L1 Loss

Base .00535
+GAN .00916
+LPIPS .00938

(b) GAN/LPIPS Ablation for
Smoke Buoyancy

λKL KL Loss L1 Loss

5e-6 1.8e4 0.378
2e-7 4.8e4 0.239

(c) KL Weight (λKL) Ablation
for Smoke Buoyancy

Table 4: Validation losses between reconstructed and true samples with various CNN backbone parameters.

B.1 ABLATION STUDIES

We present additional results investigating the use of adversarial training and perceptual loss metrics
(LPIPS) on autoencoder performance. An important consideration is that current pretrained models
needed for LPIPS operate only on regularly spaced data; therefore, to maintain a fair comparison, the
cylinder flow data are resampled onto a 128x32 grid to be able to evaluate an LPIPS loss. Since the
benefits of using these additional methods are not clear, they are omitted from autoencoder training
in the main results; however, this could be a direction for future work to improve the accuracy of
LDMs. Results for the cylinder flow and smoke buoyancy problems are given in Tables 4a and 4b.

Adversarial Training A common technique to improve the reconstruction accuracy of an autoen-
coder is to introduce a discriminator to assess whether the reconstructed input is fake or real (Esser
et al., 2021). Since our proposed mesh encoder is agnostic to the input discretization, it can also be
used as a discriminator by encoding a given PDE sample, flattening the latent space, and averaging
the logits. In practice, the autoencoder is trained in two stages: the first stage minimizes the recon-
struction error and maximizes the probability of an erroneous discriminator classification, and the
second stage optimizes the discriminator when given a real and reconstructed sample.

On the cylinder flow dataset, the use of a discriminator improves autoencoder performance, however,
for the smoke buoyancy dataset it does not. We hypothesize that more complex PDEs are more

19

Published as a conference paper at ICLR 2025

challenging to learn if they are fake or real, since deviations from real samples could be reasonably
interpreted as eddies or high-frequency features in more turbulent regimes. We anticipate this could
be improved with additional tuning, but due to its difficulty we omit the use of adversarial training
for the main results, and indeed lower losses can also be obtained but simply scaling the autoencoder
and training it for longer.

Perceptual Loss Common L2 and L1 losses capture global statistics on the similarity of recon-
structed and true samples, however, they can misrepresent the semantic similarity of different sam-
ples. To improve these analytical losses, Zhang et al. (2018) propose to use differences in hidden
activations of pretrained models as a loss metric. This is commonly implemented using a pretrained
VGG16 model on ImageNet, however, this is hardly appropriate for PDE applications. We leverage
a pretrained operator transformer from Hao et al. (2024), which has seen fluid dynamics data to
evaluate an LPIPS loss. A final consideration is the fixed time window of pretrained PDE models; to
adapt this to arbitrarily long spatio-temporal samples we autoregressively apply DPOT and average
its hidden activations along a temporal rollout of the true and reconstructed samples. Again, we find
that LPIPS is more beneficial for simpler physics.

KL Penalty We evaluate the effect of different KL penalties on the variance of the autoencoder
latent space as well as the prediction L1 loss after downstream training of a latent diffusion model in
Table 4c. We find that larger KL penalties lead to lower KL losses, indicating that the latent space is
closer to a Gaussian. However, this reduces the reconstruction accuracy of the autoencoder, which
degrades the performance of the latent diffusion model. Alternatively, lower KL penalties result in
higher-variance latent spaces, but this is outweighed by the better reconstruction capabilities.

Ball Radius L1 Loss

0.045 .0138
0.033 .0141
0.020 .0148

(a) Ball Radius Ablation for Cylinder Flow

Model L1 Loss

GNN .382
Neural Field .171
Ours .011

(b) Architecture Ablation for Cylinder Flow

Table 5: Validation losses between reconstructed and true samples with various mesh learning parameters.

Ball Radius We consider training the mesh encoder/decoder with different ball radii to measure
the effect of the size of receptive field of the learnable aggregation and interpolation. Using the same
hyperparameters for the CNN backbone, we train the mesh autoencoder at different ball radii on the
cylinder flow benchmark and report the validation L1 reconstruction losses in Table 5a. We find that
increasing the radius improves the reconstruction accuracy, likely since there are more points within
the ball used to construct the latent grid, as well as more latent grid points used to query output
points. However, this comes at an additional computational cost due to the need to integrate over
more points when approximating the kernel integral.

B.2 GNN/NEURAL FIELD COMPARISONS

We consider using GNN- and neural field-based approaches to encode and decode mesh data. The
results for the proposed architectures on the cylinder flow problem are given in Table 5b. In general,
the GNN and neural field methods do not seem to perform well. We hypothesize that this could
because compressing large spatio-temporal samples is very challenging without proper inductive
biases. Specifically, GNNs and attention-based neural field architectures are very general in their
pooling and unpooling operations, which makes it challenging to extract compressed features and
reconstruct dense outputs.

Graph Neural Networks To compress and expand mesh-based data, we can apply graph pooling
and unpooling methods. In particular, we consider a method of pooling and unpooling nodes based
on bi-stride pooling (Cao et al., 2023). Nodes are pooled on every other BFS (Breadth-First Search)
frontier in a manner that preserves connections between pooled and unpooled nodes, and doesn’t
require learnable parameters. Pooled and unpooled nodes at different compression levels can be

20

Published as a conference paper at ICLR 2025

Figure 7: Kernel Aggregation. Neighbors to a latent grid points are used to compute an operator mapping
between the input mesh and latent grid. This can also be extended to arbitrary dimensions, such as including a
time dimension or extra space dimension. Additionally, this can be reversed to compute an operator mapping
between the decoded latent grid and output mesh.

cached and used for the expansion or contraction of graphs. At the encoder, pooled nodes use
message passing between unpooled nodes in a defined neighborhood to aggregate information and
downsample the graph. At the lowest resolution, we apply cross-attention between the node list and
a fixed latent vector, similar to Perceiver pooling (Jaegle et al., 2021). To interpolate a fixed latent
back onto a graph, a we use cross-attention between a fixed latent and a learnable latent node list,
which is truncated to the correct dimension. The low-resolution graph can be used as supernodes in
a cached upsampled graph to pass messages to their unpooled neighbors until the original graph is
reconstructed.

Neural Fields Neural fields represent a mapping between a set of coordinates and their functional
values. While this is restricted to modeling a single sample, the addition of a condition in conditional
neural fields allows this framework to be adapted to different PDE samples. To compress an arbi-
trary spatio-temporal vector, the spatial and temporal axes are separately aggregated using Perceiver
pooling. Specifically, the architecture alternates between computing the cross-attention on spatial or
temporal points and a fixed vector. This can then be downsampled or upsampled using conventional
CNN methods. To interpolate a fixed latent back onto an output mesh, the fixed latent can be seen
as a condition for a neural field queried at the output mesh. We implement this based on the CViT
architecture (Wang et al., 2024). A transformer encoder computes self-attention to encode the latent
vector into a condition, while the query coordinates are interpolated from a learned latent grid. A
transformer decoder then calculates the cross-attention between the query points and the condition,
which is decoded to the reconstruction.

B.3 KERNEL AGGREGATION/INTERPOLATION

Given an input that is arbitrarily discretized u(t,xm), it can be seen as the set of values in which
the true function u is given at. We seek to map this function u(y) to another function q(x), where
we can control the discretization to be uniform. From Li et al. (2020), this mapping can be approx-
imated by a learnable kernel integral, specifically q(x) =

∫
Ω
κθ(x, y)u(y)dy, where q is given on

coordinates x and u is given on coordinates y. Importantly, we can choose the query coordinates x
and evaluate this kernel integral at these arbitrary queries; however, choosing uniform query points
x is convenient for the CNN backbone. In practice, this is implemented as in Figure 7. Nodal values
consisting of pressure and velocity are given on a mesh, and a uniform latent grid is defined. To
make the kernel integral tractable, the integration domain is truncated to a local ball, where neigh-
bors within a certain radius of latent grid points contribute to the operator mapping. Again, from
Li et al. (2020), this local Monte Carlo approximation can still be accurate as the error scales with
m−1/2, where m is the number of points sampled.

We can reverse this process at the decoder to interpolate the decoded latent grid onto the output
mesh. Specifically, the latent function qd is now mapped to the output function ud by the kernel
integral ud(y) =

∫
Ω
κθ(y, x)qd(x)dx. Importantly, the operator mapping ensures that the output

mesh can be queried at arbitrary locations y, rather than fixing the decoded solution (both for the
autoencoder and LDM) to a single discretization. This discretization invariance can be seen when
using the LDM to generate a solution based on a text prompt, but decoding it onto arbitrary query
points, such as in Figure 8, and is empirically reproduced by Li et al. (2023c) as well.

21

Published as a conference paper at ICLR 2025

Figure 8: Discretization Invariance. Given a sampled latent solution from the conditional LDM, it can be
decoded onto an arbitrary set of query points.

C DIFFUSION DETAILS

C.1 DENOISING ABLATIONS

Model Lsimple

Noise 0.056
Velocity 0.072

(a) Parameterization

Model Lsimple

Fixed Σ 0.056
Learned Σθ 0.059

(b) Learned Σθ

Model Lsimple

Scale=1.0 0.034
Scale=0.2 0.015

(c) Latent Space Scaling

Model Lsimple

Linear 0.034
Cosine 0.069

(d) Noise Scheduler

Table 6: Validation reweighted VLB losses evaluated for different settings of the denoising process

Denoising Parameterization We investigate parameterizing the reverse process by predicting the
velocity v =

√
ᾱnϵ −

√
1− ᾱnx0, rather than the noise ϵ (Salimans & Ho, 2022). This is moti-

vated by the idea that the prediction of pure noise becomes increasingly unstable as the number of
timesteps decreases. We find that v-prediction slightly increases the VLB loss, however, this effect
is not significant.

Learning Σθ Following Nichol & Dhariwal (2021) we investigate parameterizing the reverse pro-
cess variance as Σθ(zt, t) = exp(v log βt+(1−v) log β̃t), where v is a learned vector that modulates
the transition between βt and β̃t. Furthermore, the loss is modified to minimize the log-likelihood.
We find that learning Σθ does not significantly effect the reverse process.

Latent Space Scaling Following Rombach et al. (2022), we scale the latent space to approximate
unit variance across latent encodings of the training set. When the latents are too large, the addi-
tion of Gaussian noise with unit variance does not sufficiently noise the latents (zT ̸= N (0, I)),
which harms the denoising process during inference. While the KL-loss could be increased during
autoencoder training to limit the variance of the learned latent space, this comes at the cost of re-
duced reconstruction accuracy. As such, scaling the latent space is an important consideration, and
a proper scaling factor is needed to achieve good results.

Noise Scheduler Following Nichol & Dhariwal (2021), we evaluate using a cosine or linear noise
scheduler. We find that empirically, a linear noise scheduler performs better in our case; however,
optimizing the noise schedule is still an area for future work.

C.2 DIFFUSION BACKBONE ARCHITECTURES
Model Val L1 Loss

Unet-FF 0.0416
Unet-Text 0.0492
DiT-FF 0.0385
DiT-Text 0.0404

Table 8: Different model architec-
tures for the Cylinder Flow problem

We evaluate parameterizing the reverse process using a 3D Unet
or DiT in Table 8. In both cases, the models need to predict
spatio-temporal noise, either by using 3D convolutions or patchi-
fying across space and time. Models are trained with approxi-
mately the same parameter count and conditioning on either the
first frame or a text prompt for the cylinder flow problem. We
report L1 losses between generated samples and the validation
set. We find that a DiT backbone slightly outperforms a Unet
backbone.

22

Published as a conference paper at ICLR 2025

Model S Inf. Time Rel. L2 Loss

GINO - 0.112 0.2445
MGN - 1.683 0.2617
OFormer - 1.336 0.3386

LDMS-FF

10 0.4572 0.1595
20 0.6119 0.1583
50 1.0844 0.1579
100 1.8716 0.1595

1000∗ 15.753 0.1522

LDMM-FF

10 0.5672 0.1313
20 0.8654 0.1267
50 1.7188 0.1306
100 3.1561 0.1281

1000∗ 27.895 0.1309

LDMS-Text

10 0.4711 0.1941
20 0.6405 0.1980
50 1.1522 0.1949
100 1.9936 0.1903

1000∗ 16.251 0.1796

LDMM-Text

10 0.5770 0.1474
20 0.8836 0.1536
50 1.7635 0.1513
100 3.2456 0.1495

1000∗ 29.096 0.1476

Table 7: Cylinder Flow Sampling. Comparison of inference times (s) and relative L2 errors of different
baselines and LDM models under varying numbers of denoising steps S using DDIM or DDPM∗ sampling.

C.3 DDIM SAMPLING

We evaluate the use of DDIM to accelerate sampling after training an LDM with the denoising ob-
jective. We implement a DDIM sampler (Song et al., 2022) and evaluate the inference time and
relative L2 loss of sampled solutions on the Cylinder Flow problem at different denoising steps S.
These results are presented in Table 7 on a single NVIDIA A100 GPU. We find that DDIM can
recover most of the solution even at a small number of denoising steps, and in certain cases produce
higher quality samples. Through the use of DDIM, in combination with using a latent space and
spatio-temporal sampling, diffusion models can produce solutions faster than conventional, deter-
ministic neural solvers in addition to being more accurate. We hypothesize that DDIM is effective
due to fundamental differences in the modeled distributions within the image and PDE domains.

We consider the underlying conditional distribution pθ(u|c) that is approximated by conditional
diffusion. Within image domains, this distribution has many modes in order to cover a diverse set
of sampled images for a given prompt, however, in PDE settings this distribution ideally only has
a single mode since when conditioned on a past timestep, there should only be a single sampled
solution. Therefore, in PDE settings, we can expect Langevin sampling to converge quickly, since
the distribution that is sampled from has only a single mode. Furthermore, since score estimates
are still trained using the original denoising objective, they are still accurate at the initial sample
x0; therefore, although Langevin sampling can start far from pθ(u|c), the score estimates are still
accurate enough to quickly approach the desired mode.

One method of empirically evaluating this could be to calculate the Jacobian of the estimated score
function ∇xsθ(x) for diffusion models trained in PDE and image settings. The Jacobian of the score
function would correspond to the Hessian of the estimated underlying potential function ∇2

xFθ(x),
which is related to the mean mixing time of the Langevin sampler. The mean mixing time is cor-
related with the inverse of the Hessian determinant (Bovier et al., 2004), which could measure the
complexity of the estimated distribution pθ(x) ∝ Fθ(x) and its effect on sampling times.

23

Published as a conference paper at ICLR 2025

Model Rel. L2 Loss

GINO Unstable
MGN 0.171
OFormer 0.088

LDMAR-FF 0.068
LDMAR-Text 0.085

Table 9: Left: Autoregressive LDMM results on Cylinder Flow, using identical hyperparameters to Table 1.
Right: Framework for autoregressively generating text-conditioned PDE samples.

C.4 AUTOREGRESSIVE LDMS

Although sampling complete PDE trajectories can result in lower error accumulation, this fixes the
temporal horizon and would require scaling the model in order to achieve longer rollouts. To address
this, we present results on using the proposed LDM framework autoregressively, albeit with a large
prediction window. For LDM models conditioned on physical field values, this can be easily done
by passing the last frame of the predicted solution back to the LDM model. However, for text-
conditioned LDM models, the prompt is only relevant for the first prediction. To address this, we
investigate a conditioning strategy in which the model can dynamically switch between text- and
physics-based conditioning during inference by padding the unused modality with zeros, shown in
Table 9. From a user perspective, querying the model with a text prompt remains the same; however,
the model internally uses different conditioning modalities at different steps.

To validate this, we train the LDM model on the Cylinder Flow problem to predict 100 timesteps,
in four windows of 25 timesteps each. We also compare this approach with neural solver baselines
re-trained with a longer prediction horizon. To maintain a comparison to the original experiment,
we keep the hyperparameters and model sizes the same and present the results in Table 9 for the
medium-sized LDM model. Predictably, errors grow across all models in the longer time horizon
setting, with GINO becoming unstable due to error propagation. Notably, the text-conditioned LDM
model incurs a performance loss presumably due to switching modalities during inference.

D CONDITIONING DETAILS

D.1 CYLINDER FLOW CAPTIONING

For the cylinder flow problem, we extract the cylinder radius, position, inlet velocity, and Reynolds
number from the first frame. Since the cylinder radius is much smaller than the domain, it is given
in centimeters while the position is given in meters. Additionally, we determine the flow regime
based on the Reynolds number: Re<200 = laminar, Re<350 = transition, Re>350 = turbulent. One
limitation is that this is overly simplistic; flow regimes are generally problem-specific and can vary
even with the same Reynolds number. In addition, there are varying standards to characterize these
flow regimes from Reynolds numbers (Blevins, 1990; Zdravkovich, 1990; Stringer et al., 2014a).
However, given the lack of resources to manually label this dataset, we adopt this simple strategy
since these semantic differences do not greatly affect performance. Values are inserted in the prompt:

"Fluid passes over a cylinder with a radius of {cylinder_radius:.2f} and position: {cylinder_pos[0]:.2f},
{cylinder_pos[1]:.2f}. Fluid enters with a velocity of {inlet_velocity:.2f}. The Reynolds number is
{reynolds_number}. The flow is {flow_regime}."

Model Val L1 Loss

Full Prompt 0.0404
Text-Ablate 0.2168
Vector-Ablate 0.1029

Table 10: Different model architec-
tures for the Cylinder Flow problem

Since the text prompt is procedurally generated, we ablate the
full prompt against two baselines. The first baseline considers
generating a text prompt solely with the extracted values, without
any of the surrounding text, and uses the same RoBERTa model to
encode the condition (Text-Ablate). The second baseline embeds
the extracted values, normalized between -1 and 1, into a vector
and uses an MLP to encode the condition (Vector-Ablate). We
train these two baselines and a model using the full prompt and
report the validation L1 loss in Table 10. We find that the extra

24

Published as a conference paper at ICLR 2025

context is beneficial for language models in understanding the meaning of different extracted values.
Furthermore, using a language model can be a more expressive way of encoding low-dimensional
physical values into a meaningful condition.

D.2 SMOKE BUOYANCY CAPTIONING

The captioning procedure for the smoke buoyancy dataset is more challenging, since the initial
density and velocity fields do not contain features that are easily extracted and described by text. To
address this, we prompt an LLM (Claude 3.5 Sonnet) to describe an image of the initial density field.
To improve the quality of generated captions, we also use a Canny edge detector to outline shapes
in the image and provide this segmented image in the LLM prompt. The prompt is given below.

You will be analyzing an image of a simulation of the Navier-Stokes equations to identify smoke plumes,
count them, and describe their characteristics. You will also be provided an image with the boundaries of
the smoke plumes drawn over the simulation in green.

Follow these instructions carefully:

First, examine the provided image:
<image>
Second, examine the provided segmented image:
<segmented_image>

To identify plumes:
1. Look for regions of bright color, which contrast against the darker background.
2. Pay attention to color variations and changes in the shape of the plumes.
3. Use the green lines in the segmented image to help identify the boundaries of the plumes.

To count the number of plumes:
1. Scan the entire image systematically.
2. Use the green lines in the segmented image to help separate different plumes.
3. Pay attention to darker regions that separate different plumes.

To describe each plume’s shape, size, and location:
1. Shape: Characterize the overall form (e.g., column-like, mushroom-shaped, dispersed cloud,
triangular, curved) and changes in shape of the plume.
2. Size: Estimate the relative size compared to other elements in the image (e.g., small, medium, large)
and describe how the plume changes in size.
3. Location: Describe the position using general terms (e.g., upper left corner, center, lower right)
or in relation to other smoke plumes.

Remember to use the segmented image to help describe each plume’s shape, size, and location.

Present your findings in the following format:

<answer>
Number of plumes identified: [Insert number]
Plume descriptions:
1. [Shape], [Size], [Location]
2. [Shape], [Size], [Location]
(Continue for each plume identified)
Additional observations: [Only include any relevant details about the overall patterns or shapes observed.
Pay attention to symmetry and how the plumes interact with each other.]
<answer>

Remember to be as descriptive and accurate as possible in your analysis.

We find that using a segmented image improves quantitative and qualitative metrics in labeling
physics simulations. In particular, the correct number of smoke plumes are identified more often,
and the resulting descriptions are richer and more detailed. We give an example in Figure 9. Addi-
tionally, to inform models of the forcing term, the buoyancy factor is prepended to the LLM answer
by inserting it into the template: ”The buoyancy factor is {}.”. We also compare the responses of
Claude 3.5 Sonnet, Gemini 1.5 Pro, and GPT-4o in Figure 9.

D.3 3D TURBULENCE CAPTIONING

Due to the small number of samples, we manually caption this dataset. To maintain consistency
across human-generated captions, we follow a template that asks for a pre-specified set of features.
In particular, we look to describe qualitative features, the position, and the size of the shape, as well
as how many shapes are present. An example template is provided below; however, the templates
can vary based on the quantity and composition of the shapes:

"Air flows over an obstacle resembling a {qualitative_label}. The {shape} is {shape_label} and is located at
{position_label}. The flow is turbulent."

25

Published as a conference paper at ICLR 2025

Figure 9: Comparison of LLM outputs after prompting with the original image, or both the original and a
segmented image. We also compare responses from Claude 3.5 Sonnet, Gemini 1.5 Pro, and GPT-4o.

D.4 CLASSIFIER-FREE GUIDANCE

Classifier-free guidance can be a method to modulate the strength of the conditioning information.
This is implemented by using conditional dropout during training and combining conditional and
unconditional noise estimates during inference: ϵ̃θ(zn, n, c) = (1 + w)ϵθ(zn, n, c) − wϵθ(zn, n).
The weight w modulates the tradeoff between sample quality and diversity, with larger values in-
creasing the guidance strength and decreasing sample diversity. Following Lin et al. (2024), we
also rescale the conditional portion of the sample generation process with the recommended value
of ϕ = 0.7. Empirically, we find that only at very large or small weights does the generated sample
change appreciably. We plot the trends in Figure 10 for first-frame conditioning. We find that at
large values of w, much of the generated solution is saturated and many features are washed out. At
low values of w, many features are not present and the generated solution displays a lack of phenom-
ena. We hypothesize that classifier-free guidance is not necessary for physics applications where the
primary concern is the numerical accuracy of solutions, rather than diversity or visual quality and
indeed the loss of models trained without classifier-free guidance (w = 1) is often better than using
other values of w.

E DATASET DETAILS

E.1 CYLINDER FLOW

We use data from Pfaff et al. (2021), which is generated from water flowing over a cylinder con-
strained in a channel, modeled by the incompressible Navier-Stokes equations:

∂v

∂t
+ v · ∇v = ν∇2v − 1

ρ
∇p+ f , ∇ · v = 0 (7)

26

Published as a conference paper at ICLR 2025

Figure 10: Comparison of different weights used for classifier-free guidance. In general, using vanilla condi-
tional generation results in the most accurate solutions.

Figure 11: Distribution of Reynolds num-
bers within the training set. Samples with
Karman Vortex streets are also identified.

The original data are generated using COMSOL, with
600 timesteps from t = 0 to t = 6 on a spatial do-
main (x = [0, 1.6], y = [0, 0.4]), with varying inlet ve-
locities and cylinder sizes/positions. To speed up our
experiments, we downsample along the temporal dimen-
sion to 25 timesteps. We use 1000 samples for training
and 100 samples for validation. Both datasets contain
samples with Reynolds numbers ranging from 100-1500.
Additionally, we identify Karman vortex streets in data
samples by calculating the norm of the temporal veloc-
ity derivative ||dvxdt +

dvy

dt ||2 and comparing it to a cutoff;
if this quantity remains large or increases over time then
periodic vortex shedding continues to occur and if this
quantity decreases or goes to zero over time then the so-
lution has reached a laminar steady state. The Reynolds number of training data samples, as well as
Karman vortex street behavior is plotted in Figure 11. The observed Karman vortex streets within
this dataset are consistent with the literature describing its occurrence at Reynolds numbers between
300-2e5 (Chen, 1985; Gabbai & Benaroya, 2005).

E.2 SMOKE BUOYANCY

We use data from Gupta & Brandstetter (2022), which is generated from smoke driven by a buoyant
force constrained in a box, modeled by the incompressible Navier-Stokes equations coupled with an
advection equation representing the smoke density d:

∂v

∂t
+ v · ∇v = ν∇2v − 1

ρ
∇p+ f , ∇ · v = 0 (8)

∂d

∂t
+ v · ∇d = 0 (9)

The original data are generated using PhiFlow (Holl & Thuerey, 2024), with 56 timesteps from
t = 18 to t = 102, which results in ∆t = 1.5s. Furthermore, the simulation is solved on a spatial
domain (x = [0, 32], y = [0, 32]) with a resolution of 128 × 128. To ensure compatibility with
downsampling operations, which occur with a factor of 2, we truncate the simulation horizon to
t = 48. We use 2496 samples for training and 608 samples for validation.

E.3 3D TURBULENCE

We use data from Lienen et al. (2024), which is generated from LES simulation in OpenFOAM with
a viscosity of ν = 10−5. The original data is given at a resolution of 192 × 48 × 48 and at 5000

27

Published as a conference paper at ICLR 2025

timesteps. A variety of shapes (steps, corners, pillars, teeth, bars, elbows, donut, U-shape, T-shape,
H-shape, squares, crosses, platforms, etc.) are used to model flows around different objects, and
for additional visualizations we refer readers to page 18 of the original paper (Lienen et al., 2024).
Details on the calculation of the log-TKE distance can also be found in the original paper.

F TRAINING DETAILS

To maintain a consistent setup in all experiments, the only ground truth information provided to
each model is from the first frame of the simulation. Additionally, to maintain a fair FLOPs com-
parison, the compute required for autoregressive models during training is multiplied by the number
of timesteps. This is because the LDM model considers all timesteps at once during training, while
autoregressive models only consider a single timestep.

F.1 CYLINDER FLOW

All baselines were trained on a single NVIDIA RTX 6000 Ada GPU with a learning rate of 10−5

until convergence. LDM models were trained on a single NVIDIA A100 40GB GPU. For each
model, we describe the key hyperparameters.

GINO We train a GINO model with a latent grid size of 64 and GNO radius of 0.05. Furthermore,
the FNO backbone uses a hidden dimension of 128 and 32 modes.

MeshGraphNet We train a MGN model with 8 layers and a hidden size of 1024.

OFormer We train an OFormer model with 6 layers and a hidden size of 512.

LDM We train an autoencoder with a latent grid size of 64, GNO radius of 0.0425, hidden di-
mension of 64, and 3 downsampling layers, resulting in a latent size of 16 × 16 × 16, which is a
compression ratio of around 48. Additionally, the DiT backbone uses 1000 denoising steps, a patch
size of 2, a hidden size of (512/1024), and a depth of (24/28) depending on model size.

F.2 SMOKE BUOYANCY

All baselines were trained on a single NVIDIA RTX 6000 Ada GPU with a learning rate of 10−4

until convergence. LDM models were trained on four NVIDIA A100 40GB GPUs. For large models,
four NVIDIA A100 80GB GPUs were used to handle memory requirements. For each model, we
describe the key hyperparameters.

FNO We train a FNO model with a hidden dimension of 192, 24 modes, and 6 layers.

Unet We train a Unet model with 4 downsampling layers and a hidden size of 128, with architec-
ture modifications (Unetmod) proposed in Gupta & Brandstetter (2022).

Dil-Resnet We train a Resnet with a hidden dimension of 256, 4 layers, and a dilation of up to 8.

ACDM We train an ACDM model with a single conditioning frame and with a Unet backbone
with a hidden dimension of 256 and 4 downsampling layers.

LDM We train an autoencoder with a hidden dimension of 64 and 4 downsampling layers, re-
sulting in a latent size of 6 × 16 × 16, which is a compression ratio of 512. Additionally, the DiT
backbone uses 1000 denoising steps, a spatial patch size of 2 and a temporal patch size of 1, a hidden
size of (512/1024/1536/2304) and a depth of (24/28) depending on model size.

F.3 3D TURBULENCE

All baselines were trained on a single NVIDIA A100 GPU with a learning rate of 10−5 until conver-
gence. LDM models were trained on four NVIDIA A100 80GB GPUs were used to handle memory
requirements. For each model, we describe the key hyperparameters.

FNO We train a FNO model with a hidden dimension of 192, 16 modes, and 6 layers.

28

Published as a conference paper at ICLR 2025

Factformer We train a Factformer model with a hidden dimension of 256, 8 heads, and 18 layers.

Dil-Resnet We train a Resnet with a hidden dimension of 128, 4 layers, and a dilation of up to 8.

LDM We train an autoencoder with a hidden dimension of 64 and 4 downsampling layers, result-
ing in a latent size of 6× 12× 3× 3, which is a compression ratio of 4096. The DiT backbone uses
1000 denoising steps, a patch size of (1, 1, 2, 2), a hidden size of 2048, and a depth of 28.

G INFERENCE TIME COMPARISON

Model Params Time

GINO 72M 0.11
MGN 101M 1.68
OFormer 131M 1.34

LDMS-FF 198M 15.75
LDMM-FF 667M 27.89
LDMS-Text 313M 16.25
LDMM-Text 804M 29.10

(a) Inference Time for Cylinder
Flow

Model Params Time

FNO 510M 1.52
Unet 580M 2.33
Dil-Resnet 33.2M 5.83
ACDM 404M 317.8

LDMS-FF 243M 16.86
LDMM-FF 725M 25.23
LDML-FF 1.55B 57.44
LDMS-Text 334M 16.30
LDMM-Text 825M 26.49
LDML-Text 2.69B 84.46

(b) Inference Time for Smoke
Buoyancy

Model Params Time

FNO 1.02B 1.57
FactFormer 41.4M 5.15
Dil-Resnet 24.8M 38.8

LDML-FF 2.72B 75.2
LDML-Text 2.73B 75.7

(c) Inference Time for 3D Turbu-
lence

Table 11: Inference time to predict single temporal rollout (batch size = 1), evaluated on a single NVIDIA
RTX 6000 Ada GPU or NVIDIA A100 GPU (3D Turbulence). Reported times are in seconds and are averaged
over nine validation samples.

For transparency, we report inference times of all models on the Cylinder Flow, Smoke Buoyancy,
and 3D Turbulence benchmarks in Table 11. We reproduce previous results that GINO is an efficient
architecture for unstructured problems (Li et al., 2023c). Furthermore, we reproduce previous results
demonstrating the increased compute needed for dilated Resnets (Li et al., 2023b). Lastly, we find
that our latent diffusion framework is much faster than prior work on autoregressive diffusion or
learning directly in the pixel space.

However, we recognize that the increased latent diffusion inference times may be a potential limita-
tion. The current implementation uses 1000 denoising steps, which leaves ample room for accelerat-
ing inference. Indeed, using a DDIM sampler, as shown in Appendix C.3, is able to vastly accelerate
inference and outperform conventional, deterministic neural solvers in both speed and accuracy.

To compare the proposed method to a numerical baseline, the numerical solver needs to be coars-
ened to match the accuracy of the neural solver, as well as a reasonable effort needs to be made to
compare against a state of the art numerical solver (McGreivy & Hakim, 2024). The solvers used
for the Cylinder Flow, Smoke Buoyancy, and 3D Turbulence benchmarks are COMSOL, PhiFlow
and OpenFOAM, which are all high-performance numerical packages. We do not have access to the
COMSOL code to solve the cylinder flow problem with reduced accuracy. However, the original
authors report a speedup of 11-290x (Pfaff et al., 2021), which may be enough margin to overcome
coarsening the simulation to 90% of its original accuracy (see Table 1, model is reported with a 13%
relative L2 error). Additionally, we also do not have access to the OpenFOAM simulation, but the
original authors report a simulation time of around 10-20 minutes on 16 CPU cores (Lienen et al.,
2024).

For the smoke buoyancy benchmark, we have access to PhiFlow and, in fact, use it to re-solve text-
conditioned samples. We compare the accuracy and speed of using PhiFlow at lower resolutions
with latent diffusion models in Table 12. PhiFlow was solved faster on our CPU (AMD Ryzen
Threadripper PRO 5975WX 32-Cores) than on our GPU (NVIDIA RTX 6000 Ada), so numerical
solver times are reported using the CPU. When running lower-resolution PhiFlow simulations, the

29

Published as a conference paper at ICLR 2025

original initial condition was downsampled, evolved with the solver, and upsampled using bicubic
interpolation. There are tangible accuracy and speed gains from using a latent diffusion model; how-
ever, faster inference techniques such as DDIM are needed to vastly outperform numerical solvers.
Also of note is that text2PDE generation is something that numerical solvers cannot do.

Model Inference Time (s) Val L1 Loss

LDMS-FF 16.863 0.154
LDMM-FF 25.233 0.139
LDML-FF 57.442 0.118
LDMS-Text 16.294 0.174
LDMM-Text 26.494 0.132

PhiFlow-32 69.266 0.172
PhiFlow-64 70.569 0.116
PhiFlow-128 75.468 0 (Ground-Truth)

Table 12: Comparison of inference speed and accuracy. PhiFlow-X denotes the spatial resolution used for
numerical simulation. PhiFlow speed and accuracy values are averaged over five validation samples.

30

	Introduction
	Background
	Problem Setup
	Spatio-temporal Diffusion for PDEs

	Methods
	Autoencoders for PDE Data
	Latent Diffusion
	Conditioning Mechanisms

	Experiments
	Cylinder Flow
	Buoyancy-Driven Flow
	3D Turbulence
	Discussion

	Related Works
	Video Diffusion Models
	Diffusion Models for PDEs

	Conclusion
	Appendix
	Additional Results
	Autoencoder Details
	Ablation Studies
	GNN/Neural Field Comparisons
	Kernel Aggregation/Interpolation

	Diffusion Details
	Denoising Ablations
	Diffusion Backbone Architectures
	DDIM Sampling
	Autoregressive LDMs

	Conditioning Details
	Cylinder Flow Captioning
	Smoke Buoyancy Captioning
	3D Turbulence Captioning
	Classifier-Free Guidance

	Dataset Details
	Cylinder Flow
	Smoke Buoyancy
	3D Turbulence

	Training Details
	Cylinder Flow
	Smoke Buoyancy
	3D Turbulence

	Inference Time Comparison

