
A Environment Details

For all benchmark tasks, we place the robot at a designated starting position and configuration, and
perturb its joint positions with noise sampled uniformly from [�0.1, 0.1] and its joint velocities
with noise sampled from 0.1 · N (0, 1). These perturbations are also applied in standard MuJoCo
benchmark tasks [5]. Each environment provides three different observations: proprioceptive robot
states S

p, extra task-specific observations S
+, and measurements for goal states S

g. Goal state
features are solely used for convenience when providing relative goal inputs to low-level policies
(Algorithm 2), and can also be derived from proprioceptive observations and the robot’s absolute
position. Below, we list detailed environment configurations and reward functions, as well as robot-
specific modifications (if applicable). In all cases, we define invalid states on a per-robot basis
(Appendix B) that lead to a premature end of the episode with a reward of �1. Unless otherwise
noted, episodes consist of 1000 steps of agent interaction.

Hurdles Hurdles take the form of simple boxes, placed in intervals ⇠ U(3, 6) meters, and with
heights ⇠ U(0.1, 0.3) meters. Task-specific observations are the distance to the next hurdle and its
height. For every hurdle that the robot’s torso passes, the agent receives a reward of 1.

Limbo Cylindrical bars with a diameter of 0.2m are placed in intervals ⇠ U(3, 6) meters. Their
heights are draw from U(1.2, 1.5) for the Walker robot, and from U(0.9, 1.2) for the Humanoid. The
agent observes the distance to the next limbo bar, as well as its height above the ground. A reward of
1 is obtained if the agent’s torso position moves past a bar.

HurdlesLimbo This is a combination of the Hurdles and Limbo environments, where hurdles and
limbo bars alternate, starting with a hurdle. The reward is defined as above, and the observation
consists of the type of obstacle (0 for a hurdle, 1 for a limbo bar) as well as its relative distance and
height.

Stairs This task consists of 10 stairs (upwards), a platform, and another 10 stairs (downwards). Stairs
have a height of 0.2m, and their length is sampled uniformly within [0.5m,1.0m]. The agent observes
the distance of the robot’s torso to the next two steps, and a reward of 1 is provided whenever it
moves past a step.

Gaps We sample gaps from U(0.2, 0.7) meters and platforms from U(0.5, 2.5) meters (U(1.0, 2.5
meters for the Humanoid). Gaps and platforms are placed in alternation, starting at a distance of 4
meters from the robot’s initial position. Gaps are placed 5cm below the platforms, and the episode
ends with a reward of �1 if the robot touches a gap. The agent observes the relative distances to the
start of the next gap and next platform. A reward of 1 is achieved if the robot’s torso moves past the
start of a platform for the first time.

GoalWall A ball is placed 2.5 meters in front of the robot (1m for the Humanoid). A wall is placed
4 meters from the ball, and contains a circular target area with an 0.8m diameter, placed 1m above
ground. For the effectively two-dimensional Walker robot, ball movements are restricted to rotation
around the Y-axis and translation along X and Z. At the start of the episode, the ball’s position is
perturbed with additive noise drawn from N (0, 0.01), and we add noise from N (0, 0.1) to its rotation.
The agent observes the position of the ball (X and Y are relative to the robot’s torso, Z is absolute)
and its velocity. Episodes end after 250 steps or if the ball’s X position reaches the position of the
wall, with a reward of 1 if the ball is inside the target area and 0 otherwise.

PoleBalance A cylindrical pole with a mass of 0.5kg is attached to the robot’s topmost body part.
The pole has a length of 0.5m, and the position and velocity of the rotational joint that connects it to
the robot is perturbed with additive noise from N (0, 0.01). For the Walker robot, the pole can rotate
around the Y-axis only; for the Humanoid robot, rotations around all axes are permitted. The position
and velocity of the joint connecting the pole to the robot are provided as observations. The reward is
1 unless the pole is about to fall over, which terminates the episode. A falling pole is defined by the
distance along the Z axis between its lower and upper parts falling below 80% of its length.

In Table 2 we provide overview renderings of the Hurdles, Limbo, HurdlesLimbo, Stairs and Gaps
environments to illustrate the positioning of objects along the course. In these tasks, for which
locomotion along the X-axis is essential, non-hierarchical baselines agents perform well with a simple
shaped reward for movement along the X-axis. For environments with randomly generated obstacles
such as ours, the effectiveness of a simple “forward” reward has previously been observed by Heess
et al. [20].

13

Hurdles

Limbo

HurdlesLimbo

Stairs

Gaps

Table 2: Rendering of 5 of our 7 benchmark tasks. Positions of additional objects (hurdles, limbo
bars, gaps, stairs) are subject to random perturbation for each episode. Courses for Hurdles, Limbo,
HurdlesLimbo and Gaps continue further.

B Robots and Goal Spaces

B.1 Walker

This two-dimensional, bipedal walker has been released as part of the dm_control suite [48]. We use
an observation space similar to the MuJoCo tasks in Gym [5], where we featurize the positions of all
modeled joints, their velocities, and contact forces for all body parts clipped to [�1, 1]. We manually
construct five primitive goal spaces that can be freely combined to obtain a total of 31 candidate goal
spaces:

Feature Range (min,max) Direct Obs.

Torso X position �3, 3 no
Torso Y rotation �1.3, 1.3 yes
Torso Z position 0.95, 1.5 yes

Left foot, relative to torso X pos. �0.72, 0.99 no
Z pos �1.3, 0 no

Right foot, relative to torso X pos. �0.72, 0.99 no
Z pos. �1.3, 0 no

Directly observable features are included in proprioceptive observations; non-observable ones can
either be derived (i.e., the foot position can be determine via joint positions) or correspond to global
observations (X position). All position features are measured in meters while rotations are expressed
in radians. Ranges were obtained via rollouts from standard SAC policies trained with shaping
rewards.

14

For the Walker robot, we define invalid states as the torso’s Z position falling below 0.9 meters, or its
Y rotation having a value outside of [�1.4, 1.4]. These limits are intended to prevent the robot from
falling over.

B.2 Humanoid

We adopt the simplified Humanoid robot from Tassa et al. [48], which consists of 21 joints. We use a
modified observation space with the same type of state features as the Walker robot (B.1). Following
recent work on skill learning for Humanoid robots [36, 31], actions consist of target joint positions,
mapped to [�1, 1]. We found this to produce better results compared to specifying raw torques.

For goal space featurization, closely follow our Walker setup and provide torso X and Z positions,
Y rotation and relative foot positions. Feature values for rotations around Y and Z were obtained
with a twist-and-swing decomposition of the torso’s global orientation matrix [11]. State features for
learning agents use a standard quaternion representation, however.

Feature Range (min,max) Direct Obs.

Torso X position �3, 3 no
Torso Y rotation �1.57, 1.57 no
Torso Z position 0.95, 1.5 yes
Torso Z rotation �1.57, 1.57 no

Left foot, relative to hip
X pos. �1, 1 no
Y pos. �1, 1 no
Z pos. �1, 0.2 no

Right foot, relative to hip
X pos. �1, 1 no
Y pos. �1, 1 no
Z pos. �1, 0.2 no

By coupling every feature combination with the Z rotation feature, we again obtain 25 � 1 = 31
possible goal spaces as for the Walker robot.

Similar to the Walker robot, we define valid states as the torso’s position being at least 0.9 meters
above ground. Body rotations are not restricted.

B.3 Goal Space Construction

Our main considerations for formalizing goal spaces are the elimination of bias due to different
feature magnitudes and a convenient notation for considering subsets of features from the goal feature
space Sg. Starting from a set of n := dim(Sg) features with ranges (li, hi) : 1 i n, we construct
a goal space transformation matrix along with offsets b:

 := 2In

2

664

(h1
� l1)�1

(h2
� l2)�1

...
(hn
� ln)�1

3

775 , b := �2

2

664

l1(h1
� l1)�1

l2(h2
� l2)�1

...
ln(hn

� ln)�1

3

775� 1

A single goal space over features F = {i, j, k, . . . } is defined as the image of an affine function
!F : Sg

! G
F ,

!F (s) := s

2

664

 i,⇤
 j,⇤
 k,⇤

...

3

775

T

+

2

664

bi
bj
bk
...

3

775

!F can be understood as simple abstraction that selects a subset F of goal space features and applies
a suitable normalization, mapping [li, hi] to [�1, 1] for i 2 F . A desirable effect of this normalization
is that distance-based rewards that are commonly used to train goal-based policies will also be
normalized, which facilitates optimization when sharing the parameters of policies across several
goal spaces. Additionally, the resulting high-level action space for subgoals can be conveniently
defined over [�1, 1]F .

15

C Unsupervised Pre-Training Details

Our unsupervised pre-training algorithm is provided in Algorithm 1. We assume that the pre-training
environment provides access to both proprioceptive states (the input of the skill policy) and goal state
features as defined in Appendix B. During training, goal spaces and goals are randomly selected for
each episode The low-level skill policy ⇡lo and the corresponding Q-functions are trained with the
standard Soft Actor-Critic update [18, Alg. 1], with representations of both goal features F and goal
g considered a part of the state observations.

The STEP_ENV function in Algorithm 1 samples a transition from the pre-training environment,
computes the reward as described in Section 3.2 and determines the values of done and reset. done
is set to true if one of the following conditions hold:

• The current goal is reached (i.e., the L2 distance to it is smaller than ✏g).
• A fixed number of steps (horizon h) has passed since the previous goal was sampled.
• A random number sampled from [0, 1) is smaller than the resample probability ✏r.

reset is set to true if any of these conditions hold:

• The state that was reached is considered invalid (A). In this case, the reward is set to �1.
• A fixed number of goals (reset interval nr) have been sampled without a simulation reset.

Algorithm 1 Unsupervised Pre-Training of Hierarchical Skills, see Figure 1 for context

Require: Goal spaces defined via feature sets F and transformations !F

1: Pre-training environment E with S = S
p
[S

g

2: Initialize policy µ✓ : Sp
⇥ F ⇥ G ! A

3: Initialize Q-function Q�i : S
p
⇥ F ⇥ G ⇥A! R for i 2 {1, 2}

4: Replay buffer B CIRCULARBUFFER()
5: reset true
6: for i 1, N do
7: if reset then
8: s ⇠ S0 . Reset simulation
9: end if

10: F ⇠ F , g ⇠ [�1, 1]F . Sample new goal space and goal
11: reset false, done false
12: while not (done or reset) do
13: a ⇠ µ✓(sp, F, (!F)�1(g)� sg)
14: s0, r, done, reset STEP_ENV(s, a, F, g)
15: B . append(sp, F, (!F)�1(g)� sg, a, r, s0)
16: s s0

17: if i%fu == 0 then
18: for each gradient step do
19: �, ✓ SAC_UPDATE(�, ✓, B) . Perform standard SAC update
20: end for
21: end if
22: end while
23: end for
24: Output: ✓,�1,�2

D Hierarchical Control Details

D.1 Soft-Actor Critic for HSD-3

Below, we provide explicit derivations for extending Soft Actor-Critic to a factorized action space
F ⇥ G for ⇡hi, consisting of discrete actions F 2 F (goal space feature sets) and continuous actions
g 2 G

F (goals). Our extension is performed according to the following desiderata: (1) We utilize a
shared critic Q(s, F, g) and two policies ⇡f : S ! F , ⇡g : S ⇥ F ! G

F ; (2) we compute ⇡f for all

16

Parameter Value (Walker) Value (Humanoid)

Optimizer Adam [22] Adam
Learning rate �Q 0.001 0.001
Learning rate �⇡ 0.001 0.001
Learning rate �↵ 0.001 0.001
Target entropy H � dim(A) = �6 � dim(A) = �21
Initial temperature ↵ 0.1 0.1
Target smoothing coefficient ⌧ 0.005 0.005
Control cost ⇣ 0.01 0
Horizon h 72 72
Discount factor � 1� 1/h 1� 1/h
Goal threshold ✏g 0.1 0.1
Resample probability ✏r 0 0.01
Reset interval nr 100 100
Replay buffer size 3 · 106 3 · 106

Parallel environments 20 40
Environment steps per iteration 1000 5000
Gradient steps per iteration 50 50
Mini-batch size 256 1024
Warmup steps 104 104

Total iterations 104 3.7 · 104

Table 3: Hyper-parameters for unsupervised pre-training.

discrete actions, which provides us with better value estimates a richer policy learning signal; (3)
separate, automatically adjusted temperature coefficients are used for the discrete-action policy (↵)
and continuous-action policy (�). As the action space of ⇡g is conditioned on F , we use separate
coefficients �F ; (4) we further normalize the entropy contributions from the different action spaces
G
F by their dimensionality |F |, computing action log-probabilities as |F |

�1 log ⇡g(g|s, F).

The soft value function V (s)[18, Eq. 3] for acting with both policies ⇡f and ⇡g is given as follows:

V (s) = E
F⇠⇡f (·|s),
g⇠⇡g(·|s,F)

Q(s, F, g)� ↵ log ⇡f(F |s)�

�F

|F |
⇡g(g|s, F)

�

Computing the expectation over discrete actions F explicitly yields

V (s) =
X

F2F
⇡f(F |s)

✓
E

g⇠⇡g

Q(s, F, g)�

�F

|F |
log ⇡g(g|s, F)

�
� ↵ log ⇡f(F |s)

◆

=
X

F2F
⇡f(F |s) E

g⇠⇡g

Q(s, F, g)�

�F

|F |
log ⇡g(g|s, F)

�
+ ↵H(⇡f(·|s))

We arrive at the formulation in Section 3.3 by subtracting the entropy of the uniform discrete-action
policy, log |F|, from H(⇡f(·|s)) to ensure negative signage. We proceed in an analogous fashion for
policy [18, Eq. 7] and temperature [18, Eq. 18] losses.

The resulting high-level policy training algorithm is listed in Algorithm 2. For brevity, loss and
value function definitions above use a single variable for states which indicates both proprioceptive
observations sp and task-specific features s+.

E Training Details

Neural Network Architecture For all experiments, we use neural networks with 4 hidden layers,
skip connections and ReLU activations [44]. Neural networks that operate on multiple inputs (such
as the skill policy, or the Q-function in HSD-3) are provided with a concatenation of all inputs. For
the Q-function in HSD-3 and HSD-Bandit, goal inputs occupy separate channels for each goal space.
The goal policy in HSD-3 ⇡g is modelled as a multi-head network to speed up loss computations.

17

Algorithm 2 HSD-3 High-level Policy Training, see Figure 1 for context

Require: Low-level policy ⇡lo
✓

Require: Goal spaces defined via feature sets F and transformations !F

Require: High-level action interval c 2 N+

1: Initialize policies ⇡f
�, ⇡g

 , Q-functions Q⇢i i 2 {1, 2}, target networks ⇢1 ⇢1, ⇢2 ⇢2
2: Replay buffer B CIRCULARBUFFER()
3: s ⇠ S0, t 0
4: for each iteration do
5: for each environment step do
6: if t%c == 0 then . Take high-level action
7: F ⇠ ⇡f

�([s
p; s+])

8: g ⇠ ⇡g
 ([s

p; s+], F)

9: g0 (!F)�1(g)� sg . Backproject goal to S
g and obtain delta

10: end if
11: a Ea

⇥
⇡lo
✓ (a|s

p, F, g0)
⇤

. Act with deterministic low-level policy
12: s0 ⇠ pE(s0|s, a) . Sample transition from environment
13: B . append(s, F, g, a, t, r(s, a), s0)
14: g0 sg � s0g + g0 . Update goal
15: s s0

16: t t+ 1
17: if end of episode then
18: s ⇠ S0, t 0
19: end if
20: end for
21: for each gradient step do
22: Sample mini-batch from B, compute losses . See Section 3.3
23: Update network parameters �, , ⇢1, ⇢2
24: Update temperatures ↵,�
25: Update target network weights ⇢1, ⇢2
26: end for
27: end for
28: Output: ,�, ⇢1, ⇢2

Rather than receiving an input for the selected current goal space, the output of the respective head is
selected.

Hyper-Parameters are listed inTable 3 for pre-training and Table 5 for HSD-3 high-level policy
training. Downstream task training runs with fixed, single goal spaces (SD, SD*) use identical
hyper-parameters, but do not require �f , H

f
, and ↵. Baseline runs use a learning rate of 0.003 for

neural networks and an initial temperature of 0.1 [44]. For HSD-3 and SD, we searched for learning
rates in {0.0001, 0.0003} and initial temperature values in {0.1, 1}.

Evaluation Protocol In regular intervals (Table 5), we perform 50 trials with a deterministic policy
and measure the average return that was achieved across trials. Since initial states and environment
configurations are randomly sampled, we use the same set of 50 environment seeds for all evaluations
to ensure comparability.

E.1 Baselines

E.1.1 HIRO-SAC

We implement a end-to-end HRL method similar to HIRO [33], but with Soft Actor-Critic as the
underlying learning algorithm rather than TD3. High-level policy actions are expressed within the
goal space that we use for pre-training skill policies (B). The neural network policies we use for SAC
predict both mean and variances of a Gaussian distribution, and hence we perform goal relabelling
by maximizing the log-probabilities of low-level actions directly instead of approximating them via
squared action differences [33, Eq. 5]. We observed worse performance by including DynE critic

18

updates [52]. We therefore report results with an update schedule similar to [33], where high-level
policies are being updated less frequently than low-level ones (depending on the high-level action
frequency).

E.1.2 DIAYN-C

In a setup similar to Achiam et al. [1], we learn a continuous representation of DIAYN’s discrete
skill variable. We input the one-hot encoded skill index to a linear layer with 7 outputs, which
corresponds to dim(Sg) for the walker. Its output is subject to a hyperbolic tangent activation so
that the final low-level policy skill input is bounded in [�1, 1]. We operate DIAYN’s discriminator
on our pre-defined goal spaces (B) and hence provide the same prior knowledge as in our methods.
After pre-training with DIAYN, we train a high-level policy as we do for SD baselines, providing its
actions directly to the pre-trained policy. We ran experiments with 256 or 1024 hidden units for the
skill policy, and with 5,10,20,50 and 100 discrete skils for pre-training. We found that best overall
performance was achieved with 256 hidden units for the low-level policy and 10 different skills.

E.1.3 Switching Ensemble

As proposed by Nachum et al. [35], this baseline consists of a small number of standard policies
that gather shared experience and are randomly selected for short time-spans during rollouts. In
our version, we use SAC as the underlying learning algorithm, in the same configuration as for the
SAC baseline. We use an ensemble of 5 policies, and perform switches with the same frequency
that high-level actions are taken at for the other hierarchical methods. For evaluations, we act with a
single policy throughout the entire episode.

E.1.4 HIDIO

We use the official implementation from Github3. We found it non-trivial to present the low-level
policy discriminator with observations in our standard goal space. Hence, in contrast to HIDIO-SAC
and DIAYN-C, the HIDIO baseline discriminator operates on the full state space. In accordance
with the other hierarchical methods considered, the steps per option were set to 1 on PoleBalance
and 5 otherwise, and the discount factor was set to 0.99. Likewise, we use 256 hidden units for the
low-level policy’s neural network layers. We performed a hyper-parameter sweep on the Hurdles
task, similar to the one performed in the original paper [53] (Table 4).

Parameter Value

Discriminator input state, action, state_action, state_difference
Latent option vector dimension (D) 8, 12
Rollout length 25, 50, 100
Replay buffer length 50000, 200000

Table 4: Hyper-parameters considered for HIDIO, with best ones emphasized.

3https://github.com/jesbu1/hidio/tree/245d758

19

https://github.com/jesbu1/hidio/tree/245d758

Parameter Value (Walker) Value (Humanoid)

Optimizer Adam [22] Adam
Learning rate �Q 0.001 0.001
Learning rate �f 0.003 0.001
Learning rate �g 0.003 0.003
Learning rate �↵ 0.001 0.001
Learning rate �� 0.001 0.001

Target entropy H
f

0.5 log |F| 0.5 log |F|

Target entropy H
g

�1 �1
Initial temperatures ↵,�F 1 1
Target smoothing coefficient ⌧ 0.005 0.005
Discount factor � 0.99 0.99
Replay buffer size 106 2 · 106

Parallel environments 1 5
Environment steps per iteration 50 500
Gradient steps per iteration 50 50
Mini-batch size 256 512
Warmup steps 103 104

Evaluation interval (iterations) 1000 400

Table 5: Hyper-parameters for high-level policy training with HSD-3.

F Extended Results

Below, we provide full learning curves for the results presented in Section 5 and additional experi-
ments.

F.1 Walker Learning Curves

Learning curves for baselines, HSD-3, HSD-Bandit and SD are provided in Table 6. In addition to
the discussion in the experimental section, these plots emphasize that exploration is challenging in all
environments apart from PoleBalance. For SAC, SE and HIRO-SAC in particular, positive returns
are obtained with few seeds only (gray lines).

F.2 Ablation: Multi-Task Pre-Training

We perform an ablation study on the impact of our multi-task pre-training algorithm used to obtain
a hierarchy of skills (C). We train SD high-level policies, i.e., with a goal space consisting of all
considered features, with a skill policy that was trained to reach goals defined in this goal space
only. This is in contrast to the pre-trained models used in the other experiments throughout the
paper, which are trained to achieve goals withih a hierarchy of goal spaces. Networks used to train
the single goal-space skill policy consist of 256 units per hidden layer, while skill policies shared
among multiple goal spaces use 1024 units (increasing the number of parameters for the single skill
policy resulted in worse performance). The results in Figure 7 show that shared policies obtained
with multi-task pre-training yield higher returns in most benchmark environments. For GoalWall,
the usage of a single-skill policy prevented learning progress altogether. These findings indicate the
effectiveness of the multi-trask pre-training stage: it not only produces a compact representation of
various skills, making downstream usage more practical, but also results in improved policies for
individual goal spaces.

F.3 Analysis: Exploration Behavior

For gaining additional insight into how HSD-3 impacts exploration behavior, we analyze state
visitation counts over the course of training. Due to the continuous state spaces of our environments,
we estimate the number of unique states visited over the course of training with SimHash, a hashing
method originally proposed for computing exploration bonuses [7, 47]. We hash the full observation,
which can include other, randomly placed objects (such as Hurdles or a ball). We compare the
amount of unique hashed states for HSD-3 and selected baselines with the Walker robot in Figure 8.

20

Method Hurdles Limbo HurdlesLimbo Stairs GoalWall Gaps PoleBalance

HSD-3

HSD-Bandit

SD

SD*

SAC

Sw-Ensem.

HIRO-SAC

HIDIO

DIAYN-C

Table 6: Full learning curves for results reported in Table 1 (Walker). We show mean returns achieved
(Y axis) after interacting with an environment for a given number of steps (X axis). Shaded areas
mark standard deviations computed over 9 seeds for each run.

Generally, hierarchical methods encounter more states during training compared to SAC, even if
this does not necessarily translate to a higher return (cf. Figure 4). For HSD-3, after an initial phase
of fast learning in Hurdles, Limbo, HurdlesLimbo and Stairs, the performance in terms of return
converges, which is reflected in a decrease of new states being visited.

F.4 Analysis: Pre-Training Performance

In Figure 9, we plot performance during unsupervised pre-training. We train a set goal-reaching
policies for different feature combinations, modeled with a single neural network. We found that in
our pre-training setup, the training reward alone does not adequately capture the fraction of goals
that can be reached reliably. As the number of feature subsets increases, dedicated evaluation runs
needlessly prolong the wall-clock training time. As an alternative measure of performance, we train
an additional Q-function on a 0/1 reward (1 if a goal was reached) and query it periodically with initial
states from the replay buffer and randomly sampled goals. The resulting metric reflects controllability,
i.e., the probability with which a randomly sampled goal can be reached.

21

Figure 7: Returns achieved after 5M samples with the SD baseline and the Walker robot, using
low-level policies that were trained on a single goal space or with our proposed multi-task pre-training
scheme.

Figure 8: Number of unique hashed states encountered over the course of training (Walker). Mean
over 9 seeds per task and method.

Figure 9 shows that, with an increasing number of features, goals become harder to reach. While
it is unsurprisingly harder to achieve goals in many dimensions, another effect is that we do not
account for fundamentally unreachable states in our definition of the goal space Sg . For example, the
reachable states for the feet (LF, RF), which are two-dimensional features (X and Z position) roughly
describe a half moon while we sample goals from a hypercube. This effect is multiplied when feature
sets are combined.

F.5 Humanoid Learning Curves

In Figure 10, we plot performance for high-level policy training with fixed, individual goal spaces
on the Humanoid robot. Similar to the results for the Walker robot (Figure 3), the best goal space
features differ significantly across tasks.

Learning curves with the Humanoid robot are presented in Table 7. The non-hierarchical SAC
baseline achieves positive returns in the Stairs environment only. The two successful runs manage to
climb up the initial flight of stairs but fall over at the top, thus not making it through the entire course.
The mediocre median performance of HSD-3 on Stairs is attributed to one of the three seeds failing
to learn; the other two are on par with the SD baseline. Notably, HSD-3 outperforms the best single
goal space on the Limbo and HurdlesLimbo tasks.

22

Figure 9: Pre-training performance over the different feature sets considered (Walker robot). Con-
trollability (Y axis) is estimated with a dedicated model. Mean and standard deviation over 3
runs.

Figure 10: Returns achieved after 50M samples on the benchmark tasks with the Humanoid robot
with fixed low-level policy goal spaces (individual runs and quartiles). Each row corresponds to a set
of features for the respective goal space. All goal spaces also include the Z rotation of the torso as a
feature.

23

Method Hurdles Limbo HurdlesLimbo Stairs PoleBalance

SAC

HSD-3

SD

SD*

Table 7: Full learning curves for results reported in Figure 6 (Humanoid). We show mean returns
achieved (Y axis) after interacting with an environment for a given number of steps (X axis). Shaded
areas mark standard deviations computed over 9 seeds for each run.

24

G Implicit Priors in HIRO

To highlight the prevalence of implicit priors towards navigation tasks in existing methods, we
perform an ablation study on HIRO, a prominent end-to-end HRL method [33, 34]. HIRO defines
manual subgoal ranges to steer its low-level policy, where ranges for X and Y locations are of higher
magnitude compared to joint angles. In Figure 11, we analyze the impact of normalizing the reward
on the AntMaze task. We compute the intrinsic reward for the low-level policy [33, Eq.3] as

r(st, gt, at, st+1) = �

����
st � gt + st+1

R

����
2

,

with R = [10, 10, 0.5, 1, 1, 1, 1, 0.5, 0.3, 0.5, 0.3, 0.5, 0.3, 0.5, 0.3] corresponding to the high-level
policy’s action scaling [33, C.1]. The normalization causes all dimensions of the goal space to
contribute equally to the low-level policy’s learning signal, and effectively removes any implicit prior
towards center-of-mass translation. As a result, among the three goals used for evaluation, only the
nearby one at position (16,0) can be successfully reached without reward normalization.

Figure 11: Fraction of goals reached in the AntMaze task with HIRO during evaluations (mean and
standard deviation over 3 seeds). With normalized rewards, locomotion on the X-Y plane is no longer
subject to higher rewards, and only the nearby goal at position (16,0) can be reached.

Nachum et al. [34] propose to automatically learn a state representation used as the goal space for
high-level actions. We investigate the dependence of inductive bias towards X-Y translation by
modifying their setup as follows. First, we limit the input to the state representation function f [34,
Sec. 2] to the same 15 features that serve as a goal space in [33]. We then normalize the input of f as
above via division by R, and modify the high-level action scaling accordingly (actions in [�1, 1]2,
and a Gaussian with standard derivation 0.5 for exploration). As a result, the agent is unable to reach
any of the tested goals (Figure 12). The limitation of input features alone does not affect performance
(blue curve).

Figure 12: Fraction of goals reached in the AntMaze task with HIRO and representation learning
during evaluations (mean and standard deviation over 3 seeds). With normalized state representation
inputs, no learning progress is made.

25

	Introduction
	Related Work
	Hierarchical Skill Learning
	Overview
	Unsupervised Pre-Training
	Hierarchical Control

	Benchmark Environments
	Experimental Results
	Trade-offs for Low-Level Skills
	Skill Selection with HSD-3
	Evaluation on a Humanoid Robot

	Conclusion
	Environment Details
	Robots and Goal Spaces
	Walker
	Humanoid
	Goal Space Construction

	Unsupervised Pre-Training Details
	Hierarchical Control Details
	Soft-Actor Critic for HSD-3

	Training Details
	Baselines
	HIRO-SAC
	DIAYN-C
	Switching Ensemble
	HIDIO

	Extended Results
	Walker Learning Curves
	Ablation: Multi-Task Pre-Training
	Analysis: Exploration Behavior
	Analysis: Pre-Training Performance
	Humanoid Learning Curves

	Implicit Priors in HIRO

