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In this supplementary material, section[I|shows our implementation of the corrected estimator. Other
sections are proofs of the theoretical results.

1 Implementation of Corrected Estimator

The corrected estimation is

fle = argmin [|fjo — g[1. 1)
IVglleo <L

In this section, we find a approximate numerical solution instead. In particular, we only optimize g at
grid points that are dense enough, and the values elsewhere can be simply calculated via interpolation.
The grid points are set to be x;, ., = Xo + (j1,- - -, ja)a, with indices j, € {1,...,my}, my is
the grid count along k-th dimension. x( and my, need to satisfy

zop < inf xy, @)
xeX
Tok + MEa = SUPT, 3
xekX
so that these grid points cover the whole support. « is the grid size. Denote j = (j1,...,j4),

g;j = g(xj), and r; = 7jo(x;). Then the discretized optimization problem can be formulated as
following:

minimize i — T
g Z 9 =131
i “
subject to |g; — gy| < LaV[j' —j| =1,
in which |j — j| = ZZ:1 |75 — Jx|- With sufficiently small a, the discretized problem approximates
well. can be solved simply by optimizing each gj iteratively.

2 Proof of Theorem 1: /; Convergence of Initial Estimator

This section proves the convergence rate of the initial estimator

~ . N X—Xl
flo(x) = argmmZK ( - ) d(Y; — s). 5)

[s|<M i=1

To begin with, we use the following notations.
Definition 1. Define

Bi(x) = {ullu —x|| < h} (©)
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as the ball centering at x with radius h,

an(x) = [{ili € B, X; € B (x)}| ©)
as the number of attacked samples within By, (x),
1(x) = {iX; € By (x)} ®)
as the set of the indices of all samples within By (x), and
(%) = [In(x)] ©

as the total number of samples within By, (x).
Definition 2. Define a(x), b(x) as

- X;
a(x) = argmin Z K <X h ) o(n(X;) + Wi — s), (10)
ls|<M 1€TR (x)
. X — Xz 9
b(x) = argmin Z K - (n(X;) + W; — 8)?, (11)
|S‘SM iejh(x)

a(x) is the estimated value with no adversarial attacks. b(x) is just the ordinary kernel regression
estimates clipped into [— M, M]. Then

[7l0(x) = n(x)] < [ijo(x) = a(x)] + la(x) = b(x)[ + [b(x) = n(x)]. (12)
Note that a(x) and b(x) is not affected by the behavior of the attacker. Hence

R~ B [up(in(0) - (X))

< 3E {Stfl‘p(ﬁo(X) - a(X))Q} +3E [(a(X) = b(X)?)] + 3E [(b(X) — 1(X))?]
= 3([1 +12+13), (13)
now we bound these three terms separately.

Bound of ;. Define a new random variable

Z = 2Lh + maxW,; — min W;, (14)
1€[N] 1€[N]

in which [N] = {1,..., N'}. Then Z can be bounded using the following lemma.
Lemma 1. Ift > 2Lh, then

t—2Lh)*> t—2Lh
P(Z > t) <2exp |—min ( ) , +InN|, (15)
802 4o

and fort > 2Lh + 401n N,
E[Z21(Z > t)] < 2N ({2 + 3202 + 8to)e o . (16)
Given Z, |fjo(x) — a(x)| can be bounded. Define

Crqn(x)
cx (N (x) — qn(x))

r(x) = 7 (17)
in which ny, is defined in (9), and
1
ng = ya fmvah®N. (18)

Then the following lemmas hold:
Lemma 2. Ifr(x) < (T — 2)/(T + Z), then |jo(x) — a(x)| < (T + Z)r(x).
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Lemma 3. Under the following three conditions:
(a) np(x) > ng, in which vy is the volume of d dimensional unit ball;
(b) Z < 2Lh + 8 In N;

(c) gn(x) < cxno/(3Ck + ck),

then
2T Cran(x)

CK TN

[710(x) — a(x)] < (19)

Moreover, since |7o(x)| < M, and according to Assumption 1(b), |n(x)| < M, |7jo(x)| < 2M
always hold, regardless of whether the conditions (a)-(c) in Lemma|§| are satisfied. Therefore

o= B [0 - a0

= & |sup [ () - a2 (x|

A

4
C;K stip/q,%(x)dx +4M? [P(np(x) < no) +P(Z > 2Lh + 80 In N)

kN
CK
P X)> o7 . 20
sup (qh( ) 30K+6Kno)] (20)
Now we bound each term separately. For the third term in (20),

IN

2
sup/qi(x)dx < sup/ <Z 1(||x — X < h)> dx
A A i€B
< [Blsup [ 30100~ Xil < hhdx
i€B
= |B|?vgh® = ¢*vgh%; (21)
For the second term in (20), since E[ny,(x)] > fmavgh®N = 2ny,
P(n,(x) < ng) < e”(17In2no, (22)

Assumption 3 requires & > In> N/N. Recall (I8), ng ~ Nh¢ > In® N, thus (22) decays faster than
any polynomial of ng. For the third term in (20}, from Lemmal[I]

2
P(Z > 2Lh+8cIlnN) < N; (23)
Finally, for the last term in (20),
E[¢? (X 3C 2pd
P <qh(X) > CK ’I’L0> S [qh( )] 5 S ( K+CK fM dX < q 2 (24)
3Ck + ck cx CK”() Un)
3CKk+cK 1o
Therefore
T2q2hd 2 QOd T2q2
I < —(1-=In2)ng “ < ) 25
15 ng +e +N+ no NNth ( )
Bound of 1.
Lemmad. If Z < T, then a(x) — b(x) =0
Lemma M will also be used later in other theorems.
Proof.
max (N(X;)+W;) — min (n(X;)+W;) <T. (26)
i€Iy (%) i€l (x)
Therefore ¢(n (X)-+W-—s) = (77(X-)-i—WZ-—s)2 for r?i?)(n(xi)—i—Wi) s < H}a(x)(n(X i)+
1€l (x i€l (x
). From (T0) and[T1] a(x =0. O
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If Z > T, (10) and (TI)) gives |a(x) — b(x)| < 2M. Therefore, from Lemmal/l]

8M?
I, = E[(a(X) — b(X))?] <4M?*P(Z > T) < ~T (27)
Bound of 5. Since W, is sub-exponential, it is straightforward to show that the variance is bounded
by o2:
E[W?] = E | Tim — (W — 1 = AW))| < liminf— (37X — 1) = 52 (28)
‘ A0 N2 YT AS0 A2 ’

in which we used Fatou’s lemma in the second step. Then I3 can simply be bounded by standard
analysis of kernel regression [4} 5, [1]]. For the completeness of the paper, we provide a brief proof
here.

If nj,(x) > ng, in which ng is defined in (T8)), then with the Lipschitz assumption (Assumption 1(a)),

b(x) — n(x)| < ZiGIh(X) K (x_hXi) (n(Xi) —n(x)) Zielh(x) K (x_hxi) W;

N ZiEI;L (x) K (xthi) Zie[h (x) K (xthi)
1 - X;

< Lh+ Y k(22w (29)

noCk |. h
ZGIh(x)
If nj,(x) < no, then |b(x) — n(x)| < 2M. Since E[W;] = 0, E[W?] < 02,
2 272 ‘72013 2
E[(b(x) — n(x))?] < L°h* + v + 4M*P(np(x) < no). (30)
k

Using (22), integrate (30) over the whole support,

1 1
L <h+—~h*+ —. 31
3~ + no + th ( )
Combine (T3), 23), 7) and (BT),
T?¢? 1
< 24— 32
RNN2hd+h +th (32)

3 Proof of Theorem 2: /., Convergence of Initial Estimator

In the following proof, we assume that

1
23Ck +cx)g\ “
h _ . 33
~ < cra frmvaN 33
If (33) does not hold, then ¢/(Nh?) > 1. Since |fjp(x)| < M always hold, we have
. q Tq In N
. <om< L < 9 gy B 34

thus Theorem 2 is proved trivially. From now on, assume (33) holds.

To begin with, define event F, which is true if all of the three conditions hold:

(1) max; W; < 4oIln N, min; W; > —40In N;

(2) ng < np(x) < nar, Vx € X, in which ng is defined in (I8), n(x) is defined in (9)), and

nar = SN farvah (35)

(3)Forallx € X andany k € {1,...,N},

> Wil < omax{VkInN,In’ N}, (36)
i€NE (x)
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in which AV (x) is the set of all samples among k nearest neighbors of x. We remark that according
to (I4), (1) implies that Z < 2Lh + 80 In N.

Denote the complement of E as E°. Now we bound P(E¢). From (§3), P(max; W; > 4oIn N) <
1/N. Similar bound holds for min; W;. This bounds the probability of violating (1). (2) and (3) can
be bounded using the following two lemmas:

Lemma 5. For sufficiently large N, with probability at least 1 — 1/N,

i >

;:ngvnh(x) > nyp, (37
supnp(x) < npy. (38)
xeX

Lemma 6. Let [N] = {1,...,N}. Then
P3xeX,Fke[N],| Y W >omax{VklnN,In* N} | < 2dN2+1e=3m* N - (39)
1€ENR (%)
Therefore

P(E) < % +2dN2HLem 30N, (40)

Now we bound /., error with the condition that F is true.

[70(%) = n(x)| < lio(x) = a(x)] + |a(x) = b(x)| + [b(x) = n(x)]- 4D

Bound of the first term in (). Under E, condition (a), (b) in Lemma 3] are satisfied. Moreover,
from (33)) and (I8), condition (c) also hold. According to Lemma[3]

R 2TCkq
0 (x) = a(x)] < = —= (42)
CKMNo
Bound of the second term in (@I). Recall that Z < 2Lh + 8¢ In N < T, from Lemma

a(x) — b(x) = 0.
Bound of the third term in (4I)). We use the following additional lemma:
Lemma 7. If E is true, then

N
- X.
YK <Xh1> W;| < Cx+/narIn N. (43)
=1
From (29) and Lemmal[7]
Ck
|b(x) —n(x)| < Lh+ Vs In N. (44)
NoCk

Substitute these results into (#T)), and recall that ng ~ Nh<, ny ~ Nh?, under E,

Tq In N
o (x) — <L 4p 45
() =S Fa +h+ e (45)

Under E°, |1jp(x) — n(x)| can be bounded by 2M, hence
Elllgo —nl] < Elllho — nll1(E)] + 2M P(E)

Tq In N
< h . 46
RN o

The proof is complete.
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4 Proof of Theorem 3: Minimax Convergence Rate

The proof begins with the following lemma.

Lemma 8. Let p1, po be the pdf of N (11, 02) and N (s, 02) respectively, with N being the normal
distribution. Then there exists a € [0, |u1 — p2|/(20)] and two other pdfs qu, qa, such that

(1—a)p1 +aq = (1 — a)ps + age. 47)
Proof. Let
11—«
G = o (p2 — p1)1(p2 > p1),
11—«
G2 = 5 (p1 — p2)1(p2 < p1,) (48)

then holds. Note that g; and g2 need to be normalized:

[awae = =% [maw) - pr()1o2(0) 2 pr )

l-«a
= TTV<pl7p2>7 (49)

in which TV is the total variation distance. Hence @7)) can be achieved with

TV(p1,p2)

=2y 50)
1+ TV(p1, p2) (
From Pinsker’s inequality,
1 _
TV (pr.p2) < |/ S D) = L2 s
2 20
With (30) and (5T), the proof is complete. O
Let
mx) = 0, (52)
n2(x) = Lmax{r—|[x[|,0}, (53)
in which
1
o(d+1)g\ 7
= (224 54
" < fmLvgN ) G

Let n € {n1,n2}. Furthermore, assume that the noise variables are Gaussian, i.e. W; ~ N (0, 0?).
Assume f = f,,, for x € X. Design the attack strategy as following: go through all samples from
i = 1to N, and initialize |By| = 0, then

() If || X;|| > r, do not attack;

(2) If || X;|| < r, then find «;, g;1, g2 such that (1 — «;)pi1 + agin = (1 — @)pie + agie, in which p;,
pi2 is the pdf of N'(m1(X;), 0?) and NV (12(X;), 02), respectively. With probability «;, incorporate
sample % into By;

(3) Repeat (1), (2) fort =1,...,N;

(4) If | By| < g, then attack all samples in By. Otherwise, pick ¢ samples randomly from By to attack.
For each attacked sample ¢ € By, let it follow distribution ¢; if n = 71 and ¢2 if n = 72.
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Use Lemma [8] and denote sy as the d — 1 dimensional surface area of a d dimensional unit ball.
Sd = dvd. Then

mL
= It /” xug(’" ~ el

= me/ (r —u)squt™du

20 0

JmLsq pa+1
20d(d+ 1)
q

- 4 55
oN (55)

From Chernoff inequality, it can be easily shown that P(|By| > ¢q) < e~("2-1/2)a_ Therefore with

high probability, all samples in By will be attacked, and the distribution of Y; conditional on the

value of X, has no difference between 7; and 1. This indicates that 17; and 7- are indistinguishable.

Therefore

sy Esup (00— 00| > inf sup B fsup (%) 000
Mo (fmPy)eF LA 0 ne{ni,nz} A
1
> (1= P(Bl > ) [ mx) - m0)ax
> i(lfef(m%%)q) L2/ (r —u)?squ?~du
0
> Td+2
g\
> 2
> (%)™ (56)
and similarly, the ¢, error can be lower bounded by
1 1
inf sup E Supsup|ﬁ(x)—n(x)|} > - (1—6_(1“2_5)‘1) Lr
m (f;m,Pn)EF A x 4
zZr
1
q)dTl
= — . 57
2 (% (57

Moreover, even if there are no adversarial samples, from standard minimax analysis [6], it can be
easily shown that

inf sup B[ (i(X) - n(X))*| 2 N7, (58)
0 (f,n.Px)EF
and
inf sup E supsup\r]( ) — n(x)q ZN_ﬁ. (59)
T (fnPN)EF

Combine (36), 37, (58] and (39), the proof is complete.

5 Proof of Uniqueness of Corrected Estimator

Suppose that there are two solutions, g, g5, such that g7 (x) # ¢5(x) for some x, and

70 = g5l = ln0 — g3l < ll90 — gl (60)

for any L-Lipschitz function g. Since g7 and g3 are Lipschitz continuous, there must be a compact
region around x such that g # g3 everywhere in this region.
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We first show that for all x with g} (x) # g3(x),
(710 (%) = g1 (%)) (70 (%)
Let ga = (97 +95)/2. If 7o (x) — g7 (x) and 7o (x)
19a(x) = 7l0(¥)| < %(L(JT(X) = o(x)| + |92 (x) = 70 (X)), (62)

thus ||ga — 7ollr < (lg7 — 7ol + llgF — 7oll1), contradicts (60). Therefore (6I) holds. This
indicates that the support X" can be divided into S; and Sa, such that in max{g;, g5} < 7)o within
Sy, min{g7, g5} > 7o within Ss.

Then let

95(x)) = 0. (61)
g5 (x) have opposite sign, then

min{g} (x),g5(x)} if =z €Sy,

then it can be easily shown that g, is Lipschitz and ||7jp — ¢|| < max{||750 — g7, 170 — 9511}
contradicts (60). The proof is complete.

() = { max{gi (x),g5(x)} if z€S .

6 Proof of Theorem 4: Convergence Rate of Corrected Estimator

Denote F'[n)] as the solution of the optimization problem

minimize ||n — g|1
7 (64)
subject to  ||Vg|leo < L.

Then the corrected estimate is 7. = F[f}o], with 7}y being the initial estimate. The following lemma
holds:

Lemma 9. For some 11, 12, If 11(x) < n2(x), Vx € X, then F[n;](x) < F[ne](x),Vx € X.
Denote E as the event that infny, (x) > ng, supny(x) < 3N fMvgh?/2,and Z < 2Lh + 85 In N.

From Lemmall] P(Z > 2Lh 4+ 8¢ In N) < 2/N. Combine with Lemma [5] the probability of
violating E' can be bounded by

3
P(E°) < — 65

(B9 < =, (65)
in which E° is the complement of F.

In the following analysis, we bound the estimation error under the condition that E is true. We show
the following additional lemma:

Lemma 10.

Pl Y K (X_X’) Wi| > 3Cko /N favghdIn N|E | < % (66)

) h
i€y (x)

With these lemmas, we analyze the corrected estimator 7. under E. To begin with, 7y satisfies

710(x) = n(x)| < |fo(x) — a(x)] + |a(x) — b(x)| + [b(x) — n(x)]. (67)
From Lemmal[3] Under F,

Io(x) — a(x)| < 2ICkan(®) | o1y (qh(x) > c’“”°> ; (68)

CKNO 3Ck + ¢k
From Lemma under F, and Assumption 3, Z < T'/2, thus a(x) — b(x) = 0;

From (29),
30](0’
Ib(x) —n(x)| < Lh+ N farvghdIn N
CKMNo

- X;
oM || K(X - )Wi > 3CkoV/N faroghdIn N | . (69)

i€lp (X)
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Define

- X;
S={x| Y K(X - >W > 3Cko/NfarvghdIn N b (70)

i€Tp (x)

oT
5(x) = 2LCK ) | s o /N farodh I N + 2M1 (qh x) > c"“”o) +2M1(x € S). (71)

CKTO 3Ck + ck

Therefore, under E, |7jp(x) — n(x)| < d(x). Furthermore, define
mx) = nx)—ix), (72)
n2(x) = n(x)+0(x), (73)

then 7y < 7)o < 1o under E. From Lemma9] F(n;] < Flno] < F[na]. The error of Fn] can be
bounded by the error of F'[n;] and F'[n)]. Define

A = Lh+ 3Cxo\/NfMuvghdln N. (74)

The next lemma bounds || F[n:1] — 0|3 and || F[n2] — n2]|3:
Lemma 11. Under E,

+2
T In N
wac (LFn] =l 1] — i) 5 (52) 7 40+ s)
Therefore
Tq\ In N
q 2 n
F < na 7
7 -l 5 () 2+ e 76)

The overall risk can be bounded by

E sup (0~ 0(X))| < B [supl — lBL(E) | + R(E")
Tq\ &1 In N
q 2 n
< — +h —. 77
< ( N) + 5 (77
The proof of /5 bound is complete.
For the /-, bound, note that
flo <1+ 10 = oo (78)
thus from Lemmal9}
fle = Flijo] < F[n+ |10 — nllos] = 1+ 10 — 0l oo (79)
Similarly,
fle =1 — [0 — Nlloo- (80)
Hence
19e = nllee < 110 = Mlloo- (81)

This indicates that the ¢, error of the corrected estimator does not exceed the initial estimator.
Therefore, Theorem 2 can be directly used here.

7 Proof of Lemmas

7.1 Proof of Lemmall]

Proof of (T3)). Recall Assumption 1(d). Let Wy,q, = max; W;, Wy = min; Wi fori =1,..., N.
For [\ < 1/0,

2 2

[AWimas) (W] < Ned¥o®, 82)

uMz
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Then

PWiao >t) < N inf e Mezr'o

[A<1/o
< e — mi i i +InN (83)
< exp min 952" 25 n .
Similar bound holds for W,,,;,,. Then
t t
P(Wmaa; - szn > t) S P (Wmaz > 2) + P <Wmln < _2>
< 2e £t +In N (84)
Xp |— 44—, — n .
- P 802’ 4o
From (T4), Z = Winae — Winin + 2L17, hence (13) holds.

Proof of (T6).

E[Z?1(Z > 1)] < /t P(Z > t)du—&—/oo P(Z > u)du
0 t

2

o —2LKY
= t’P(Z >t) +2/ exp {\/ﬂ +InN|du
t2 40’
2 2 t—2LhY

< 2N(s*+320° 4 8so)e 4o . (85)
7.2 Proof of Lemmal[2]
‘We first discuss the case when

X — Xz
> K ( ; )ab’(n(xi) + Wi —a(x)) = 0. (86)

i€lp (X)

According to (T0), this happens if the minimum value in (T0) is reached within [— M, M].

i€1,(x) i€15(x)

> k(S )m-a) = | XK (X5 00 ao) - 00 + Wi - ao)]

< ) K (x ‘hxi) 19/ (Y; — a(x)) — ¢/ (n(X;) + W; — a(x))|

1€Ip(x)
(a) - X; , ,
$ K () W - ) - X+ W )
(b) X — Xz
<2 Y K ( - > (T +Z2)

iEI;L(X)ﬂB
< 2(T+ 2)Ckan(x).
For (a), recall that Y; # n(X;) + W; only for attacked sample. For (b), recall (I0), we have

in n(X,)+W; < < X) + W, 88
jé?j?x)”( i) J_a(X)_jg}ha&)n( )+ W (88)

therefore |n(x) + W; — a| < Z, Vi € Ij(x). Recall that

¢ (u) = 2T if u>T (89)

2u if  |u] <T
{—ZT if uw<-T,

thus |¢'(n(X;) + W; — a(x))| < 2Z. (c) just uses Assumption 2.

10

87)
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Moreover, if 6 < T — Z,
>, K (X hx") [6/(¥: — a(x)) = & (¥; — (a(x) +9))]

€1 (x)
X — Xz
257;6%%,:)}( ( - ) 1(Y; — a(x)| < T, |YV; — (a(x) +0)| < T)
20ck|In(x) \ Bl
26ck (nn(x) — qn(x)). (90)

IV

ARV

Similarly,

> K <X 7 Xi) [¢'(Yi = (a(x) = 6)) = ¢/ (Yi — a(x))] = 20cx (n(x) = an(x)).  OD

1€Tp (x) h
Let 0 = (T + Z)r(x), with condition r(x) < (T' — Z2)/(T + Z), § < T — Z, thus and (OT)

hold. From (&7), (90) and (O1)),
> k(X etmi-ama<os ¥ () - a0 - a). 0

i€ (x) i€y (x)
Therefore 7 (x) € [a — J,a + 4]).

Now it remains to discuss the case when (86) is violated, which indicates that the minimum in (I0) is
not reached in [—M, M]. Then a(x) = M or a(x) = —M. If a(x) = M,

Y K (X —hx) ¢’ (n(X;) + W; — a(x)) >0, (93)
’L’EI;,,(X)
then go through (87)),
X — Xl /
Z K ( o ) &Y —a(x))| > —2(T + Z)Cran(x). (94)
i€lp(x)

With @1) and 6 = (T + Z)r(x),

'
> K () o ) o) > . ©5)
1€1p (x)
Therefore 7o (x) > a(x) — d, and from (3)), 7jo(x) < M. Therefore |7jo(x) — a(x)| < § still holds.
Similar argument holds for a(x) = —M. The proof is complete.

7.3 Proof of Lemma[3

From Assumption 3, 7" > 4Lh + 160 In N, thus by condition (b) in Lemma T >27, (T -
Z)/(T+Z) >1/3, and

r(x) = Ckqn(x) e Ckzorex™

1
)T (st 9 TTE

Therefore from Lemmal|2]

(96)

IN

(T + Z)r(x)

T (14150 )

2T
2 +1
r(x)
2TCrqn(x)
crnp(x)
2TCran(x)

CK ™o

[70(x) — a(x)]|

IN

IN

IN

: o7)
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196

197

199

200

201

202

203

204

205

206
207
208

210

211

212

7.4 Proof of Lemmal[3
Define

pig = [ s 99)

as the probability mass of ball centering at x with radius h.
Lemma 12. ([2)], Lemma 3) with probability at least 1 — 1/N, for all x € X,

< ByVpn(x) + B, (99)

pa(x) — n;}\(fx)

in which Bx = \/4(d + 3)In(2N)/N.

Assumption 3 requires that h > (lm2 N/N)/4, hence for sufficiently large N,

4 In(2N 1
BN < BN _ |Ad+3) nd( ) <L (100)
Vor(x) T/ fmavghd fmovgh®N 3
and 8% /pn(x) < 1/9. Therefore
np(x) BN B% 4
X) — < X + < —pu(x), (101)
pr(x) = = pn(x) ( o T a0 gPh ()
which yields
5 1 .1
np(x) > §Nph(x) > imeowdh = 5o (102)
For the upper bound, not that py, (x) < farvgh?,
1
m(x) < o Npu(x) < SN farvah, (103)

With probability at least 1 — 1/N, (I02)) and (I03) hold uniformly for all x € X'

7.5 Proof of Lemmal6]

For i, j € [N], let A;j be a d — 1 dimensional hyperplane that perpendicularly bisects X; and X ;.
The number of planes is IV, = N (NN — 1)/2. The number of regions divided by these planes can be
bounded by

d
Ne=)_ <]Zp) < dNf < dN*. (104)
j=0

For all x within a specific region, its nearest neighbors should be the same. Hence
{Ni(x)|x € X,k € [N]}| < dN?**. (105)

Similar formulation was used in [3]], proof of Lemma 3.

For each NV (x), from Assumption 1(d), conditional on positions of X1, ..., Xy
2 2 1
Elexp|A > Wi | XN <ef¥ va< (106)
iE€ENE (x) o
in which we use X* to substitute X1, ..., Xy for brevity. Then the following Chernoff bound holds:
N . ko o
P Z W; > t|X < inf exp|—-M+=-\o
. 0<x<1/o 2
i€ENE (x)
+2
< e 2koZ if ¢ S k'O' (107)
B e if t>ko.
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213

214

215

216

217
218

219

220

221
222

223

224

225

226
227

228

229

Ift > In? N, let t = Vko In N. Otherwise, let t = o In? N. Then

P Y Wi>tXN| <e 2N (108)
€N (%)

Combine with (T03), the proof is complete.

7.6 Proof of Lemmal/7|

Recall that the statement of Theorem 2 requires that & (u) monotonic decrease with ||u||. Define
rj = sup {|Ju|||K(u) > cx + jA}. (109)

Cut K into m slices above ck, whose heights are A = (Cx — ¢ )/m. Define the truncated kernel
as

Kp(u):= > Al(|lul| < 7))+ ex1(fJu] < 1), (110)

j=1

then 0 < K(u) — Kr(u) < A, under E,

K

N x — X; x — X;
Z( ( - ’)—KT( - ))W < Amax |W;| < 46AIn N, (111)
i=1 !
and
N % - X, N m N
ZKT ( - ) Wil < ZCK1(||X— X;| < h)W; + ZZM(”Xi —x|| < hry)W;
i=1 i=1 j=11i=1
< ¢k Z Wi +5Z Z Wi
1EN G, () (%) Jj=1 ie/\/nmj () (%)
< (ex +mA)/nyIn N
= CK\/n]\/[ th. (112)

in which the last step uses Lemmal[f] Since m can be arbitrarily large and A can be arbitrarily small,

from (I11) and (T12),

SCK\/TLMIHN. (113)

N X—Xi

The proof is complete.

7.7 Proof of Lemmal[9

Denote g1 = F[m], g2 = F[ne], g = F[n]. If g1 < g2 is not satisfied somewhere, then define
S = {x]g1(x) > g2(x)}. (114)

Since g1 = F(n1), due to the uniqueness of optimization solution (Proposition ??), ||, — ¢1]| <
lm — g||1 for all L-Lipschitz function g. Hence

m —g1llr < |lm — min{g1, g2} |1, (115)
thus
[ m) = gi0lax < [ () - ga()lax. 116)
S S
In S, g2(x) < g1(x), since n2(x) > n1(x),
I72(x) — g2(X)| = [m2(x) — g1(%)[ > [m(x) = g2(x)[ = [m1 (%) — g1 (x)]- (117)

13



230 Therefore

/ I72(%) — g1 (X)]dx < / () — golx)|dx., (118)
S S

231 which yields

ln2 — min{g1, g2 Hl1 < [Im2 — g2|l, (119)

232 contradict with that go = F'[1)2] is the solution of the optimization problem (64). Therefore g; < go
233 everywhere.

234 7.8 Proof of Lemma[10]

235 According to Assumption 1(d), which requires that W; is sub-exponential with parameter o, we have

- X; 1
E |exp | A Z K(x h )Wi Xi,...,Xn| <exp {2A2C§<02nh(x)} \m|< ,(120)
iEI;L(x)

236 and

_XZ . p—
Pl D K<X )Wi>tX1»~-~,XN < inf e MRG0 (121)
i€l (x) h IAN<1/(Cro)

237 Therefore for sufficiently large N, let t = 2Cko+/np(x) In N,

1
P Z K( >W > 2Cko\/np(x)InN| Xy,..., Xy | <e2VN = (122

N2
€1 (x)

233 The opposite side can be proved similarly. Recall that under E, nj(x) < 3N favgh? /2. The proof
239 is complete.

240 7.9 Proof of Lemma[I1]

241 7 is Lipschitz, thus 7 — A is Lipschitz. Since F'[n] is the solution of optimization problem (64) with
242 11, We have

lm = Flmlll < llm — (n = &) (123)

243  Hence

IFlm] = (0= D)l < 1] = mll+ I~ (- Ay <20 — - &)l (124)
244 It remains to bound || — (n — A)||1:

lm— =21 < ||Lh+3Cko/N frrogh?In N — Al

QTCK CKMNo /
< dx+2M [ 1 > K0 Vax+oM [ d
T o /qh(x) X+ / (qh(X) 3Ck +ck X+ s *
2T hd hd
Crqva MBCk + ex)quah® ), / dx. (125)
CKNo CK T

245 ||n2 — F[n2]]]1 can be bounded in the same way. Therefore

hd
masc{[[Fim] - (n = &)1, [Fle) = (r-+ A)a} < @7+ )T 4201 [ ax 26
S

246 in which Cy = 4Ckva/ck, Co = AM(3Ck + cx )vq/ck. We then show the following lemma.
247 Lemma 13. If a function g is Ly-Lipschitz with bounded ||g||1, then

(d+1)dsL?\ ™"
lgll3 < (Ud . (127)
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248

249

250

251

252

253

254
255

256

257

258

259

260

Proof. g is continuous with bounded ||g||1, thus it reaches its maximum at some xg

l9G)] = llglloo = Lallx = xol|, ¥I[x = %ol < [|gllcc/ La-

Denote s, as the surface area of d-dimension unit ball, s; = dv,, then

gl = / l9()ldx

= (Iglle = Lalx = x01) ax
lIx=xolI<liglloc/ La
lglloo/La it
[ sl - Larysartar
0

d d
_say (ol Lo (gl
d o Ly d+1 Lg

S
(d+1)Ld" ">

\

Hence
1
(d+1)LY i
l9llec < (dlglll :
Vg

(d+ 1)Lg) a

d+2
d+1

1
1
lgllz < llglhllgllee < ( lgli{

. Then

(128)

(129)

(130)

(131)

O

Moreover, in (]6_1[), the derivative of g is bounded by L in each dimension, hence F'[n] is VdL-
Lipschitz. Let Ly = v/dL. Since n— A, F[n;] are both Lg-Lipschitz, n — A — F[n] is 2L4-Lipschitz,

hence
T hd % Zfﬁ
q
1Flm] — (n— A3 < () N ( / dx) ,
o S
and
IFim] = nl2 < 20Flm] — (7— A2 + 242 /X dx
Tght\ T o mN
< d B2 4+ —.
- (”0) Jr(/SX> MR
From Lemma 10}

1

(U)o (o) 5

Therefore the second term in (T33)) decays faster than other terms, and

IFim] =2 < 21 Ffm] — (7 — A)[2 + 242 /X dx
d
Tghd\ ™1 In N
< h2
~ ( o ) + +th

(132)

(133)

(134)

(135)

(136)

The bound also holds for || F'[nz] — n||3. Substitute ng in (I36) with (I8). The proof is complete.
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