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A GENERALISABILITY OF POLICY GRADIENT BASED RL ALGORITHMS

Policy gradient based RL algorithms minimise the cumulative discounted cost by directly optimising
the policy parameters using gradient descent. We discuss in this section the ability of these algorithms
to search for η-optimal policies. We distinguish two types of policy gradient approaches:

OPTIMISING THE GLOBAL OBJECTIVE DIRECTLY:

Many methods (such as Deterministic Policy Gradient Silver et al. (2014), and variants of the
REINFORCE algorithm Williams (1992); Degris et al. (2012)) are rooted in the policy gradient
theorem Sutton et al. (1999):

∇Ep0,π[
∑
t

γtc(st, at)] =

∫
s0,s

p0(s0)ρπ(s|s0)Ea∼π[Qcπ(s, a)∇ log π(a|s)]

with ρπ(s|s0) =
∑
t

γtPπ(st = s|s0)

where the policy π is a function of some parameter θ and all gradients are implicitly with respect to θ.
In order to adapt these approaches for the search of η-optimal policies, the policy updates must take
into account the future state distribution derivative. In fact, the gradient of the generalised criterion
with respect to the policy induces an additional term as provided in proposition 5:

Proposition 5 For any given distribution η:

∇Eηp0,π[
∑
t

γtc(st, at)] =

∫
s0,s+

p0(s0)vcπ(s+)∇P ηπ (s+|s0)︸ ︷︷ ︸
additional term

+

∫
s0,s+,s

p0(s0)P ηπ (s+|s0)ρπ(s|s+)Eπ[Qcπ(s, a)∇ log πθ(a|s)]︸ ︷︷ ︸
modified term

where P ηπ (s+|s0) =
∑∞
n=0 η(n)Pπ(sn = s+|s0).

Notice that the modified term has the same form as the original policy gradient theorem. This is not
an issue as it’s a matter of adapting the used estimators in practice. However, the additional term is
not taken into account. Furthermore, in this current form,∇P ηπ (s+|s0) is not tractable. This implies
that current policy gradient approaches that rely on the policy gradient theorem can not search in a
reliable way for η-optimal policies.

OPTIMISING A LOCAL VERSION OF THE GLOBAL OBJECTIVE:

On the other hand, recent policy gradient algorithms such as Trust Region Policy Optimisation (TRPO)
Schulman et al. (2015) and Proximal Policy Optimisation (PPO) Schulman et al. (2017) iteratively
search for a new policy πn that improves the performances of an old policy πo by optimising a local
approximation of the right hand term in the following identity Kakade & Langford (2002):

Lδ00 (πn, c) =Lδ00 (πo, c) + Ep0,πn [
∑
t

γtAcπo(st, at)]

=Lδ00 (πo, c) +

∫
s0,s

p0(s0)ρπn(s|s0)

∫
a

πn(a|s)Acπo(s, a)

where Lδ00 is the unregulated loss function, and Acπ(s, a) is the advantage function:

Acπ(s, a) = Qcπ(s, a)− vcπ(s)

In principle, this approach is tractable for the search of η-optimal policies. In fact, the generalised
setting verifies a similar formulation of this identity:
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Proposition 6 For any given distribution η:

Lη0(πn, c) = Lη0(πo, c) + Eηp0,πn [
∑
t

γtAcπo(st, at)]

= Lη0(πo, c) +

∫
s0,s

p0(s0)ρπn(s|s0)Eηπn [Acπo(s+, a+)|s]

with Eηπn [Acπo(s+, a+)|s] =

∫
s+,a+

P ηπn(s+, a+|s)Acπo(s+, a+)

Propositions 6 lay the ground to adapt proximal policy gradient based RL algorithms to the search
of η-optimal policies. However, we do not investigate this further in this paper as we focus on the
Inverse problem.

B GENERALISATION OF CLASSICAL IRL ALGORITHMS

In this section, we discuss particular classical penalisation functions Ω and Ψ that lead to generalisa-
tion of well known IRL algorithms. In all cases, Ω is always chosen as the entropy regulariser, as in
state of the art RL algorithms.

Let C be a subset of admissible cost functions, and the penalisation function defined as:

ψ(c) = ıC(c) =

{
0 if c ∈ C
+∞ if c /∈ C

Two particular subsets are studied in details in the following as they lead to generalisations of classical
IRL algorithms.

B.1 EMMA: EXPECTATION MATCHING - MAXIMUM ENTROPY

First, consider the set of linear interpolation of some finite basis set function {fi(s, a), i ∈ I}, i.e.,

Clinear =
{∑
i∈I

wifi, such that ‖w‖2 ≤ 1
}
.

In the classical, non-generalised IRL problem (with η = δ0), this problem coincides with features
expectation matching IRL algorithm Abbeel & Ng (2004), that minimises the l2 expected feature
vectors Ho & Ermon (2016):

L(π, c) + Ω(π) = max
c∈Clinear

Eρπ [c(s, a)]− Eρπ̄ [c(s, a)] =
∥∥Eρπ [f ]− Eρπ̄E [f ]

∥∥
2
,

where f(s, a) = (fi(s, a))i∈I . Generalising this algorithm for any geometric distribution η simply
consists in substituting the expectation with Eηπ:

Proposition 7 Under the assumptions of Proposition 2, and for ψ = ıClinear , it holds that:

RLηΩ ◦ IRLηψ(π̄) = arg min
π

−Ω(π) +
∥∥Eηπ[f ]− EηπE [f ]

∥∥
2

The generalised version of this algorithm (which is actually GIRLıClinear,H,η) that we called EMMAη ,
is derived in the following as a generalisation of expectation matching IRL algorithm Abbeel & Ng
(2004).

The optimal cost function c∗π (given a previously learned policy π) must satisfy the following
equality4:∫

s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
c∗π(s+, a+) =

∥∥∥Eµπ [f ]− EµπE [f ]
∥∥∥

2
(4)

4c.f. the proof of proposition 7 in Appendix F
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As the objective solution is known, we propose to replace the cost optimisation step in the template
procedure we provide in Algorithm 1 with the following simple quadratic loss:

Llinear(w) =
(
Eµπ [wfT ]− EµπE [wfT ]− ‖Eµπ [f ]− EµπE [f ]‖2

)2

(5)

Given that the set of feasible cost function is convex, we can update the loss using projected gradient
updates. We also use an approximation of this loss in practice:

L̄linear(w) =
( ∑
S+,A+

wfT (s, a)−
∑

S+
E ,A

+
E

wfT (s, a)− ‖
∑
S+,A+

f(s, a)−
∑

S+
E ,A

+
E

f(s, a)‖2
)2

(6)

The algorithm we propose is then defined as follows:

Algorithm 3 EMMA

1: Input: Expert trajectories τE ∼ πE , initial policy πθ0 and initial cost function w0

2: for e ∈ [1, N ] do
3: Sample trajectories τ ∼ πθi
4: Sample states randomly (St, At) ∼ τ and (S+, A+) = (St+k, At+k) where k ∼ η
5: Sample states randomly (S′t, A

′
t) ∼ τE and (S+

E , A
+
E) = (S′t+k, A

′
t+k) where k ∼ η

6: Update the cost weights wi to minimise L̄linear(wi)
7: Project the cost weights on the feasible set Clinear
8: Update θi using soft actor critic to minimise wi+1f

T

9: Return: (πθN , DwN )

B.2 WIEM: WORST INDIVIDUAL COST - ENTROPY MAXIMIZER:

We now consider convex combination of basis functions:

Cconvex =
{∑
i∈I

wifi, with
∑
i∈I

wi = 1, and wi ≥ 0,∀i ∈ I
}

In the classical non-generalised IRL setting, this is equivalent to MWAL Syed & Schapire (2007) and
LPAL Syed et al. (2008) where we minimise the worst-case excess cost among the basis functions
Ho & Ermon (2016):

L(π, c) + Ω(π) = max
c∈Cconvex

Eρπ [c(s, a)]− Eρπ̄ [c(s, a)] = max
i∈I

Eρπ [fi]− Eρπ̄ [fi]

This setting is also simply generalised for any geometric η by takng the expectation w.r.t. Eηπ:

Proposition 8 Under the assumptions of Proposition 2, and for ψ = ıCconvex , it holds that:

RLηΩ ◦ IRLηψ(πE) = arg min
π

−Ω(π) + max
i

Eηπ[fi]− EηπE [fi]

We derive WIEMη in the following, which is equivalent to GIRLδCconvex ,H,η
and a generalisation of

worst-case excess IRL algorithms.

The optimal cost function c∗π (given a previously learned policy π) must satisfy the following
equality5:∫

s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
c∗π(s+, a+) = max

i
Eµπ [fi]− EµπE [fi] (7)

As the objective solution is known, we propose to replace the cost optimisation step in the template
procedure we provide in Algorithm 1 with the following simple quadratic loss:

Lconvex(w) =
(
Eµπ [wfT ]− EµπE [wfT ]−max

i
Eµπ [fi]− EµπE [fi]

)2

(8)

5c.f. the proof of proposition 8 in Appendix F
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Given that the set of feasible cost function is convex, we can update the loss using projected gradient
updates. We also use an approximation of this loss in practice:

L̄convex(w) =
( ∑
S+,A+

wfT (s, a)−
∑

S+
E ,A

+
E

wfT (s, a)−max
i

[ ∑
S+,A+

fi(s, a)−
∑

S+
E ,A

+
E

fi(s, a)
])2

(9)

The algorithm we propose is then defined as follows:

Algorithm 4 WIEM

1: Input: Expert trajectories τE ∼ πE , initial policy πθ0 and initial cost function w0

2: for e ∈ [1, N ] do
3: Sample trajectories τ ∼ πθi
4: Sample states randomly (St, At) ∼ τ and (S+, A+) = (St+k, At+k) where k ∼ η
5: Sample states randomly (S′t, A

′
t) ∼ τE and (S+

E , A
+
E) = (S′t+k, A

′
t+k) where k ∼ η

6: Update the cost weights wi to minimise L̄convex(wi)
7: Project the cost weights on the feasible set Cconvex
8: Update θi using soft actor critic to minimise wi+1f

T

9: Return: (πθN , DwN )

C MULTI-TASK SETTING

Classically, the multi-task setting is defined by considering a task space Θ and for each task θ ∈ Θ
the associated Markov decision processMθ = {S,A,P, cθ, γ, p0}. Depending on the context, the
objective is then to either solve the RL or the IRL problems for the set of MDPs (Mθ)θ∈Θ by
averaging the losses with respect to a task distribution F . This is equivalent in principle to solving
the problem for the MDP M̄ = {S ×Θ, Ā, P̄, c̄, γ, p̄0} where for any states (s, s′), tasks (θ, θ′) and
action a, the following equalities hold true:

Ā(s, θ) = A(s)

P̄(s′, θ′|s, θ, a) = P(s′|s, a)δ(θ′ = θ)

c̄(s, θ, a) = cθ(s, a)

p̄0(s, θ) = p0(s)F(θ)

We adapt the latter formulation here for the sake of coherence with previous sections.

The difficulty in multi-task settings arises from ray-interference: when the cost function encourages
conflicting behaviours for different tasks, the learning objective plateaus Schaul et al. (2019). This
stagnates the progress of the policy, which in turn complicates the IRL problem as these plateaus are
an opportunity for the discriminator to over-fit the replay-buffer. To alleviate this issue, we propose to
augment the data-set as proposed in Section C.1 (by using MEGAN coupled with the Idle subroutine.

C.1 IDLE : AN ON-POLICY DATA AUGMENTATION ROUTINE

If the state space S is very large, or even continuous, it becomes quite unlikely to encounter the same
state twice in a (finite) trajectory from a given data-set. In particular, this renders quite difficult the
estimation of future state distribution P ηπ (.|s) (where s ∼ ρπ(.|s0)).

To circumvent this issue, we propose to use the following on-policy data augmentation
scheme, modeled as a game between a discriminator D : (S ×A× S)→ [0, 1] and a genera-
tor G : S → ∆(S ×A). The objective of the generator is to produce future states similar to the
gathered samples while the discriminator D aims to identify true samples from generated ones, with
the following score function:

V (D,G) = E
[

log(D(s+, a+|s)) + log(1−D(sg, ag|s))
]

where the expectation is taken w.r.t the future state distribution P ηπ (.|s) for (s+, a+), the generator
distribution G(.|s) for (sg, ag), and the marginal over the initial state distribution of the occupancy
measure ρπ(.|s0) for s. Solving this game approximates P ηπ :
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Proposition 9 (D̃, G̃) = (1
2 , P

η
π ) is a Nash-equilibrium of the following zero-sum game:

D∗ : min
D

V (D,G) and G∗ : max
G

V (D,G) (10)

From this proposition, we derive in Algorithm 5, a method to approximate future state distributions
that is used as a subroutine in GIRL. This approach is theoretically feasible given an on-policy data
set (such as the expert’s trajectories). In practice, we noticed that approximating P ηπ using (Idle)
produces reliable generators when the variance of η is relatively small, so that future state samples
fall within a reduced range with a high probability. Inversely, if η has a high variance, samples from
P ηπ would be along extended horizon and the (Idle) discriminator easily picks up on the parts being
learned and halts the generator’s improvement. This either leads to vanishing gradient updates or a
mode collapse.

Algorithm 5 Idle (an on-policy future state generator)

1: Input: On-policy trajectories τ , initial discriminator Dφ0 and initial generator Gν0

2: for e ∈ [1, N ] do
3: Sample states randomly (St, At) ∼ τ
4: Sample (S+, A+) = (St+k, At+k) where k ∼ η
5: Sample (S+

G , A
+
G) ∼ Gνi(S)

6: Update the discriminator parameter φi to minimise:∑
St,S

+,A+

log(Dφi(s+, a+|s)) +
∑

St,S
+
G,A

+
G

log(1−Dφi(s+, a+|s))

7: Update the generator parameter νi to minimise:
∑
St

log(D(G(s)|s))
8: Return: (DφN , GνN )

D EXPERIMENTS FOR THE MULTI-TASK SETTING AND THE IDLE PROCEDURE

D.1 FETCH-REACH ENVIRONMENT

We consider in this section the FetchReach6 task from the MuJoCo based environments Plappert et al.
(2018). To evaluate the generalisability of the learned policies, we only generate expert trajectories
for a subset of possible tasks (only target positions that are 5-10 cm away from the initial gripper’s
position7 to be precise). We evaluate the learned policies in the learned setting (same horizon and
same tasks) and in a generalisability setting (twice the training horizon and the full range of tasks).
As in the simple task setting, we asses performances in terms of normalised cumulative costs.

In Figure 4a, we compare the performances of MEGAN (with and without the data augmentation) and
GAIL over the training. We observe that both GAIL and MEGAN (without Idle) struggle in solving
the problem. However, using the Idle generator reduces the undesirable effect of ray interference and
stabilises the training. Performance wise, the learned policy using MEGAN outperforms the expert
demonstrations in the training tasks while at the same time providing comparable performances in
the remaining set of tasks (as provided in Figure 4b).

Figure 5: Idly generated samples from
expert trajectory

It is arguable that the success of MEGAN in the multi-task
setting is explained with the Idle procedure. A similar
approach on GAIL might be appealing. However, this is
not feasible in practice. It is true that the reasoning pro-
vided in Section C.1 can be developed for any distribution
η, this entails that we can use the same approach to learn
a generator that mimics ρπ(.|s0). Unfortunately, this is
not feasible in practice (due to the high variance of ρπ , as
explained in Section C.1). The issue at play here is that

6To the extent of our knowledge, this is the first reported performances of IRL algorithms on a fully continuous
environment

7the maximum range of the arm is about 25 cm
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(a) Normalised cumulative costs over training
(b) Normalised cumulative costs (best performance)

Figure 4: Performances in the Fetch Reach setting

the latter distribution (ρπ) covers all the observations of
the trajectory. Indeed, from our early empirical attempts,
we noticed that learning such distribution is unstable: we
either over-fit a sub-set of the trajectory (notably the sta-
tionary distribution, which is hurtful for our purpose) or
we do not learn the distribution at all. On the other hand,
learning P ηπ conditioned on some intermediate state is a lot easier when we choose η such that it
only covers the near future transitions (for example when η = Geom(0.7), the average prediction of
P ηπ (|st) is 3 steps in the future).

In Figure 5, we evaluate the learned approximation of PGeom(0.7)
πE on a sample expert trajectory. We

plot the evolution of the (true/generated) gripper position in 3D overtime. For each state encountered
on the trajectory, the learned generator outputs 10 samples (in blue). Clearly, the future state generator
is reliable; this is successful because the distribution η is a short term prediction: the learned generator
maps current states to the possible ones in the next few steps.

D.2 MULTI-TASK 2-D NAVIGATION

Figure 6: 2-D navigation envi-
ronment

In this section we report the performances on a custom-made multi-
task navigation environment. The goal is to navigate from an initial
position to a target position while avoiding four lakes. The state
space is constructed by concatenating the coordinates of the agent,
the coordinates of the target as well as the distance from the centre
of each of the four lakes. The action space is the norm 2 ball
{x ∈ R2 s.t. ‖x‖2 ≤ 1}. The transition kernel is a Dirac mass at
the sum of the previous position and the action vector. If the sum
is within one of the lakes or outside the grid, then the new position
is the projection of the previous position on the border according
to the action direction. In Figure 6, we render the environment to
provide an idea about the task at hand: the lakes are painted in blue,
the agent is the red square, the target is the green square, and the
grey pixels are the possible positions. These positions are the subset
of [−10, 10]2 that excludes the points within the lakes. The goal is
to navigate around the lakes in order to reach the target position.

Learning the Idle generator In this section we analyse the ability to learn P ηπ and ρπ using
Algorithm 5. As discussed in Section C.1, when the target distribution is a short term prediction
of future states, the obtained generator is reliable. We consider in what follows η = Geom(0.7) to
satisfy this condition. We use the same hyper-parameters to learn the generator in both cases (P ηπ and
ρπ). We use 3-layers deep, 64-neurons wide neural networks for the generator and the discriminator,
a batch size of 256 and we iterate the algorithm for 10000 steps. In Figures 7 and 8, we plot the expert
trajectories with black lines, the initial position with green dots, the target position with red dots,
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Figure 7: P ηπ learned generator

Figure 8: ρπ learned generator

and the sampled states with blue triangles. On one hand, we observe in Figure 7 that the P ηπ learned
generator provides reliable samples (in the sense that they follow the trails of expert trajectories).
On the other hand, in Figure 8, we observe that the learned ρπ generator over-fits the stationary
distribution and only samples states around the target position. The mode collapse is essentially
explained by the fact that most of the samples from the ρπ distribution are indeed around the target
position.

Learned cost function As discussed in Section 5, we only obtain expert-like performances when
using the Idle generator. However, given that the considered state-space in this section is a 2-D plan,
we can visualise the learned (state only) cost function with a heat-map. We consider five particular
tasks that coincide with reaching the top-left, center, top-right, bottom-left and bottom-right of the
map. Figures 9 and 10 coincide with such heat-maps, with darker shades for higher costs and brighter
colours for lower ones. In Figure 9, we observe that the GAIL learned costs are particularly low in
the vicinity of the target position while they are evenly spreaded elsewhere. This entails from the
discriminator over-fitting the replay-buffer as most of the observations are drawn from the stationary
distribution. On the other hand, in Figure 10, we observe that the MEGAN learned costs are high
outside of the paths that lead to the target, and decrease exponentially as we get closer to the goal
position.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 MAXIMUM MEAN DISCREPANCY EVALUATION

Formally, given a reproducing kernel Hilbert space (RKHS) of real-valued functionsH, the MMD
between two distributions P and Q is defined as: MMDH(P,Q) = supf∈H EX∼P [f(X)] −
EY∼Q[f(Y )]. Recall that the reproducing property of RKHS, implies that there is a one to one
correspondence between positive definite kernels k and RKHSsH such that every function f ∈ H
verifies f(x) = 〈f, k(., x)〉H (where 〈 , 〉H denotes the RKHS inner product). We propose to evaluate
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Figure 9: GAIL learned cost heat-map as a function of the target position

Figure 10: MEGAN learned cost heat-map as a function of the target position
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the MMD using a kernel two-sample test with the following unbiased estimator Gretton et al. (2012):

MMD2
H(P,Q) =

1

N(N − 1)

∑
i 6=j

k(xi, xj) +
1

N(N − 1)

∑
i6=j

k(yi, yj)−
1

N2

∑
i,j

k(xi, yj)

where (xi)
N
i=0 are sampled according to P and (yi)

N
i=0 are sampled according to Q. In the

experimental analysis, we only consider the RKHS associated with the radial basis function
k(x, y) = exp(‖x− y‖2/d) (where d is the dimension of the variables x and y).

E.2 HYPER-PARAMETERS

In this section we provide a detailed description of the used implementation as well as the selected
hyper-parameters.

Expert demonstrations of length MAX-LENGTH are stored in a demonstrator replay-buffer. We use
two additional replay-buffers (one for the policy and one for the expert), with a maximum capacity of
106 transitions that are initially empty. In each cycle, N trajectories from the demonstrator replay-
buffer are sampled and added to the expert replay-buffer. The policy generates then N trajectories,
that are stored in the policy replay-buffer. In the multi-task setting, the tasks of these trajectories are
the same ones in the expert’s samples. The policy is updated each cycle using SAC for SAC-EPOCH
epochs with a bath size of SAC-BATCH. Every D-UPDATE-RATE cycles, the discriminator is updated
for D-EPOCH epochs with a bath size of D-BATCH. The algorithm runs until the policy generates
MAX-TRANSITIONS transitions in total.

The policy, as well as the underlying value functions, are approximated using an N-LAYER-P deep,
HIDDEN-P wide neural networks. The discriminator is approximated using an N-LAYER-D deep,
HIDDEN-D wide neural network.

ENV-ID Hopper Half-Cheetah Ant FetchReach 2-D Maze
N 90 90 90 90 90

MAX-LENGTH 500 500 500 100 50
SAC-EPOCH 500 500 500 300 150
SAC-BATCH 256 256 256 1024 128

D-UPDATE-RATE 1 1 1 5 1
D-EPOCH 50 50 50 500 300
D-BATCH 512 512 512 512 128

N-LAYER-P 3 3 3 4 4
HIDDEN-P 64 64 64 64 64

N-LAYER-D 1 1 1 3 3
HIDDEN-D 16 32 32 16 16

MAX-TRANSITIONS 107 107 107 106 5× 105

F PROOF OF TECHNICAL RESULTS

We provide in this section proofs for all stated technical results. To find a particular one, please refer
to the following:

Section F.1: Useful intermediate results as well as their proof.
Section F.2: Proofs for the theoretical claims stated in Section 2.3 and Appendix A.
Section F.3: Proofs for the theoretical claims stated in Section 2.4.
Section F.4: Proof for the theoretical claims stated in Section C.1.
Section F.5: Proof for the theoretical claims stated in Section 4.

F.1 USEFUL INTERMEDIATE RESULTS

For the sake of conciseness, we start by providing important intermediate results that will be used
in the proofs of propositions 6, 2, and 3. The first one (Proposition 10) transforms η-weighted γ
discounted functional averaged over π-generated trajectory into expectations with respect to ρπ and
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P ηπ or, equivalently into expectations with respect to µπ . The second one (Proposition 11) guarantees
a one on one mapping between occupancy measures and policies.

Proposition 10 For any distribution η, and for any mapping f : S ×A → R, the following identity
holds:

Eηp0,π[
∑
t

γtf(st, at)] =

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)f(s+, a+) (11)

=

∫
s0,s+,a+

p0(s0)µπ(s+, a+|s0)f(s+, a+) (12)

Proposition 11 Let (φt)
∞
t=0 be a strictly positive real valued convergent series (i.e.

∑
t φt <∞ and

φt > 0), and let Φπ(s, a|s0) be the φ-weighted occupancy measure associated to the policy π:

Φπ(s, a|s0) :=
∑
t

φtPπ(st = s, at = a|s0)

Then for a given φ-weighted occupancy measure Φ ∈ {Φπ|π : S → ∆(A)}:

1- Φ is the φ-weighted occupancy measure of πΦ := Φ(s,a|s0)∫
a′ Φ(s,a′|s0)

2- πΦ is the only policy whose φ-weighted occupancy measure is Φ

PROOF OF PROPOSITION 10:

The proof of the first equality relies on some algebraic manipulations and the law of total expectation.

Eηp0,π[
∑
t

γtf(st, at)] :=

∫
s0,s,a

p0(s0)P ηπ (s, a|s0)Eπ,δ(s,a)
[
∑
t

γtf(st, at)] (13)

=

∫
s0,s,a

p0(s0)
∑
k

η(k)Pπ(sk = s, ak = a|s0)Eπ[
∑
t

γtf(st+k, at+k)|sk = s, ak = a] (14)

=

∫
s0,sk,ak

p0(s0)
∑
k,t

γtη(k)Eπ
[
Eπ
[
f(st+k, at+k)|sk, ak

]∣∣∣s0

]
(15)

where Eπ,δ(s,a)
designate the expectation over trajectories initialised at the state action couple (s, a).

Using the law of total expectation we can assert that:

Eπ
[
Eπ
[
f(st+k, at+k)|sk, ak

]∣∣∣s0

]
= Eπ[f(st+k, at+k)|s0] (16)

= Eπ
[
Eπ
[
f(st+k, at+k)|st, at

]∣∣∣s0

]
(17)

From this relationship, it follows that:

Eηp0,π[
∑
t

γtf(st, at)] =

∫
s0,st,at

p0(s0)
∑
k,t

γtη(k)Eπ
[
Eπ
[
f(st+k, at+k)|st, at

]∣∣∣s0

]
(18)

=

∫
s0,s,a

p0(s0)
∑
t

γtPπ(st = s, at = a|s0)Eπ,δ(s,a)
[
∑
k

η(k)f(sk, ak)] (19)

=

∫
s0,s,a

p0(s0)ρπ(s, a|s0)Eπ,δ(s,a)
[
∑
k

η(k)f(sk, ak)] (20)

=

∫
s0,s,a

p0(s0)ρπ(s, a|s0)
∑
k

η(k)

∫
s+,a+

Pπ(st+k = s+, at+k = a+|st = s, at = a)f(s+, a+)

(21)

=

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)f(s+, a+) (22)
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This concludes the proof of the first equality in Proposition 10.

The proof of the second equality relies on the Markov property of the environment and some algebraic
manipulations.

Eηp0,π[
∑
t

γtf(st, at)] =

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)f(s+, a+) (23)

=

∫
s0,s,a,s+,a+

p0(s0)
∑
t

γtPπ(st = s, at = a|s0)
∑
k

η(k)Pπ(st+k = s+, at+k = a|st = s, at = a)f(s+, a+)

(24)

=

∫
s0,s+,a+

p0(s0)
∑
t,k

γtη(k)

∫
s,a

(
Pπ(st = s, at = a|s0)Pπ(st+k = s+, at+k = a|st = s, at = a)

)
f(s+, a+)

(25)

=

∫
s0,s+,a+

p0(s0)
∑
t,k

γtη(k)Pπ(st+k = s+, at+k = a|s0)f(s+, a+) (26)

=

∫
s0,s+,a+

p0(s0)µπ(s+, a+|s0)f(s+, a+) (27)

This concludes the proof of Proposition 10.

PROOF OF PROPOSITION 11:

For the first assertion of the proposition, recall that:

Φπ(s, a|s0) :=
∑
t

φtPπ(st = s, at = a|s0) (28)

=
∑
t

φtPπ(st = s|s0)π(a|s) := Φπ(s|s0)π(a|s) (29)

This implies that:

Φ(s, a|s0)∫
a′

Φ(s, a′|s0)
=

π(a|s)Φπ(s|s0)∫
a′
π(a′|s)Φπ(s|s0)

= π(a|s) (30)

For the second assertion of the proposition, consider two policies π1 and π2 such that Φπ1 = Φπ2 .
Notice that:

∀s, s0 ∈ S Φπ1
(s|s0) :=

∑
t

φtPπ1
(st = s|s0) =

∫
a

Φπ1
(s, a|s0) (31)

=

∫
a

Φπ2
(s, a|s0) = Φπ2

(s|s0) (32)

This can further yield:

∀s ∈ S, a ∈ A Φπ1
(s, a|s0) = Φπ2

(s, a|s0) (33)
⇒∀s ∈ S, a ∈ A Φπ1

(s|s0)π1(a|s) = Φπ2
(s|s0)π2(a|s) (34)

⇒∀s ∈ S, a ∈ A π1(a|s) = π2(a|s) (35)

This concludes the proof of Proposition 11.

F.2 GENERALISED REINFORCEMENT LEARNING

In this section we address the claims stated in section 2.3 as well as those stated in Appendix A.
Proposition 1 is recalled for the sake of comprehensiveness, a detailed proof is provided in Geist et al.
(2019).
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PROOF OF PROPOSITION 5:

In order to obtain the desired result, we exploit both the classical policy gradient theorem and the
product derivative rule. Using elementary calculus, we obtain the following:

∇θEηp0,πθ
[Qcπθ ] = ∇θ

∫
s0,s+,a+

p0(s0)P ηπθ (s+, a+|s0)Qcπθ (s+, a+) (36)

= ∇θ
∫
s0,s+,a+

p0(s0)P ηπθ (s+|s0)πθ(a+|s+)Qcπθ (s+, a+) (37)

= ∇θ
∫
s0,s+

p0(s0)P ηπθ (s+|s0)vcπθ (s+) (38)

=

∫
s0,s+

p0(s0)
[
vcπθ (s+)∇θP ηπθ (s+|s0) + P ηπθ (s+|s0)∇θvcπθ (s+)

]
(39)

=

∫
s0,s+

p0(s0)vcπθ (s+)∇θP ηπθ (s+|s0) +

∫
s0,s+

p0(s0)P ηπθ (s+|s0)∇θvcπθ (s+)︸ ︷︷ ︸
A

(40)

Recall that the policy gradient theorem can be written simply as:

∀s0 ∈ S ∇θEπθ [
∑
t

γtc(st, at)|s0] = ∇θ
∫
a

πθ(a|s0)Qcπθ (s0, a) (41)

= ∇θvcπθ (s0) =

∫
s

ρπ(s|s0)Ea∼πθ [Qcπθ (s, a)∇θ log πθ(a|s)]

(42)

This concludes our proof as:

A =

∫
s0,s+

p0(s0)P ηπθ (s+|s0)∇θvcπθ (s+) =

∫
s0,s+,s

p0(s0)P ηπθ (s+|s0)ρπ(s|s+)Ea∼πθ [Qcπθ (s, a)∇θ log πθ(a|s)]

(43)

PROOF OF PROPOSITION 6:

The proof relies on the definition of the advantage function to obtain the first equality and on
proposition 10 to obtain the second one. Recall that:

Eηp0,πn

[∑
t

γtAπo(st, at)
]

= Eηp0,πn

[∑
t

γt(c(st, at) + γvcπo(st+1)− vcπo(st))
]

(44)

= Eηp0,πn [−vcπo(s0) +
∑
t

γtc(st, at)] (45)

= −
∫
s0

p0(s0)vcπo(s0)︸ ︷︷ ︸
Lη0 (πo,c)

+Eηp0,πn [
∑
t

γtc(st, at)]︸ ︷︷ ︸
Lη0 (πn,c)

(46)

⇐⇒ Lη0(πn, c) = Lη0(πo, c) + Eηp0,πn

[∑
t

γtAπo(st, at)
]

(47)

This concludes the proof of the first equality. In addition, by observing that Aπ is a mapping from
S ×A to R, we can apply proposition 10 to further simplify the expectation term:

Eηp0,πn

[∑
t

γtAπo(st, at)
]

=

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)Aπo(s+, a+) (48)

This concludes the proof as we have:

Lη0(πn, c) = Lη0(πo, c) +

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)Aπo(s+, a+) (49)
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F.3 GENERALISED INVERSE REINFORCEMENT LEARNING

In this section, we address the claims stated in section 2.4.

PROOF OF PROPOSITION 2:

The proof relies on the properties of saddle point Hiriart-Urruty & Lemaréchal (2013). Let c̃, π̃ and π̂
be respectively defined as:

c̃ ∈ IRLηψ,Ω(πE)

π̃ ∈ RLηΩ(c̃) = RLηΩ ◦ IRLηψ,Ω(πE) = arg min
π

LηΩ(π, c̃)

π̂ ∈ arg min
π

max
c
L(π, c)

Our goal is to prove that π̃ = π̂. Equivalently (due to proposition 11) this boils down to proving that
µπ̃ = µπ̂ . Using Proposition 10 and 11, we can re-write:

LηΩ(π, c) := Eηp0,π

[∑
t

γtc(st, at)
]
− Ω(π) (50)

=

∫
s0,s,a,s+,a+

p0(s0)ρπ(s, a|s0)P ηπ (s+, a+|s, a)c(s+, a+)− Ω(π) (51)

= L̄ηΩ(µπ, c) =

∫
s0,s+,a+

p0(s0)µπ(s+, a+|s0)c(s+, a+)− Ω(µπ) (52)

This implies that :
µπ̃ ∈ arg min

µ∈D
L̄ηΩ(µ, c̃) = arg min

µ∈D
L̄(µ, c̃) (53)

where:
L̄ : D × RS×A → R (54)

D =
{
µπ : µπ(s, a|s0) =

∑
t,k

γtη(k)Pπ(st+k = s, at+k = a|s0)
∣∣∣π : S → ∆(A)

}
(55)

L̄(µπ, c) = L(π, c) = −Ω(π)− ψ(c) +

∫
s0

p0(s0)dc(π‖πE)(s0) (56)

= −Ω(µπ)− ψ(c) +

∫
s0,s+,a+

p0(s0)c(s+, a+)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
(57)

In addition, for the same reasons, we have that:
c̃ ∈ arg max

c
min
π
LηΩ(π, c)− LηΩ(π∗E , c)− ψ(c) = arg max

c
min
µ∈D

L̄(µ, c)

µπ̂ ∈ arg min
µ∈D

max
c
L̄(µ, c)

(58)

Notice that RS×A is convex, L̄(µ, c) is convex w.r.t µ and concave w.r.t c (due to convexity of ψ and
−Ω). Therefore, the minmax duality property holds as soon as D is compact and convex.

Convexity and compacity of D: We prove this under the assumption that η is a geometric distri-
bution (i.e. η = Geom(γη)). To establish the convexity, we prove that D = {f : S → ∆(S ×A)}
where f is a solution of the following equations:

∀s, s0 ∈ S, a ∈ A

∫
a

f(s, a|s0) =

∫
a

g(s, a|s0) +

∫
s′,a′

γf(s′, a′|s0)P(s|s′, a′)∫
a

f(s, a|s0) =

∫
a

h(s, a|s0) +

∫
s′,a′

γηf(s′, a′|s0)P(s|s′, a′)∫
a

g(s, a|s0) = 1 +

∫
s′,a′

γηP(s|s′, a′)g(s′, a′|s0)∫
a

h(s, a|s0) = 1 +

∫
s′,a′

γP(s|s′, a′)h(s′, a′|s0)

f(s, a|s0) ≥ 0, g(s, a|s0) ≥ 0, h(s, a|s0) ≥ 0

. (59)
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To this end, notice that for any policy π, we can verify that (f = µπ, g = P ηπ , h = ρπ) is a solution
to Equation 59. We focus now on the converse statement. Let (f, g, h) a solution to Equation 59.
Given the third equality:∫

a

g(s, a|s0) = 1 +

∫
s′,a′

γηP(s|s′, a′)g(s′, a′|s0), (60)

we exploit a classical result from the MDP literature [Puterman (2014), Section 6.9.2], to derive the
existence of a policy πg such that:

g(s, a|s0) = πg(a|s)
[
1 +

∫
s′,a′

γηP(s|s′, a′)g(s′, a′|s0)
]

where ∀s0 ∈ S πg(a|s) =
g(s, a|s0)∫
a′
g(s, a′|s0)

(61)

From Equation 61, we conclude that g is the unique fixed point of a γη-contraction. We can verify
that g = P ηπg is the unique solution of Equation 61. Using a similar reasoning with respect to the
fourth equality in Equation 59, we conclude that h = ρπh where for any state s0 ∈ S, we have
πh(a|s) = h(s,a|s0)∫

a′ h(s,a′|s0)
. From this, we conclude that for any solution (f, g, h) to Equation 59, there

exist two policies πh and πg such that:

∀s, s0 ∈ S, a ∈ A

∫
a

f(s, a|s0) = P ηπg (s|s0) +

∫
s′,a′

γf(s′, a′|s0)P(s|s′, a′)∫
a

f(s, a|s0) = ρπh(s|s0) +

∫
s′,a′

γηf(s′, a′|s0)P(s|s′, a′)

f(s, a|s0) ≥ 0

. (62)

which is equivalent to [Puterman (2014), Section 6.9.2]:

∀s, s0 ∈ S, a ∈ A

f(s, a|s0) = πf (a|s)
[
P ηπg (s|s0) +

∫
s′,a′

γf(s′, a′|s0)P(s|s′, a′)
]

f(s, a|s0) = πf (a|s)
[
ρπh(s|s0) +

∫
s′,a′

γηf(s′, a′|s0)P(s|s′, a′)
]

πf (a|s) =
f(s, a|s0)∫
a′
f(s, a′|s0)

, f(s, a|s0) ≥ 0

.

(63)

Notice that the first equality in Equation 63, implies that f is the unique fixed point of a γ-contraction.
We also notice that:

f0
πg,πf

(s+, a+|s0) :=
∑
k,t

γtγkη

∫
s,a

Ptπf (s+, a+|s)Pkπg (s, a|s0) (64)

=
∑
k,t>0

γtγkη

∫
s,a

Ptπf (s+, a+|s)Pkπg (s, a|s0) +
∑
k

γkη

∫
s,a

P0
πf

(s+, a+|s)Pkπg (s, a|s0)

(65)

= γπf (a+|s+)

∫
s′,a′

f0
πg,πf

(s′, a′|s0)P(s|s′, a′) +
∑
k

γkηPkπg (s+|s0)πf (a+|s+)

(66)

= πf (a+|s+)
[ ∫

s′,a′
γf0

πg,πf
(s′, a′|s0)P(s+|s′, a′) + P ηπg (s+|s0)

]
(67)

where Pnπ(s, a|s0) = Pπ(sn = s, an = a|s0 = s0). Thus, we conclude f0
πg,πf

is the unique solution
to the first equality. Similarly, we notice that the second equality is a γη-contraction, whose unique
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fixed point is:

f1
πh,πf

(s+, a+|s0) :=
∑
k,t

γtγkη

∫
s,a

Pkπf (s+, a+|s)Ptπh(s, a|s0) (68)

=
∑
k>0,t

γtγkη

∫
s,a

Pkπf (s+, a+|s)Ptπh(s, a|s0) +
∑
t

γt
∫
s,a

P0
πf

(s+, a+|s)Ptπh(s, a|s0)

(69)

= πf (a+|s+)
[ ∫

s′,a′
γηf

1
πh,πf

(s′, a′|s0)P(s+|s′, a′) + ρπh(s+|s0)
]

(70)

We derive from the previously discussed statement, that if (f, g, h) is a solution to Equation 59, then
there exist three policies (πf , πg, πh) such that:

f = f0
πg,πf

= f1
πh,πf

g = P ηπg

h = ρπh

(71)

However, not any random choice of policies (πf , πg, πh) can satisfy Equation 71. By varying γ and
γη, we notice that in order for the first equality to hold, the following equality must be satisfied for
any integers (k, t), and for any states (s+, a+, s0):∫

s,a

Ptπf (s+, a+|s)Pkπg (s, a|s0) =

∫
s,a

Pkπf (s+, a+|s)Ptπh(s, a|s0) (72)

by fixing k at zero and varying t and by fixing t at zero and varying k, we obtain the following
constraints:

P ηπf = P ηπg

ρπf = ρπh
(73)

Using Proposition 11 and Equation 73, it follows that Equation 71 admits a solution if and only if
πf = πg = πh. This means that if (f, g, h) is a solution to Equation 59, then there exists a policy π
such that:

f = f0
π,π = f1

π,π = µπ

g = P ηπ
h = ρπ

(74)

This concludes the converse statement, proving that D is a set of occupancy measures satisfying the
set of affine constraints from Equation 59. Consequently, D is a convex set. In addition, the limit
of any sequence of elements from D will also satisfy Equation 62. From this we establish that D is
closed which implies that it is also compact.

From this we derive that minmax duality holds and that:

min
µ∈D

max
c
L̄(µ, c) = max

c
min
µ∈D

L̄(µ, c) (75)

From Equation 58, it follows that (µπ̂, c̃) is a saddle point for the function L̄. This implies from
Equation 53 that:

µπ̂, µπ̃ ∈ arg min
µ∈D

L̄(µ, c̃) (76)

In addition, due to the strict convexity of L̄ w.r.t µ (due to assumed strict convexity of Ω) we have
that:

µπ̂ = µπ̃ (77)

which concludes our proof.
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PROOF OF COROLLARY 2.1:

The proof entails directly from the duality of L̄ and that (c̃, µπ̃) is a saddle point of L̄.

PROOF OF PROPOSITION 3:

The proof relies on re-writing the η-weighted entropy reguliser using Proposition 10, and then
verifying its convexity with respect to µπ using the log-sum inequality. In fact, notice that:

Hη
p0

(π) = Eηp0,π

[∑
t

−γt log
[
π(at|st)

]]
(78)

=

∫
s0,s+,a+

p0(s0)µπ(s+, a+|s0) log
[
π(a+|s+)

]
= H̄η

p0
(µπ) (79)

Consider two η-weighted occupancy measures µ1, µ2, and let π1, π2 their respective policies. Let
λ ∈]0, 1[:

H̄(λµ1 + (1− λ)µ2) =

∫
s0,s+,a+

−p0(s0)
[
λµ1 + (1− λ)µ2

]
(s+, a+|s0) log

[ [λµ1 + (1− λ)µ2

]
(s+, a+|s0)∫

a

[
λµ1 + (1− λ)µ2

]
(s+, a|s0)

]
(80)

Du to the log-sum inequality we have:[
λµ1 + (1− λ)µ2

]
(s+, a+|s0) log

[ [λµ1 + (1− λ)µ2

]
(s+, a+|s0)∫

a

[
λµ1 + (1− λ)µ2

]
(s+, a|s0)

]
(81)

=
[
λµ1 + (1− λ)µ2

]
(s+, a+|s0) log

[ λµ1(s+, a+|s0) + (1− λ)µ2(s+, a+|s0)

λ
∫
a
µ1(s+, a|s0) + (1− λ)

∫
a
µ2(s+, a|s0)

]
(82)

≤λµ1 log
[ λµ1(s+, a+|s0)

λ
∫
a
µ1(s+, a|s0)

]
+ (1− λ)µ2 log

[ (1− λ)µ2(s+, a+|s0)

(1− λ)
∫
a
µ2(s+, a|s0)

]
(83)

=λµ1 log
[ µ1(s+, a+|s0)∫

a
µ1(s+, a|s0)

]
+ (1− λ)µ2 log

[ µ2(s+, a+|s0)∫
a
µ2(s+, a|s0)

]
(84)

This implies that:

H̄(λµ1 + (1− λ)µ2) ≥ λH̄(µ1) + (1− λ)H̄(µ2) (85)

with equality if and only if π1(a|s) := µ1(s,a|s0)∫
a′ µ1(s,a′|s0)

= µ2(s,a|s0)∫
a′ µ2(s,a′|s0)

:= π2(a|s). This concludes
the proof of the η-weighted strict concavity w.r.t the set of measures µ.

F.4 DATA AUGMENTATION

In this section, we provide the proof of Proposition 9. We start by noticing that V (D,G) is the loss
function used by conditional generative adversarial neural networks Mirza & Osindero (2014), which
minimum w.r.t the discriminator is achieved for the optimal Bayes classifier Goodfellow et al. (2014):

D∗(s, a|s0) =
P ηπ (s, a|s0)

P ηπ (s, a|s0) +G(s, a|s0)
(86)

where G(s, a|s0) is the probability of generating (s, a) using the generator G. From this, we can
re-write the generator’s loss against an infinite capacity (optimal) discriminator as:

V (D∗, G) = DKL(P ηπ (s, a|s0)‖ P ηπ (s, a|s0)

P ηπ (s, a|s0) +G(s, a|s0)
) +DKL(G(s, a|s0)‖ P ηπ (s, a|s0)

P ηπ (s, a|s0) +G(s, a|s0)
)− log(4)

(87)
= 2DJSC(G(s, a|s0)‖P ηπ (s, a|s0))− log(4) (88)

where DKL is the KL divergence, and DJSC is the Jenson-Shannon divergence. A global minimum
is achieved when G∗:

G∗(s, a|s0) = P ηπ (s, a|s0). (89)

This concludes the proof as it implies that (D̃ = 1
2 , G̃ = P ηπ ) is a Nash-equilibrium
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F.5 PARTICULAR SETTINGS OF INTEREST

In this section we address the claims stated in section 4.

PROOF OF PROPOSITION 7:

Notice that in this setting:

max
c
L(π, c) = max

c∈Clinear

∫
s0

p0(s0)dc(π‖πE)(s0) (90)

= max
c∈Clinear

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
c(s+, a+) (91)

= max
w with ‖w‖2≤1

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]∑
i

wifi(s+, a+)

(92)

= max
w with ‖w‖2≤1

∑
i

wi

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
fi(s+, a+)

(93)

=
∥∥∥∫

s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
fi(s+, a+)

∥∥∥
2

(94)

=
∥∥∥Eµπ [f ]− EµπE [f ]

∥∥∥
2

(95)

This concludes the proof.

PROOF OF PROPOSITION 8:

In this case, we notice the following:

max
c
L(π, c) = max

c∈Cconvex

∫
s0

p0(s0)dc(π‖πE)(s0) (96)

= max
c∈Cconvex

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
c(s+, a+) (97)

= max
wi>0 with

∑
wi=1

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]∑
i

wifi(s+, a+)

(98)

= max
wi>0 with

∑
wi=1

∑
i

wi

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
fi(s+, a+)

(99)

= max
i

∫
s0

p0(s0)
[
µπ(s+, a+|s0)− µπE (s+, a+|s0)

]
fi(s+, a+) (100)

= max
i

Eµπ [fi]− EµπE [fi] (101)

This concludes the proof.

PROOF OF PROPOSITION 4:

We start by re-writing the cost function as an expectation with respect to the occupancy measure µπ
using Proposition 10:

ψGAN (c) =

{ ∫
s,a,s0

p0(s0)µπE (s, a|s0)g(c(s, a)) if c < 0

+∞ otherwise
(102)
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With this, we can rewrite the objective function L(π, c) in this setting as follows:

L(π, c) = −Ω(π)− ψ(c) +

∫
s0

p0(s0)dc(π‖πE)(s0) (103)

= −Ω(π) +

∫
s0

p0(s0)

∫
s,a

[
µπE (s, a|s0)g(c(s, a)) +

(
µπ(s, a|s0)− µπE (s, a|s0)

)
c(s, a)

]
(104)

Notice that this is the same objective as the one used in GAIL [Ho & Ermon (2016) Appendix A.2],
where we compute expectations with respect to µπ while the do it with respect to ρπ . Using the same
change of variable, we can obtain the folowing:

max
c
L(π, c) = max

D∈(0,1)S×A
−Ω(π) +

∫
s0

p0(s0)

∫
s,a

µπ(s, a|s0) log(D(s, a)− µπE (s, a|s0) log(1−D(s, a))

(105)

This concludes the proof of Proposition 4, as we can state using Proposition 10:

RLηΩ ◦ IRLηψ(πE) = arg min
π

max
c
L(π, c) (106)

= arg min
π

−Ω(π) + max
D∈(0,1)S×A

Eηp0,π[logD]− Eηp0,πE [log(1−D))] (107)
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