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Figure 1. Application Overview on Our Training Whole Slide Images (WSIs) Augmentation. Pathologists commonly rely on Formalin-
Fixed Paraffin-Embedded (FFPE) slides for crucial diagnostic, prognostic, and treatment decisions. To alleviate the pathologist’s workload,
innovative machine learning-based cancer grading techniques have emerged. These methods leverage tiles extracted from slides to offer
supplementary insights, aiding pathologists or directly informing prognosis and treatment strategies. However, it is costly to prepare FFPE
slides (typically 2-3 days to prepare a single FFPE slide) and substantial human involvement required to annotate these slides (which may
cost several months) for these cancer grading models. In this study, we present Latent Diffusion Models (LDMs) with Self-Distillation
from Separated Conditions (DISC). This novel methodology enables the generation of tiles based on provided slide-level labels, improving
the efficiency and accuracy in cancer diagnostics.
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1. Introduction of Training Whole Slide
Images Preparation for Computer-Aided
Prostate Cancer Diagnosis and Our Pro-
posed Generative Models for Data Aug-
mentation

We provide an overview of how real Whole Slide Images
(WSIs) and our synthetic WSIs are generated and their
applications for prostate cancer diagnosis, prognosis, and
treatment in Figure 1.

2. Pre-defining Tile Shape Masks and Mask
Sampling

See Figure 2.

3. Ablation Study on Random Weights
To further prove the effectiveness of our sampling technique
where Random Weights (probability of being chosen for a
label) are applied to make sure the generated primary and
secondary Gleason Grades (GGs) are similar to pre-defined
GGs, we train two models with our empirically-set Ran-
dom Weights as [40%, 25%, 5%, 30%] for choosing labels
[Primary GG, Secondary GG, Tertiary GG, Non-Cancer],
respectively, and without the Random Weights, where all
labels (excepting Tertiary GG) have the same chance of be-
ing chosen, as shown in Figure 3.

4. Ablation Study on LDMs’ Conditions
We provide additional results for ablation study on LDMs’
conditions including Tile Labels, Tile+Slide Labels, and
Pixel-wise Labels in Figures 4 and 5.

5. Generated tiles by LayoutDiffusion
We convert the sampled annotated masks to COCO-like lay-
outs [3] by finding contours and bounding boxes for all
pixel-wise labels to train LayoutDiffusion [9]. We observe
that LayoutDiffusion [9] finds difficulty dealing with over-
lapped bounding boxes as they are weak labels and not spe-
cific enough to blend semantic information. Hence, it tends
to ignore small bounding boxes and generate the patterns
for the larger ones, as shown in Figure 6.

6. Additional Results
Qualitative Comparison. We provide an additional
qualitative comparison between the baseline Stable Dif-
fusion (SD) [6] and our ablation models SD with
Separated Conditions (SD-SC), SD with Self-Distillation
from Separated Conditions (SD-DISC), and SD-DISC also
fine-tuned with real tiles (SD-DISC-CoTrain) in Figures 7,
8, and 9.
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Figure 2. We eliminate semantic information from human-
annotated masks in SICAPv2 [8], converting them to tile shape
masks with labels mapped to their frequency distribution. To gen-
erate a tile set for slide-level classification via Multiple Instance
Learning, we randomly select 20-100 annotation shape masks
per designated primary and secondary GGs, with non-overlapping
cancer grading labels distributed according to random weights.
When the primary GG is Non-Cancer, the Non-Cancer label is ex-
clusively applied.

Quantitative Comparison on Pixel-Level Classifica-
tion. On the in-distribution SICAPv2 dataset, Carcino-
Net with SD-DISC achieves the best pixel-level preci-
sion of 0.8061±0.0599, an increase of +0.027 from the
baseline, thanks to the diversified patterns generated by
our generative models. On out-of-distribution LAPC,
Carcino-Net trained with SD obtained the best precision
as 0.7863±0.0547, +0.1202 increased from Carcino-Net it-
self, while SD-DISC-CoTrain provided more stable perfor-
mance across classes, with 0.7431±0.1452, as shown in Ta-
ble 1.
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Figure 3. Ablation Study on Random Weights. These weights are empirically established based on the typical label distribution in actual
slides (e.g., depicted in (c)). Slides generated by Stable Diffusion (SD) [6] with and without the Random Weights can fulfill TransMIL’s [7]
objective of predicting two main Gleason Grades (GGs), regardless of their primary or secondary nature. However, in slides produced by SD
without Random Weights, where label selection (except for Tertiary GG) occurs with equal probability, the label distribution significantly
deviates from real-world norms, slightly reducing TransMIL’s performance, as shown in (a). Moreover, as shown in (b), only 67.75%
slides generated w/o Random Weights have primary and secondary GGs estimated from their annotated masks similar to their pre-defined
primary and secondary GGs, resulting weaker identification of primary and secondary GGs. This issue also affects patient prognosis and
treatment, especially when cancer grading models are trained on these inaccurately assigned primary and secondary GGs.

Figure 4. Additional Ablation Study investigating the impact of Latent Diffusion Models’ (LDMs) conditions on enhancing TransMIL’s
performance (left) in AUCROC and qualitative evaluation (right). TransMIL trained on tiles generated with the unreasonable combination
of Tile+Slide Labels provides the worst cancer grading performance compared to other conditioning types.



Figure 5. Tiles generated with three different LDMs’ Conditions.

Method In-distribution SICAPv2 Dataset Out-of-distribution LAPC Dataset
GG3 GG4 GG5 Avg Low-Grade (GG3) High-Grade (GG4+GG5) Avg

Carcino-Net [5] 0.7595 ± 0.054 0.8415 ± 0.027 0.738 ± 0.156 0.7796 ± 0.0652 0.6426 ± 0.2136 0.6895 ± 0.2508 0.6661 ± 0.0902
w/ SD 0.7557 ± 0.0518 0.8426 ± 0.0239 0.5901 ± 0.1851 0.7295 ± 0.0691 0.6271 ± 0.104 0.9456 ± 0.0441 0.7863 ± 0.0547
w/ SD-SC 0.7942 ± 0.0534 0.8211 ± 0.0438 0.7212 ± 0.351 0.7788 ± 0.1298 0.6212 ± 0.1982 0.4259 ± 0.5043 0.5236 ± 0.2583
w/ SD-DISC 0.7295 ± 0.1431 0.7767 ± 0.0745 0.9121 ± 0.1061 0.8061 ± 0.0599 0.728 ± 0.1755 0.1823 ± 0.3317 0.4551 ± 0.2179
w/ SD-DISC-CoTrain 0.7634 ± 0.0538 0.7793 ± 0.043 0.638 ± 0.3175 0.7269 ± 0.12 0.7429 ± 0.2421 0.7433 ± 0.3351 0.7431 ± 0.1452

Table 1. Quantitative comparison between Carcino-Net [5] and itself trained with our techniques on SICAPv2 [8] and LAPC [4] using
pixel-level precision while ignoring Non-Cancer label.



Quantitative Comparison on Slide-Level Classifi-
cation. We provide all class-wise quantitative com-
parisons between TransMIL [7], Mixed Supervision [1]
- an extended version of TransMIL, and our ablation
models based on TransMIL including TransMIL jointly
trained with generated tiles from SD (TransMIL+SD), SD-
SC (TransMIL+SD-SC), SD-DISC (TransMIL+SD-SC),
and SD-DISC-CoTrain (TransMIL+SD-SC-CoTrain) on in-
distribution SICAPv2 [8] in the top part of Figures 10, 11,
12, 13, and 14. To prove the generalization of our generated
tiles, which consistently improves the slide-level prostate
cancer grading performance of TransMIL, we also evaluate
these models, which are trained on SICAPv2, on out-of-
distribution PANDA [2] in the bottom part of Figures 10,
11, 12, 13, and 14.
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Figure 6. Layouts to Tiles with LayoutDiffusion [9]. We convert the sampled annotated masks to COCO-like layouts [3] by finding
contours and bounding boxes for all pixel-wise labels to train LayoutDiffusion [9]. We observe that LayoutDiffusion [9] finds difficulty
dealing with overlapped bounding boxes as they are weak labels and not specific enough to blend semantic information. Hence, it tends to
ignore small bounding boxes and generate the patterns for the larger ones.



Figure 7. An additional qualitative comparison



Figure 8. An additional qualitative comparison



Figure 9. An additional qualitative comparison



Figure 10. Slide-Level Prostate Cancer Grading Performance on Non-Cancer on in-distribution SICAPv2 [8] (top) and out-of-distribution
PANDA [2] (bottom).



Figure 11. Slide-Level Prostate Cancer Grading Performance on GG3 on in-distribution SICAPv2 [8] (top) and out-of-distribution PANDA
[2] (bottom).



Figure 12. Slide-Level Prostate Cancer Grading Performance on GG4 on in-distribution SICAPv2 [8] (top) and out-of-distribution PANDA
[2] (bottom).



Figure 13. Slide-Level Prostate Cancer Grading Performance on GG5 on in-distribution SICAPv2 [8] (top) and out-of-distribution PANDA
[2] (bottom).



Figure 14. Slide-Level Prostate Cancer Grading Performance on All-Class on in-distribution SICAPv2 [8] (top) and out-of-distribution
PANDA [2] (bottom).


	. Introduction of Training Whole Slide Images Preparation for Computer-Aided Prostate Cancer Diagnosis and Our Proposed Generative Models for Data Augmentation
	. Pre-defining Tile Shape Masks and Mask Sampling
	. Ablation Study on Random Weights
	. Ablation Study on LDMs' Conditions
	. Generated tiles by LayoutDiffusion
	. Additional Results

