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ABSTRACT

Traditional object detection models rely on predefined categories, which limit
their ability to recognize unseen objects in open-world settings. Recent efforts
in open-world and open-ended detection have begun to address this challenge by
enabling models to go beyond closed-set assumptions. However, these approaches
often remain limited in terms of scalability, adaptability, or generalization to di-
verse environments. To overcome these restrictions, we introduce a Context-
oriented Open-ended Self-Refining Annotation model (COSRA), a training-free
framework that combines context-aware reasoning with self-learning for open-
ended object labeling. COSRA leverages Large Language Models (LLMs) to gen-
erate candidate labels for unknown objects based on contextual cues from known
entities within a scene. COSRA then pairs these labels with visual embeddings to
construct an Embedding-Label Repository (ELR), enabling inference without cat-
egory supervision. To further enhance consistency, we introduce a self-refinement
loop that re-evaluates repository labels using visual cohesion analysis and KNN-
based majority relabeling. For a newly encountered unknown object, COSRA
retrieves visually similar instances from the ELR and applies frequency-based
voting and cross-modal re-ranking to assign a robust label. Our experimental
results on COCO and LVIS datasets demonstrate that COSRA outperforms state-
of-the-art methods and effectively annotates novel categories using only visual
and contextual signals without requiring any fine-tuning or retraining.

1 INTRODUCTION

Imagine you are sitting in a restaurant in a foreign country. On the table are several familiar
items—forks, bread, napkins, a salt shaker—but there are also a few objects you have never seen
before. Since no one has told you their names, you cannot identify them at first. Later, when visiting
another restaurant or dining at someone’s home, you notice similar and yet unknown object again.
From its repeated presence at meal settings, you infer that it must be associated with dining. By
examining its appearance—whether it is a liquid, solid, or gel—you further hypothesize that it may
be food or a condiment. Over time, you recall that in conversations around these occasions, the
same word was often spoken whenever this object appeared. Combining this contextual association,
your observations of its properties, and the recurring word, you form a strong hypothesis about its
name. In summary, the process unfolds as follows: first, recognizing visually similar objects in sim-
ilar contexts; next, considering its visual features to infer possible affordances; and finally, noticing
the recurrence of words associated with the object, which enables it to be named. This principle is
central to the COSRA methodology: open-world learning from context. COSRA aims to mimic this
human capability—the learning of previously unfamiliar entities in an open-world environment.

Modern object detection models have achieved considerable success in identifying objects from pre-
defined categories in controlled environments (Lin et al., 2024a; Cai & Vasconcelos, 2018; Carion
et al., 2020; He et al., 2017; Ren et al., 2016; Sun et al., 2021). However, their utility remains con-
fined to closed-set settings, where all test-time categories are known at training time. These mod-
els fundamentally rely on supervised learning over fixed label spaces, rendering them ineffective
in open-world environments where novel or long-tail object categories frequently appear. Recent
advances in open-world recognition attempt to address these limitations by leveraging large-scale
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vision-language models (VLMs) (Radford et al., 2021b; Li et al., 2022b), prompt-driven classifica-
tion (Gu et al., 2022), or knowledge-enhanced object detectors (Zang et al., 2022) to detect wider
varieties of objects. While these models have made progress in various aspects of object recogni-
tion or discovery, no existing system fully solves open-ended naming cleanly—i.e., given a truly
unseen object, produce a correct semantic label (e.g., “giraffe”) without that name ever appearing in
its vocabulary. In practice, methods either detect novelty and return a generic unknown tag (Joseph
et al., 2021; Liang et al., 2023), or cluster novel instances into surrogate buckets (e.g., unknown-
1) (Wu et al., 2022) rather than providing an actual name. This gap motivates our training-free,
context-driven approach.

To address this challenge, we introduce a Context-oriented Open-ended Self-Refining Annotation
model (COSRA): a training-free, context-aware reasoning and self-learning framework that can
assign appropriate semantic names to previously unseen objects in open-world, open-vocabulary
settings. COSRA represents a paradigm shift in object detection by moving beyond fixed, category-
constrained supervision and instead emulating the human-like ability to reason and infer object
categories from context. To achieve this, COSRA builds an Embedding-Label Repository (ELR)
directly from data, without relying on gradient-based updates or task-specific retraining. When a
pretrained detector encounters an unknown object, COSRA formulates a query to a large language
model (LLM), asking for possible identities of the object while providing contextual information
such as the identities, locations, and sizes of nearby objects, along with visual attributes of the
unknown object (e.g., color, texture). The LLM generates candidate labels, which are associated
with the object’s visual embeddings and stored in the ELR. Once the ELR contains a sufficient
number of elements, COSRA measures visual similarity to find each element’s k-nearest neighbors
and applies majority voting over their labels to produce a shortlist of candidate labels for visually
similar objects.

Our key contributions are as follows:

• We propose a novel zero-shot framework for open-ended object labeling that bypasses the need
for supervised training on unknown categories.

• We design a context-aware prompt construction mechanism that integrates visual descriptors and
spatial layouts to effectively guide large language models.

• We introduce an embedding-label memory module and a two-stage refinement process combin-
ing frequency-based aggregation and cross-modal re-ranking to improve robustness and disam-
biguate noisy predictions.

• Experiments on COCO and LVIS highlight COSRA’s ability to annotate novel object categories
from contextual and visual signals, establishing new performance benchmarks without requiring
backbone fine-tuning.

2 RELATED WORK

Open-Vocabulary Object Detection. The advent of vision–language models (VLMs) has shifted
detection from category-supervised setups to Open-Vocabulary Object Detection (OVD) that ex-
ploits image–text pretraining. Many OVD methods classify region features against a user-provided
label list at inference, typically via CLIP-style similarity (Zareian et al., 2021; Radford et al., 2021a).
SAMP (Zhao et al., 2024) strengthens this paradigm by learning scene-adaptive prompts and region-
aware visual–text alignment to better adapt CLIP for detection. Nevertheless, state-of-the-art sys-
tems—including OWL-ViT (Minderer et al., 2022), GLIP (Li et al., 2022b), Detic (Zhou et al.,
2022), and YOLO-World (Cheng et al., 2024)—still require anticipating which categories may
appear and supplying long candidate vocabularies, leaving OVD fundamentally conditioned on a
closed set at test time.

Open-World Object Detection. To circumvent reliance on fixed label lists, Open World Object
Detection (OWOD) methods, such as ORE (Joseph et al., 2021) and UnSniffer (Liang et al., 2023),
have been introduced. ORE leverages contrastive clustering and an energy-based unknown iden-
tifier to flag novel instances for incremental learning, while UnSniffer adopts a generalized object
confidence score with graph-based box selection. However, both approaches ultimately rely on hu-
man annotation to incorporate new classes. Transformer-based works such as (Maaz et al., 2021),
OW-DETR (Gupta et al., 2022), and PROB (Zohar et al., 2023) aim to identify unknowns but do not
predict labels, and OSODD (Zheng et al., 2022) clusters unseen classes into novel groups without
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naming them. While these approaches advance unknown object detection and classification under
provided label sets, none are capable of generating novel labels for unseen classes without oracle
supervision.

Open-Ended Object Detection. Open-Ended Object Detection (OED) addresses the challenge of
detecting and labeling objects without relying on a fixed vocabulary, allowing models to assign
meaningful names to both known and previously unseen categories. GenerateU (Lin et al., 2024a)
first introduced this problem by leveraging Deformable-DETR (Zhu et al., 2020) as a region proposal
generator, whose outputs are passed to a language model for label assignment. To address Genera-
teU’s dependency on large-scale data, slow convergence, and limited accuracy, Open-Det (Cao et al.,
2025) introduces a vision–language aligner with prompt distillation, and employs improved loss
functions, achieving stronger performance with less data and computation. DetCLIPv3 (Yao et al.,
2024) extends open-vocabulary detection by integrating a caption head for hierarchical label gener-
ation, supported by large-scale auto-annotated image–text pairs and an efficient two-stage training
strategy. Unlike these training-based approaches, VL-SAM (Lin et al., 2024b) uses a training-free
strategy by coupling vision–language models with the Segment Anything Model (SAM) (Kirillov
et al., 2023), using attention-based prompts to discover and segment unseen objects without prede-
fined categories.

Context-Aware Reasoning. Early open-vocabulary detection methods typically rely on exhaus-
tive class lists, where models such as CLIP (Radford et al., 2021a) or RAM (Zhang et al., 2023)
match image features to pre-defined text labels. More recent work aims to overcome this limitation
by leveraging large language models (LLMs). For example, RAM++ (Huang et al., 2023) enriches
class tags with additional descriptors derived from ground-truth annotations, while DVDet (Jin et al.,
2024) introduces fine-grained text descriptors of object parts to improve matching with visual em-
beddings. Other studies similarly exploit textual cues, such as texture information (Wu & Maji,
2022) or general descriptors in OvarNet (Chen et al., 2023), showing that richer text features can
indirectly facilitate novel label generation. A parallel line of research integrates image and lan-
guage more holistically. Multi-modal models such as BLIP (Li et al., 2022a) and LLaVa (Liu et al.,
2023a) can generate free-form captions without relying on class lists, but their performance hinges
on massive supervised datasets. More recently, contextual reasoning with LLMs has emerged as
a promising direction. LaMI-DETR (Du et al., 2024) addresses limitations of CLIP-based OVD
by using language model instructions to refine concept representations and mitigate base-category
bias. More recently, LLaMA (Touvron et al., 2023) has been applied for contextual reasoning, en-
abling the generation of contextually aware labels that enhance detection under occlusion and poor
visibility (Rouhi et al., 2025).

3 METHODOLOGY

We present COSRA, a framework for open-ended object detection that integrates multi-modal foun-
dation models with contextual reasoning. Unlike conventional open-world approaches that only flag
novel objects as “unknown,” COSRA advances further by acting as an open-ended framework, i.e.,
it assigns semantic labels to previously unseen categories without requiring training or manual su-
pervision. We provide the theoretical motivation for COSRA, grounded in conditional entropy, in
Appendix A.

COSRA operates in three sequential stages: (1) Unknown object detection, (2) Embedding–Label
Repository (ELR) construction, and (3) Iterative refinement. In the first stage, we use the Seg-
ment Anything Model (SAM) (Kirillov et al., 2023) and Faster R-CNN (Ren et al., 2016) to separate
known from novel objects. In the second stage, we integrate context-aware characterization, LLM-
driven candidate label generation, and cross-modal re-ranking with CLIP to link embeddings with
semantic hypotheses. In the final stage, we improve noisy assignments through neighborhood voting
and visual cohesion analysis. See Figure 1.

3.1 UNKNOWN OBJECT DETECTION

We adopt a two-step process to distinguish between known and candidate unknown objects. First,
SAM generates class-agnostic region proposals R = {r1, . . . , ri, . . . , rN} for an input image I ∈
RH×W×3, ensuring broad coverage of all salient regions. Second, a detector pretrained only on
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Figure 1: Overview of the COSRA framework. It consists of three sequential stages: (1) unknown ob-
ject detection using SAM and Faster R-CNN to separate known from novel objects, (2) Embedding–Label
Repository (ELR) construction via context-aware characterization, LLM-based candidate label generation, and
CLIP-driven cross-modal re-ranking, and (3) iterative refinement of assignments through neighborhood voting
and visual cohesion analysis.

known categories evaluates each region proposal (we use Faster R-CNN in our experiments, though
any detector can be employed) and produces a confidence score ci for each proposal ri. We retain as
known objects those proposals we confidently recognized as belonging to a known class, ci ≥ τconf.
By contrast, we flag as candidate unknowns proposals generated by SAM that the detector fails
to classify confidently, e.g., ci < τconf. This design ensures exhaustive coverage via SAM while
filtering through the known-category decision boundary of the detector. Moreover, let O = {oi}ndet

1
be the set of detected objects with bounding boxes B = {bi}ndet

1 . We categorize objects into known
Oknown ⊂ O and unknown Ounknown ⊂ O subsets.

3.2 GENERATING THE EMBEDDING-LABEL REPOSITORY (ELR)

The ELR serves as the foundational knowledge base for COSRA. It stores visual embeddings of
unknown objects and their corresponding predicted labels generated by the LLM. We divide this
process into two main components.

Attribute-Based Characterization. To provide rich contextual cues for label generation, we extract
visual attributes (color, texture, material, etc.) that characterize each unknown object’s appearance.
For each unknown object ou ∈ Ounknown with bounding box bu, we extract visual attributes using a
vision-language model (VLM). We first crop the object region from the input image

Iu = Crop(I, bu). (1)

To characterize each unknown object, we maintain attribute-specific text templates for different
visual properties such as color (e.g., ”a red object”), texture (e.g., ”a smooth surface”), and material
(e.g., ”made of metal”). For each attribute category, we compute similarity scores between the
cropped image and all candidate text descriptions using CLIP. We then apply threshold filtering to
retain only attributes with high visual-textual alignment (similarity ≥ τattr = 0.80), ensuring that
extracted textual attributes are consistent with the visual features of the cropped object.

The resulting attribute set Cu contains the filtered descriptors for each unknown object, providing
rich contextual information for subsequent label generation.

We offer a full description of these extractions and a full list of text characteristics, e.g., shape,
pattern, etc, in Appendix B.

Scene Context Representation. Let Oknown ⊂ O denote the detected objects with known labels.
For each oi ∈ Oknown, let Li be its known class label and bi = (xmin, ymin, xmax, ymax) its bounding
box. We define the scene context set as

K = { (Li, bi) | oi ∈ Oknown }. (2)

Context-Aware Prompt Construction and LLM-based Candidate Label Generation. We build
a single structured Context-Aware prompt P that concatenates (i) the scene context K, (ii) the un-
known object’s box bu and attributes Cu, and (iii) an instruction that specifies the task and output
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format (ranked list of m candidate labels). Formally,
P = ASSEMBLEPROMPT

(
K, Cu, bu, m

)
. (3)

We show a schematic example of the rendered prompt in Appendix C.

Eq. 3 creates the text we pass to the LLM, including the structured context plus the instruction block
above. Passing P to the LLM yields a ranked list of m candidate labels for the unknown object,

LLLM
u = LLM(P) =

(
l
LLM
u,1 , l

LLM
u,2 , . . . , l

LLM
u,m

)
(4)

where ordering reflects the LLM’s confidence i.e., the first candidate is the most likely label ac-
cording to the LLM. Unless otherwise stated, we use m = 50, chosen via an ablation sweep
m∈{10, 25, 50, 100, 150}. This ablation study demonstrates that m = 50 achieves near-optimal ac-
curacy with a modest runtime (see Appendix F.1). This procedure creates a probability-like ranked
hypothesis set, which we later refine through cross-modal re-ranking and Iterative Label Refinement,
without using any ground-truth label of the unknown object at this stage.

Cross-Modal Re-ranking. We employ CLIP’s dual-encoder architecture to re-rank LLM-generated
candidates based on visual-semantic alignment. For unknown object u with candidate labels LLLM

u ,
we first extract visual embeddings using the image encoder

vu = Image Encoder(Iu), (5)
and compute text embeddings for each candidate using the text encoder

tu,k = Text Encoder( l
LLM
u,k ), k = 1, . . . ,m. (6)

We then compute visual-textual alignment scores through similarity computation, following

su,k =
v⊤
u tu,k

||vu||2||tu,k||2
. (7)

Finally, we re-rank candidates in descending order by their scores, su,k, producing the final label list

Lu = Re-rank(LLLM
u ,vu) =

(
lu,1 , lu,2 , . . . , lu,m

)
. (8)

Embedding-Label Repository Organization. The ELR serves as our framework’s knowledge
base, storing visual embeddings and corresponding label predictions. We maintain the ELR as
paired collections,

V =


v1

v2

...
vN

 , L =


L1

L2

...
LN

 =


l1,1 , l1,2 , . . . , l1,m

l2,1 , l2,2 , . . . , l2,m

...
lN,1 , lN,2 , . . . , lN,m

 , V ∈ RN×d, (9)

where N is the total number of processed objects and d is the embedding dimensionality. Each v⃗u
is associated with its corresponding re-ranked label list Lu = (lu,1, lu,2, . . . , lu,j , . . . , lu,m) where j
indicates the ranking position.

3.3 STAGE 3: ITERATIVE LABEL REFINEMENT

Our refinement algorithm leverages semantic consistency principles, operating on the insight that
objects with similar predicted labels should exhibit similar visual characteristics. The algorithm
proceeds through three phases.

Semantic Grouping. We first partition objects into semantically coherent groups by leveraging
CLIP’s text encoder to compute similarities between predicted labels. Objects with semantically
similar top-1 predictions are clustered together such that

Gj = {u : sim(lu,1, lj,1) ≥ τsim}. (10)
Outlier Detection. Within each semantic group Gj , we identify potential mislabeled objects by
detecting visual outliers whose embeddings deviate significantly from the group’s visual coherence.
We compute the group centroid in the visual embedding space with

µj =
1

|Gj |
∑
u∈Gj

vu. (11)
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Objects whose visual similarity to the centroid falls below the group’s average similarity s̄j are
flagged as potential mislabels, i.e., Outlier(u) = sim(vu,µj) < s̄j . This principle captures the
semantic-visual consistency assumption that objects with similar labels should occupy similar re-
gions in the visual embedding space.

Label Reassignment. For each flagged outlier, we perform label correction through k-nearest neigh-
bor search in the visual embedding space. We retrieve the k most visually similar objects from the
ELR and apply majority voting among their current labels to determine the reassigned label. This
visual similarity-based relabeling corrects semantic inconsistencies by leveraging the accumulated
knowledge in the repository. The refinement process iterates until label assignments converge or
maximum iterations are reached, ensuring stable and consistent label predictions across the reposi-
tory. The pseudocode is provided in Appendix D.

4 EXPERIMENTS

We validate COSRA on multiple benchmarks against closed-set (fixed label space), open-vocabulary
(requires a provided category list during inference), and open-ended (no label list; names are gener-
ated during inference) detectors. Unlike open-vocabulary methods that rely on predefined vocabu-
laries and extensive training, COSRA requires neither category supervision nor training, making it
well-suited for open-world scenarios.

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate our framework on two widely used benchmarks, COCO (Lin et al., 2014)
and LVIS (Gupta et al., 2019), which cover diverse object categories with varying frequency distri-
butions. For COCO, we adopt the OV-RCNN (Zareian et al., 2020) protocol, splitting the categories
into 48 base and 17 novel classes. For LVIS, we follow the ViLD (Gu et al., 2021) split, partitioning
1,203 categories by annotation frequency: 337 rare classes serve as novel, while the remaining 866
common and frequent classes form the base set. This split reflects real-world long-tail distributions
where many objects appear infrequently. To enable comparison with open-ended detection models,
we also evaluate on LVIS minival, which is the 5k COCO val2017 images re-annotated with the full
LVIS label set.

Evaluation Protocol.

Our evaluation follows a two-phase protocol to ensure fair assessment of open-world detection. In
the repository construction phase, we build the Embedding–Label Repository (ELR) by processing
both training and validation sets, collecting objects that the pretrained detector fails to recognize
with confidence below threshold τconf. This guarantees that the ELR contains only unknown objects,
avoiding contamination from known categories. We apply this procedure to COCO and LVIS, yield-
ing dataset-specific repositories with 226,542 unknown objects for COCO and 87,293 for LVIS. In
the evaluation phase, we test COSRA on validation objects while keeping repository construction
and evaluation strictly separated. This setup ensures that reported performance reflects true general-
ization to unseen validation instances, while still benefiting from the broad coverage of unknowns in
the ELR. We compute standard detection metrics by matching COSRA’s predicted unknown objects
against ground-truth annotations. For datasets with predefined vocabularies, we follow GenerateU
and VL-SAM by mapping COSRA’s generated labels to canonical categories using CLIP text–image
similarity with the template “a object category”, enabling fair comparison with existing benchmarks
while retaining open-ended label generation.

Implementation Details and Evaluation Metrics. We use Faster R-CNN with ResNet50-C4 as
the detection backbone. For COCO experiments, we use a model pretrained on 48 base categories
following OV-RCNN (Zareian et al., 2020). For LVIS experiments, we use a model pretrained on
866 common and frequent classes, excluding the 337 rare categories. We set a confidence threshold
of τconf = 0.9 for known object detection, following established practice in semi-supervised object
detection where this threshold ensures high precision for pseudo label filtering (Liu et al., 2023b).
SAM provides region proposals with 32×32 grid sampling. For label generation, we use LLaMA-
4 (Touvron et al., 2023) (temperature = 0.35) generating m = 50 candidates, and CLIP ViT-
B/32 for cross-modal re-ranking (τattr = 0.80). The iterative refinement uses semantic grouping
(τsim = 0.85) with k = 30 neighbors and 12/17 iterations for COCO/LVIS. We detail the complete
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Method Type Training-free APrare (%)

Mask R-CNN (He et al., 2017) Close-Set × 26.3
Deformable DETR (Zhu et al., 2020) × 24.2

GLIP (Li et al., 2022b)

Open-Vocabulary

× 20.8
GroundingDINO (Liu et al., 2024) × 27.4
DetCLIP (Yao et al., 2022) × 26.9
YOLOWorld (Cheng et al., 2024) × 27.1
COSRAOpen-Vocabulary ✓ 32.9

GenerateU (Lin et al., 2024a)

Open-Ended

× 20.0
Open-Det (Cao et al., 2025) × 21.9
VL-SAM (Lin et al., 2024b) ✓ 23.4
COSRA (Ours) ✓ 27.1

Table 1: Comparison of object detection results on LVIS minival. “Open-Ended” indicates inference with-
out predefined object categories, while “Open-vocabulary” uses predefined category lists to constrain genera-
tion.

Method Training-free Vocabulary-free Novel/Rare (%) Overall (%)

COCO Dataset (AP)

ViLD (Gu et al., 2021) × × 27.6 51.3
Detic (Zhou et al., 2022) × × 27.8 44.9
RegionCLIP (Zhong et al., 2022) × × 26.8 47.5
VLDet (Lin et al., 2023) × × 32.0 45.8
BARON (Wu et al., 2023) × × 33.1 49.1
SAMP (Zhao et al., 2024) × × 34.8 54.2
DVDet (Jin et al., 2024) × × 35.8 57.0

COSRA (Ours) ✓ ✓ 38.8 60.2

LVIS v1 Dataset (mAP mask)

ViLD (Gu et al., 2021) × × 16.6 25.5
DetPro (Du et al., 2022) × × 19.8 25.9
RegionCLIP (Zhong et al., 2022) × × 17.1 28.2
VLDet (Lin et al., 2023) × × 21.7 30.1
BARON (Wu et al., 2023) × × 19.2 26.5
DVDet (Jin et al., 2024) × × 23.1 31.2

COSRA (Ours) ✓ ✓ 24.2 33.7

Table 2: Comparison of object detection results on COCO and LVIS. All methods use ResNet50 as the
backbone. “Novel” refers to unseen categories in COCO, while “Rare” refers to low-frequency categories in
LVIS. COSRA achieves the best performance without requiring training or predefined vocabularies.

hyperparameter settings in Appendix E. We report mAP at IoU 0.5 (Zareian et al., 2021) for COCO,
mask AP (Lin et al., 2023) for LVIS, and box AP at IoU 0.5 (Zareian et al., 2021) for LVIS minival.

4.2 MAIN RESULTS

Evaluation on LVIS Minival. In the open-ended setting, COSRA achieves 27.1 APrare on LVIS
minival, surpassing all open-ended approaches including VL-SAM, Open-Det, and GenerateU. We
also adapt COSRA to the Open-vocabulary scenario by providing the list of LVIS categories in
the LLM prompt, resulting in COSRAOpen-Vocabulary with 32.9 APrare as shown in Table 1. No-
tably, COSRA outperforms all Open-vocabulary models. Among all compared methods, VL-SAM
represents the most comparable baseline due to being training-free, yet it relies directly on a vision-
language model (VLM) to enumerate possible object names in free-form text, making its predictions
highly dependent on the VLM’s immediate outputs and prone to inconsistency. In contrast, COSRA
adopts a structured, context-aware prompting strategy where the LLM proposes candidate labels
for unknown regions that are subsequently refined through cross-modal similarity and iterative self-
refinement, resulting in superior performance across challenging long-tail distributions.

Evaluation on COCO. COSRA achieves remarkable results with 38.8 Novel AP (Table 2). Com-
pared to the strongest baseline DVDet (35.8 Novel AP), COSRA provides 8.4% relative improve-
ment in Novel AP. These gains are particularly significant considering COSRA’s training-free nature,
while DVDet requires extensive training on large-scale datasets. Against other competitive methods,
COSRA substantially outperforms BARON (33.1 Novel AP) by 17.2% and SAMP (34.8 Novel AP)
by 11.5%, establishing clear superiority in novel object recognition.

Evaluation on LVIS On the more challenging LVIS dataset with its long-tail distribution, COSRA
achieves 24.2 Rare AP (Table 2). Compared to DVDet (23.1 Rare AP), COSRA provides 4.8%
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improvement in Rare AP. Against other strong baselines, COSRA outperforms VLDet (21.7 Rare
AP) by 11.5% and DetPro (19.8 Rare AP) by 22.2%. These results demonstrate COSRA’s robustness
across diverse object categories and frequency distributions.

Qualitative Results. Fig. 2 demonstrates COSRA’s iterative refinement capabilities across multiple
unknown objects in a single scene. The primary objective of open-ended detection is to assign the
most accurate semantic label to each provided bounding box containing unknown objects. In this
kitchen scene, we observe several key refinement behaviors: initially, due to partial occlusion, the
sink is mislabeled as sponge based on VLM and LLM outputs (since the visible sponge represents
a prominent part of the occluded sink). However, COSRA corrects this to sink in the first iteration.
Notably, three objects are successfully corrected within the first iteration, while the pipe requires ad-
ditional contextual evidence and is refined to tap only in iteration 12. This demonstrates COSRA’s
ability to handle multiple object corrections simultaneously while effectively managing noise aris-
ing from occlusion and partial visibility challenges inherent in real-world scenarios. Additional
refinement examples demonstrating various challenging scenarios are provided in Appendix H, with
detailed noise handling analysis presented in Appx. G.

Label Assignment (Before Refinement) Iterative Refinement (iter 1)Initial Detection Iterative Refinement (iter 12)

 refrigerator

 bottle

 bottle

 bottle

 unknown

 unknown

 unknown

 unknown

 unknown  Sponge

 Sponge

 Sponge

 Pipe

 Plastic food storage container  Sink

 Sponge

 Pipe

bucket  Sink

 Sponge

 Pipe

bucket

 tap

Figure 2: COSRA’s labeling process across multiple unknown objects. Blue labels show known objects
detected by the detector, red labels indicate objects requiring further processing (unknown objects initially,
then incorrect/partially correct predictions), and green labels show objects with correct final predictions. While
initially predicting sponge correctly, during self-refinement stages it correctly relabeled sink and bucket

(iteration 1) and tap (iteration 12), demonstrating robustness to initial prediction errors from occlusion and
partial visibility, with multi-object correction capabilities in single iterations.

4.3 ADDITIONAL ANALYSIS

Sensitivity to the ELR’s Size. We systematically examine how the size of the Embedding–Label
Repository affects detection performance across varying repository scales. Starting from 5% of the
full repository and scaling progressively, our analysis reveals that both COCO and LVIS datasets
exhibit logarithmic improvement patterns as repository size increases (Figure 3 left). This behav-
ior validates our hypothesis that expanding the repository enhances the representational diversity
of visual embeddings while simultaneously reducing semantic ambiguity in label predictions. The
observed scaling properties highlight the critical role of repository comprehensiveness in enabling
effective open-world object detection, particularly for handling the distributional complexity inher-
ent in real-world visual scenarios.

Effect of Contextual Information on the performance. The contextual reasoning analysis (Fig-
ure 3 right) reveals the fundamental importance of scene context in novel object detection. These
results, obtained before applying iterative refinement, demonstrate the direct effects of contextual
information on label prediction accuracy. Scenes with no known objects achieve only 6% accuracy
for COCO and 4% for LVIS, as the method relies solely on visual characteristics. Performance im-
proves dramatically with contextual cues: 1-2 objects (19% COCO, 11% LVIS), 3-4 objects (23%
COCO, 14% LVIS), 5-7 objects (27% COCO, 17% LVIS), and peaks at 8+ objects (29% COCO,
18% LVIS). This demonstrates contextual information as a fundamental component for accurate
novel object detection, with improvements of up to 23 percentage points for COCO and 14 percent-
age points for LVIS when sufficient contextual cues are available.

4.4 ABLATION STUDY

We validate the contribution of each COSRA component with an ablation study. Scene context pro-
vides the most critical contribution, confirming our entropy-based motivation. We found all com-
ponents—iterative refinement, attribute characterization, and cross-modal re-ranking—contribute
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Figure 3: Effect of repository size and scene context on object detection. (Left) Larger ELR steadily
improves performance with +27.8 pp on COCO and +18.2 pp on LVIS. (Right) Detection accuracy improves
with more known objects in the scene, revealing the importance of contextual cues for open-ended labeling.

significantly to overall performance. We summarize these results in Table 3 and detail them in
Appendix F.3.

Method COCO Novel AP (%) LVIS Rare AP (%)

w/o Scene Context 7.1 4.2
w/o Attribute Characterization 23.1 15.2
w/o Cross-Modal Re-ranking 27.1 16.0
w/o Iterative Refinement 23.0 14.1

COSRA (Full) 38.8 24.2

Table 3: Ablation study on COSRA components. Each row shows the effect of removing a specific compo-
nent from the full framework.

4.5 CONCLUSIONS AND LIMITATIONS

Limitations. COSRA has two main areas for improvement. First, our fixed attribute templates may
limit the richness of object characterization in certain domains. This could be enhanced through
dynamic attribute generation, where LLMs create environment-specific descriptors tailored to the
contexts of detected objects. Second, while leveraging foundation models enables our training-free
approach, COSRA’s performance is naturally tied to the capabilities of these underlying models.
Future work could explore ensemble approaches, such as combining SAM with complementary
region proposal methods (e.g., EdgeBoxes (Zitnick & Dollár, 2014), MCG (Arbeláez et al., 2014))
or integrating multiple vision-language encoders (e.g., ALIGN (Jia et al., 2021), BLIP-2 (Li et al.,
2023)) to achieve more robust multi-modal representations and enhanced performance.

Conclusions. We present COSRA, a training-free framework that addresses the fundamental chal-
lenge of open-ended object detection through context-aware reasoning and self-refining mecha-
nisms. By leveraging entropy-driven contextual analysis, COSRA assigns semantic labels to pre-
viously unseen objects without requiring predefined vocabularies or supervised training on novel
categories. Our approach demonstrates that contextual information can effectively constrain the
semantic space for unknown objects, enabling accurate label generation through iterative refine-
ment processes that progressively improve predictions via visual similarity clustering and neighbor-
hood consensus. Extensive evaluation validates COSRA’s effectiveness, substantially outperforming
existing approaches across multiple benchmarks while maintaining complete vocabulary indepen-
dence. These results establish a new paradigm for autonomous object discovery in open-world
scenarios, demonstrating that training-free, context-driven reasoning can rival supervised methods
in novel object recognition tasks. COSRA’s success suggests promising directions for scalable,
adaptive computer vision systems that can continuously expand their understanding without explicit
retraining.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pablo Arbeláez, Jordi Pont-Tuset, Jonathan T Barron, Ferran Marques, and Jitendra Malik. Mul-
tiscale combinatorial grouping. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 328–335, 2014.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154–6162,
2018.

Guiping Cao, Tao Wang, Wenjian Huang, Xiangyuan Lan, Jianguo Zhang, and Dongmei
Jiang. Open-det: An efficient learning framework for open-ended detection. arXiv preprint
arXiv:2505.20639, 2025.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Keyan Chen, Xiaolong Jiang, Yao Hu, Xu Tang, Yan Gao, Jianqi Chen, and Weidi Xie. Ovarnet:
Towards open-vocabulary object attribute recognition. In CVPR, 2023.

Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
Real-time open-vocabulary object detection. In Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2024.

Penghui Du, Yu Wang, Yifan Sun, Luting Wang, Yue Liao, Gang Zhang, Errui Ding, Yan Wang,
Jingdong Wang, and Si Liu. Lami-detr: Open-vocabulary detection with language model instruc-
tion. In European Conference on Computer Vision, pp. 312–328. Springer, 2024.

Yu Du, Fangyun Wei, Zihe Zhang, Miaojing Shi, Yue Gao, and Guoqi Li. Learning to prompt for
open-vocabulary object detection with vision-language model. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14084–14093, 2022.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. In International Conference on Learning Representations,
2021. URL https://api.semanticscholar.org/CorpusID:238744187.

Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary object detection via vision
and language knowledge distillation. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=lL3lnMbR4WU.

Agrim Gupta, Piotr Dollár, and Ross B. Girshick. Lvis: A dataset for large vocabulary in-
stance segmentation. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 5351–5359, 2019. URL https://api.semanticscholar.org/
CorpusID:195441339.

Akshita Gupta, Sanath Narayan, KJ Joseph, Salman Khan, Fahad Shahbaz Khan, and Mubarak
Shah. Ow-detr: Open-world detection transformer. In CVPR, 2022.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Xinyu Huang, Yi-Jie Huang, Youcai Zhang, Weiwei Tian, Rui Feng, Yuejie Zhang, Yanchun Xie,
Yaqian Li, and Lei Zhang. Open-set image tagging with multi-grained text supervision. arXiv
e-prints, pp. arXiv–2310, 2023.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
PMLR, 2021.

Sheng Jin, Xueying Jiang, Jiaxing Huang, Lewei Lu, and Shijian Lu. LLMs meet VLMs: Boost open
vocabulary object detection with fine-grained descriptors. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
usrChqw6yK.

10

https://api.semanticscholar.org/CorpusID:238744187
https://openreview.net/forum?id=lL3lnMbR4WU
https://api.semanticscholar.org/CorpusID:195441339
https://api.semanticscholar.org/CorpusID:195441339
https://openreview.net/forum?id=usrChqw6yK
https://openreview.net/forum?id=usrChqw6yK


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

K. J. Joseph, Salman H. Khan, Fahad Shahbaz Khan, and Vineeth N. Balasubramanian. Towards
open world object detection. CoRR, abs/2103.02603, 2021. URL https://arxiv.org/
abs/2103.02603.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything. In 2023 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3992–4003, 2023. doi: 10.1109/ICCV51070.2023.00371.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In ICML, 2022a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei Yang, Chunyuan Li, Yiwu Zhong,
Lijuan Wang, Lu Yuan, Lei Zhang, Jenq-Neng Hwang, et al. Grounded language-image pre-
training. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 10965–10975, 2022b.

Wenteng Liang, Feng Xue, Yihao Liu, Guofeng Zhong, and Anlong Ming. Unknown sniffer for
object detection: Don’t turn a blind eye to unknown objects. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023.

Chuang Lin, Peize Sun, Yi Jiang, Ping Luo, Lizhen Qu, Gholamreza Haffari, Zehuan Yuan, and
Jianfei Cai. Learning object-language alignments for open-vocabulary object detection. In Max-
imilian Nickel, Mengdi Wang, Nancy {F Chen}, and Vukosi Marivate (eds.), The Eleventh Inter-
national Conference on Learning Representations. OpenReview, 2023. URL https://iclr.
cc/Conferences/2023,https://openreview.net/group?id=ICLR.cc. Inter-
national Conference on Learning Representations 2023, ICLR 2023 ; Conference date: 01-05-
2023 Through 05-05-2023.

Chuang Lin, Yi Jiang, Lizhen Qu, Zehuan Yuan, and Jianfei Cai. Generative region-language pre-
training for open-ended object detection. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 13958–13968, 2024a.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Zhiwei Lin, Yongtao Wang, and Zhi Tang. Training-free open-ended object detection and seg-
mentation via attention as prompts. Advances in Neural Information Processing Systems, 37:
69588–69606, 2024b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023a.

Liang Liu, Boshen Zhang, Jiangning Zhang, Wuhao Zhang, Zhenye Gan, Guanzhong Tian, Wenbing
Zhu, Yabiao Wang, and Chengjie Wang. Mixteacher: Mining promising labels with mixed scale
teacher for semi-supervised object detection. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 7370–7379, 2023b.

Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training
for open-set object detection. In European conference on computer vision, pp. 38–55. Springer,
2024.

Muhammad Maaz, Hanoona Abdul Rasheed, Salman H. Khan, Fahad Shahbaz Khan, Rao Muham-
mad Anwer, and Ming-Hsuan Yang. Multi-modal transformers excel at class-agnostic object
detection. CoRR, abs/2111.11430, 2021. URL https://arxiv.org/abs/2111.11430.

11

https://arxiv.org/abs/2103.02603
https://arxiv.org/abs/2103.02603
https://iclr.cc/Conferences/2023, https://openreview.net/group?id=ICLR.cc
https://iclr.cc/Conferences/2023, https://openreview.net/group?id=ICLR.cc
https://arxiv.org/abs/2111.11430


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey
Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao
Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby. Simple open-vocabulary object detection.
In Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella, and Tal Hassner
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A THEORETICAL MOTIVATION

A core theoretical principle behind COSRA is grounded in information theory, particularly the use
of conditional entropy to model contextual uncertainty. Let Y denote the unknown label of an object
and X1, X2, . . . , Xn represent the observed contextual variables (e.g., known object labels, spatial
locations, or visual attributes) in the scene. The uncertainty in predicting Y given these variables is
captured by the conditional entropy:

H(Y | X1, X2, . . . , Xn)

From Shannon’s Inequality, we know that as more informative context is added, this entropy cannot
increase (Mitrinović et al., 1993):

H(Y | X1, X2, . . . , Xn) ≤ H(Y | X1, X2, . . . , Xn−1)

This submodular property of entropy implies that the inclusion of each new contextual object nar-
rows the plausible space of labels for Y . In COSRA, this principle is operationalized through prompt
engineering: every new known object added to the prompt provides semantic and spatial constraints
that help the LLM disambiguate the label for the unknown object.

B CHARACTERISTIC EXTRACTION USING CLIP

This appendix provides comprehensive details of our attribute-based characterization process, a crit-
ical component of the Embedding-Label Repository (ELR) construction pipeline. Our approach sys-
tematically extracts visual and semantic descriptors for unknown objects using CLIP’s multimodal
capabilities.

B.1 TEMPLATE-BASED EXTRACTION FRAMEWORK

Our characteristic extraction operates on a template-based framework where each attribute category
χ maintains a curated set of descriptors Tχ. For an unknown object ou with cropped region Iu =
Crop(I, bu), we evaluate each descriptor t ∈ Tχ by computing the cosine similarity:

Sχ(t) =
⟨fimg(Iu), ftext(t)⟩

||fimg(Iu)||2 · ||ftext(t)||2
(12)

where fimg and ftext denote CLIP’s image and text encoders, respectively.

We retain descriptors exceeding threshold τattr = 0.80 to ensure confident attribute assignments that
meaningfully contribute to contextual reasoning. Our framework encompasses 11 distinct charac-
teristic categories with 155 total descriptors, systematically covering visual appearance, functional
properties, and contextual attributes.

B.2 CHARACTERISTIC CATEGORIES

We organize our characteristic categories into three primary groups based on their semantic function.
Tables 4–6 provide comprehensive specifications for each category.

Visual Properties. Visual characteristics capture observable appearance attributes that directly
correspond to object recognition cues.

Functional Properties. Functional characteristics describe operational capabilities and material
composition that inform object utility.
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Table 4: Visual property characteristics and their descriptors.

Category Template Descriptors
Color (19) “{color} colored” Red, Blue, Green, Yellow, Orange, Purple, Pink, Brown,

Black, White, Gray, Cyan, Magenta, Teal, Lavender, Sil-
ver, Chrome, Neon, Multi-colored

Shape (18) “in {shape} shape” Circle, Square, Triangle, Rectangle, Oval, Cylindrical,
Aerodynamic, Spherical, Octagonal, Conical, Star, Heart,
Crescent, Diamond, Trapezoid, Parallelogram, Rhombus,
Unknown

Texture (12) “with {texture} texture” Smooth, Rough, Bumpy, Fuzzy, Shiny, Matte, Textured,
Polished, Grainy, Glossy, Weathered, Rusted

Pattern (8) “with {pattern} pattern” Solid, Striped, Spotted, Checkered, Camouflage, Plain,
Branded, Reflective

Size (6) “a {size} sized object” Tiny, Small, Medium, Large, Huge, Massive

Table 5: Functional property characteristics and their descriptors.

Category Template Descriptors
Use Cases (24) “used for {use case}” Rest, Work, Entertainment, Storage, Cooking, Cool-

ing, Eating, Cleaning, Decoration, Transportation (Pub-
lic/Private), Communication, Exercise, Studying, Per-
sonal Care, Safety, Signaling, Warning, Parking, Sport-
ing, Racing, Emergency, Commercial, Passenger, Cargo

Materials (20) “made of {material} material” Metal, Steel, Aluminum, Plastic, Rubber, Glass, Leather,
Concrete, Fiberglass, Carbon Fiber, Wood, Fabric, Fur,
Feathers, Ceramic, Paper, Cardboard, Foam, Silicone,
Unknown

Functionality (14) “used for {functionality} purpose” Foldable, Adjustable, Portable, Stationary, Electronic,
Mechanical, Multi-functional, Decorative, Mobile, Au-
tomated, Manual, Emergency, Recreational, Commercial

Contextual Properties. Contextual characteristics establish environmental and categorical frame-
works that constrain semantic possibilities.

Table 6: Contextual property characteristics and their descriptors.

Category Template Descriptors
Categories (18) “classified as {category}” Vehicle,Automotive Vehicle, Living Being, Furniture,

Electronic Device, Sports Equipment, Kitchen Appli-
ance, Tool, Clothing, Building Structure, Natural Object,
Artwork, Container, Weapon, Musical Instrument, Medi-
cal Equipment, Toy, Book, Food Item

Environment (9) “found in {environment} environment” Urban, Rural, Marine, Aerial, Terrestrial, All-terrain,
Road, Rail, Water

Age/Era (6) “from {age} era” Modern, Vintage, Antique, Contemporary, Retro, Weath-
ered

B.3 INTEGRATION WITH COSRA FRAMEWORK

The extracted characteristics Cu = {Cu,color,Cu,shape, . . . ,Cu,category} serve as essential contextual
variables in our entropy-driven framework. As presented in Appendix A, each characteristic cate-
gory contributes to reducing the conditional entropy H(Y | X1, . . . , Xn) of label prediction, where
Y represents the semantic label and Xi denotes individual characteristic variables.

During context-aware prompt construction (Equation 3), selected characteristics are systematically
integrated with scene context K and spatial information bu. This multi-modal integration enables
the LLM to leverage both visual attributes and contextual relationships when generating candidate
labels LLLM

u .
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The comprehensive characteristic framework ensures semantic consistency between CLIP-based
visual similarity assessments and LLM-generated textual hypotheses. Visual properties directly in-
form appearance-based similarities, functional properties constrain usage-based reasoning, and con-
textual properties establish environmental and categorical priors that guide semantic inference. This
systematic organization enables COSRA to effectively handle diverse object types across various
domains while maintaining computational efficiency through threshold-based filtering (τattr = 0.80)
that preserves only the most confident attribute assignments.

C PROMPT EXAMPLE

To propose labels for novel regions, we prompt a general-purpose LLM with scene context from
detected known objects and the unknown region’s bounding box and attributes. The instruction
below asks for m candidate names ranked by plausibility. The resulting candidates are re-ranked
with CLIP and stored in the Embedding–Label Repository (ELR).

Candidate Label Generation Prompt

Known objects (label, box):
(L1, b1), (L2, b2), . . . , (L|K|, b|K|)

Unknown object:
box = bu
attributes = Cu (e.g., “red, glossy, metallic, striped”)
Task (instruction):
Based on the scene context and the described characteristics of the unknown object, provide {m}
possible names for the object, ranked from most likely to least likely. Return only the list of names,
one per line.

D LABEL REFINEMENT PROCESS

This section provides the complete algorithmic details for the iterative label refinement process
described in Section 3.3. The refinement algorithm leverages semantic consistency principles to
progressively correct noisy label assignments through visual similarity clustering and neighborhood
voting.

The algorithm operates on the insight that objects with similar predicted labels should exhibit similar
visual characteristics in the embedding space. It proceeds through three main phases: (1) semantic
grouping based on label similarity, (2) outlier detection within each group, and (3) label reassign-
ment via k-nearest neighbor voting. The process iterates until convergence or a maximum number
of iterations is reached.
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Algorithm 1 Label Refinement process

Require: Visual embeddings {Vu}Nu=1, Vu ∈ R512

Require: Initial predicted labels {L0
u} for unknown objects

Require: Hyperparameters: τsem=0.85, kneighbors=30, T=3
Ensure: Refined labels {L∗

u}
1: t← 0; converged← false
2: Lt

u ← L0
u ∀u

3: while t < T and converged = false do
4: t← t+ 1
5: changes← 0
6: ▷ STAGE 1: CLIP-Based Semantic Grouping
7: G ← GroupByCLIPSimilarity

(
{Lt−1

u }, τsem
)

8: ▷ STAGE 2: Group-Average-Based Flagging and Relabeling
9: F ← ∅ ▷ Flagged objects

10: for each semantic group g ∈ G do
11: if |g| < 2 then ▷ Skip singleton groups
12: continue
13: end if
14: Eg ← {Vu | u ∈ g} ▷ Embeddings in group
15: S ← CosineSimilarityMatrix(Eg)
16: for each u ∈ g do
17: avg simu ← 1

|g|−1

∑
v∈g,v ̸=u Su,v

18: end for
19: group avg← 1

|g|
∑

u∈g avg simu

20: for each u ∈ g do
21: if avg simu < group avg then
22: F ← F ∪ {u} ▷ Flag for relabeling
23: end if
24: end for
25: end for
26: ▷ k-NN Relabeling for Flagged Objects
27: for each flagged object u ∈ F do
28: Nu ← FindKNN(Vu, kneighbors) ▷ FAISS-based kNN
29: labels← {Lt−1

v | v ∈ Nu, v ̸= u}
30: Lnew

u ← MajorityVote(labels)
31: if Lnew

u ̸= Lt−1
u then

32: Lt
u ← Lnew

u ; changes← changes+ 1
33: else
34: Lt

u ← Lt−1
u

35: end if
36: end for
37: ▷ Keep non-flagged objects unchanged
38: for all u /∈ F do
39: Lt

u ← Lt−1
u

40: end for
41: ▷ Convergence check
42: if changes = 0 then
43: converged← true
44: end if
45: end while
46: return {L∗

u} ← {Lt
u}
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E IMPLEMENTATION DETAILS AND HYPERPARAMETERS

E.1 EXPERIMENTAL SETUP

This section provides additional implementation details beyond those presented in the main text. For
region proposals, SAM uses the specific threshold settings shown in Table 7. These parameters were
chosen to balance proposal quality with computational efficiency, ensuring comprehensive coverage
of salient regions while maintaining reasonable inference times.

Table 7: SAM hyperparameter settings used for region proposals.
Parameter Value
Prediction IoU threshold 0.88
Stability score threshold 0.95
NMS threshold 0.70

E.2 COSRA HYPERPARAMETER SETTINGS

For the VLM component, we use CLIP ViT-B/32 as the backbone for both visual and textual pro-
cessing, applying CLIP’s image encoder fimg to cropped object regions and its text encoder ftext to
attribute templates and candidate labels during cross-modal re-ranking, with a similarity threshold of
τattr = 0.80 for attribute selection. Table 8 summarizes the complete hyperparameter settings across
all framework components, including attribute selection, semantic grouping, label generation, and
iterative refinement stages. Values were chosen based on comprehensive ablation studies (Section F)
for τsim, m, and k, and convergence analysis for iteration counts.

Table 8: Key hyperparameter settings for COSRA framework components.
Parameter Value
Attribute selection threshold (τattr) 0.80
Semantic grouping threshold (τsim) 0.85
Number of candidate labels (m) 50
k-NN neighbors (k) 30
Refinement iterations (COCO / LVIS) 12 / 17

F ABLATION STUDIES

F.1 CANDIDATE LABEL COUNT ANALYSIS

We conduct a systematic analysis to determine the optimal number of candidate labels m generated
by the LLM during the label generation phase. Table 9 presents performance across different values
of m ∈ {10, 25, 50, 100, 150} on the COCO dataset.

Table 9: Effect of candidate label count m on COCO detection performance. Results show diminishing
returns beyond m = 50 with increased computational overhead.

Candidate Count (m) COCO Novel AP (%) Runtime (s/image)
10 35.2 2.1
25 37.4 2.8
50 38.8 3.4
100 38.9 5.7
150 39.0 8.2

The analysis reveals that m = 50 achieves near-optimal performance while maintaining compu-
tational efficiency. Increasing beyond m = 50 yields marginal improvements (+0.1-0.2 AP) at
significant computational cost (67% increased runtime for m = 100, 141% for m = 150). With
m = 10, performance drops substantially (-3.6 AP), indicating insufficient candidate diversity. The
choice of m = 25 provides reasonable performance but still underperforms the optimal setting by
-1.4 AP.
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These results demonstrate that m = 50 strikes an optimal balance between label quality and compu-
tational efficiency, providing sufficient candidate diversity for accurate cross-modal re-ranking while
avoiding the diminishing returns observed with larger candidate sets. The modest runtime increase
compared to smaller values is justified by the substantial performance gains, making m = 50 the
recommended configuration for practical deployment.

F.2 ITERATIVE REFINEMENT CONVERGENCE ANALYSIS.

Figure 4 demonstrates the convergence behavior of our iterative refinement process across COCO
and LVIS1. The COCO dataset exhibits rapid convergence, achieving stable performance after 12
iterations with a substantial improvement from 23.0% to 38.8% Novel AP. In contrast, the LVIS
dataset requires additional refinement cycles, converging at iteration 17 with an improvement from
14.0% to 24.2% Novel AP. This difference in convergence behavior reflects the inherent challenge of
rare class identification in LVIS, where the refinement process requires more iterations to effectively
distinguish and relabel less frequent object categories.
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Figure 4: Convergence behavior of COSRA’s iterative refinement on COCO and LVIS datasets. Novel/Rare
AP steadily improves with each iteration, stabilizing after approximately 12 iterations on COCO and 17 itera-
tions on LVIS. The earlier convergence on COCO reflects the relative simplicity of its class distribution, while
LVIS requires more refinement steps due to its long-tail nature.

F.3 COMPONENT ABLATION ANALYSIS

We conduct systematic ablation experiments to analyze the contribution of each component in the
COSRA framework. The results in Table 3 (main paper) show the impact of removing individual
components from the full system, evaluated on both COCO and LVIS datasets. Below we provide
detailed analysis of each component’s contribution:

Scene Context. Removing scene context results in the most dramatic performance drop, with COCO
Novel AP falling from 38.8% to 7.1% (-31.7 pp) and LVIS Rare AP from 24.2% to 4.2% (-20.0 pp).
This confirms our entropy-based motivation that contextual information is crucial for reducing label
uncertainty in open-world scenarios.

Attribute Characterization. Without visual attribute extraction, performance decreases to 23.1%
COCO Novel AP (-15.7 pp) and 15.2% LVIS Rare AP (-9.0 pp). This demonstrates that CLIP-
based visual descriptors significantly enhance the LLM’s ability to generate contextually appropriate
candidate labels.

Cross-Modal Re-ranking. Removing CLIP-based re-ranking of LLM candidates reduces perfor-
mance to 27.1% COCO Novel AP (-11.7 pp) and 16.0% LVIS Rare AP (-8.2 pp). This validates the
importance of visual-semantic alignment in candidate selection.

Iterative Refinement. Without the refinement process, performance drops to 23.0% COCO Novel
AP (-15.8 pp) and 14.1% LVIS Rare AP (-10.1 pp). This highlights the value of progressive label
correction through visual similarity clustering and neighborhood voting.
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The ablation results confirm that all components contribute meaningfully to COSRA’s performance,
with scene context being the most critical component, followed by iterative refinement and attribute
characterization.

F.4 HYPERPARAMETER SENSITIVITY ANALYSIS

We analyze the sensitivity of key hyperparameters in the iterative refinement process on the COCO
dataset. Figure 5 presents the effect of varying the number of nearest neighbors k and the label
similarity threshold τsim on detection performance.
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(b) Effect of τsim on Novel AP
Figure 5: Hyperparameter sensitivity analysis. (a) Performance varies significantly with the number of
nearest neighbors k, peaking at k = 30. (b) Label similarity threshold τsim shows optimal performance at
τsim = 0.85.

Number of Nearest Neighbors (k). The analysis reveals that performance is highly sensitive to the
choice of k in the k-NN refinement process. Starting from k = 5 (26.0% Novel AP), performance
increases substantially as we include more neighbors, reaching a peak at k = 30 (38.8% Novel
AP). This significant improvement (+12.8 pp) demonstrates that sufficient neighborhood diversity is
crucial for accurate majority voting. Beyond k = 30, performance gradually decreases, with k = 50
achieving 36.5% Novel AP (-2.3 pp from peak). This decline suggests that including too many
distant neighbors introduces noise into the voting process, diluting the quality of label corrections.

Label Similarity Threshold (τsim). The threshold analysis shows that COSRA is relatively robust
to variations in the semantic grouping threshold. Performance remains stable across the tested range,
with τsim = 0.85 achieving optimal results (38.8% Novel AP). Lower thresholds (τsim = 0.7: 36.5%
Novel AP) create overly broad semantic groups, mixing dissimilar objects and reducing refinement
effectiveness. Higher thresholds (τsim = 0.95: 36.8% Novel AP) create overly restrictive groups,
limiting the refinement process by excluding semantically related but not identical labels.

These results confirm that our chosen values of k = 30 and τsim = 0.85 achieve peak performance,
providing the optimal balance between refinement effectiveness and computational efficiency.

G COSRA’S ROBUSTNESS TO VISUAL NOISE.

COSRA demonstrates robust performance under challenging conditions including occlusion and
visual ambiguity. In open-ended object detection, the primary objective is to assign the most se-
mantically accurate class label to each detected bounding box, rather than generating any plausible
name that may be partially correct. Figure 6 provides a compelling illustration of this resilience
through a complex indoor scene where partial occlusion leads to an initially incorrect prediction that
is subsequently corrected through our self-refinement mechanism.

In this example, the target object (a couch) is partially occluded by a bicycle within the bounding
box. The initial characteristic extraction using CLIP focuses predominantly on the visible bicycle
components, leading to erroneous attribute characterization: textures: Grainy, sizes: Medium, pat-
terns: Striped, ages: Contemporary, functionalities: Recreational, materials: Carbon Fiber, col-
ors: Black, shapes: Aerodynamic, use cases: Transportation, environments: Urban, categories:
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Vehicle. This bicycle-centric characterization misleads the LLM during candidate generation, re-
sulting in the initial incorrect prediction of motorcycle .

However, COSRA’s iterative refinement process effectively addresses this challenge. In the first
self-refinement iteration, the visual embedding of the occluded couch—despite the noise from the
bicycle—maintains sufficient semantic similarity to other couch instances in the Embedding-Label
Repository (ELR). Through k-nearest neighbor analysis and majority voting among visually simi-
lar objects, the refinement mechanism identifies the semantic inconsistency between the predicted
motorcycle label and the actual visual content. The algorithm successfully relabels the object as
couch , demonstrating COSRA’s ability to overcome characteristic extraction errors and converge to

semantically accurate labels even under significant visual occlusion.

 bicycle  tv

 person

 chair motorcycle  chair
 bicycle  tv

 person

 chair couch  chair

Initial Detection (Unknown Labels) Label Assignment (Before Refinement) Iterative Refinement (iter 1)

Figure 6: COSRA’s robustness to occlusion and visual noise. motorcycle corrected to couch despite
bicycle occlusion (Iter 1).

H ADDITIONAL QUALITATIVE EXAMPLES

H.1 IMMEDIATE LABEL GENERATION EXAMPLES

Figure 7 demonstrates COSRA’s effectiveness in immediate label generation, where our framework
correctly identifies object categories even before the iterative refinement process. This showcases
the strength of our entropy-driven contextual reasoning and LLM-based candidate generation. The
figure illustrates two key scenarios:

In the top example, COSRA successfully identifies a couch in a living room setting. The context-
aware prompt incorporates known objects ( person , bowl , apple ) with their spatial locations, com-
bined with the unknown object’s visual characteristics (fuzzy texture, medium size, plain pattern,
decorative functionality, fur material, gray color, rectangular shape, urban environment, furniture
category). This rich contextual information enables the LLM to generate accurate candidate labels
including Couch , Sofa , Tumbler , Recliner , Armchair with couch being the top prediction.

The bottom example shows COSRA correctly identifying a cup in a dining context. The scene
contains multiple known objects ( spoon , bowl ) that provide contextual cues about the dining/eating
environment. The unknown object’s characteristics (smooth texture, medium size, branded pattern,
contemporary age, ceramic material, yellow color, cylindrical shape, eating use case, container cat-
egory) guide the LLM to generate appropriate candidates including Cup , Mug , Tumbler , Goblet ,
Chalice .

These examples validate that COSRA’s context-aware characterization and entropy-driven reasoning
enable accurate label generation even without iterative refinement, demonstrating the effectiveness
of our foundational approach.

H.2 ADDITIONAL ITERATIVE REFINEMENT EXAMPLES

We provide further qualitative results of COSRA’s predictions beyond those shown in the main text.
These examples (Figure 8) illustrate both successful initial predictions and cases where iterative
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Figure 7: Examples of COSRA’s immediate label generation capability. Green boxes denote unknown
objects that COSRA labeled correctly before refinement. The green text corresponds to the Attribute-Based
Characterization (e.g., texture, size, color, etc.), which, together with scene context, guides the LLM to generate
accurate candidate labels. Top: Living room scene with couch identification. Bottom: Kitchen scene with cup

recognition.

refinement corrects early misclassifications. They highlight the robustness of COSRA across diverse
object categories and scene contexts.
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Figure 8: Additional qualitative results of COSRA. Examples show unknown objects and their predicted
labels across refinement stages.
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Figure 8: Additional qualitative results of COSRA (continued).
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