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ABSTRACT

Optimizing the performance of many objectives (instantiated by tasks or clients)
jointly with a few Pareto stationary solutions (models) is critical in machine learn-
ing. However, previous multi-objective optimization methods often focus on a
few objectives and cannot scale to many objectives that outnumber the solutions,
leading to either subpar performance or ignored objectives. We introduce “Many-
objective multi-solution Transport (MosT)”, a framework that finds multiple diverse
solutions in the Pareto front of many objectives. Our insight is to seek multiple
solutions, each performing as a domain expert and focusing on a specific subset of
objectives while collectively covering all of them. MosT formulates the problem
as a bi-level optimization of weighted objectives for each solution, where the
weights are defined by an optimal transport between objectives and solutions. Our
algorithm ensures convergence to Pareto stationary solutions for complementary
subsets of objectives. On a range of applications in federated learning, multi-task
learning, and mixture-of-prompt learning for LLMs, MosT distinctly outperforms
strong baselines, delivering high-quality, diverse solutions that profile the entire
Pareto frontier, thus ensuring balanced trade-offs across many objectives.

1 INTRODUCTION
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Figure 1: Accuracies of different meth-
ods outputting 5 solutions serving 30 ob-
jectives (clients) in federated learning.
MosT results in a better coverage of all
the objectives than the other baselines.

The underlying goal of many machine learning problems
is to simultaneously optimize multiple objectives. Usu-
ally, no single solution (or model) is optimal for all objec-
tives at once. Multi-objective optimization (MOO) aims
to find a solution on the Pareto frontier where no objec-
tive can be improved without degrading others. One ap-
proach is to optimize a linear combination of all objec-
tives, which may collapse to solutions for a small subset
of objectives. Another method, multi-gradient descent
algorithm (MGDA) (Désidéri, 2012) finds a common de-
scent direction at each iteration to update the model so
that no objective degrades. However, the trade-offs pro-
vided by MGDA solutions are not fully controllable even
with recent advances like reference vectors to guide the
search space among all the objectives (Mahapatra & Rajan,
2020), especially when the Pareto frontier is unknown and
complicated (e.g., non-smooth or discontinuous).

Moreover, MOO approaches typically focus on two or
three objectives and hardly scale to many objectives,
as shown in Figure 1. As objectives increase, it is less
plausible that they will reach an agreement on a single
solution. Instead of balancing all of them, it is more

appealing to find multiple diverse yet complementary solutions on the Pareto frontier each focusing
∗Corresponding author.
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on a local domain of objectives. This problem of finding m Pareto solutions (or training m models)
for n objectives can be understood as a multi-solution extension of MOO or a mixture of experts
(MoE) (Jacobs et al., 1991) for multiple objectives. However, as n increases, existing methods
(e.g., those based on reference vectors or a uniform exploration of the Pareto frontier) can be
computationally prohibitive and thus practically infeasible. It is also challenging to pre-determine
the search regions of a few representative solutions profiling the entire Pareto frontier. The setting
of n ≫ m is emerging in a variety of machine learning problems that involve many (i.e., big-n)
users, domains, or evaluation criteria, each associated with a different training objective, but the
total available data or computation can only support the training of m≪ n models.

In this paper, we ask: can we develop a solution-objective matching mechanism to guide the ex-
ploration of m solutions on the high-dimensional (n ≫ m) Pareto frontier? For example, some
objectives share similar structures; so optimizing them with the same model can bring common im-
provement, while optimizing separate models for objectives with mutual conflicts can effectively avoid
poor performance and the tug-of-war among them. Hence, a matching between models and objectives
after every model update step is able to explore the correlation among n objectives along the optimiza-
tion trajectory. Specifically, we capture the matching relations with a weight matrix Γ ∈ Rn×m

+ where
Γ·,j reweighs the n objectives that model j ∈ [m] aims to optimize. For model j, such a reweighted
single-model multi-objective optimization problem steers towards a domain expert focusing on a
locally consistent subset of objectives. With complementary (i.e., every objective being equally cov-
ered) and balanced (i.e., no model dominating on most objectives) Γ’s to adjust the descent directions
per iteration, we aim to find m diverse yet complementary solutions that lie in the Pareto front.

More concretely, we model the optimization of Γ as an optimal transport (OT) between the m models
and n objectives, with two marginal constraints Γ1m = α1 and Γ⊤1n = β in OT, which allow us
to control the ratio of n objectives assigned to each model and the ratio of m solutions optimized
for each objective. For example, with a uniform α = (1/n)1n, the m≪ n models are enforced by
OT weights Γ to focus on different subsets of objectives—otherwise, violate the Γ1m = (1/n)1n

constraint could leave some objectives uncovered. Similarly, with a uniform β = (1/m)1m, the
training loads for the m models tend to be balanced so no model would dominate the others on a
majority of the objectives (Figure 1).

We propose an efficient algorithm for the above “Many-objective multi-solution Transport (MosT)”
problem, which is a bi-level optimization between model parameters and objective-solution matching
parameterized by Γ. Specifically, the upper-level is a Γ-reweighted MGDA problem for the m models.
The lower-level is a classic OT problem optimizing Γ with marginal constraints. We further introduce
a regularization term on top of Γ to promote diversity of the optimal transport. Our algorithm
converges to stationary points in the non-convex case, and converges to Pareto stationary solutions in
the strongly-convex case under additional stability assumptions. We additionally extend MosT to
handle the n≪ m case by augmenting the n objectives with random linear combinations of them
(“MosT-E”). In practice, we introduce a curriculum for better model specialization by gradually
varying the marginals α and β in MosT—focusing more on ‘models selecting objectives’ at the earlier
stage and later on transits to ‘objectives selecting the best models’.

We apply MosT to various n≫ m machine learning applications, spanning federated learning (McMa-
han et al., 2017), multi-task learning (Lin et al., 2019), and mixture-of-prompt learning (Qin & Eisner,
2021). Though the focus of this work is to address the challenges associated with scaling MOO to a
large number of objectives, we also apply MosT to the n≪ m scenarios, including fairness-accuracy
trade-offs and other classic MOO problems (Appendix A.3). In all applications (Section 6), MosT
finds diverse high-quality solutions on the Pareto front, consistently outperforming various strong
baselines in terms of average accuracy and other popular metrics on the quality of multiple solutions,
without extra computation cost.

2 RELATED WORK

Single-Solution MOO. The classic goal of MOO is to find some solution lying on the Pareto front
of multiple objectives (Désidéri, 2012; Roy et al., 2023; Halffmann et al., 2022; Miettinen, 1999).
One approach is to solve a linearized aggregation (i.e., weighted average) of all objectives. However,

11m denotes the m-dimensional all-ones vector and Γ1m computes the row-wise sum of entries in Γ.
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linearization, despite covering broad objective weights, may produce solutions in a small Pareto front
area (Boyd & Vandenberghe, 2004). The multiple-gradient descent algorithm (MGDA) (Désidéri,
2012) is widely used due to its capability to handle complicated Pareto fronts and compatibility
with gradient-based optimization. In this work, we use MGDA-style optimization methods in our
algorithm, and compare with linearization-based objectives (with different weights) empirically
(Section 6), showing that our approach can find more diverse Pareto stationary solutions.

Multi-Solution MOO. One line of work that aims to discover diverse solutions across the entire Pareto
front builds upon MGDA and guides the search process via constraints of preference vectors (Lin
et al., 2019; Mahapatra & Rajan, 2020) or constraints of other objectives (Zafar et al., 2017). These
methods do not generalize well to the setting where there are many objectives (constraints) or the
model dimension is large, since the number of preference vectors to explore the whole Pareto front
may depend exponentially on these factors in the worst scenario (Emmerich & Deutz, 2018). Even
in the setting where there are only a few (e.g., two or three) objectives, diversity of the preference
vectors in the action space (during exploration) may not translate to diversity in the solution space. We
showcase the superiority of MosT relative to these works in Section 6. Some works that balance Pareto
optimality and solution diversity cannot guarantee the final solutions are on the Pareto front (Liu
et al., 2021). For gradient-free methods, evolution strategies or Bayesian optimization (Coello, 2006;
Sindhya et al., 2012) has been explored to find multiple (as opposed to one) Pareto stationary solutions.
However, they are usually not efficient when solving practical MOO problems in machine learning
due to the lack of gradient information (Liu et al., 2021; Momma et al., 2022); hence, we do not
compare with those methods.

Applications in Machine Learning. We demonstrate MosT’s effectiveness on applications including
cross-device federated learning (McMahan et al., 2017). There is extensive prior research on
personalized federated learning (e.g., Smith et al., 2017; Ghosh et al., 2020; Wu et al., 2022), i.e.,
outputting multiple related models instead of one, to serve all clients. Our approach can be viewed as
a personalization objective here. Note that our goal is not to achieve the highest average accuracy
for federated learning, but rather, explicitly balance multiple objectives and guarantee that all output
solutions are Pareto stationary. We also explore multi-task learning (Lin et al., 2019) and mixture-
of-prompt learning (Qin & Eisner, 2021) on standard benchmarks where each objective is a task
or a training instance. For the n≪ m case, following the setup in prior MOO works (e.g., Zitzler
et al., 2000; Mahapatra & Rajan, 2020), we apply MosT to a toy problem and address (algorithmic)
fairness/utility trade-offs (two objectives).

3 MOST: MANY-OBJECTIVE MULTI-SOLUTION TRANSPORT

In this section, we introduce MosT objective and the alternating optimization algorithm to solve it.

Let Li(·) (i ∈ [n]) denote the empirical loss function of the i-th objective. When the number of
objectives n is much larger than the number of solutions m, it is possible that the learnt solutions
(for example, simply by running MGDA for m times with different randomness) cannot cover
representative regions on the Pareto front. To address this, we use an assignment matrix Γ ∈ Rn×m

+

with constraints Γ1m = α and Γ⊤1n = β on top of the losses to enforce a balanced matching
between objectives and solutions. We could additionally add a regularizer R(Γ) to encourage a more
diverse assignment. Our many-objective multi-solution transport (MosT) objective is as follows.
Find {θ1:m} such that every θj (j ∈ [m]) is the Pareto solution of m weighted objectives

minθj (Γ1,jL1(θj), · · · ,Γn,jLn(θj)) , where (1)

Γ ∈ argminΓ∈Ω

∑
i∈[n]

∑
j∈[m] Γi,jLi(θj) + τR(Γ), (2)

Ω ≜ {Γ ∈ Rn×m
+ : Γ1m = α,Γ⊤1n = β}. (3)

α ∈ ∆n, β ∈ ∆m are two tunable vectors on n- and m-dimensional probability simplexes, re-
spectively. We encourage nondegeneracy of solutions by setting these vectors to follow uniform
distributions, i.e., α = 1n/n, β = 1m/m. As discussed in Section 1, the constraint set Ω prevents
the undesired outcome where all objectives are matched with a subset of solutions or all solutions
optimize a subset of objectives. To explicitly encourage the diversity among the columns in Γ, we
define a regularization term R(·) as

R(Γ) = −
∑

i∈[n] maxj∈[m] Γi,j . (4)
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Hence, only the maximum entry maxj∈[m] Γi,j in each row of Γ contributes to R(Γ). Under the
marginal constraints on Γ in Eq 3, minimizing R(Γ) leads to maxj∈[m] Γi,j = 1/n and zeros for
the rest entries in each row-i, resulting in zero cosine similarity between different columns of Γ.
Moreover, if n ≫ m and n (mod) m = 0, it has exactly n/m nonzero entries (with value 1/n) per
column, securing an equal and disjoint partition of the n objectives to the m solutions, which indicates
the diversity of objectives used to train the m solutions. Eq. 2 has a weight τ to balance R(Γ) and the
transport cost. In the unregularized case when τ = 0 (Eq. 2), the resulting Γ would be a sparse matrix
(Proposition 1) (Liu et al., 2022a; Brualdi, 2006). Although enforcing marginal constraints without
R(Γ) already leads to improvements over the baselines (Figure 9), empirically, we also showcase
that leveraging this extra regularizer further benefits the diverse trade-offs among all objectives
(Appendix A.5.3).

3.1 ALGORITHMS FOR MOST

At a high level, the bi-level optimization problem described above can be decoupled into two sub-
problems (over Γ and θ1:m) when fixing one variable and optimizing the other. At each outer iteration,
we first solve 2 exactly by running an off-the-shelf OT solver (e.g., IPOT (Xie et al., 2020)). Then we
optimize 1 by running a reweighted version of MGDA with a min-norm solver (Désidéri, 2012). The
exact algorithm is summarized in Algorithm 1.

Algorithm 1 Many-Objective Multi-Solution Transport
1: Input: objectives {Li(·)}ni=1, α ∈ ∆n, β ∈ ∆m, η, K
2: Initialize: m solutions θ1:m
3: for t ∈ {1, · · · , T} do
4: Γt ← solution of Eq. 5 by an optimal transport (OT) solver given θt1:m;
5: for j ∈ {1, · · · ,m} do
6: for k ∈ {1, · · · ,K} do
7: dj ← Eq. 8, where λ∗ is achieved by a min-norm solver for Eq. 7 given Γt and θj .
8: θj ← θj + ηdj ;
9: end for

10: dtj ← dj ; θ
t
j ← θj

11: end for
12: end for
13: Return θT1:m

From Algorithm 1, in each iteration, we first optimize Γt with θt1:m fixed, i.e., finding the optimal
transport (or matching) between the n objectives and the m models by solving the following optimal
transport problem with existing algorithms (Xie et al., 2020):

minΓ∈Ω

∑
j∈[m]

∑
i∈[n] Γi,jLi(θj) + τR(Γ). (5)

Given the maximum entry per row in Γ, Eq. 5 reduces to a new optimal transport transport problem
with an augmented loss Li(·) + τ∇R(Γ), solvable by an off-the-shelf optimal transport solver.

Fixing the optimal Γ, we then optimize a reweighted version of MGDA across objectives
(Γ1,jL1(θj), · · · ,Γn,jLn(θj)) for each solution θj , j ∈ [m]. To find Pareto stationary solutions,
similar as MGDA, we aim to find the common-descent directions d1:m for θ1:m to ensure that all
objective values do not increase at each iteration. This reduces to solving m MGDA-type MOO
problems (more details in Appendix A.1) in parallel, aiming to find dj for every solution j ∈ [m]

mindj maxi∈[n] d
⊤
j Γi,j∇θjLi(θj) +

1
2∥dj∥

2
2, (6)

which rescales each objective’s gradient ∇θjLi(θj) by Γi,j . For simplicity, we will use ∇Li(θj)
to denote ∇θjLi(θj) in the remaining of the paper. The dual of Eq. 6 is a min-norm problem over
variable λ ∈ ∆n as follows:

minλ∈∆n

∥∥∥∑i∈[n] λiΓi,j∇Li(θj)
∥∥∥2 , ∀j ∈ [m], (7)

which can be solved by existing Frank-Wolfe algorithms (Fujishige, 1980). Given the optimal dual
solution λ∗ from Eq. 7, the primal solution of dj (j ∈ [m]) to Eq. 6 can be derived by the following
convex combination of the Γ-weighted gradients:

dj =
∑

i∈[n] λ
∗
iΓi,j∇Li(θj). (8)
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To understand the benefits of Eq. 7, let us consider the vanilla MGDA method:

minλ∈∆n

∥∥∥∑i∈[n] λi∇Li(θ)
∥∥∥2, in which λ may be biased towards the objective with a small gradi-

ent norm (i.e., a well-optimized objective). In MosT, however, OT in Eq. 5 tends to result in a large
Γi,j for a small Li(θj), thus moving small gradient away from the origin in Eq. 7 (i.e., preventing a
well-optimized objective from dominating dj).

The MGDA direction dj guarantees that every objective with non-zero Γi,j will be improved or
remain the same after updating θj . After obtaining dj , we update the model parameters θj by moving
along this direction (Line 8 in Algorithm 1). Optionally, we can also run such gradient descent steps
for K steps in practice under the same Γ. In our convergence analysis (Section 4), we allow for
K > 1 and assume a full batch setting with ∇Li(θj) evaluated on all the local data of problem i, for
all j’s. Empirically, we report our experiment results based on mini-batch gradients in Section 6.

3.2 EXTENSION TO FEW-OBJECTIVE (n < m) CASES

The MosT formulation discussed before is mainly motivated by the challenges of having many
objectives in MOO. When n ≫ m, the diversity of the m models can be achieved by enforcing
the two marginal constraints in the optimal transport problem. However, the diversity cannot be
fully guaranteed when n≪ m. For example, when n = 2, by even applying uniform distributions
for α and β (i.e., the strongest constraints for diversity), a trivial but feasible solution of Γ =
[1m/2,0m/2;0m/2,1m/2] can collapse the m models to duplicates of only two different models, i.e.,
one minimizing the first objective while the other minimizing the second. To address this problem,
we create (n′ − n) ≫ m dense interpolations of the n objectives (n′ ≫ m) by sampling (n′ − n)
groups of convex combination weights wn+1:n′ on the simplex, i.e., wi ∈ ∆n drawn from a Dirichlet
distribution. Then each auxiliary objective Li(·) can be defined as

Li(θ) ≜
∑

l∈[n] wi,lLl(θ), ∀ i = n+ 1, · · · , n′. (9)

Thereby, we increase the number of objectives to n′ ≫ m and MosT can be applied to achieving
diverse models for optimizing the n′ interpolations of the original n objectives. This strategy can be
explained as maximizing the coverage of the m models over the dense samples of the Pareto front
regions using n′ random reference vectors. We report the results of this technique with applications
on a toy problem and fairness/utility trade-offs in Appendix A.3.

3.3 A PRACTICAL SOLUTION-SPECIALIZATION CURRICULUM

In scenarios with diverse objectives, each corresponding to a distinct domain or unique dataset, a
practical demand arises: optimizing multiple models and turning them into a mixture of specialized
experts (i.e., models). This allows each input sample to select the best expert(s) for inference. Such
“objective selecting expert/models” or “objective choice routing” strategy corresponds to removing
Γ1n = β from the constraint set Ω in Eq. 3. But it may lead to training imbalance among the m
models, e.g., one model is chosen by most objectives while other models get nearly zero optimization.
As training proceeds, the winning model(s) trained by more objectives tend to be chosen even more
frequently; hence joint optimization of m models can collapse to training one single model.

To address this challenge, we propose a curriculum of varying the marginal constraints that progres-
sively changes α and β for different training stages. Initially, we mainly focus on enforcing a uniform
marginal distribution β so every model receives sufficient training from multiple objectives. By
relaxing the other marginal constraint α over n objectives to be slightly non-uniform, the m models
have more freedom to choose the objectives they perform the best on (i.e., “model selecting objective”
or “model choice routing”) and we allow for slight imbalance among objectives.2 In later stages, the
curriculum instead focuses more on enforcing a uniform α so every objective is covered by sufficient
models. The marginal constraint β can be relaxed in this stage since models approach convergence.
Empirical results in Appendix A.5.2 demonstrate the effectiveness of our curriculum strategy.

4 PROPERTIES OF MOST

In this section, we discuss how MosT encourages diverse solutions and provide convergence guaran-
tees of Algorithm 1. Here we define solution diversity via the diversity of Γ, as stated below.

2Less-selected objectives can be more difficult and it is preferable to learn them later when models improve.

5



Published as a conference paper at ICLR 2025

Definition 1 (Diverse Solutions). We informally say that a set of solutions {θi}i∈[n] are more diverse
if
∑m

j=1

∑m
z=1,z ̸=j cos(Γ·,j ,Γ·,z) is small with some feasible Γ, where cos(xxx,yyy) = xxx·yyy

||xxx||·||yyy|| .

This definition captures the goal of diversifying solution specialization, ensuring at least one suitable
model j (corresponding to argmaxj∈[m] Γi,j) for every objective i, as losses are reweighted by Γ.
We note that fixing the losses {Li(θj)}i∈[n],j∈[m], when solving for Γ without any regularization (i.e.,
τ=0 in Eq. 5), the objective inherently results in sparse solutions, as stated in the proposition below.
Proposition 1 (Sparsity of Γ Brualdi (2006)). Any Γ that solves the optimal transport problem Eq. 5
with τ=0 has at most n+m− 1 non-zero entries.
Intuitively, sparse Γ’s satisfying the marginal constraint Ω would prevent the scenarios where only a
subset of objectives are well-optimized. In Appendix A.5.3, we empirically verify that even without
R(Γ), the sparse transport gives diverse solutions that balance all objectives. Also, setting R(Γ) to
be the negative of our diversity measure (Definition 1), further encourage diversity as it is obvious to
show that ∑

i∈[n] maxj∈[m] Γ
∗
i,j(τ) ≥

∑
i∈[n] maxj∈[m] Γ

∗
i,j(0),

where Γ∗(τ) is defined as the optimal solution of Eq. 5 with a regularization constant τ . We investigate
training dynamics and diverse assignments between objectives and models in Section 5.

4.1 CONVERGENCE

In this part, we analyze the convergence of MosT in Algorithm 1 for both strongly-convex and
non-convex functions. The alternate minimization scheme poses additional challenges to our analysis
compared with prior convergence results in MOO (Fliege et al., 2019).
Theorem 1 (Convex and Non-Convex). Assume each objective Li(θ) is ν-smooth. Given marginal
distribution constraints α ∈ ∆n and β ∈ ∆m, under a learning rate η = 1

2ν , after running Algorithm 1
for T outer iterations with full batch multi-gradient descent, we have that

1
T

∑
t∈[T ]

∑
j∈[m] βj∥dtj∥2 ≤ O

(
ν
T

)
.

We defer the full proofs to Appendix A.2.2. The main step involves leveraging the property of the
common descent direction dj obtained from Eq. 8, i.e., for any i ∈ [n] and j ∈ [m], we have

Γt
i,j∇Li(θ

t
j)

⊤dtj ≤ − 1
2∥d

t
j∥2.
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Figure 2: (a) Left y-axis: Percent of zero-valued
entries within Γ. Right y-axis: symmetric KL
divergence between Γ in successive iterations. Γ
quickly converges to sparsity. (b) Test loss av-
eraged over all solutions vs. test loss of the best-
performing solution for each objective (oracle).
As training proceeds, average loss rises while or-
acle loss continues to decrease, indicating a trend
of solution specialization and diversification.

Our convergence rate is the same as that of nor-
mal gradient descent for non-convex and smooth
problems under a fixed learning rate. Note that
our result uses full gradients of each objective for
the min-norm problem (Eq. 6). In practice, we
use K > 1 to run multiple iterations to update the
model parameters for each objective locally, and
use stochastic mini-batch gradients in Eq. 6.

Strongly-convex cases. When the losses
Li(θ) (i ∈ [n]) is smooth and additionally
strongly convex with respect to θ ∈ Rd, we show
that our proposed algorithm (using full gradients)
can converge to Pareto stationary points with re-
spect to a subset of matching objectives under
a more restricted assumption on the stability of
objective-model matching. Please see Theorem 2
in the appendix for complete statement and a de-
tailed proof.

5 ASSIGNMENT DYNAMICS DURING TRAINING

In this section, we empirically examine the optimal assignment matrix Γ during training, highlighting
its advantages on objective-solution matching and its impact on solution specialization.
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Figure 3: (a) Training loss and test accuracy curves of each method. MosT demonstrates faster
convergence with higher accuracy. (b) Diversity of solutions during training: each block on a column
visualizes the KL divergence of a pair of solutions (brighter indicates a larger value). MosT produces
more diverse solutions. (c) Fairness: Accuracy of the worst 20%, 40%, 60%, and 80% client groups.
Diversity leads to better tail performance among all the objectives.

Fast convergence of Γ. We observe rapid convergence of Γ by tracking its evolution with Kullback
Leibler (KL) divergence between successive iterations (Figure 2(a)), detailed in Appendix A.4.

Sparsity of Γ. As training proceeds, Γ becomes more sparse, with nearly 75.00% zero entries
(Figure 2(a)). This implies that Γ prompts each solution to focus on only a subset of objectives.

Sparsity promotes specialization. Figure 2(b) shows the mean test loss averaged across all solutions
evaluated at all the objectives, and the loss when selecting the best-performing solution for each
objective (denoted as oracle). Initially, the mean loss increases and then decreases, while the
oracle loss consistently decreases. These trends indicate that using all the solutions to serve all
the objectives is suboptimal, while objective-specific solutions can focus on subsets of objectives,
ultimately contributing to a more complementary and effective overall solution set.

6 MOST APPLICATIONS

In this section, we apply MosT to various ML applications where n ≫ m. Though we do not
specifically focus on the (less challenging) settings of m≫ n, MosT can naturally generate diverse
solutions for those problems as well. We defer the readers to Appendix A.3, where we show superior
performance of MosT relative to existing methods for the m≫ n case.

6.1 EXPERIMENTAL SETUP

This section outlines the experimental setup. We describe the specific setup for each application in
their respective sections, and provide more details such as hyperparameter values in Appendix A.4.

For all the applications, we at least compare with the following baselines to generate m solutions.

• Linearization-based MOO (abbr. Linearization below) where we optimize a convex combination
of all objectives with m randomly-sampled sets of weights. Minimizing a simple average of all the
losses (empirical risk minimization over objectives) is a specific instance of using uniform weights.

• Running MDGA (Désidéri, 2012) independently for m times with different random seeds.

Evaluation metrics. We use task-specific evaluation metrics, such as average accuracy (or tail
accuracy) across all objectives or hypervolume (Zitzler & Thiele, 1999). We do not evaluate on
hypevolume for many-objective scenarios due to its computational complexity and infeasibility in
high-dimensional settings (i.e., many objectives). Each run is repeated three times using different
seeds.

7
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Table 1: Federated Learning: Mean accuracy across clients (mean and std across 3 runs) on
federated learning datasets. MosT outperforms the strong baselines.

Dataset MGDA Linearization FedAvg FedProx FedMGDA+ MosT w/o R(Γ) MosT

Syn (0.0, 0.0) 77.22±0.41 75.91±0.37 75.71±0.51 75.60±0.42 75.26±1.21 83.09±0.87 84.25±0.51

Syn (0.5, 0.5) 87.09±0.29 87.18±0.27 86.26±0.61 86.13±0.39 85.21±1.42 89.07±0.63 89.99±0.52

Syn (1.0, 1.0) 90.52±0.13 89.87±0.51 88.12±0.75 87.58±1.36 87.16±1.09 91.70±0.02 92.21±0.08

FEMNIST 78.86±1.43 72.62±0.65 72.47±0.19 72.45±0.06 80.08±0.12 80.94±0.34 81.16±0.03

6.2 FEDERATED LEARNING

One important scenario where n≫ m is the cross-device federated learning application, where we
jointly learn m models over a heterogeneous network of n remote devices. The devices generate local
data following non-identical distributions; hence we view the finite sum of empirical losses on each
device as one objective, i.e., Li(θ) :=

1
vi

∑vi
s=1 ls(θ) where vi is the number of local samples on

device i ∈ [n], and ls denotes the individual local loss on sample s. MosT seamlessly integrates with
the decentralized setting of federated learning by computing client-specific local updates (θ1:m) and
aggregating them to update the global model by Γ. Moreover, since clients are diverse, it is expected
that the solution diversity benefits of MosT will contribute significantly to the final performance.

We conduct experiments on synthetic data and Federated Extended MNIST (FEMNIST) (Cohen et al.,
2017; Caldas et al., 2018), where the number of objectives n = 30 and n = 206, respectively. We
experiment on three synthetic datasets, denoted as Syn (ρ1, ρ2), with different ρ1 and ρ2 controlling
heterogeneity of local models and data, as detailed in Appendix A.4. We compare MosT with
baselines described in Section 6.1 and state-of-the-art federated learning algorithms, including
FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020), and FedMGDA+ (Hu et al., 2022). We run
each algorithm m times with different random initializations. It is worth noting that during evaluation,
for all methods, we let each device pick a best model out of m solutions based on the validation set,
and compute its performance. We then report the average and the quantile accuracy across all devices.
As the results shown in Table 1, MosT outperforms the baselines by a large margin on all datasets.
Furthermore, we have the following observations.

MosT results in significant convergence improvements. Figure 3(a) compares the training loss
and test accuracy curves of different algorithms. Notably, MosT outperforms baselines with a lower
training loss (faster convergence) and higher test accuracy (better generalization to unseen data).

MosT maintains diversity during training. We analyze how the diversity of solutions evolves for
different algorithms. Diversity is quantified using the KL divergence between predictions of any pair
of solutions generated by each algorithm. Figure 3(b) shows that initially, all algorithms exhibit high
diversity due to randomized initialization. However, baselines witness a notable decrease in solution
diversity during training. In contrast, MosT maintains high diversity throughout the training process.

MosT promotes fairness in FL. MosT’s improved diversity is anticipated to benefit clients typically
overlooked by other algorithms, thus enhancing fairness. To validate, we calculate the accuracy of
the worst 20%, 40%, 60%, and 80% clients for each algorithm. As depicted in Figure 3(c), MosT
outperforms the baselines by a larger margin for clients with worse performance, which demonstrates
that the diversity of MosT effectively promotes fairness in FL.

Furthermore, our study reveals that MosT strategically assigns diverse solutions for inference,
preventing the collapse phenomenon in MOO (detailed in Appendix A.5.1).

6.3 MULTI-TASK LEARNING

MosT seamlessly extends its capabilities to multi-task learning by treating each task as an individual
objective. Our experiments explore two real-world datasets, Office-Caltech10 (Saenko et al., 2010;
Griffin et al., 2007) and DomainNet (Peng et al., 2019) with n = 4 and 6 objectives, respectively.
We have m = 3 solutions for Office-Caltech10 and m = 4 for DomainNet. We conduct a thorough
comparison with various state-of-the-art multi-task learning approaches: MGDA, Linearization-based
MOO, EPO which is based on user preference vectors (Mahapatra & Rajan, 2020), COSMOS (Ruchte
& Grabocka, 2021), and TAG which identifies task grouping for MOO (Fifty et al., 2021). Similar
to federated learning datasets, we select the best-performing solutions over the validation set for
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inference and report the accuracy averaged across all tasks. The results are shown in Table 2, which
demonstrates MosT’s superiority over existing approaches.

Table 2: Multi-task Learning: Average accuracy across all tasks (mean and std across 3 runs) on
Office-Caltech10 and DomainNet.

Dataset MGDA Linearization EPO COSMOS TAG MosT

Office-10 80.74±0.44 61.26±0.67 61.05±1.09 63.83±1.01 49.38±1.10 82.98±0.51

DomainNet 65.81±0.37 57.15±0.17 58.55±0.37 63.78±0.34 31.05±1.24 67.65±0.55

6.4 MIXTURE-OF-PROMPT LEARNING

Another application is prompt learning for language models (Qin & Eisner, 2021), where solutions
need to generalize well with diverse instances. To address this, MosT trains m soft prompts to handle
each training instance as a distinct objective, with n being the total number of instances. We define
the objective function as Li(θ) := li(θ), where li represents the loss on instance i. This allows MosT
to tailor its learning process to each specific sample, adapting to diverse linguistic nuances. We
experiment on three datasets from the SuperGLUE benchmark (Wang et al., 2019). For all datasets,
we sample n = 128 training instances, while generating m = 3 soft prompts.

Note that MosT prioritizes training complementary solutions for multiple objectives, rather than
their assignment. Simple ways, like selecting the best-performing solution over the validation
set, are promising for scenarios like federated learning and multi-task learning. However, treating
each instance as an objective poses challenges in solution selection during inference. To address
this, we train a dispatcher for each algorithm to learn correlations between prompts and instances
(implementation details in Appendix A.4), selecting the highest correlated one for inference. We
report average accuracy across all tasks, in Table 3. Results show MosT exhibits a significantly better
ability to generalize to unseen instances compared to baselines.

6.5 ABLATION STUDIES AND COMPARISON WITH OTHER BASELINES

We conduct extensive ablation studies to validate the design of MosT, examining the necessity
of OT (Appendix A.5.1) and MGDA (Appendix A.5.4), along with specific designs like solution-
specialization curriculum (Appendix A.5.2) and diversity encouragement (Appendix A.5.3). These
studies offer insights into the effectiveness of components of MosT:

Necessity of OT and MGDA. Comparing OT-generated and randomly generated weights reveals
the necessity of OT for achieving balanced objective-solution matching. Additionally, MGDA
consistently outperforms its linearization-based alternative, highlighting its effectiveness in parameter
updates for weighted multi-objective optimization.

Effectiveness of curriculum. Our proposed scheduling of the marginal constraints (Section 3.3)
boosts performance by over 2.00% and enhances training stability.

Benefits of diversity-encouragement regularization. It enhances performance and fairness.

Preventing collapse with OT. Comparison of three strategies introduced in Section 3.3, MosT,
“objective selecting model”, and “model selecting objective”, reveals the collapse phenomenon in
MOO, where limited solutions dominate all objectives. In contrast, MosT using OT with a two-way
matching approach achieves a more balanced distribution of objectives among models during training.

6.6 RUNTIME COMPARISONS

We enhance the computational efficiency of our algorithm employing several simple practices: 1)
detecting early convergence of OT, 2) initializing transport plans using prior computations, 3) running
MGDA on a subset of model parameters like the final layer’s bias term in a neural network, and 4)
effectively reducing objectives in MGDA through the inherent sparsity of regularized OT.

Table 4 presents the end-to-end runtime (in seconds) of different approaches on federated learning
datasets with n = 30 and n = 206. We see that the running time of MosT is comparable to that of
baseline methods. Notably, the time needed for OT across datasets is negligible due to the use of
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Table 3: Mixture-of-Prompt Learning: Test accuracy on three datasets of SuperGLUE benchmark
(mean and std across 3 runs).

Task MGDA Linearization MosT

BoolQ 62.69±0.71 61.30±0.09 67.03±0.49

MultiRC 60.86±0.50 58.79±1.23 63.78±0.15

WiC 55.28±0.89 57.16±1.27 62.38±0.31

existing packages and the fast convergence of Γ (shown in Section 5), accounting for less than 1% of
the total time. See Appendix A.6 for a complete analysis of computation time in other applications.

Table 4: Runtime comparison (sec) on federated learning datasets.
Dataset MGDA Linearization FedAvg FedMGDA+ MosT

Syn (0.0) 219.86 225.90 222.22 516.25 217.59
Syn (0.5) 208.82 208.27 205.90 495.62 201.70
Syn (1.0) 269.44 268.33 270.65 557.58 260.50

FEMNIST 3522.83 3135.76 3147.62 > 5000.00 3368.63

7 CONCLUSION

In this paper, we propose “many-objective multi-solution transport (MosT)”, aiming to find m Pareto
solutions (models) that achieve diverse trade-offs among n optimization objectives. We investigate a
challenging case of n≫ m, where existing methods often struggle with exploring a high-dimensional
Pareto frontier. We formulate MosT as a bi-level optimization of multiple weighted objectives, where
weights guide the exploration and are determined by an optimal transport (OT) matching objectives
and solutions. Our algorithm theoretically converges to m Pareto solutions by alternating between
optimizing the weighted objectives and OT. MosT extends to achieve diverse solutions for n≪ m.
We apply MosT to various machine learning problems, training m models to serve n users, domains,
or criteria. Empirically, MosT outperforms other strong baselines in tasks like federated learning,
multi-task learning, mixture-of-prompt, fairness-accuracy trade-offs, and other MOO benchmarks.
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A APPENDIX

A.1 BACKGROUND ON MGDA IN MULTI-OBJECTIVE OPTIMIZATION

We first describe some background on the multi-gradient descent algorithm to solve multi-objective
optimization.

Let L(θ) ∈ Rn be defined as

L(θ) := (L1(θ), · · · , Ln(θ)) , θ ∈ Rd. (10)

The goal for the multi-objective optimization (minimization) problem is to find Pareto optimal
solutions with respect to all objectives Li(·), i ∈ [n]. One line of method is at each iteration, to find a
common descent direction d for all objectives. Given the current model θ, we would like to find a
descent step to minimize each objective value. For the single-objective case, the direction is −∇L(θ).
For n objectives, one objective is to solve for d:

min
d

{
max
i∈[n]
∇Li(θ)

⊤d+
1

2
∥d∥2

}
, (11)

and then apply d as θ = θ + ηd. If the optimal objective value of Eq. 11 is negative, then there exists
a descent direction d∗ such that all objective values will be decreased. If θ is Pareto stationary, then
d = 0 and the optimal objective value is 0. This formulation is equivalent to

min
b,d

b+
1

2
∥d∥2 (12)

s.t. ∇Li(θ)
⊤d ≤ b, i ∈ [n].

Formally, we have the following lemma.
Lemma 1 (Good Descent Direction Désidéri (2012) ). Let d, b be the solutions of Eq. 12, then

1. If θ is Pareto stationary, then d = 0 and b = 0.

2. If θ is not Pareto stationary, then

b ≤ −1

2
∥d∥2 < 0, (13)

∇Li(θ)
⊤d ≤ b, i ∈ [n]. (14)

Lemma 2 (A Rescaled Version of Lemma 1). Let dj ∈ Rd be the solution of Eq. 6 and Γi,j be some
non-negative scalar, then

1. If θj is Pareto stationary, then dj = 0.

2. If θj is not Pareto stationary, then

Γi,jLi(θj)
⊤dj ≤ −

1

2
∥dj∥2, i ∈ [n]. (15)

A.2 CONVERGENCE PROOFS

A.2.1 STRONGLY-CONVEX CASES

MosT learns a matching between objectives and solutions represented by its non-zero entries. There-
fore, we show that our proposed algorithm (using full gradients) can converge to Pareto stationary
points with respect to a subset of matching objectives in strongly-convex cases. We first make a
common assumption.
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Assumption 1. Each objective Li(θ) (i ∈ [n]) is ν-smooth and µ-strongly convex w.r.t. θ ∈ Rd.

We introduce another assumption on objective-model matching, as follows.

Assumption 2. There exists an s (s <∞) such that after s iterations, all the non-zero entries in Γs

remain non-zero, which are lower bounded by a small constant ϵ.

This assumption can be interpreted as that the assignment of solutions for each objective become
stable during training. From Figure 2, we empirically observe that after certain iterations, the learnt Γ
will have the same non-zero patterns.

Theorem 2 (Strongly-Convex). Let Assumption 1 and 2 hold. Given marginal distribution constraints
α ∈ ∆n and β ∈ ∆m, under a fixed learning rate η ≤ 1

ν , after running Algorithm 1 for T + s outer
iterations with full multi-gradient descent, we have for each solution j ∈ [m],∥∥θT+s

j − θ∗j
∥∥2 ≤ (1− µηϵ)

TK ∥∥θsj − θ∗j
∥∥2 , (16)

where θ∗j is a Pareto stationary solution across objectives with a non-zero Γs
·,j .

Proof. First, let us assume K = 1. At each iteration t, we have

dtj = −
∑
i∈[n]

λiΓ
t
i,j∇Li(θ

t
j), ∀j ∈ [m] (17)

for some {λi}i∈[n] ∈ ∆n which is the solution of Eq. 7. First we note that for every j ∈ [m], θj will
converge. If dtj = 0, then θj has converged to a Pareto stationary point. Otherwise, for every objective
Li, we have monotonically decrease for the sequence: Li(θ

t+1
j )−Li(θ

t
j) ≤ − 1

2η(1−νη)∥dtj∥2 < 0.
Therefore, every solution will converge. We denote θ∗j as one of the Pareto stationary solutions of
Eq. 1 that solution θj converges to. By definition and the properties of MDGA, we know that for
every solution, every objective value will be non-increasing throughout optimization. Hence, for
every i ∈ [n] and j ∈ [m], it holds that

Li(θ
t+1
j )− Li(θ

∗
j ) ≥ 0. (18)

For every i ∈ [n], the ν-smoothness and µ-convexity of Li lead to

Li(θ
t+1
j ) = Li(θ

t
j + ηdtj) (19)

≤ Li(θ
t
j) + η∇Li(θ

t
j)

⊤dtj +
ν

2
∥ηdtj∥2 (20)

≤ Li(θ
∗
j ) +∇Li(θ

t
j)

⊤(θtj − θ∗j )−
µ

2

∥∥θtj − θ∗j
∥∥2 + η∇Li(θ

t
j)

⊤dtj +
ν

2
∥ηdtj∥2. (21)

By moving Li(θ
∗
j ) to the left-hand side and multiplying both sides by λiΓ

t
i,j , we have∑

i∈[n]

λiΓ
t
i,j

(
Li(θ

t+1
j )− Li(θ

∗
j )
)

(22)

≤
∑
i∈[n]

λiΓ
t
i,j∇Li(θ

t
j)

⊤(θtj − θ∗j + ηdtj)−
∑
i∈[n]

λiΓ
t
i,j

µ

2

∥∥θtj − θ∗j
∥∥2 + ∑

i∈[n]

λiΓ
t
i,j

ν

2
∥ηdtj∥2.

(23)

As Γt
i,j ≥ ϵ > 0, then ∑

i∈[n]

λiΓ
t
i,j

µ

2
∥θtj − θ∗j ∥2 ≤

µϵ

2
∥θtj − θ∗j ∥2. (24)
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Due to the Hölder inequality, we have
∑

i∈[n] λiΓi,j ≤ ∥λ∥1∥Γ·,j∥∞ := βj ≤ 1. Hence, we have∑
i∈[n]

λiΓ
t
i,j

(
Li(θ

t+1
j )− Li(θ

∗
j )
)

≤
∑
i∈[n]

λiΓ
t
i,j∇Li(θ

t
j)

⊤(θtj − θ∗j + ηdtj)−
µϵ

2

∥∥θtj − θ∗j
∥∥2 + νβj

2
∥ηdtj∥2 (25)

= −dtj(θtj − θ∗j )− η∥dtj∥2 −
µϵ

2

∥∥θtj − θ∗j
∥∥2 + νβj

2
∥ηdtj∥2

≤ −dt(θtj − θ∗j )− η

(
1− βj

2

)
∥dtj∥2 −

µϵ

2

∥∥θtj − θ∗j
∥∥2 (taking η ≤ 1

ν
) (26)

≤ −dt(θtj − θ∗j )−
η

2
∥dtj∥2 −

µϵ

2

∥∥θtj − θ∗j
∥∥2 (using βj ≤ 1)

= − 1

2η
(2ηdtj(θ

t
j − θ∗j ) + ∥ηdtj∥2)−

µϵ

2

∥∥θtj − θ∗j
∥∥2

= − 1

2η
(2(θt+1

j − θtj)
⊤(θtj − θ∗j ) + ∥θt+1

j − θtj∥2)−
µϵ

2

∥∥θtj − θ∗j
∥∥2

= − 1

2η
(2θt+1

j θtj − 2∥θtj∥2 − 2(θt+1
j − θtj)

⊤θ∗j + ∥θt+1
j ∥2 + ∥θtj∥2 − 2θt+1

j θtj)−
µϵ

2

∥∥θtj − θ∗j
∥∥2

= − 1

2η
(∥θt+1

j ∥2 − 2(θt+1
j − θtj)

⊤θ∗j − ∥θtj∥2)−
µϵ

2

∥∥θtj − θ∗j
∥∥2

= − 1

2η
(∥θt+1

j − θ∗j ∥2 − ∥θtj − θ∗j ∥2)−
µϵ

2

∥∥θtj − θ∗j
∥∥2

=
1

2η
(∥θtj − θ∗j ∥2 − ∥θt+1

j − θ∗j ∥2)−
µϵ

2

∥∥θtj − θ∗j
∥∥2 . (27)

Since during optimization, we guarantee that every objective value will be non-increasing at each
iteration, we have Li(θ

t+1
j )− Li(θ

∗
j ) ≥ 0. So the left-hand side of Eq. 22 is non-negative. Hence,

1

2η
(∥θtj − θ∗j ∥2 − ∥θt+1

j − θ∗j ∥2)−
µϵ

2

∥∥θtj − θ∗j
∥∥2 ≥ 0, (28)

∥θt+1
j − θ∗j ∥2 ≤ (1− µηϵ)∥θtj − θ∗j ∥2, (29)

which gives us linear convergence.

When K > 1, at each outer iteration, fixing Γt
i,j , we are running multiple updates on the model

parameters. In this case, we still have

∥θt,k+1
j − θ∗j ∥ ≤ (1− µηϵ)∥θt,kj − θ∗j ∥2, (30)

where ∥θt,k+1
j ∥ denote the model parameters at the t-th outer iteration and k + 1-th inner iteration

(Line 6 of Algorithm 1). Hence,

∥θt+1
j − θ∗j ∥ ≤ (1− µηϵ)K∥θtj − θ∗j ∥2 (31)

holds.

A.2.2 NON-CONVEX AND SMOOTH CASES

For simplicity, we first consider the case where K = 1. From Lemma 2, we know that at each
iteration t,

Γt
i,j∇Li(θ

t
j)

⊤dtj ≤ −
1

2

∥∥dtj∥∥2 , ∀i ∈ [n]. (32)
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Assuming ν-smooth of each Li, we have

Γt
i,j

(
Li(θ

t+1
j )− Li(θ

t
j)
)
= Γt

i,j

(
Li(θ

t
j + ηdtj)− Li(θ

t
j)
)

(33)

≤ ηΓt
i,j∇Li(θ

t
j)

⊤dtj +
νΓt

i,j

2
∥ηdtj∥2 (34)

≤ −η

2
∥dtj∥2 +

νη2

2
Γt
i,j∥dtj∥2 (35)

≤ −η

2
Γt
i,j∥dtj∥2 +

νη2

2
Γt
i,j∥dtj∥2 (Γt

i,j ≤ 1) (36)

= −η(1− νη)

2
Γt
i,j∥dtj∥2. (37)

Sum over all models j ∈ [m],∑
j∈[m]

Γt
i,j

(
Li(θ

t+1
j )− Li(θ

t
j)
)
≤ −η(1− νη)

2

∑
j∈[m]

Γt
i,j∥dtj∥2. (38)

The above result is for a single objective Li(·). Now let’s consider the weighted sum of all the n
objectives between two steps with different Γ’s, i.e., Γt and Γt+1. By the optimality of Γt+1,∑

i∈[n]

∑
j∈[m]

Γt+1
i,j Lj(θ

t+1
j )− τ

∑
i∈[n]

max
j∈[m]

Γt+1
i,j ≤

∑
i∈[n]

∑
j∈[m]

Γt
i,jLj(θ

t+1
j )− τ

∑
i∈[n]

max
j∈[m]

Γt
i,j .

We then have∑
i∈[n]

∑
j∈[m]

(
Γt+1
i,j Li(θ

t+1
j )− Γt

i,jLi(θ
t
j)
)

(39)

≤
∑
i∈[n]

∑
j∈[m]

Γt
i,j

(
Li(θ

t+1
j )− Li(θ

t
j)
)
+ τ

∑
i∈[n]

max
j∈[m]

Γt+1
i,j − τ

∑
i∈[n]

max
j∈[m]

Γt
i,j (40)

≤ −η(1− νη)

2

∑
j∈[m]

∑
i∈[n]

Γt
i,j∥dtj∥2 + τ

∑
i∈[n]

max
j∈[m]

Γt+1
i,j − τ

∑
i∈[n]

max
j∈[m]

Γt
i,j (apply Eq. 38) (41)

= −η(1− νη)

2

∑
j∈[m]

βj∥dtj∥2 + τ
∑
i∈[n]

max
j∈[m]

Γt+1
i,j − τ

∑
i∈[n]

max
j∈[m]

Γt
i,j . (42)

Here βj is the j-th dimension of β ∈ ∆m in Eq. 3. Hence,∑
j∈[m]

βj∥dtj∥2 ≤
2

η(1− νη)

∑
i∈[n]

∑
j∈[m]

(
Γt
i,jLi(θ

t
j)− Γt+1

i,j Li(θ
t+1
j )

)
(43)

+
2

η(1− νη)

τ
∑
i∈[n]

max
j∈[m]

Γt+1
i,j − τ

∑
i∈[n]

max
j∈[m]

Γt
i,j

 . (44)

Applying telescope sum for t ∈ [T ] on both sides gives∑
t∈[T ]

∑
j∈[m]

βj∥dtj∥2 ≤
2

η(1− νη)

∑
i∈[n]

∑
j∈[m]

(
Γ1
i,jLi(θ

1
j )− ΓT+1

i,j Li(θ
T+1
j )

)
(45)

+
2

η(1− νη)

τ
∑
i∈[n]

max
j∈[m]

ΓT+1
i,j − τ

∑
i∈[n]

max
j∈[m]

Γ1
i,j

 := C. (46)

Then we get the following bound on the average gradient norm:

1

T

∑
t∈[T ]

∑
j∈[m]

βj∥dtj∥2 ≤
C

T
. (47)

If we take νη = 1
2 , then C = O(ν). This gives us a O

(
ν
T

)
rate in terms of gradient norms for

non-convex cases under a fixed learning rate.
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For the case where K > 1, we have∑
i∈[n]

∑
j∈[m]

(
Γt+1
i,j Li(θ

t+1
j )− Γt

i,jLi(θ
t
j)
)

(48)

≤ −η(1− νη)

2

∑
j∈[m]

βj

∑
k∈[K]

∥∥∥dt,kj

∥∥∥2 (49)

≤ −η(1− νη)

2

∑
j∈[m]

βj

∥∥dtj∥∥2 , (50)

where k denotes the index for inner updates on model parameters fixing Γt. Similarly, we have the
result

1

T

∑
t∈[T ]

∑
j∈[m]

βj

∥∥dtj∥∥2 ≤ C

T
. (51)

A.3 EXPERIMENTS WITH n≪ m

Evaluation Metrics. For applications with few objectives (small n), we use the hypervolume
measure, a widely used metric for evaluating the quality of MOO solutions and is a proxy of
diversity (Zitzler & Thiele, 1999). Hypervolume is feasible to compute when the number of objectives
is small. Given a solution set S ⊂ Rn and a set of reference points r = [r1, . . . , rn] ⊂ Rn,
the Hypervolume of S measures the region weakly dominated by S and bounded above by r:
H(S) = Λ ({q ∈ Rn | ∃p ∈ S : p ≤ q and q ≤ r}) , where Λ(·) denotes the Lebesgue measure. To
ensure fair calculation of it, the reference points are kept consistent across all algorithms for each
dataset. These reference points are determined either by following the settings of previous studies or
by setting them as the upper bounds of the objective values from all algorithms to be compared.

Hyperparameters. For the extended version of MosT (denoted as MosT-E) described in Section 3.2,
we introduce additional hyperparameters α1, . . . , αn, and n′ to handle the extension of existing
objectives. The parameter αi represents the positive shape parameter of the Dirichlet distribution,
used to generate diverse objective weights, and n′ represents the number of extended objectives.

A.3.1 TOY PROBLEMS

We demonstrate the effectiveness of MosT on a toy ZDT problem set. It is a popular MOO benchmark
containing two objectives (n = 2) with oracle Pareto fronts (Zitzler et al., 2000). Specifically, we use
ZDT-1, ZDT-2, and ZDT3, which are problems with 30 variables and exhibit convex, concave, and
disconnected Pareto-optimal fronts, respectively. We compare MosT with two baselines described
in Section 6.1, and two additional methods—Exact Pareto Optimization (EPO) based on different
preference vectors (Mahapatra & Rajan, 2020), and SVGD based on stein variational gradient
descent (Liu et al., 2021).

Table 5: MosT achieves higher Hypervolumes than the baselines on the ZDT bi-objective problem.

MGDA Linearization SVGD EPO MosT
ZDT-1 4.02±0.92 5.72±0.01 5.54±0.12 4.40±0.01 5.87±0.00

ZDT-2 4.63±0.94 6.65±0.00 6.65±0.00 6.65±0.00 6.88±0.00

ZDT-3 4.53±0.83 6.27±0.02 5.77±0.15 4.53±0.68 6.39±0.03

We report the Hypervolumes of each method in Table 5 and visualize the obtained solutions alongside
the entire Pareto-optimal fronts in Figure 4 for a more intuitive comparison. The results in Table 5
demonstrate that MosT achieves higher Hypervolumes, indicating its superior ability to generate
more diverse solution sets that cover larger areas. Further analysis of the Pareto fronts reveals the
following observations: 1) EPO and SVGD prioritize reducing one loss, potentially resulting in
biased trade-offs, with SVGD lacking guaranteed convergence to Pareto-optimal solutions; 2) MGDA
produces diverse solutions but fails to cover the entire Pareto-optimal fronts; 3) Linearization-based
MOO is a competitive baseline with high Hypervolumes, but its solutions do not provide satisfactory
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Figure 4: Solutions derived by different methods (blue scatters) on the ZDT bi-objective task, with
the oracle Pareto-optimal fronts for the two objectives shown in red scatters.

diverse trade-offs, as evident from the Pareto fronts; 4) In contrast, MosT generates evenly-distributed
solutions across the Pareto fronts.

Investigation for EPO and SVGD. Despite adhering to the official implementation of EPO,
it fails to meet performance expectations due to its extensive requirement for preference vector
sampling. Increasing the number of solutions (m) generated by EPO yields noticeable enhancements,
particularly in ZDT-3 and, to a lesser extent, in ZDT-1, as shown in Table 6. However, even with
a larger m, EPO consistently lags behind MosT, which achieves well-distributed solutions across
Pareto fronts without relying on extensive sampling.

It is worth noting that we focus on scenarios where computational constraints limit us to training
only m models while needing to address numerous objectives (n ≫ m). Therefore, we prioritize
algorithms that afford better control over the number of generated solutions to achieve a promising
trade-off.

Table 6: EPO’s performance improves with larger m, yet still falls short compared to MosT, which
achieves superior results with fewer m.

EPO (m = 5) EPO (m = 100) MosT (m = 5)
ZDT-1 4.40±0.01 4.46±0.01 5.87±0.00

ZDT-2 6.65±0.00 6.65±0.00 6.88±0.00

ZDT-3 4.53±0.68 6.09±0.00 6.39±0.03

Additionally, we conduct more experiments on SVGD with a much larger number of solutions m
(i.e., intentionally being unfair to our method). We observe that (a) using a larger m can improve its
performance, but (b) even with m = 100, SVGD still cannot outperform MosT (ours) with m = 5.

Table 7: SVGD’s performance improves with larger m, yet still falls short compared to MosT, which
achieves superior results with fewer m.

SVGD (m = 5) SVGD (m = 100) MosT (m = 5)
ZDT-1 5.54±0.12 5.73±0.03 5.87±0.00

ZDT-2 6.65±0.00 6.66±0.00 6.88±0.00

ZDT-3 5.77±0.15 6.01±0.02 6.39±0.03

A.3.2 FAIRNESS-ACCURACY TRADE-OFFS (n≪ m)

In this section, we apply MosT to explore various trade-offs between accuracy and algorithmic
fairness (i.e., statistical independence between predictions and sensitive attributes). Thus, the number
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of objectives n is 2. However, in this scenario with limited number of objectives, using optimal
transport to match solutions and objectives may produce feasible but trivial solutions as explained in
Section 3.2. Hence, we adapt the extension of MosT named MosT-E (introduced in Section 3.2).

As discussed in Section 2, prior works that address fairness-accuracy trade-offs can be limited due
to the difficulty of setting constraints before training (Zafar et al., 2017), or the mismatch between
diverse exploration space and diverse solutions (Mahapatra & Rajan, 2020). MosT-E differs by
sampling a wide range of preference vectors to encompass various trade-offs comprehensively and
using optimal transport to automatically generate solutions that maximize coverage for all preference
vectors. We quantify the fairness objective using disparate impact (Court, 1971), and optimize it
using its convex approximation (Zafar et al., 2017). We experiment on a synthetic dataset (Zafar
et al., 2017) and a real German credit dataset (Asuncion & Newman, 2007). We compare MosT and
MosT-E with MGDA, linearization-based MOO (which can be viewed as a soft version of Zafar et al.
(2017), and EPO (Mahapatra & Rajan, 2020), and select the best parameters for each method based
on the highest Hypervolume on a validation set.
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Figure 5: Hypervolumes (colored areas) formed by five solutions for classification loss (objective 1,
x-axis) and fairness (objective 2, y-axis) on synthetic and German datasets.

Table 8: Hypervolumes (×100) on 5 solutions with different fairness-accuracy trade-offs. MosT-E
achieves the highest Hypervolume coverage on two (fairness, accuracy) objectives.

MGDA Linearization EPO MosT MosT-E

Synthetic 3.28±0.05 6.70±0.04 2.44±0.01 3.78±0.04 7.65±0.06

German 5.14±0.06 4.99±0.05 4.56±0.02 4.64±0.05 5.27±0.06

MosT-E generates more diverse trade-offs. Table 8 shows that MosT-E achieves the highest
Hypervolumes, suggesting a superior quality of the solution set it generates. Furthermore, Figure 5
demonstrates that MosT-E generates solutions that are not only more diverse but also more evenly
distributed across the Pareto fronts.

MosT-E effectively addresses the problem of MosT under n ≪ m. When n ≪ m, MosT may
assign models separately to dominate individual objectives, resulting in solutions without sufficient
diversity. The solutions generated by MosT shown in Figure 5, align with our idea by predominantly
prioritizing either low classification loss or low disparate impact. This limitation is effectively
overcome by MosT-E, with diversely combining existing few objectives as new objectives.

A.4 EXPERIMENTAL DETAILS

We will detail the models and hyperparameters used for each dataset. All algorithms follow the same
setup, including the train-validation-test split, number of training epochs, and tunable learning rates.

Hyperparameters for baselines. In addition to the standard setup, we fine-tune hyperparame-
ters specific to each baseline model, aligning with their original configurations. For instance, we
adjust the hyperparameter responsible for scaling the proximal term in FedProx according to the
recommendations provided in (Li et al., 2020).
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Description of KL divergence used. We employ KL divergence to assess differences in Γ across
iterations and solution diversity. Specifically, we utilize symmetric KL divergence, defined as
(KL(P ||Q)+KL(Q||P ))

2 , where Q and P represent probabilities in the distribution of P and Q, respec-
tively.

A.4.1 EXPERIMENTAL SETUP FOR TOY PROBLEMS

ZDT bi-objective problems (Zitzler et al., 2000). It contains a class of benchmark problems
commonly used to evaluate optimization algorithms, particularly those designed for multi-objective
optimization. These problems involve optimizing two conflicting objectives simultaneously. We
specifically employ ZDT-1, ZDT-2, and ZDT-3 to evaluate the performance of algorithms. We use
multinomial logistic regression, maintaining a consistent learning rate of 0.005 throughout training.
This configuration aligns with the established setup presented in (Liu et al., 2021). We run 1,000
epochs for the datasets.

A.4.2 EXPERIMENTAL SETUP FOR FEDERATED LEARNING

Synthetic data (Li et al., 2020). This synthetic dataset is specifically designed to provide controlled
complexities and diverse scenarios for assessing the performance of algorithms. The synthetic data
generation process relies on two hyperparameters, ρ1 and ρ2, which shape the dataset’s characteristics.
ρ1 controls the heterogeneity among local models used to generate labels on each device. While
ρ2 governs the differences in data distribution among devices. Larger ρ1 or ρ2 introduces more
heterogeneity. For the generated dataset, we conduct our experiments using a train-validation-test
split ratio of 6:2:2. We use multinomial logistic regression as the model and run 400 epochs in total.
The learning rates are swept from {0.005, 0.01, 0.05, 0.1} without decaying throughout the training
process.

FEMNIST (Cohen et al., 2017; Caldas et al., 2018). In addition to the synthetic datasets, we also
conduct experiments on the Federated Extended MNIST (FEMNIST) dataset, a widely used real-
world dataset in federated learning research (Li et al., 2020), using multinomial logistic regression. It
comprises handwritten digit images from multiple users, encompassing 62 classes, including digits
(0-9) and uppercase and lowercase letters (A-Z, a-z). The data is distributed across 206 clients, with
each client holding a subset of the digit classes. This distribution simulates a real-world federated
learning scenario, prioritizing data privacy and distribution concerns. We employ a convolutional
neural network featuring two convolutional layers with ReLU activation, followed by max-pooling.
Additionally, a fully connected layer maps the flattened features to 62 output classes. We run 400
epochs for training. Learning rates are swept from {0.08, 0.1}.

A.4.3 EXPERIMENTAL SETUP FOR FAIRNESS-ACCURACY TRADE-OFF

In the context of fairness-accuracy trade-off, we experiment on two datasets, the synthetic dataset
and the German dataset, introduced below. We employ multinomial logistic regression as our model,
conducting 20 epochs of training and sweeping learning rates from {0.08, 0.1}. We use the enhanced
MosT-E for the German dataset. MosT-E extends the existing n objectives to n′ by interpolating
them with weights drawn from a Dirichlet distribution. We set all shape parameters, α1, . . . , αn, to
the same value within the range [0.1, 0.5, 1.0]. The number of extended objectives is chosen from
[10, 15, 20]. In practice, we observe that extending the original 2 objectives to 10 yields results similar
to those obtained with 20 objectives.

Synthetic dataset (Zafar et al., 2017). The synthetic dataset contains 2,000 binary classification
instances generated randomly as specified in (Zafar et al., 2017). Binary labels for classification are
generated using a uniform distribution. It features 2-dimensional nonsensitive features generated
from two distinct Gaussian distributions, and a 1-dimensional sensitive feature generated using a
Bernoulli distribution.

UCI German credit risk dataset (Asuncion & Newman, 2007). This dataset comprises 1,000
entries, each characterized by 20 categorical and symbolic attributes. These attributes serve to classify
individuals as either good or bad credit risks. Gender is considered as the sensitive attribute in this
context.
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A.4.4 EXPERIMENTAL SETUP FOR MULTI-TASK LEARNING

In the realm of multi-task learning, we assess the efficacy of MosT using the Office-Caltech10 and
DomainNet datasets. The number of objectives n varies across the datasets: n = 4 for Office-
Caltech10 and n = 6 for DomainNet. We initialize the models with pre-trained weights for both
datasets, leveraging ImageNet-pretrained ResNet-18 (He et al., 2016) for Office-Caltech10 and
ConvNeXt-tiny (Liu et al., 2022b) for DomainNet.

It is worth noting that Pareto Multi-task Learning (PMTL) (Lin et al., 2019) is a notable method, but
its exclusion from our comparison is due to concerns regarding computational efficiency, particularly
when applied to large-scale real-world datasets.

Office-Caltech10 dataset (Saenko et al., 2010; Griffin et al., 2007). The Office-Caltech10 dataset
comprises images from four distinct data sources: Office-31(Saenko et al., 2010) (three data sources)
and Caltech-256 (Griffin et al., 2007) (one data source). These sources capture images using different
camera devices or in various real environments with diverse backgrounds, representing different
objectives.

DomainNet dataset (Peng et al., 2019). The DomainNet dataset includes natural images sourced
from six distinct data sources: Clipart, Infograph, Painting, Quickdraw, Real, and Sketch. This dataset
is characterized by its diversity, covering a wide range of object categories. For our experiments, we
focus on a sub-dataset composed of the top ten most common object categories from the extensive
pool of 345 categories within DomainNet, following (Li et al., 2021).

A.4.5 EXPERIMENTAL SETUP FOR PROMPT LEARNING

We explore prompt learning across three datasets from the SuperGLUE benchmark: BoolQ (Clark
et al., 2019), MultiRC (Khashabi et al., 2018), and WiC (Pilehvar & Camacho-Collados, 2018). In
our approach, each instance represents a distinct objective. This framework allows us to delve into
prompt learning using a limited set of training instances while aiming for generalization to unseen
test instances. We randomly sample 128 instances from the training dataset and evenly partition
the original validation dataset to form both the validation and test datasets. Our training involves
a soft prompt approach based on the T5-base model, with the base model parameters kept frozen.
Parameter setup follows (Qin & Eisner, 2021).

For prompt learning, where each instance is considered an objective, the absence of client groups or
task types, as seen in federated learning or multi-task learning, prevents us from evaluating solution
performance over the validation set and then selecting the best solution for inference. To address
this, we train a simple dispatcher to learn the correlation between instances and solutions (prompts),
predicting the optimal solution for a given instance. Specifically, we train cross-attention on the
hidden embedding of soft prompts and instances, with architecture following (Lee et al., 2018)
(Section 3.1). These hidden embeddings are generated from a fixed encoder of the T5-base.

A.5 ABLATION STUDY ON MOST DESIGN

MGDA Linear-
ization

FedAvg FedProx FedMGDA+ MosT
w/o
R(Γ)

Syn (0.0, 0.0) 77.22±0.41 75.91±0.37 75.71±0.51 75.60±0.42 75.26±1.21 83.09±0.87

Syn (0.5, 0.5) 87.09±0.29 87.18±0.27 86.26±0.61 86.13±0.39 85.21±1.42 89.07±0.63

Syn (1.0, 1.0) 90.52±0.13 89.87±0.51 88.12±0.75 87.58±1.36 87.16±1.09 91.70±0.02

MosT (O) MosT
(M)

MosT
(M, soft)

MosT
w/o CL

w-
MGDA

MosT
(L)

MosT

76.65±0.81 67.62±3.46 74.66±0.70 81.97±0.58 76.80±0.79 82.62±0.33 84.25±0.51

86.94±0.61 78.98±2.04 80.15±1.54 88.19±0.40 86.18±1.19 88.85±0.34 89.99±0.52

90.42±0.22 75.20±3.75 73.20±4.71 91.25±0.51 89.32±0.76 91.26±0.44 92.21±0.08
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To generate diverse and complementary solutions for multiple objectives, MosT first finds a balanced
matching between objectives and solutions by OT along with elaborated learning strategies and then
locates the descent direction common to re-weighted objectives using MGDA. In this section, we
conduct comprehensive ablation studies to verify the MosT design. Specifically, for OT, we verify the
necessity of it (Appendix A.5.1) and its specific designs, including solution-specialization curriculum
(Appendix A.5.2) and sparsity encouragement imposed by L1 regularization (Appendix A.5.3).
Additionally, we evaluate the necessity of MGDA in Appendix A.5.4. These ablation studies
contribute to a thorough understanding of the effectiveness of each component within the overall
MosT framework. Experiments are carried out on three synthetic federated learning datasets, with
results shown in Table A.5 and Figure 6.
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Figure 6: Including MosT with a series of ablation study results, (a) displays training loss and test
accuracy curves; (b) shows the accuracy of the worst 20%, 40%, 60% and 80% client groups. We
omitted MosT (M) from panel for clarity, as it exhibits inferior performance compared to other
methods.

A.5.1 ABLATION STUDY FOR OT

OT-Generated v.s. Randomly Generated Weight Assignments. We compare the weight assign-
ments generated by OT with the randomly generated weight assignments. This can verify the impact
of the choice of objective weighting method in MGDA on the overall performance of MosT. In other
words, we compare MosT with executing MGDA m times by using randomly generated weights to
reweight objectives, which is denoted as w-MGDA. Experimental results reveal that OT-generated
weights work significantly better than random weights. This illustrates the necessity of using OT to
find a balanced match between solutions and objectives.

Different Matching Strategies. We also conduct ablation studies on the effectiveness of the optimal
transport matching (Eq. 3) by comparing three strategies introduced in Section 3.3: 1) the original
MosT objective, which utilizes optimal transport; 2) “objective selecting model”, which selects
the best expert/model for each objective (i.e., removing the Γ⊤1n = β constraint); and 3) “model
selecting objective”, which selects the best objective for each model (i.e., removing the Γ1m = α
constraint). These two variants are denoted as MosT (O) and MosT (M), resp., with results shown
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in Table A.5 and Figure 6. We also try a ‘soft’ version of MosT (M), utilizing normalized loss over
objectives when training each model, denoted as MosT (M, soft).

To ensure a fair comparison, we initialize comparisons with the same model weights. Throughout
the training process, we track the assignment of objectives to each model, i.e., for every model,
identifying the objectives with the smallest validation loss. We visualize the percentages of the
selected objectives for each model over time in Figure 7 on the Syn (0.0, 0.0) dataset. In the case
of “objective selecting model” (middle), we observe that two of the models progressively dominate
all the objectives. Similarly, “model selecting objective” shows the early dominance of one model.
While its soft version, MosT (M, soft), exhibits some improvement over MosT (M), it still lags behind
other methods because of the imbalanced training over the objectives. These findings emphasize
the necessity of achieving a balanced model-objective trade-off. These observations confirm the
presence of the collapse phenomenon in MOO, where limited solutions dominate all objectives. On
the contrary, MosT using optimal transport involving a two-way matching shows a more balanced
distribution of objectives among the models throughout training.

0 200 400
optimal transport (OT)

0.0

0.2

0.5

0.8

1.0

0 200 400
objective selecting model

0 200 400
model selecting data

0 200 400
OT w/o R( )

0 200 400
OT w/o CL

Figure 7: The percentage of assigned objectives for each model under three matching strategies
and two variants of MosT. Each color band represents a model, with the y-axis indicating the
corresponding percentage. We see that MosT (leftmost) learns 5 diverse models that serve the 30
objectives in a balanced manner.

A.5.2 ABLATION STUDY FOR OT DESIGN - CURRICULUM LEARNING

We evaluate the impact of curriculum learning (from Section 3.3) on optimizing multiple models
using MosT.

Curriculum setup for MosT. As introduced in Section 3.3, our proposed curriculum strategy
involves adjusting marginal distributions α and β over different training stages to balance the freedom
of ‘model selecting objective’ and ‘objective selecting model’. In the initial stages, we prioritize
a uniform distribution for β to ensure exposure to multiple objectives. As training progresses, we
transition α to a uniform distribution, covering all objectives, while relaxing β. This transition is
achieved by a hyperparameter that gradually decreases from 1 to 0. Though this hyperparameter
gradually approaches zero, the transition direction differs: it shifts β from uniform to performance-
oriented and, conversely, shifts α in the opposite direction.

We compare standard MosT with a variant using uniform marginal distributions for α and β through-
out training, denoted as MosT w/o CL. We hypothesize that curriculum learning enhances overall
performance and training stability. We conduct experiments on three synthetic federated learning
datasets. The results in Table A.5 show that using curriculum learning significantly improves the
performance of MosT, proving its effectiveness. Notably, even without curriculum learning, MosT
outperforms other algorithms. Furthermore, Figure 6 illustrates the training loss and test accuracy
curves, highlighting the stability difference between the two approaches during training. Curriculum
learning leads to increased stability and better convergence towards better solutions.

A.5.3 ABLATION STUDY FOR OT DESIGN - DIVERSITY ENCOURAGEMENT

As detailed in Section 4 and supported by empirical evidence in Section 5, encouraging a sparse and
balanced alignment between objectives and solutions leads to solution specialization on objectives.
MosT goes a step further by employing diversity regularized optimal transport to promote diversity.

Enhancing Diversity through Sparse Transport and Regularization. Before imposing diversity
regularization to further enforce diversity, we aim to verify whether MosT without diversity regular-
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ization can generate diverse solutions. We track solution diversity throughout the training process
using KL divergence, as explained in Section 6.2, with results depicted in Figure 9. Our empirical
findings indicate that even without R(Γ), sparse transport yields diverse solutions that balance all
objectives. However, by setting R(Γ) to be the negative of our diversity measure (Definition 1),
we can further encourage diversity. In Figure 8, we depict the distribution of model specialization
across objectives, assessed through normalized model accuracies. Notably, solutions trained with
MosT exhibit a tendency to specialize in specific objectives, underscoring their heightened diversity
compared to baseline approaches. And these diverse solutions then jointly perform better.

Performance Impact of Diversity Encouragement. Building on the motivation outlined in Sec-
tion 5, this section focuses on showcasing the performance benefits resulting from diversity encour-
agement. To assess the impact of diversity regularization, we conduct a comparative analysis between
scenarios with and without it. Table A.5 and Figure 6 highlight that MosT with diversity regularization
not only enhances performance but also contributes to the fairness of federated learning.

A.5.4 ABLATION STUDY FOR MGDA

MGDA v.s. Linearization in Weighted Multi-Objective Optimization. We compare MosT that
uses MGDA against the variant that updates model parameters based on the optimal transport solution
weights. We aim to understand how effectively these two methods determine gradient updates for
weighted multi-objective optimization. In this variant of MosT, denoted as MosT (L), instead of
seeking the Pareto solution of m weighted objectives (as indicated in Eq. 1), we compute θj as
θj =

∑n
i=1 Γ

i
jθ

i
j , where θij represents the parameter of θj trained on data from the i-th objective. The

experimental results showcase the consistent superiority of MosT over both MGDA and MosT (L)
across three synthetic federated learning scenarios. It proves the effectiveness of employing MGDA
for parameter updates.

A.6 COMPARATIVE RUNTIME ANALYSIS

We assess the runtime of algorithms on the same platform, providing analyses for various applications:
federated learning (Table 9), multi-task learning (Table 10), mixture-of-prompt learning (Table 11),
ZDT datasets (Table 12), and fairness-accuracy trade-off (Table 13). Additionally, we include the
computation time required for OT and MGDA within MosT.

Our results indicate that MosT exhibits comparable running times to baselines, despite MosT involving
the computation of OT and MGDA, both of which only account for negligible time. However, for
MosT-E, which explicitly extends the number of objectives, it will require more time than baselines.

Additionally, we provide a detailed decomposition on the complexity of all the components below.

At each round, we alternate between the optimization of Γ and solving a reweighted MGDA problem.
Utilizing IPOT, the complexity for optimizing Γ (Equation 5) is roughly O(mn) [1]. Optimizing
θ1:m using reweighted MGDA (Equations 7 and 8) requires n gradient access for each solution θj
(j ∈ [m]), which takes up O(mn) time in total. Hence, The overall complexity of our algorithm
per iteration is O(mn). When m≪ n (our mainly focused setting), e.g., m = O(log n), the above
complexity can reduce to O(n log n). Note that though the OT step and MGDA step both scale
similarly, their actual running time is drastically different as MGDA requires gradient computation.

Table 9: Runtime (sec) comparisons for all methods on federated learning datasets, performed on a
single Nvidia RTX A5000 platform.

MGDA Linearization FedAvg FedProx FedMGDA+ MosT MosT-OT MosT-MGDA
Syn (0.0, 0.0) 219.86 225.90 222.22 281.69 516.25 217.59 1.00 0.44
Syn (0.5, 0.5) 208.82 208.27 205.90 258.19 495.62 201.70 0.92 0.23
Syn (1.0, 1.0) 269.44 268.33 270.65 333.74 557.58 260.50 0.98 0.35
FEMNIST 3522.83 3135.76 3147.62 3539.85 > 5000.00 3368.63 0.94 45.35
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(b) MGDA
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(c) Linearization
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(d) FedAvg
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(e) FedProx
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(f) FedMGDA

Figure 8: Proportion of 5 solutions (A/B/C/D/E), trained by MosT (a) and baselines (b)-(f), special-
ized on 30 objectives (labeled as numbers). Notably, in (a), wider ribbons indicate that MosT-trained
solutions address each objective with more specialization. In contrast, baseline solutions exhibit
similar specializations across objectives. This highlights the enhanced solution diversity of MosT, a
key factor contributing to its overall performance as shown in Figure 1.
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Figure 9: KL divergence between pairwise solution predictions. Baselines show decreasing diver-
sity over training iterations, whereas both MosT variants maintain diversity. MosT with diversity
regularization fosters diversity.

Table 10: Runtime (sec) comparisons for all methods on multi-task learning datasets, performed on a
single Nvidia RTX A5000 platform.

MGDA Linearization EPO MosT MosT-OT MosT-MGDA
Office-Caltech10 465.73 669.88 775.24 371.06 0.54 8.08

DomainNet 294.23 341.27 347.23 226.9 0.08 15.43

Table 11: Runtime (sec) comparisons for all methods on prompt learning datasets, performed on a
single Nvidia RTX A5000 platform.

MGDA Linearization MosT MosT-OT MosT-MGDA
BoolQ 2287.03 2170.97 1568.47 0.29 0.02

MultiRC 2108.14 1820.73 1892.47 0.37 0.09
WiC 1286.30 1187.56 1254.51 0.37 0.05

Table 12: Runtime (sec) comparisons for all methods on ZDT datasets, performed on a single Nvidia
RTX A4000 platform.

MGDA Linearization SVGD EPO MosT MosT-OT MosT-MGDA
ZDT-1 123.77 13.03 9.26 34.36 38.05 1.07 2.19
ZDT-2 124.02 13.32 9.29 34.54 37.32 0.77 1.43
ZDT-3 140.85 14.98 10.08 37.75 40.82 0.87 1.99

Table 13: Runtime (sec) comparisons for all methods on fairness-accuracy trade-off datasets, per-
formed on a single Nvidia RTX A4000 platform.

MGDA Linearization EPO MosT-E MosT-OT MosT-MGDA
Synthetic 888.59 43.32 79.09 1159.17 0.15 0.08
German 454.64 23.98 43.10 595.34 0.14 0.03

26


	Introduction
	Related Work
	MosT: Many-Objective Multi-Solution Transport
	Algorithms for MosT
	Extension to Few-Objective (n < m) Cases
	A Practical Solution-Specialization Curriculum

	Properties of MosT
	Convergence

	Assignment Dynamics during Training
	MosT Applications
	Experimental Setup
	Federated Learning
	Multi-Task Learning
	Mixture-of-Prompt Learning
	Ablation Studies and Comparison with Other Baselines
	Runtime Comparisons

	Conclusion
	Appendix
	Background on MGDA in Multi-Objective Optimization
	Convergence Proofs
	Strongly-Convex Cases
	Non-Convex and Smooth Cases

	Experiments with nm
	Toy problems
	Fairness-Accuracy Trade-offs (nm)

	Experimental details
	Experimental Setup for Toy Problems
	Experimental Setup for Federated Learning
	Experimental Setup for Fairness-Accuracy Trade-Off
	Experimental Setup for Multi-Task Learning
	Experimental Setup for Prompt Learning

	Ablation Study on MosT Design
	Ablation Study for OT
	Ablation Study for OT Design - Curriculum Learning
	Ablation Study for OT Design - Diversity Encouragement
	Ablation Study for MGDA

	Comparative runtime analysis


