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A Appendix

B Limitations

Here we discuss key limitations of our work and areas that are not explored in this paper.

e Developed theoretical claims are for strongly convex loss functions. The globalization mechanism
with cubic regularization can be anaylized for convex functions as well, but we do not consider
non-convex objectives in this work.

e Our methods are analyzed in the regime when the exact local gradients and exact local Hessians
of local loss functions are computed for all participating devices. We do not consider stochastic
gradient or stochastic Hessian oracles of local loss functions in our analyses. However, when we use
sketch-and-project operator we rely on Hessian-vector products which does not require full Hessian
computations.

C Detailed Literature Review of Second-Order Methods

In this section we provide more detailed literature review of second-order methods. The comparison is
made based on the most relevant prior works in the literature highlighting main differences over our
work. The comparison is performed based on criterias including generality of the considered problem
structure, assumptions made on the (local) loss functions, communication complexity per iteration, theoretical
convergence guarantees and other aspects of the method.

o GIANT (Wang et al [2018) and NL (Islamov et al.| [2021)) are not designed to handle a general finite
sum problem. In contrast to our work, they only work with Generalized Linear models.

o Communication costs per iteration of DAN (Zhang et al., [2020a)) and Quantized Newton (Alimisis
et al., [2021)) are significantly high which make them impractical.

o NL (Islamov et al.l |2021) directly reveals local data in each iteration which breaks privacy preserving
guarantees.

e The drawback of GIANT, DINGO is in their convergence rates which depend on the condition number
of the problem. In some cases theoretical convergence guarantees are even worse than those of
first-order methods. DANE (Shamir et al., [2014) and AIDE (Reddi et al., 2016) suffer from the same
problem because those methods are first-order methods.

o The first drawback of FLECS (Agafonov et al., [2022b)) is that SVD decomposition is needed in each step
to perform a truncation which means that the computation cost of those methods can not be reduced.
Besides, there is no good local theory for that method; the only convergence guarantee is derived
under the assumption that the iterates remain close to the optimum. Next, convergence of FLECS
and FLECS-SGD depend on the product of the condition number and truncation parameters. For
example, using the same truncation parameters as in their experiments, the convergence guarantees
are of the order 10?2k, where & is the condition number. Finally, they need backtracking line search
or other learning techniques with additional parameters to perform one step of the methods.

e Fib-10S (Fabbro et al.l |2022)) introduces Newton-type method based on SVD decomposition which
means that similarly to FLECS the computation cost can not be reduced. Besides, this approach is
also restricted to rank-type compression only, and consequently does not support popular compression
techniques such as Top-K or Rand-K. On top of that, Fib-10S always requires backtracking line
search technique to find appropriate stepsize.

e GIANT and DANE work well only in homogeneous setting while in practice the problem could be
significantly heterogeneous. In our work we do not make any assumptions on heterogeneity of the
problem.
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o While convergence guarantees of FedNL (Safaryan et al.,|2022|) and Newton-3PC are the same (fast
local linear/superlinear rates independent of the condition number) there are several points that
make our work superior: (i) FedNL can be seen as a special case of Newton-3PC; (ii) we provide
much wider compression mechanisms going beyond those proposed in (Safaryan et al.l [2022); (iii) we
propose two ways how to reduce computation costs (lazy aggregation and sketching) of Newton-3PC.

D More on Sketch-and-Project Mechanism

Sketch-and-project operator has been widely studied as a technique to solve linear systems (Richtarik &
Takac), 2017; |Gower & Richtarik, |2015), an application to first-order methods (Hanzely et al., 2018]). Besides,
Gower & Richtarik| (2017) showed that various Quasi-Newton updates can be seen as a special case of
sketch-and-project mechanism. Let us now describe it in more details. For this reason, we introduce an
arbitrary twice differentiable function ¢ : R — R. Our desire is to compute an approximation of its Hessian
V2o at point z. Let Xg be the first approximation of VZp(x). Then we define a sequence {X} that
approximates VZp(x) better and better as k goes to infinity solving the following optimization problem

1
Xpy1 = argminXGRdxd§||X —Xill2 st STVZp(z) =STX, (14)

where S € R?*7 is a random matrix drawn in i.i.d. fashion from a fixed distribution D. To solve this problem
we define a function vec(A) = (Ai1, ..., Aqi,Ara, ..., Ago, ..., Avg, ..., Agq) T . Moreover, we need to define
an extended sketch matrix S of the form

S 0 0
- 0 S 0 )
S:= € R x4, (15)
0 0 ... S
Using ([15]), we can reformulate as follows
vec(Xjp11) = argminy |[vec(X) — vec(X)||%,  STvec(X) = S Tvec(V3p(x)). (16)

The latter has an explicit solution (Hanzely et al, 2018) of the following form
vec(Xpi1) = vee(Xy,) + Z(vec(V3p(x)) — vee(Xy)), (17)

where Z := S(STS)TST. It is easy to show that Z can be rewritten as follows

Z o0 ... 0
N 0 Z ... 0
0o o0 ... Z

where Z := S(STS)'ST is a projection matrix onto the range of a sketch S. Since it is not clear how to
compute the process , we rewrite it explicitly as

X1 = X5 +S(STS)(V2p(z) — Xp).

The way in which the above formula is written resembles the update from (Safaryan et al.; [2022]).

E Deferred Proofs from Section [3] and New 3PC Compressors

E.1 Proof of Lemma [3.4} Adaptive Thresholding

Basically, we show two upper bounds for the error and combine them to get the expression for .. From the
definition , we get

le(X) = X|fE = > X5 < dNIIX13 < 22X
FU SRS S
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The second inequality is derived from the observation that at least on entry, the top one in magnitude, is
selected always. Since the top entry is missing in the sum below, we imply that the average without the top
one is smaller than the overall average.

2 -1 < 1
e -xip= ¥ xa= Y xhs (1o)X

311X <A Xl eo Jil=1

E.2 Proof of Lemma[3.6; Sketch-and-Project

Note that since Z is a projection matrix, then it is symmetric and satisfies

ZZ = S(S'S)’sTs(s's)fs’
S(STS)'s’™ =1z,
As a consequence, its eigenvalues are between 0 and 1. Assuming that X is symmetric we derive
E[|zX -X[¢] = E[IZX][E - 2(ZX,X)] +[IX]}
= E[Tv(X'Z'ZX)] - 2(E[Z] X, X) + || X||}
= E[(X,ZX)] -2(E[Z] X, X) + || X]%
= X[ - Tr(XTIE (Z] X)

Note that we can force X to be symmetric in the same way as it was done in (Qian et al,|2022)) by using
symmetrization operator [X], = 2(X + X ") which does not change the theory.

E.3 Proof of Lemma Compressed Bernoulli AGgregation (CBAG)

As it was mentioned CBAG has two independent sources of randomness: Bernoulli aggregation and possible
random contractive compression. To show that CBAG is a 3PC mechanism, we consider these randomness
one by one and upper bound the error as follows:

E [[ICay(X) = X|?] = (1-p)H-X|*+pE[|C(X - H) - (X - H)|]?]
< A-pIX-H* +p(1-a)|X-H|
= (1-pa)|X-H|?
< (L=pa)(1+s)[[H =Y + (1 - pa) (1 + /)X = Y|,

E.4 New 3PC: Adaptive Top-K

Assume that in our framework we are restricted by the number of floats we can send from clients to the
server. For example, each client is able to broadcast dy < d? floats to the server. Besides, we want to use
Top-K compression operator with adaptive K, but due to the aforementioned restrictions we should control
how K evolves. Let Ky y be such that

Y —H ,
Ky, y = min { ’V d=| ,do
X — H]%
We introduce the following compression operator
Cuy(X):=H+ Top-Kuy (X —H). (19)

The next lemma shows that the described compressor satisfy .
Lemma E.1. The compressor Cy u satisfy with

do do\ [ 2d2
A=-2 B= 1—22) (=1 .
s 2o (1) (5 1) 2}
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Proof. Recall that if C is a Top-K compressor, then for all X € R¢*4
K
lex) - I < (1- 5 ) IX2.
Using this property we get in the case when Ky u = do

Cr v (X) — X2 = |H + Top-Kp v (X — H) — X2

d
< (1- %) m-x2

do , o\ 242 — d, )
<({l-—)|H-Y 1—-—= ) ——|Y - X]||n-
< (1- o) - YR+ (1= ) 20y - X

2 2
If Kiay = [ 5omfbd?], then —Kuy < ~[5T5HEd?, and we have

Cr v (X) — X||2 = ||H + Top-Ku v (X — H) — X2

Ku vy 2
s(v—)m—xF

d2
2
<<vﬂ§‘$§ym—xﬁ
- F

= |H - X[z —IY - H|z

IN

3 2 2 2
S B VIR 48 Y - X2 Y - H2

1
= S IY ~HZ +3]Y - X},

where in the last inequality we use Young’s inequality. Since we always have 2‘% (because dy < d?), then
A= O
E.5 New 3PC: Rotation Compression

Qian et al.| (2022)) proposed a novel idea to change the basis in the space of matrices that allows to apply
more aggresive compression mechanism. Following Section 2.3 from (Qian et al., [2022)) one can show that
for Generalized Linear Models local Hessians can be represented as V2f;(z) = Q;A;(2)Q/, where Q; is
properly designed basis matrix. This means that Q; is orthogonal matrix. Their idea is based on the fact that
A;(z) is potentially sparser matrix than V2 f;(z), and applying compression on A;(x) could require smaller
compression level to obtain the same results than applying compression on dense standard representation
V2fi(x). We introduce the following compression based on this idea. Let C be an arbitrary contractive

compressor with parameter «, and Q be an orthogonal matrix, then our new compressor is defined as follows
Cuy(X):=H+QC(Q'(X-H)Q)Q". (20)

Now we prove that this compressor satisfy .
Lemma E.2. The compressor C,q based on a contractive compressor C with parameter a € (0,1]

satisfy with A =¢/2 and B = (1 — a) (2-o)/a).

Proof. From the definition of contractive compressor

E[lle(x) - XI3] < (1 - a) X3
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Thus, we get
E[lleux(X) - XI5 =E[|Qc(@"(X - 1)Q) Q" - (X - H)[ ;]

~E[|Qc(@"(X-H)Q)QT - Q" (X - H)QQ" ;]
~E|[|c(Q"(X-H)Q) - QT(X - H)Q];]
<(1-a)|QTX-H)Q];
= (1-a)[X - H]|;
<1 -a)1+H) Y -H[z+ (1 -a)(1+ 57 Y - Xz,

where we use the fact that an orthogonal matrix doesn’t change a norm. Let § = ﬁ, then

9 _
E [len (0 - X1 < (1- ) 1Y -+ - o) (250 1y - X2 (21)

F Deferred Proofs from Section [ (Newton-3PC)

F.1 Auxiliary lemma

Denote by Eg.1[] the conditional expectation given (k + 1) iterate z¥T1. We first develop a lemma to
handle the mismatch By |[H ™ — V2 f;(2*)||2 of the estimate H¥*! defined via 3PC compressor.

Lemma F.1. Assume that ||xkJrl — x*”2 < % sz — ;1:*”2 for allk > 0. Then
o (1857 = V2AE] < (1- 3 ) It = VA + ( +38) 121t -1

Proof. Using the defining inequality of 3PC compressor and the assumption of the error in terms of iterates,
we expand the approximation error of the estimate Hf“ as follows:

Epr [[HF! = V2fi(a")[13]
Ern (1ot v, oty (V2Fi(a" D)) = V2 file") 2]

< 1+ OBk [ICa w20y (T2i(a™H) = V2HEHDIR] + (1 +1/8) V2 £ ) = 92 i) I3
< (1481 - AIHE = V2R + BIV2 A = PR + 0+ 6) |92 - Vi) IR
< (14 B)(1— A)HE - V2fi(h)|E
+2B|[V2fi(*) = V2i(a") [} + (L+1/5 + 2B) [ V(") = V2i(a") |}
< (1+8)(1 - AHE - V2 fi(a")|F
+2BLR|la* — "I} + (1+ Yo + 2B)LE[l2*+! — 2|2
< - A - VAR + (25 +38) 2t -l

where we use Young’s inequality for some 8 > 0. By choosing 8 = ﬁ when 0 < A < 1, we get

. A . 1 1 .
o 181570 = 2AIE] < (1= 5 ) It = VA + (4 +38 - 5) 22l - o1

When A =1, we can choose =1 and have
Epr [JJHF ™ = V2£i(2)[I1B] < 3B +1) L[|2" — ™3

Thus, for all 0 < A < 1 we get the desired bound. O
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F.2 Proof of Theorem
The proof follows the same steps as for FedNL until the appearance of 3PC compressor. We derive recurrence

relation for ||2* — 2*||2 covering both options of updating the global model. If Option 1. is used in FedNL,
then

A

IN

< = (10 = v r@) 0 = o)+ VR o) = VG + VEGY)

)

2 ( ) 9 )
- p(“<H5—V2f<x*>><x’“—x*>|| +[[VI@h) = Vi) - V)t - ah)[)
< 2 (I - v et - o+ L o - o)
= Do (g - v+ e )
< Dt (- v+ Bt - )
< Ziat o (- sl + St o).

where we use H® = uI in the second inequality, and V2 f(2*) = uI in the fourth inequality. From the
convexity of || - ||%, we have

n n

1

* 1 * *
I — V2 f () [F = H” D (HP = VE@E)|| < = IHE - ViR =HE
i=1 F i=1
Thus,
okt — 2|2 < ot — o 25 + L—sz’“ — a7 (22)
Ty 2u2 '

If Option 2. is used in FedNL, then as H* + I*I = V2 f(2*) = ul and Vf(z*) = 0, we have

lz** = 2% = ||l2* — 2* — B + ' TV f (")
<[P+ R+ D "~ 2t) = V(") + V()]

1 . oy 1 . ) )
< ;||(Hk+l’“1—v2f(x Nk — %)) _,_ﬁnvf(xk) V) - VR )
1 L
< ZHF +1FT = V2 f(2* koo gk w2
= N|| T =V (@) |[[|" — 2| + 2#”3: |
= ii JEES + 181 — V2, (") 12" — o)) + 22 ja* — 7|2
" 2u
1 n L
< — 3 (HE = V()| 4 )b — 2]+ S |ab a2
" ;(II @)+ )l | 2u” [

From the definition of I¥, we have

I = Y — V2 < [HE - V2fi(e) e + Lplle® — o).
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Thus,
. 2 & L.+2Ly, , .
lz*+ —2*|| < @Z I} — V2 fi(2") plla® — 2*[| + TFHa?k -
i=1
From Young’s inequality, we further have
2
. L.+ 2LF 2 N
la* ="l < ( Z LS = V2 el — ||> + (Q”)m’“ —a
8 ka2l k 24 (]2 (Ls +2Lp)% 1 4
< St -] (ng et - VAl ) + B St )
8 . L. +2Lp)? .
L e (23)
where we use the convexity of || - [|% in the second inequality.
Thus, from and (23), we have the following unified bound for both Option 1 and Option 2:
C D
lz* = 2*||* < Ellxk — 2 [PH" + ﬁ\\xk — | (24)
Assume ||2° — 2*||2 < ”—2 and H* < £ 45 for all k > 0. Then we show that [|* — 2*||* < % for all k > 0 by

induction. Assume ||z* — 2*||? <5

1 1
24 — o2 < gl — ot P+ 2 — 2P <

Thus we have ||z* — 2*||?

1
[ e

[\

Assume |20 — 2*||2 < % and H? <

% for all k > 0. Then we show that ||z% —

for all kK < K. Then from , we have

,u
2D’

< % and H* < % for k > 0. Using again, we obtain

(25)

o2 < &5 * for all k>0 by

induction. Assume ||z* — 2*||% < % for all k£ < K. Then from , we have
1 1 2
[#54 — a2 < Lk a2 e < L

Thus we have ||zF — 2%||% < g—D and H* < ” for k > 0. Using (24) again, we obtain

”karl o x*||2 <

(26)

Thus, we derived the first rate of the theorem. Next, we invoke Lemma to have an upper bound for H*+1:

A 1
Ey[HF) < (1 — 2) HE + (A + 3B> Li||2”

— "

Using the above inequality and , for Lyapunov function ®* we deduce

E[@*] < (1
(2 (e
Gl e

273

23

A 1 . 1 .
- 2) HE + (A +3B> Li||zF — 2% +3 <A+3B> Li||z® — z*||?

+ 33) L%ka — 33*||2
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Hence E[®*] < (1 —min {4, )k ®0. Clearly, we further have E[#*] < (1 —min {£, 1 )k @0 and E[||z* —
x*)?] < m (1 —min{%,1 )k ®0 for k > 0. Assume z¥ # z* for all k. Then from , we have

”karl _ x*”2 C
Jah —z*||> — p? 242

and by taking expectation, we have

k+1 _ .%x]||2
[l o O

D *
|k — 2+ |2 + 55 Ella* — 27|’

1) (e S

A
A~

—

|

=)

=]
—
o[
Wl =

which concludes the proof.

F.3 Proof of Lemmal[4.3]

We prove this by induction. Assume [|[HF — V2 fi(z*)||} < 45 ~ and |z — 2*||? < €2 for k < K. Then we also
2
have HF < iz for k < K. From 1) we can get
K+1 * 112 C K K * |4
Iz — 2t |? < 2’ — 2 |*H ozl — 7
W
< K — ot % = 2]
! 4
< 2" —2*|* < ef.

Using Lemma [FI] and the assumptions that we use non-random 3PC compressor, we have

. 1+ 3AB .
I = V)l < (1 ) IS = VAl + S e - o
< 1_é p?  1+3A4AB , A%p?
- 4C A F8(1+3A4AB)CL:
.
4C”

F.4 Proof of Lemma 4.4

We prove this by induction. Assume ||z* — 2*|| < e; and |[HF — V2f;(2%)[|2 < % for k < K. Then we also
have H* <7 “ for £k < K. From , we can get
*“4

C
lz** —2*)* < EIIxK —a|PHE + 32 1"

1
+ 2 llz® — 2| < el

1
< Jlef =) + 5

From the definition

piH {Hf + C(V2f;(xF+1) — HF)  with probability p, @7

HE with probability 1 —p

we have two cases for Hf“ we need to upper bound individually instead of in expectation. Note that the

case HI! = HY is trivial as |[HI ! — V2fi(z*)||r = [[HF — V2f;(2)||p < % For the other case when
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Hi:Hl = HF + C(V2fi(2F*1) — HF), we have

[HF = V2 fi(a") ||
= = +C(Vfi(a"T) = HF) — V2 fi(z") ||
< C(VPfila®HY) = HY) — (V2 fi(a®h) = HY)|lp + [V fa(2" ) = V2 fi(2")[|e
< V1I—alVfi(a") = HY |p + Le|2" T — 27|
< Vi—alH} = V?fi(@")|r + V1= al| V2 fi(z"T) = V2 fi(@*)|r + Le|z T — 27|
< V1—a|H} = Vfi(z*)|lr + 2Lpa" " — 2|
P (1-vVI-a)u o
< Mm‘FZLF' WCLp :2\/67

which completes our induction step and the proof.

G Deferred Proofs from Section [5] (Newton-3PC-BC)

G.1 Proof of Theorem b.1]

First we have

lz* = 2| = |l2* — 2 — [JY], M)
— * * 2
= "] (HYL R - 2) = (6° = V()]
1
< g MG =) = (o = v i) (28)
where we use V f(z*) = 0 in the second equality, and ||[H’“];1|| < % in the last inequality.
If €% = 1, then
|4, (F = ) = (6 = V)|
* * * 2

= [VF(") = V(@) = V2f@) (2" —a*) + (V2 f(a") = [H],) (2" — )|
<2||VFER) = V@) = V) =2+ 2 [[(V2F () = [H],) (" = 27)

Lz * * *
< Sl =2+ 2 [ - VA @) [l2F - 27

L |4 k 220N 2 (K |2
< 5 2% =27 + 2’ = VEf @) lp (2" — 27|

L? 1 1 ?
=Sl -t 2 L - L) -

2 n n P

2 n
* * 2 * *
< lleh =t Y = VR )[Rl - (29)
i=1

where in the second inequality, we use the Lipschitz continuity of the Hessian of f, and in the last inequality,

we use the convexity of || - [|2.
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If ¢€8 =0, then
[[HM,.(25 = 2%) = (¢" = Vi)
— ||, (2F = wb) + Vb)) = V(") — [0 — o)
— ||, (2" — w*) + V(w*) = V(a")]
= |[Vf (") = V(") = V(") (w* = 2*) + (V2 f (") — [H],) (0" — 2%)]
2
< %nwk — 2|t + 2 HE = V2 f ()[R — 2]
2 n
< %Ilw’“ — |t + %Z I — V2 fi(a) |3 Jw® — 2% (30)
=1

For k > 1, from the above three inequalities, we can obtain

Egllz™t —2*|* < o Wl IIZ o*|* + TLTQZIIH? = V2 fila)|E]l" - 2

+ T\Iwk — o+ Z [H; = V2 i) & lw* — 2"

i=1
= 53 (LRl =P +4%’f) ||z’f — o

1-— " *
+ S22 (L2t = a2+ ) o = o (31)

where we denote " := 13" | |HF — V2f;(z*)[|3.

For k = 0, since 29 = w0, it is easy to verify that the above equality also holds.

From the update rule of z¥, we have

1
Ek||zlc+1 o {E*H2 S (1 +a)Ek||Zk+l _ $k+1”2 + (1 + a) EkakJrl o x*HQ
1
< (T+a)d— A28 = 2% + (1 + @) By Eg ||z — 282 + <1 + a) Ep|lz®tt — z*||?
1
< (14 a)(1— A1+ B — 2|2+ (1 + a)(1 - An) (1 n ﬁ) ot — 2|2

1
+2(1+ oz)BMHajk _ gc*HQ + (2(1 +a)By +1+ a) Ekak-&-l _ l‘*HQ’

for any a > 0, 8 > 0. By choosing a = % and = ﬁ, we arrive at
—=x

A 4 5B 4 5B
el =P < (1= B ) k=P (e 3 2 ) et - o (4 1 PR B -

A * * *
< (1—;4) 12 — 2* 2 + Carlla — 2| + CuEalle — a*?, (32)
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where we denote C)y 1= ﬁ + 1+ 53%. Then we have

A
BAll#4) = o724 20 a4 = 272 < (1= 1) 1% - P+ Carle? = 4 3Cw B - P

(31) A 3C

< (1= 22 ek — w2+ P (L2 )k — 2|2 4 41 |2 — 2|
2 2u

3Cu (1 — N . *

+ MZ(M P) (L2Jw" — 2*||* + 4H") " — 2*|* + Cur||2* — ¥,

2 2
Assume ||zF — 2*||2 < % and HF < g‘é‘ﬁ for k > 0. Then from the update rule of w*, we also have

2
|wh — 2|2 < 2514(,1\‘?;1:3 for k > 0. Therefore, we have

A A Ap(1—
Ek[||zk+1fl‘*||2+20M||$k+17$*”2] < (1 _ TM + Ié/fp> ||Zk7x*H2+%||wk7x*||2+CMka7x*H2'
(33)
From the update rule of w*, we have
Ep [l — 2| = pl"* — 2% + (1 = p)Jw® — 2% (34)
Define ®F := ||2F — 2*||2 + Opr||2* — 2% ||2 + %ﬁ;p)ﬂwk — z*||2. Then we have
Ap(1—
B8] = B[4+ — o [P + 2w ok — a7 2]+ 2P et o
B3 Ay (1 — Ap(1—p)?
< B e s
p
B3) Ap (1 — A A Ap(1 -
2 (1A =P (o Av Aup e e (AP k2
4 2 8 4
Ap(1— Ap(1 - Ap(1—p)?
+ 1+ M( p) M( p) + M( p) ”wk_x*HQ
1 8 4p
A Av(l —
< <1 - 4M> 1% — 27| + (1 - Z) 20wl — 2*|2 + M(4pp) <1 - 3;’) [
< (1 B min{QAM,3p}> ok,
8
By applying the tower property, we have
in{2A
o) < (1- M2 ) prgy,

Unrolling the recursion, we can get the result.

G.2 Proof of Lemma

We prove the results by mathematical induction. Assume the results hold for k¥ < K. From the update rule
2 2
of w*, we know ||[w* — z*||? < min{QfCQ”;Lz, 3 AwAwi” Y for k< K. If €5 = 1, from |) and lj we have

84C Cw L
K+17*2<i Lfi K _ 12 4 oyK K %2 35
[z I E (Gl -2 |27 — 2] (35)
AM K * |12
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K __ K * (12 : AMM2 AWAMM2 . . . P
If &% =0, from [Jw™ —2*[|* < min{ 57445, 384CMCWL%} and (30), we can obtain the above inequality simi-

larly. From the upper bound of |25 — 2*||?, we further have [|z5+! —2*|| < éi‘ég min{ - 2402 22 , Ssigzjgvsm }.

Then from and the fact that C} , (zF*1) is deterministic, we have

A
o740 P < (1= ) 5 a2 Curll =[P+ Colle 7P

AM AM K * 2 11AM . AM,u2 AwAM,u
1 =22, =
< 2 T > Iz I+ Cr - Sae, ™M 55ce 12 ssacy o 12!

Aprp? Aw Apg i !
542,12 384C;Coy L2

< min{

For |[HF ™ — V2 f;(x*)||2, we have
B~ V24l < (L @B - 2R+ (14 1) BIV2AGH) - V2GR
< (14 0)(L— Aw)[HE — V2GR + (14 ) BB V2() - V2L 2
+ (14 2 ) BV - VA1
< (14 a)(1 = Aw)|[HF = V2fi(z5) [ + (1 + o) Bw LEEg || 2" — 2512
+ (1 + ;) LEEg||z" " — 2|2
< U+ )(1 = Aw)(1+ B)HE — VAR + (00— Aw) (14 ) 31 - o7 2

1
+2(1 4 a)Bw LE||2% — o*||> + <2(1 +a)Bw +1+ a) LA 25 — %2,

for any a > 0, 8 > 0. By choosing o = ATW and 8 = ﬁ, we arrive at
-3

* A * *
By [HE - V2 fi(a") 3 < (1 - W) JES = V2 £5(2") 13 + Cw L) — 2|2 + Cw LEE |25+ — 27|, (36)
where we denote Cy := I, T1+ 5BW . Since CHk Vi k)(z’”‘l) is disterministic, from , we have

A
rHKJrl < (1 W)HK+CwL ||Z *||2+CV[/L12:\HZK+1 71,*”2

Aw\ Anp s AwAnp?
<|(1——]7 2 Ls. —————~
—( ) )96CM 20w L e O L2

2
< Amp”

— 96C

G.3 Proof of Lemma 5.3

We prove the results by mathematical induction. From the assumption on Hf, we have
1 & .
M = n Z ||Hi'€ - ngi@ )||2
< *Zdz maX{I(H'“)ﬂ — (V2 f(a))l*}

< dQL(Q>o max ||zf — 2*|%. (37)
0<t<k
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Then from [|2° — z*||? < &, we have H® < min{ ‘;ég‘;, ’i—;}. Assume the results hold for all k < K. If ¢X =1,
from (35), we have

1 [L?
||.’EK+1 —:L'*||2 S p <;||ZK—.’E*||2+2HK> ||ZK—(E*H2

IN

1
HEEE &
<.

If ¢5 = 0, from [|[w® — 2*||? < dé&; and (30), we can obtain the above inequality similarly. From the
assumption on z¥, we have

250 — a2 < damax 2
j
<d max |zt —z*|?
0<t<K+1
< dé;.

At last, using , we can get HE+! < min{ gﬁ%’i j , Z—Z}, which completes the proof.

H Extension to Bidirectional Compression and Partial Participation

In this section, we unify the bidirectional compression and partial participation in Algorithm 3] The algorithm
can also be regarded as an extension of BL2 in (Qian et al., [2022)) by the three point compressor. Here the
symmetrization operator [-]s is defined as

_A+AT

[A]s : 5

for any A € R%*¢. The update of the global model at k-th iteration is

-1
xk-‘rl _ ([Hk]s + lkI) gk’
where H*, [* and ¢* are the average of Hf, lf, and gf respectively. This update is based on the following
step in Stochastic Newton method (Kovalev et al., 2019)

n

o =[] (83 - vt

=1

We use [HY], + I¥T to estimate V2 f;(wF), and g¥ to estimate V2f;(w¥)wF — V£, (wF), where I¥ = ||[H?], —
V2f;(2F)||r is adopted to guarantee the positive definiteness of [H¥], + [*I. Hence, like BL2 in (Qian et al.,
2022), we maintain the key relation

gf = (Hf]s + Dwf — V fi(wf). (38)

Since each node has a local model w¥, we introduce z¥ to apply the bidirectional compression with the three
point compressor and H¥ is expected to learn h'(V2f;(2F)) iteratively. For the update of g¥ on the server
when ¢F = 0, from , it is natural to let

gt — gt = (H7 1 — [H) + 7T = 7 Dwi ™,

since we have w"™! = w¥ when ¢¥ = 0. The convergence results of Newton-3PC-BC-PP are stated in the

following two theorems.
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Algorithm 3 Newton-3PC-BC-PP (Newton’s method with 3PC, BC and Partial Participation)
1: Parameters: Worker’s (C") and Master’s (C*) 3PC; probability p € (0,1]; 0 <7 <n

2: Initialization: w) = 2? = 20 € R%; H? € R¥¥4; l0 = ||[H0] — v2fi(w?)||F; g = (HY]s + PT)wf —
V fi(w?); Moreover HO =300 HY 0= 0500 1) w1 9

3: on server .

4 o= ([HF), +1F 1) g5,

5. choose a subset S¥ C [n] such that P[i € S*] = 7/n for all i € [n]

6: 2Tt :Ci\/[:pk( k1) for i € S*

7 ot = zk, wi = wk for i ¢ S¥

8: Send CM L+ (@FT1) to the selected devices i € S*

9: for each dev1ce i =1,...,n in parallel do

10: for participating devices i € S* do

1: M= CM (k)
12, HAF = CHk w2ty (V2 Filz)
13; l“1|m#“] vm<ﬁﬂm

14:  Sample §f+ ~ Bernoulli(p)
15 if & =1

16: wk+1 2B gF = (HP + PP D)l ™ — Vi (wh ™), send gF T — gF to server
17 if 5’““ =0
w0 ol =k g = (Y, Dl - ()

19:  Send HEL T8+ 1 and €51 to the server
20. for non—partlclpating devices i ¢ S* do

. R & (R [ [y L .
21z =z, w, T =wi, T =HF, T =1 =g
22: end for

23: on server
24:  if P =1

25: g‘“ f'H receive gf"’l — gf
2: if & =0

. k+1 _ k k+1 k k+1 k k+1 k+1 k k+1
2T: w; T =W, g, [Hz - Hi]s w7+ (T =),

k

28 gFtl=ght 13 o (91+1 g¥)
k _ 1 n k+1

209 HFFL=1%"" HY

i=1
i = LS (1)

For k > 0, define Lyapunov function
k. zk kw2, AMk
&3 = Z" 4 la® — 2| +—4pW,

where 7 € [n] is the number of devices participating in each round.

2 Amp® ko~ Amp® .
Theorem H.1. Let Assumptzon . Assume ||2F —2*||? < m and H* < s for alli € [n]
and k > 0. Then we have

. k
E[ok] < <1 3 Tmln{zAM,fip}) &),
n

for k> 0.
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Proof. First, similar to (30) in (Qian et al.,2022), we can get

3L2 121/\/’c 2 312

lz**+ — 2| < 12 5 (W2 Z [HE — V2 fi(e™) 1§ + FZka
3L ke 12WVP o BLE gk

where WF = L 5™ |lwF — 2|2 and 2% = L 77 | ||2F — 2*||%. For i € S*, we have z[*! = M
Then, similar to 7 we have

zzk

A
Bulloi™ — 2"l < < ) 122 — 2|2 + Carlle® — 2*||? + Cor |2+t — 2|2,

Noticing that P[i € S¥] = 7/n and 2F*? = 2 for i ¢ S*, we further have

. T * .
Epllsf* — a2 = ZEu[lof+! —a"|? | i € $5]+ (1= ) Ealllsh*! — | | i ¢ 5%

IN

Il

A/ 33 3\\\
—
\

2
A C
: M) |28 — 2|2 + =M
n

TC
o e e Ml

which implies that

1 n
B2 = Zmuzéf“ ~ |
n P

| /\

TA ¢ TC

TA C C
(1_ M)Zk*M”%’“—x*ll2+M||:c’“+1 e
2n n n

Combining and , we have

2rC
Ex[24+! 4+ 2 ok — 2|2

A C 37C
< (1 _ TM) Zk 4 M||xk |2+ Mnxkﬂ — 2|2
2n n n

A L? 12HF L2ZF
< (1-T2M) gr TOM ok ez 3TOM (BLayp 1P BERZ ) e
2n n 42 12 2

k _ .x|2 AM,LL2 k AM/,L
Assume ||z7 — z*|* < LI HALT)Cnr and H* < 3~ for all i € [n] and k > 0. Then we have

312 " 12HF N 302" < Au ’
4p? u? p? T 24Cn
which indicates that
27C A C A
]Ek[ZkJrl 4 u”karl N :C*||2] <(1- TAM Zk TOUM ||£Ck B :C*||2 + lek
n on n &n
For WF | similar to (32) in (Qian et al., 2022), we have

W) = (1- ) wh 4 g(zi),

31

A TC TC T
(1= 220 ) et = a4 TR — P o T bt — a2 (1= ) st

(39)

( k+1).

—1}*”2

(40)

(41)
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Then from the above two inequalities we have

Ey[@51]

A 27C A
< 1+T M Ek[Zk—H-FMHCE’H_l *H ]_~_7M<1_E) Wk

4dn n 4p n
(73] A A A A
(oA g ( TAMN 7O e e A (TR TR TAMY

4n 4dn n 4p n 2n 4n
< (1 3 Tmin{2AM,3p}) o
8n

By applying the tower property, we have

E[q)kJrl] <(1- Tmin{2A4,, 3p} E[k].
3 3 3

Unrolling the recursion, we can obtain the result.

5B

Define ®% = H* + %ka — z*||? for k > 0, where Cy := 4
Theorem H.2. Let Assumption holds, &8 =1, §* = [n], and CN , («*1) = 2" for all i € [n] and

k> 0. Assume ||zF — 2*|]? < M—% and H* < 5’?’&5‘; for alli € [n] and k > 0. Then we have

E[®}] < 650,

E |zF+t — 2|2 < gk 3(L§+4L%)AM 12 0
=2 | =2\ Teacw iz )t

for k>0, where 0y := (1 _ W).

Proof. Since ¢* =1, S* = [n], and CM (2P =2k for all i € [n] and k > 0, we have zf = wf = z* for
all i € [n] and k > 0. Then from (41]), we have

3A
el = o[ < (1= 25 ) ot - PP (42)

For |[HI! — V2 f,(2*)|%, similar to (36), we have
A
BelFE - VAR < (1= S50 ) IR - V2GR + Cw LR let = o' P 4+ Cw LBt o

k

Considering zF = 2%, we further have

* A *
Eanf*l—v?fi(x)%g(l—W) [HE — V2,2 + Cw LElle* — 2| + Cuw L2Eg |2+ — 2* |
{@2) A
< (1—W) JELS — V2 fua®)|I2 + 20w L3 [e* — 2|2,
which implies that

Ep[HF] < <1 A2W>7-Lk+2CWL |* — 2% 2. (43)
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Thus, we have

16Cw L2
Anm

A 1 L
< (1= A) we o aCw Lt - a7+ SEG g ok e

Anr
& <1 _ W) o

Ek[@§+l} _ Ek[Hk+l] + Ekak—i-l _ x*||2

By applying the tower property, we have E[®¥*!] < 91IE[<I>’“] Unrolhng the recursion, we have E[®¥] < 5.
Then we further have E[H*] < 05®% and E|[z* — z*||2 < 05 9.

From , we can get

1 (3(L? + 4L}
ot o f? < o (BB ot o 12w ) ot - o,

— 1(iiC'WL2

Assume z* # x* for all k > 0. Then we have

k+1 _ .x||2 2 2

T —z|? + 12%’“) :

[k —2*[* ~ p

and by taking expectation, we arrive at

g [ =" 2] _ 3(E2 +413)
R E R

< gk 3(L§+4L1%)AM 12 o0,
=2 2,2
64Cw L u

. 12
E|zF — z*|? + ?]E[H’“]

O
Next, we explore under what conditions we can guarantee the boundedness of ||z — z*||? and H*.
Theorem H.3. Let Assumption[{.1] holds.
(i) Let CM and CW be deterministic. Assume |20 — z*||? < éié‘fé min{ 3 L2+4L2)CM, 23&%3%5@2}

A p? kE _ % 11AN oot Aprp® Aw Aprp® _ ex||2
and HY < i8¢, - Then we have [z || < gt mln{36(L3+4L%)CM, 2304CMCWL§}7 |l2F — 2z*|? <
: Aprp? Aw Anr k Aprp® :

min{ 5 (L3 14L2)Crr > 2304C Oy L2 }and HF < ey for alli € [n] and k > 0.

(ii) Assume (zf)] is a convexr combination of {(x');}r_y, and (HF); is a convexr combina-

tion of {(V2fi(z! ))]l}t o for all i € [n], 4,0l € [d, and k > 0. If 2% — 22 <

~ L App® Aprp? p? k * (]2 ~ k
C2 = mm{sczz L2+4L2)’36dCM(L2+4L2)’576dSCML2 ’24d4L2 boothen |lzi — 2*|® < dé; and H® <

min{;;gfcf‘M,m} for alli € [n] and k > 0.

Proof. The proof is similar to that of Lemmas [5.2] and [5.3] Hence we omit it.

| Globalization Through Cubic Regularization and Line Search Procedure

So far, we have discussed only the local convergence of our methods. To prove global rates, one must
incorporate additional regularization mechanisms. Otherwise, global convergence cannot be guaranteed. Due

33



Under review as submission to TMLR

to the smooth transition from contractive compressors to general 3PC mechanism, we can easily adapt two
globalization strategies of FedNL (equivalent to Newton-EF21) to our Newton-3PC algorithm.

The two globalization strategies are cubic regularization and line search procedure. We only present the
extension with cubic regularization Newton-3PC-CR (Algorithm [4)) analogous to FedNL-CR (Safaryan et al.)
2022). Similarly, line search procedure can be combined as it was done in FedNL-LS (Safaryan et al., [2022]).

Algorithm 4 Newton-3PC-CR (Newton’s method with 3PC and Cubic Regularization)

1: Input: 2° e R4, HY, ... HY e R4 HO:= 15" H? 10=1%" |H? - V2f;(2°)|p
2: on master

3. h* = argming,cga Ty (h), where Tj,(h) := (V f(z*),h) + 2 ((H* + *T)h, h) + L=||n|?
4:  Update global model to z**! = 2* + h* and send to the nodes

5: for each device i = 1,...,n in parallel do

6:  Get 2! and compute local gradient V f;(z**!) and local Hessian V2f;(z*+1)

7. Take V2f;(2*) from memory and update H¥ ! = CHi_c’vzfi(Ik)(Vin(mk+1))

8 Send Vfi(z*1), HI and IFF! .= |HM — V2f, (2" ||r to the server

9: end for
10: on server
11:  Aggregate Vf(zF+1) = L5 Vi (ah ) HEL = L5707 HEP kAl = LSRR gkl

We omit theoretical analysis of these extension as they can be obtained directly from FedNL approach with
minor adaptations. In particular, one can get global linear rate for Newton-3PC-CR, global O(%) rate for
general convex case and the same fast local rates @I) and of Newton-3PC.

J Additional Experiments and Extended Numerical Analysis

In this section we provide extended variety of experiments to analyze the empirical performance of Newton-3PC.
We study the efficiency of Newton-3PC in different settings changing 3PC compressor and comparing with
other second-order state-of-the-art algorithms. Tests were carried out on logistic regression problem with L2
regularization

1< A 1 &
;Teliﬂg {n ; fi(z) + 2||51”2} o filz) = oo ;log (1+ eXp(_bijaszx)) ) (44)

where {a;;, b;; }je[m] are data points at the i-th device. On top of that, we also consider L2 regularized
Softmax problem of the form

i lif‘()Jrill 124, filz) =0l i a5 = by (45)
;IGII]R% n 2 (T B x , i(x) = olog j:1exp . ,

where o > 0 is a smoothing parameter. One can show that this function has both Lipschitz continuous
gradient and Lipschitz continuous Hessian. Let @;; be initial data points, and f; be defined as

e m ELT$ — bl
fi(x) = olog Zexp (” ]>
i=1 7
Then data shift is performed as follows

ai; = Qi — fi(o)aj € [m],i € [n].

After such shift we may claim that 0 is the optimum since V f(0) = 0. Note that this problem does not
belong to the class of generalized linear models.
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J.1 Datasets split

We use standard datasets from LibSVM library (Chang & Lin|, [2011]). We shuffle and split each dataset into
n equal parts representing a local data of i-th client. Exact names of datasets and values of n are shown in
Table 2

Table 2: Datasets used in the experiments with the number of worker nodes n used in each case.

Data set | # workers n | total # of data points (= nm) | # features d
ala 16 1600 123
ada 80 32560 123
w2a 50 3450 300
w8a 142 49700 300
phishing 100 11000 68

J.2 Choice of parameters

We follow the authors’ choice of DINGO (Crane & Roostal, 2019) in choosing hyperparameters: § = 1074, ¢ =
1075, p = 107%. Besides, DINGO uses a backtracking line search that selects the largest stepsize from
{1,271, ...,2719}. The initialization of H? for Newton-3PC, FedNL (Safaryan et al., [2022) and its extensions,
NL1 (Islamov et al. 2021)) is V2 f;(2°) if it is not specified directly. For Fib-lOS (Fabbro et al., [2022) we set
d}€ = 1. Local Hessians are computed following the partial sums of Fibonacci number and the parameter
p = Ag;4,- This is stated in the description of the method. The parameters of backtracking line search for
Fib-I0OS are o = 0.5 and 8 = 0.9.

We conduct experiments for two values of regularization parameter A € {1072,10~%}. In the figures we plot
the relation of the optimality gap f(z*) — f(2*) and the number of communicated bits per node. In the
heatmaps numbers represent the communication complexity per client of Newton-3PC for some specific choice
of 3PC compression mechanism (see the description in corresponding section). The optimal value f(z*) is
chosen as the function value at the 20-th iterate of standard Newton’s method.

In our experiments we use various compressors for the methods. Examples of classic compression mechanisms
include Top-K and Rank-R. The parameters of these compressors are parsed in details in Section A.3
of |Safaryan et al.[ (2022]); we refer a reader to this paper for disaggregated description of aforementioned
compression mechanisms. Besides, we use various 3PC compressors introduced in (Richtarik et al.l |2022]).

J.3 Behavior of Newton-CLAG based on Top-K and Rank-R compressors

Next, we study how the performance of Newton-CLAG changes when we vary parameters of biased compressor
CLAG compression mechanism is based on. In particular, we test Newton-CLAG combined with Top-K and
Rank-R compressors modifying compression level (parameters K and R respectively) and trigger parameter
(. We present the results as heatmaps in Figure [3| indicating the communication complexity in Mbytes
for particular choice of a pair of parameters ((K, ¢) or (R, () for CLAG based on Top-K and Rank-R
respectively) .

First, we can highlight that in special cases Newton-CLAG reduces to FedNL (¢ = 0, left column) and
Newton-LAG (compression is identity, bottom row). Second, we observe slight improvement from using the
lazy aggregation.

J.4 Efficiency of Newton-3PCv2 under different compression levels

On the following step we study how Newton-3PCv2 behaves when the parameters of compressors 3PCv2 is
based on are changing. In particular, in the first set of experiments we test the performance of Newton-3PCv2
assembled from Top-K; and Rand-K5 compressors where K1 + Ko = d. Such constraint is forced to make
the cost of one iteration to be O(d). In the second set of experiments we choose K1 = Ko = K and vary K.
The results are presented in Figure
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Figure 3: First row: The performance of Newton-CLAG based on Top-K varying values of (¢, K) in terms of
communication complexity (in Mbytes). Second row: The performance of Newton-CLAG based on Rank-R
varying values of (¢, R) in terms of communication complexity (in Mbytes).
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Figure 4: First row: The performance of Newton-3PCv2 where 3PCv2 compression mechanism is based on
Top-K7 and Rand-Ks compressors with K7 + Ko = d in terms of communication complexity. Second row:
The performance of Newton-3PCv2 where 3PCv2 compression mechanism is based on Top-K; and Rand-K>
compressors with Ky = Ky € {d/8,4/4,4/2,d} in terms of communication complexity.

For the first set of experiments, one can notice that randomness hurts the convergence since the larger the
value of K5, the worse the convergence in terms of communication complexity. In all cases a weaker level
of randomness is preferable. For the second set of experiments, we observe that the larger K, the better
communication complexity of Newton-3PCv2 except the case of w8a where the results for K = 150 are slightly
better than those for K = 300.

J.5 Behavior of Newton-3PCv4 under different compression levels

Now we test the behavior of Newton-3PCv4 where 3PCv4 is based on a pair (Top-K7, Top-K3) of compressors.
Again, we have to sets of experiments: in the first one we examine the performance of Newton-3PCv4 when
K, + K5 = d; in the second one we check the efficiency of Newton-3PCv4 when K1 = Ky = K varying K. In
both cases we provide the behavior of Newton-EF21 (equivalent to FedNL) for comparison. All results are
presented in Figure [
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Figure 5: First row: The performance of Newton-3PCv4 where 3PCv4 compression mechanism is based
on Top-K7 and Top-K5 compressors with K; + Ko = d in terms of communication complexity. Second
row: The performance of Newton-3PCv4 where 3PCv4 compression mechanism is based on Top-K; and
Top-K> compressors with K1 = Ky € {d/8,d/4,4/2,d} in terms of communication complexity. Performance of
Newton-EF21 with Top-d is given for comparison.
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Figure 6: The performance of Newton-3PCv1l with 3PCv1 based on Top-d, Newton-EF21 (equivalent to
FedNL) with Top-d, NL1 with Rand-1, and DINGO in terms of communication complexity.

As we can see, in the first set of experiments it does not matter how we distribute d between K; and Ky
since it does not affect the performance. Regarding the second set of experiments, we can say that in some
cases less aggressive compression (K7 = K3 = d) could be better than Newton-EF21.

J.6  Study of Newton-3PCvl

Next, we investigate the performance of Newton-3PCv1 where 3PC compression mechanism is based on Top-K.
We compare its performance with Newton-EF21 (equivalent to FedNL) with Top-d, NL1 with Rand-1, and
DINGO. We observe in Figure [6] that Newton-3PCv1 is not efficient method since it fails in all cases.

J.7 Performance of Newton-3PCv5h

In this section we investigate the performance of Newton-3PCv5 where 3PC compression mechanism is based
on Top-K. We compare its performance with Newton-EF21 (equivalent to FedNL) with Top-d, NL1 with
Rand-1, and DINGO. According to the plots presented in Figure [7] we conclude that Newton-3PCv5 is not as
effective as NL1 and Newton-EF21, but it is comparable with DINGO. The reason why Newton-3PCv5 is not
efficient in terms of communication complexity is that we still need to send true Hessians with some nonzero
probability which hurts the communication complexity of this method.
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Figure 7: The performance of Newton-3PCv5 with 3PCv5 based on Top-d, Newton-EF21 (equivalent to
FedNL) with Top-d, NL1 with Rand-1, and DINGO in terms of communication complexity.
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Figure 8: The performance of Newton-3PC with different choice of 3PC compression mechanism in terms of
communication complexity.

J.8 Newton-3PC with different choice of 3PC compression mechanism

Now we investigate how the choice of 3PC compressor influences the communication complexity of Newton-3PC.
We test the performance of Newton-3PC with EF21, CLAG, LAG, 3PCvl (based on Top-K), 3PCv2 (based
on Top-K; and Rand-K5), 3PCv4 (based on Top-K; and Top-K5), and 3PCv5 (based on Top-K). We choose
p = 1/d for Newton-3PCv5 in order to make the communication cost of one iteration to be O(d). The choice
of K, K1, and K, is justified by the same logic.

We clearly see that Newton-3PC combined with EF21 (Newton-3PC with this 3PC compressor reduces to
FedNL), CLAG, 3PCv2, 3PCv4 demonstrates almost identical results in terms of communication complexity.
Newton-LAG performs worse than previous methods except the case of phishing dataset. Surprisingly,
Newton-3PCv1, where only true Hessian differences is compressed, demonstrates the worst performance among
all 3PC compression mechanisms. This probably caused by the fact that communication cost of one iteration
of Newton-3PCvl1 is significantly larger than those of other Newton-3PC methods.

J.9 Analysis of Bidirectional Newton-3PC
J.9.1 EF21 compression mechanism

In this section we analyze how each type of compression (Hessians, iterates, and gradients) affects the
performance of Newton-3PC. In particular, we choose Newton-EF21 (equivalent to FedNL) and change
parameters of each compression mechanism. For Hessians and iterates we use Top-K; and Top-Ks compressors
respectively. In Figure [0] we present the results when we vary the parameter K7, K» of Top-K compressor
and probability p of Bernoulli Aggregation. The results are presented as heatmaps indicating the number of
Mbytes transmitted in uplink and downlink directions by each client.

In the first row in Figure [J] we test different combinations of compression parameters for Hessians and
iterates keeping the probability p of BAG for gradients to be equal 0.5. In the second row we analyze various
combinations of pairs of parameters (K, p) for Hessians and gradients when the compression on iterates is not
applied. Finally, the third row corresponds to the case when Hessians compression is fixed (we use Top-d),
and we vary pairs of parameters (K, p) for iterates and gradients compression.
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According to the results in the heatmaps, we can conclude that Newton-EF21 benefits from the iterates
compression. Indeed, in both cases (when we vary compression level applied on Hessians or gradients) the
best result is given in the case when we do apply the compression on iterates. This is not the case for
gradients (see second row) since the best results are given for high probability p; usually for p = 1 and rarely
for p = 0.75. Nevertheless, we clearly see that bidirectional compression is indeed useful in almost all cases.
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Figure 9: First row: The performance of Newton-3PC-BC in terms of communication complexity for different
values of (K7, K3) of Top-K; and Top-K»> compressors applied on Hessians and iterates respectively while
probability p = 0.75 of BAG applied on gradients is fixed. Second row: The performance of Newton-EF21 in
terms of communication complexity for different values of (K71, p) of Top-K; compressor applied on Hessians
and probability p of BAG applied on gradients while Ky = d parameter of Top-K5 applied on iterates is fixed.
Third row: The performance of Newton-EF21 in terms of communication complexity for different values
of (K3, p) of Top-K5 compressor applied on iterates and probability p of BAG applied on gradients while
K1 = d parameter of Top-K; applied on Hessians is fixed.

J.9.2 3PCv4 compression mechanism

In our next set of experiments we fix EF21 compression mechanism based on Top-d compressor applied on
Hessians and probability p = 0.75 of Bernoulli aggregation applied on gradients. Now we use 3PCv4 update
rule on iterates based on outer and inner compressors (Top-K7, Top-K3) varying the values of pairs (K7, K»).
We report the results as heatmaps in Figure [T0}

We observe that in all cases it is better to apply relatively smaller outer and inner compression levels as this
leads to better performance in terms of communication complexity. Note that the first row in heatmaps
corresponds to Newton-3PC-BC when we apply just EF21 update rule on iterates. As a consequence, Newton-
3PC-BC reduces to FedNL-BC method (Safaryan et al., 2022)). We obtain that 3PCv4 compression mechanism
applied on iterates in this setting is more communication efficient than EF21. This implies the fact that
Newton-3PC-BC could be more efficient than FedNL-BC in terms of communication complexity.

J.10 BL1 (Qian et al., [2022) with 3PC compressor

As it was stated in Section 4.1 Newton-3PC covers methods introduced in (Qian et al., 2022) as a special case.
Indeed, in order to run, for example, BL1 method we need to use rotation compression operator The role
of orthogonal matrix in the definition plays the basis matrix.

In this section we test the performance of BL1 in terms of communication complexity with different 3PC
compressors: EF21, CBAG, CLAG. For CBAG update rule the probability p = 0.5, and for CLAG the
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Figure 10: The performance of Newton-3PC-BC with EF21 update rule based on Top-d compressor applied
on Hessians, BAG update rule with probability p = 0.75 applied on gradients, and 3PCv4 update rule based
on (Top-K71, Top-K3) compressors applied on iterates for different values of pairs (K7, K>).

trigger ¢ = 2. All aforementioned 3PC compression operators are based on Top-T compressor where 7 is the
dimension of local data (see Section 2.3 of (Qian et al., 2022) for detailed description).

Observing the results in Figure we can notice that there is no improvement of one update rule over
another. However, in EF21 is slightly better than other 3PC compressors in a half of the cases, and CBAG
insignificantly outperform in other cases. This means that even if the performance of BL1 with EF21 and
CBAG are almost identical, CBAG is still preferable since it is computationally less expensive since we do
not need to compute local Hessians and their representations in new basis.
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Figure 11: The performance of BL1 with EF21, CBAG and CLAG 3PC compression mechanisms in terms
of communication complexity.

J.11 Analysis of Newton-3PC-BC-PP
J.11.1 3PC’s parameters fine-tuning for Newton-3PC-BC-PP

On the following step we study how the choice of parameters of 3PC compression mechanism and the number
of active clients influence the performance of Newton-3PC-BC-PP.

In the first series of experiments we test Newton-3PC-BC-PP with CBAG compression combined with Top-2d
compressor and probability p applied on Hessians; EF21 with Top-24/3 compressor applied on iterates; BAG
update rule with probability p = 0.75 applied on gradients. We vary aggregation probability p of Hessians
and the number of active clients 7. Looking at the numerical results in Figure [12] (first row), we may claim
that the more clients are involved in the optimization process in each communication round, the faster the
convergence since the best results in each case always belongs the first column. However, we do observe that
lazy aggregation rule with probability p < 1 is still beneficial.

In the second row of Figure [[2 we investigate Newton-3PC-BC-PP with CBAG compression based on Top-d
and probability p = 0.75 applied on Hessians; 3PCv5 update rule combined with Top-24/3 and probability p
applied on iterates; BAG lazy aggregation rule with probability p — 0.75 applied gradients. In this case we
modify iterate aggregation probability p and the number of clients participating in the training. We observe
that again the fastest convergence is demonstrated when all clients are active, but aggregation parameter p of
iterates smaller than 1.

Finally, we study the effect of BAG update rule on the communication complexity of Newton-3PC-BC-PP. As
in previous cases, Newton-3PC-BC-PP is more efficient when all clients participate in the training process.
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Nevertheless, lazy aggregation rule of BAG still brings the benefit to communication complexity of the
method.
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Figure 12: The performance of Newton-3PC-BC-PP with various update strategies in terms of communication
complexity (in Mbytes).

J.11.2 Comparison of different 3PC update rules

Now we test different combinations of 3PC compression mechanisms applied on Hessians and iterates. First,
we fix probability parameter of BAG update rule applied on gradients to p = 0.7. The number of active
clients in all cases 7 = n/2. We analyze various combinations of 3PC compressors: CBAG (Top-d and p = 0.7)
and 3PCv5 (Top-4/2 and p = 0.7); EF21 (Top-d) and EF21 (Top-4/2); CBAG (Top-d and p = 0.7) and EF21
(Top-4/2); EF21 (Top-d) and 3PCv5 (Top-4/2 and p = 0.7) applied on Hessians and iterates respectively.
Numerical results might be found in Figure [I3] We can see that in all cases Newton-3PC-BC-PP performs
the best with a combination of 3PC compressors that differ from EF214+EF21. This allows to conclude that
EF21 update rule is not always the most effective since other 3PC compression mechanisms lead to better
performance in terms of communication complexity. Nonetheless one can notice that it is useless to apply
CBAG or LAG compression mechanisms on iterates. Indeed, in the case when we skip communication the
iterates remain intact, and the next step is equivalent to previous one. Thus, there is no need to carry out
the step again.

Z —*— CBAG+3PCVS Z —*— CBAG+3PCVS = q1] % CBAG+3PCYS 1) Z —*— CBAG+3PCVS
21071 4 er214er21 81071 4 er214€F21 210 4 EF214EF21 | 81071 4 er214€r21
13] —4 CBAG+EF21 13] —4 CBAG+EF21 “*10713 —4- CBAG+EF21 2 = 13] —& CBAG+EF21
10 _{ & EF2143pCys 10 | & EF21+3pCys _{ ~&- EF21+3PCy5 l 10 _] & er2143pcus
10" o PG 520 1071% 7 2% 107" om PG 520 107]5 T o1 520
communicated bits per node communicated bits per node communicated bits per node communicated bits per node
(al) ala, =107 (bl) w2a, A =107 (cl) a9a, x=10"3 (cl) w8a, x=10"*

Figure 13: The performance of Newton-3PC-BC-PP with different combinations of 3PC compressors applied
on Hessians and iterates respectively.

J.12 Global convergence of Newton-3PC

Now we investigate the performance of globally convergent Newton-3PC-LS — an extension of Newton-
3PC — based on the line search as it performs significantly better than Newton-3PC-CR based on cubic
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regularization. The experiments are done on synthetically generated datasets with heterogeneity control.
A detailed description of how the datasets are created is given in section B.12 of (Safaryan et al., 2022]).
Roughly speaking, the generation function has 2 parameters o and g that control the heterogeneity of local
data. We denote datasets created in a such way with parameters o and 5 as Synt (a, (). All datasets are
generated with dimension d = 100, split between n = 20 clients each of which has m = 1000 local data points.
In all cases the regularization parameter is chosen A = 1074,

We compare 5 versions of Newton-3PC-LS combined with EF21 (based on Rank-1 compressor), CBAG (based
on Rank-1 compressor with probability 0.8), CLAG (based on Rank-1 compressor and communication trigger
¢ = 2), 3PCv2 (based on Top-3d/4 and Rand-4/4 compressors), and 3PCv4 (based on Top-4/2 and Top-4/2

compressors). In this series of experiments the initialization of H? is equal to zero matrix. The comparison
is performed against ADIANA (Li et al., 2020b|) with random dithering (s = \/Zi), Fib-IOS (Fabbro et al.
2022), and GIANT (Wang et al.l |2018]).

The numerical results are shown in Figure[I4 According to them, we observe that Newton-3PC-LS is more
resistant to heterogeneity than other methods since they outperform others by several orders in magnitude.
Besides, we see that Newton-CBAG-LS and Newton-EF21-LS are the most efficient among all Newton-3PC-LS
methods; in some cases, the difference is considerable.
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Figure 14: The performance of Newton-3PC-LS with different combinations of 3PC compressors applied on
Hessians against ADTANA, Fib-IOS, and GIANT.
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