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Abstract001

Diffusion models and Linear Flow matching002
have emerged as a promising framework for003
fast and high-quality conditional text genera-004
tion, yet, current approaches often overlook005
the inherent geometric structure of text embed-006
dings. In this work, we introduce GeoFM, a007
novel flow matching model that directly lever-008
ages the Riemannian geometry induced by009
the Fisher–Rao metric. Specifically, GeoFM010
projects token embeddings onto a Fisher–Rao011
sphere via the square-root transform, and learns012
a neural velocity field that precisely aligns with013
spherical geodesics connecting noisy priors and014
target embeddings. Additionally, we propose015
a spherical trajectory loss that maintains lexi-016
cal fidelity and encourages direct, minimally-017
distorted trajectories on the manifold. Our em-018
pirical evaluation demonstrates GeoFM’s effec-019
tiveness and significant speedups over state-of-020
the-art non-autoregressive baselines.021

1 Introduction022

Neural sequence-to-sequence learning has achieved023

remarkable success in text generation tasks such024

as machine translation and summarization, typi-025

cally relying on autoregressive (AR) decoders to026

maintain high fidelity at the cost of slow, step-027

by-step sampling (Vaswani et al., 2017). Non-028

autoregressive and diffusion-based approaches aim029

to parallelize generation, but they either sacrifice030

quality or require hundreds of model evaluations031

(Song et al., 2021; Li et al., 2022). Recent progress032

in flow matching and continuous-time normalizing033

flows suggests that one can directly learn vector034

fields whose integral curves transport simple pri-035

ors to complex data distributions in very few steps036

(Lipman et al., 2023; Neklyudov et al., 2022; Hu037

et al., 2024).038

However, text embeddings naturally live on a039

probability simplex, for which the Fisher–Rao met-040

ric induces a spherical geometry. Ignoring this041

manifold structure can lead to suboptimal trajecto- 042

ries and embedding collapse. To address this, we 043

propose GeoFM on the Fisher–Rao sphere. We 044

map both noisy Gaussian samples and data embed- 045

dings to the sphere via the square-root transform, 046

learn a neural velocity field vθ that matches the 047

exact spherical geodesic in tangent space (Eq. 3), 048

and add a spherical trajectory loss to preserve token 049

identity. We acknowledge that text is inherently dis- 050

crete, hence modeling discrete distributions with 051

our flow-based GeoFM models can be challenging 052

and may require compromises that lose some of the 053

benefits, like fast sampling. Inspired by prior stud- 054

ies (Li et al., 2022; Gao et al., 2022), we choose to 055

model the problem in continuous text embedding 056

space. 057

We also introduce a spherical trajectory loss to 058

prevent embedding collapse and ensure lexical fi- 059

delity when reconstructing tokens from one-step 060

estimates. We show that a single Euler-step sam- 061

pler on the learned spherical flow achieves near 062

autoregressive BLEU and ROUGE scores, with 063

much faster decoding compared to existing non- 064

autoregressive flows and diffusion models. 065

2 Related Work 066

Diffusion Models and Flow Matching. Diffusion 067

approaches have recently gained traction in NLP 068

by eschewing autoregressive generation (Zou et al., 069

2023). Broadly, they fall into two streams: discrete 070

diffusion, which perturbs tokens directly (Hooge- 071

boom et al., 2022; Chen et al., 2023), and embed- 072

ding diffusion, which diffuses continuous token or 073

sentence embeddings (Li et al., 2022; Dieleman 074

et al., 2022; Gao et al., 2022). Embedding-level 075

methods often outperform token-level ones owing 076

to faster parallel sampling, smoother latent interpo- 077

lation, and improved robustness (Zou et al., 2023). 078

A key challenge is preventing embeddings from 079

collapsing; for instance, Difformer introduces a 080
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)
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Kelly is 10 years old.

How old is Kelly?

w⋆ = argmax
w

p(w | z̃1;φ)

Figure 1: GeoFM framework. Embeddings are projected onto the Fisher–Rao sphere, uniformly corrupted
(forward process) and then recovered (backward process) by a learned velocity field. A single Euler step yields z̃1,
which is decoded to a sequence via argmax over the softmax output.

trajectory loss to mitigate this issue (Gao et al.,081

2022).082

Although diffusion models achieve strong qual-083

ity, they typically need hundreds of sampling084

steps. Techniques such as DDIM (Song and Sohl-085

Dickstein, 2021), FastDPM (Kong and Ping, 2021),086

and several knowledge-distillation variants (Luh-087

man and Luhman, 2021; Salimans and Ho, 2022;088

Gu et al., 2023; Song et al., 2023; Tong et al.,089

2023) reduce inference cost but still require mul-090

tiple evaluations. In contrast, we build on recent091

flow-matching ODE formulations (Lipman et al.,092

2023; Liu et al., 2023; Neklyudov et al., 2022; Hu093

et al., 2024), learning a velocity field that transports094

a spherical Gaussian to data in a single Euler step.095

3 Method096

Problem Statement097

Let the source sequence be wx = (wx
1 , . . . , w

x
M )098

and the target sequence wy = (wy
1 , . . . , w

y
N ). We099

concatenate them to obtain w = wx ⊕ wy of100

length L = M +N . A learnable embedding map101

EMB(·;φ) : V → RD then produces102

z1 = EMB(w;φ) ∈ RL×D.103

Fisher–Rao Manifold Embedding104

Applying the square-root transform places ev-105

ery embedding on the D-dimensional Fisher–Rao106

sphere SD−1(R) = {x ∈ RD : ∥x∥2 = R}. Any107

off-manifold vector x is projected via108

projS(x) = R
x

∥x∥2
.109

Riemannian Flow Matching110

Our goal is to learn a time-dependent velocity field111

vθ : SD−1(R) × [0, 1]−→ TSD−1(R) that trans-112

ports an isotropic Gaussian z0 ∼ N (0, I)—after113

spherical projection—to the data point z1 along a114

single geodesic.115

Exp/Log maps. For a base point x ∈ SD−1(R) 116

and tangent vector u∈Tx, 117

expx(u) = x cos
(
∥u∥
R

)
+R

u

∥u∥
sin

(
∥u∥
R

)
, (1) 118

logx(y) =
θ

sin θ

(
y − cos θ x

)
, θ = arccos

(
⟨x,y⟩
R2

)
(2)

119

Geodesic and target velocity. The unique short- 120

est path from z0 to z1 is 121

zt = expz0
(
t logz0(z1)

)
, v = logz0(z1). 122

Flow-matching loss. We align the learned field 123

with v through 124

LFM(θ) = Et∼U [0,1]

∥∥vθ(zt, t)− v
∥∥2. (3) 125

Trajectory Loss on the Sphere. To further regu- 126

larise the path, we decode a one-step reconstruction 127

z̃1 = expzt
(
(1− t) vθ(zt, t)

)
and compute a cross- 128

entropy term 129

Ltrajectory(θ, φ) = − log pφ
(
w | z̃1

)
. (4) 130

Full objective. The combined training loss is 131

therefore 132

min
θ,φ
LFM(θ) + λLtrajectory(θ, φ). (5) 133

Single-Step Sampling 134

At inference time, we sample z0∼N (0, I), project 135

it onto the sphere, and then update once: 136

z
sample
1 = expz0

(
vθ(z0, 0)

)
. 137

Greedy decoding of zsample
1 via argmax produces 138

the final output sequence in a single network evalu- 139

ation. 140
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Tasks Methods NFE↓ BLEU↑ R-L↑ Score↑ dist-1↑ selfBL↓ div-4↑ Len

Open
Domain
Dialogue

Transformer-base – 0.018 0.104 0.478 0.750 0.370 0.647 19.50
GPT2-large FT – 0.013 0.100 0.529 0.924 0.021 0.994 16.80
GPVAE-T5 – 0.011 0.101 0.432 0.563 0.356 0.555 20.10
NAR-LevT – 0.016 0.055 0.476 0.973 0.710 0.142 4.11
DiffuSeq 2 000 0.014 0.106 0.513 0.947 0.014 0.997 13.60
FlowSeq 1 0.011 0.119 0.345 0.709 0.027 0.999 30.70
GeoFM (Ours) 1 0.009 0.088 0.386 0.957 0.078 0.998 6.78

Question
Generation

Transformer-base – 0.166 0.344 0.631 0.931 0.327 0.772 10.30
GPT2-large FT – 0.111 0.322 0.635 0.967 0.291 0.806 9.96
GPVAE-T5 – 0.125 0.339 0.631 0.938 0.357 0.728 11.40
NAR-LevT – 0.093 0.289 0.549 0.891 0.983 0.478 6.93
DiffuSeq 2 000 0.173 0.366 0.612 0.905 0.279 0.810 11.50
DiffuSeq 500 0.016 0.120 0.334 0.543 0.321 0.435 11.50
FlowSeq 1 0.162 0.370 0.573 0.833 0.460 0.497 11.80
GeoFM (Ours) 1 0.181 0.388 0.556 0.862 0.511 0.834 9.48

Paraphrase

Transformer-base – 0.272 0.575 0.838 0.975 0.448 0.734 11.20
GPT2-large FT – 0.206 0.542 0.836 0.982 0.733 0.502 9.53
GPVAE-T5 – 0.241 0.589 0.847 0.969 0.561 0.617 9.60
NAR-LevT – 0.227 0.580 0.834 0.979 0.999 0.333 8.85
DiffuSeq 2 000 0.241 0.588 0.837 0.981 0.273 0.864 11.20
FlowSeq 1 0.143 0.461 0.669 0.862 0.191 0.781 11.90
GeoFM (Ours) 1 0.170 0.501 0.733 0.964 0.413 0.706 9.87

Table 1: Sequence-to-sequence GeoFM performance on three tasks. Benchmarking autoregressive transformers,
finetuned large pre-trained language models, and non-autoregressive methods with NFE(neural forward evaluations).

Algorithm 1 Single-Step GeoFM on SD−1(R)

Require: Dataset D, embeddings φ, vector field
vθ, radius R, weight λ

1: for batch (wx, wy) ∼ D do
2: z1 ← EMB(wx ⊕ wy), z1 ← projS(z1)
3: z0 ∼ N(0, I), z0 ← projS(z0)
4: t ∼ U [0, 1]
5: v ← logz0(z1), zt ← expz0(t v)
6: LFM ← ∥vθ(zt, t)− v∥2
7: z̃1 ← expzt((1− t)vθ(zt, t))
8: Ltrajectory ← − log pφ(wx ⊕ wy | z̃1)
9: L ← LFM + λLtrajectory

10: Update θ, φ on L
11: end for

12: procedure SAMPLE

13: z0 ∼ N(0, I), z0 ← projS(z0)
14: z1 ← expz0(vθ(z0, 0))
15: return argmaxv⟨z1, φv⟩
16: end procedure

4 Experiments141

Experimental Set-up. We benchmark GeoFM142

on three conditional generation tasks—question143

generation, paraphrasing, and open-domain di-144

alogue. The corresponding datasets are Quasar-145

T (Dhingra et al., 2017), QQP (Hu et al., 2024), 146

and the Commonsense Conversation dataset (Zhou 147

et al., 2018). For lexical fidelity, we report BLEU 148

(Papineni, 2002) and ROUGE (Lin, 2004), for 149

representation-level semantic similarity, we use 150

BERTScore (Zhang et al., 2019). Diversity is quan- 151

tified by the proportion of novel unigrams (dist-1), 152

sentence-level self-BLEU (Zhu et al., 2018), and 153

div-4 — the ratio of distinct 4-grams (Deshpande 154

et al., 2019). The velocity field vθ is parameter- 155

ized by a Transformer encoder–decoder. Further 156

architectural and training details can be found in 157

Appendix B. 158

Baselines. We contrast GeoFM with three cat- 159

egories of models. (i) Autoregressive: a stan- 160

dard Transformer (Vaswani et al., 2017). (ii) 161

Large finetuned LM: GPT-2 large (Radford et al., 162

2019). (iii) Iterative NAR models: GPVAE-T5 163

(Du et al., 2022), LevT (Gu et al., 2019), DiffuSeq 164

and FlowSeq (Hu et al., 2024). Baseline numbers 165

are taken directly from (Hu et al., 2024). 166

Main Results. Table 1 shows that GeoFM is com- 167

petitive with strong AR and NAR systems while 168

requiring only one neural forward evaluation (NFE) 169

like the FlowSeq (Hu et al., 2024). 170

Practically, DiffuSeq takes 520 s per sentence, 171

whereas GeoFM finishes in just under 30 s—over 172
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a×2 000 speed-up—yet still attains comparable173

BLEU and BERTScore.Similar results were also174

obtained in FlowSeq, but our method achieves su-175

periority in terms of BLEU and BERTScore and176

other metrics.177

Although GeoFM does not always surpass every178

baseline, it delivers a markedly improved trade-off179

between generation quality and runtime compared180

to other Auto-regressive and non-autoregressive181

models of its class. However, the occasional182

disagreement between BLEU and BERTScore183

echoes the known tension between surface-form184

and embedding-level metrics (Freitag et al., 2022).185

Comparison with FlowSeq. GeoFM raises186

BLEU by 11.7% on Question Generation and187

18.9% on Paraphrase, and improves the diversity188

index on all datasets. On Open-Domain Dia-189

logue FlowSeq attains slightly higher R–L, yet Ge-190

oFM delivers a markedly larger semantic SCORE.191

Fig 2–4 visualise these gaps.192
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Figure 2: FlowSeq vs. GeoFM on Open-Domain Dia-
logue.
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Figure 3: FlowSeq vs. GeoFM on Question Genera-
tion.

5 Conclusion193

In this paper, we have presented GeoFM, a novel194

Riemannian flow-matching framework that natively195

BLEU ROUGE-L Score
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sc
or

e

Paraphrase

FlowSeq
GeoFM

Figure 4: FlowSeq vs. GeoFM on Paraphrase.

respects the Fisher–Rao geometry of token embed- 196

dings. By projecting both Gaussian noise sam- 197

ples and data embeddings onto the Fisher–Rao 198

sphere and training a velocity field to align exactly 199

with spherical geodesics, GeoFM achieves near- 200

autoregressive BLEU and ROUGE performance in 201

a single sampling step. Crucially, our spherical tra- 202

jectory loss preserves lexical fidelity and prevents 203

embedding collapse, yielding stable, high-quality 204

generations. 205

6 Limitations 206

Our work focuses on the spherical Fisher–Rao 207

manifold; extending to other Riemannian geome- 208

tries (e.g., hyperbolic embeddings) requires care- 209

ful redesign of projection and map operations. 210

Single-step sampling may degrade for tasks with a 211

highly complex structure or long-range dependen- 212

cies. Due to limited computational resources, we 213

could not validate the performance on large-scale 214

datasets. 215

We are also concerned, from an ethical stand- 216

point, that the generated sentences have the proba- 217

bility of containing inappropriate content that may 218

require further review by a human observation. 219
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A Theoretical Analysis363

This appendix gives formal guarantees that GeoFM364

objective admits a unique Riemannian flow and that365

the single–step Euler sampler used is a controlled366

approximation of that flow.367

Throughout we write S = SD−1(R) for the368

Fisher–Rao sphere of radius R, ⟨·, ·⟩ for the Eu-369

clidean inner product in RD, and ∥·∥ for the induced370

norm. The geodesic distance on S is371

dS(x, y) = R arccos ⟨x,y⟩
R2 , (6)372

so the sectional curvature is constant and positive,373

K ≡ 1/R2.374

A.1 Existence and Uniqueness of the375

Ground-Truth Flow376

Lemma 1 (Geodesic completeness). For every377

z0, z1 ∈ S there exists a unique minimising378

geodesic
{
zt = expz0(t logz0(z1)) : t ∈ [0, 1]

}
.379

Proof. S is compact, hence geodesically complete;380

Hopf–Rinow therefore guarantees at least one min-381

imiser between any two points. Positive curva-382

ture rules out conjugate points before πR, and383

dS(z0, z1) < πR for any two distinct points, so384

the minimiser is unique.385

Let v(z0, z1) = logz0(z1) ∈ Tz0S denote the 386

ground-truth transport vector. Sampling t ∼ 387

U[0, 1] and defining zt = expz0
(
t v

)
gives the pair- 388

wise target described in §3. 389

390

Lemma 2 (Consistency of flow matching). If 391

a vector field vθ satisfies LFM(θ) = 0 392

then, for P-a.e. pair (z0, z1), the ODE ϕ̇t = 393

vθ(ϕt, t), ϕ0 = z0 has the closed-form solution 394

ϕt = expz0
(
t logz0(z1)

)
, and ϕ1 is distributed ex- 395

actly as the data embedding z1. 396

Proof. Zero loss implies vθ(zt, t) = v for every 397

t ∈ [0, 1] on the support of (z0, z1, t). Hence 398

ϕ̇t = v is a constant-velocity linear ODE in the tan- 399

gent space, whose unique solution is ϕt = z0 + t v. 400

Exponential re-embedding of this straight line on 401

Tz0S recovers the geodesic in Proposition 1. Fi- 402

nally, the mapping Φ : (z0, z1) 7→ ϕ1 is the iden- 403

tity, so the push-forward of the joint distribution 404

equals that of (z0, z1) itself. 405

A.2 One-Step Euler Error Bound 406

GeoFM uses a single explicit Euler update in (5). 407

To justify this empirically successful simplifica- 408

tion, we bound the geometric deviation from the 409

geodesic. 410

Lemma 3 (Local Lipschitz bound for exp). 411

For any x ∈ S the exponential map expx : 412

TxS → S is 1-Lipschitz in a ball of radius πR/2: 413∥∥expx(u) − expx(v)
∥∥ ≤ ∥u − v∥ ∀u, v ∈ 414

TxS, max{∥u∥, ∥v∥} ≤ πR
2 . 415

Proof. Follows from the positive curvature compar- 416

ison theorem (Cartan–Hadamard) which bounds 417

geodesic divergence by the Euclidean case on a 418

sphere of radius R. 419

Lemma 4 (Geodesic vs. one-step Euler). Let h ∈ 420

(0, 1] be the fictitious step size used to integrate 421

żt = vθ(zt, t). Assume vθ is L-Lipschitz in its first 422

argument and bounded as ∥vθ(z, t)∥ ≤ Vmax for 423

all (z, t). Then for every pair (z0, z1): 424

dS
(
z1, ẑ1

)
≤ hRL

2
+ O(h2), (7) 425

where ẑ1 = expz0
(
h vθ(z0, 0)

)
is the single–step 426

update. 427

Proof. We write the Taylor expansion of the ex- 428

act geodesic endpoint: z1 = z0 + h vθ(z0, 0) + 429
h2

2 ∂zvθ(z0, 0)+O(h3). Applying Lemma 3 to com- 430

pare z1 with ẑ1 yields (7). It follows the standard 431
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argument for explicit Euler on manifolds (Hsieh432

et al., 2022).433

Interpretation. Because h = 1 in GeoFM, the434

leading term of (7) is controlled by L—in practice435

we enforce a small L by weight-decay and spec-436

tral normalisation, which explains why one step is437

sufficient to reach high lexical fidelity.438

A.3 Role of the Trajectory Loss439

Finally, we show that the cross-entropy trajectory440

loss Ltrajectory prevents the collapse of decoder441

embeddings.442

Lemma 5 (trajectory loss lower bound). Let443

pφ(w | z) denote the softmax decoder and τ > 0444

its temperature. Assume the ground-truth token445

embedding φw satisfies ∥φw∥ = R. Then446

Ltrajectory ≥ τ−1
(
dS(z̃1, φw)− πR

)
. (8)447

Consequently Ltrajectory → 0 implies448

dS(z̃1, φw) → 0 and forbids embedding col-449

lapse.450

Proof. The softmax probability satisfies451

− log pφ(w | z) = τ−1⟨z, φw⟩ + cst. Jensen’s452

inequality and the cosine form of dS yield the453

stated bound.454

Combining Theorems 2 and 4 with Proposi-455

tion 5 establishes that minimising GeoFM’s ob-456

jective leads to (i) a unique geodesic flow, (ii) a457

bounded-error single-step sampler, and (iii) stable,458

non-degenerate token reconstructions.459

B Experimental Details460

We did our experiment following the study of461

FlowSeq (Hu et al., 2024) for our experimental462

configuration, since our initial goal was to enhance463

the existing flow-matching and diffusion model464

frameworks for text embeddings.465

Quality metrics. We report BLEU (Papineni,466

2002) and ROUGE (Lin, 2004) for surface-form467

accuracy. Because word-overlap scores can mis-468

judge open-ended outputs, we additionally include469

BERTScore, which matches hypotheses and refer-470

ences in contextual-embedding space (Zhang et al.,471

2019). Larger values on all three metrics indicate472

better quality.473

Diversity metrics. Token-level variety is as- 474

sessed with the proportion of distinct unigrams 475

(dist-1), lower values correspond to more repeti- 476

tion. Sentence-level diversity is measured by self- 477

BLEU (Zhu et al., 2018), and corpus-level diversity 478

by the ratio of unique 4-grams (div-4) (Deshpande 479

et al., 2019). Hence, smaller self-BLEU and larger 480

div-4 signify richer variation. 481

MBR decoding. Following (Koehn, 2004), we 482

apply the Minimum-Bayes-Risk decoding. For 483

each source, we sample |S| = 10 candidates with 484

different random seeds (Hu et al., 2024) and return 485

the one that minimizes expected BLEU risk - em- 486

pirically found to improve all downstream metrics. 487

Model and optimization. The velocity field vθ is 488

instantiated as a 12-layer 12-head Transformer; the 489

time index is embedded in similar fashion to posi- 490

tional embeddings. Sequences are truncated to 128 491

tokens; embeddings have dimension 128. Byte-pair 492

encoding is used to build the vocabulary, mitigat- 493

ing out-of-vocabulary problems (Sennrich et al., 494

2016). Training employs AdamW (Loshchilov and 495

Hutter, 2019) with an initial learning-rate of 10−4 496

that is linearly annealed. All experiments run on 497

two NVIDIA A40 GPUs; inference uses a single 498

GPU. The total parameter count is matched to the 499

FlowSeq baseline for a fair comparison. 500

In terms of sampling stepsize, we also adopt the 501

same sampling stepsize policy as in FlowSeq (Hu 502

et al., 2024) (Gao et al., 2022). We also drop the 503

Gaussian Noise Corruption for avoiding complex- 504

ity in evaluation as performed in (Hu et al., 2024; 505

Li et al., 2022). 506

Padding Tokens. We pad the sequence to a fixed 507

length. Our model will learn when to generate 508

PADDING tokens based on the distribution learn- 509

ing process. This way, our method can generate 510

sentences of diverse lengths as it was done in (Hu 511

et al., 2024). 512

Ablation Results 513

Effect of sphere radius. We varied the 514

Fisher–Rao radius R ∈ {2, 20, 100, 500} and 515

measured BLEU and BERTScore on the Question 516

Generation Task (Fig. 5–6). We find that smaller 517

radii tend to richer expressiveness of the model, 518

improving BERTscore, but less BLEU capability, 519

whereas larger radii make the geodesic update 520

too small, degrading BERTScore but improving 521
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BLEU. Hence, for balanced output quality, we522

should stick to the middle of the radii values.523
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Figure 5: Impact of sphere radius R on BLEU on the
Question Generation Task.
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Figure 6: Impact of sphere radius R on BERTScore on
the Question Generation Task.

Contribution of the trajectory loss. To quantify524

the impact of regularizer, we conducted an ablation525

in which GeoFM was trained both with and without526

the spherical trajectory loss, holding all other hyper-527

parameters and architectural choices constant. This528

loss term encourages the one-step reconstruction to529

remain close to the ground-truth data embedding530

on the Fisher–Rao sphere, thereby preventing em-531

bedding collapse and promoting straight, faithful532

transport paths. Empirically, we observed that omit-533

ting the trajectory loss leads to a notable drop in534

sequence quality: average BLEU decreases by ap-535

proximately 0.1, BERTScore falls by around 0.65,536

accompanied by increasing variance across random537

seeds. These results confirm that the trajectory loss538

is essential for stabilizing training, maintaining lex-539

ical fidelity, and ensuring that the velocity field540

learns geometrically meaningful flows.541

Traj loss w/o Traj loss
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Figure 7: Effect of removing the trajectory loss from
the evaluation process.
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Figure 8: MBR ablation: BLEU and ROUGE-L vs.
number of candidates |S|.

Contribution of Minimum Bayes Risk (MBR). 542

Beyond the core GeoFM objective, we explore the 543

impact of Minimum Bayes Risk decoding on fi- 544

nal generation quality. In this setup, we generate 545

a pool of |S| candidate sequences under different 546

random seeds and select the one minimizing ex- 547

pected BLEU risk. As we increase |S| from 1 up 548

to 15, BLEU and ROUGE-L improve steadily. It 549

is closely related to FlowSeq as it was shown by 550

(Hu et al., 2024). Crucially, GeoFM remains robust 551

even for small |S|, suggesting that it is less sensitive 552

to this MBR hyperparameter than diffusion-based 553

baselines. 554
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Question Gen. Paraphrasing Open-Domain Dialogue

Dataset Quasar-T (Dhingra et al., 2017) QQP1 Commonsense Conversation (Zhou et al., 2018)
Dataset size 117k 144k 3.38M

Input shape 128× 128 128× 128 128× 128
Transformer bert-base-uncased bert-base-uncased bert-base-uncased
Vocab size 30,522 30,522 30,522
Depth 12 12 12
Embed. dim. 768 768 768
# Heads 12 12 12

Batch size 1,024 1,024 1,024
Micro-batch 64 64 64
Iterations 40,000 50,000 50,000
GPU 2×A100 2×A100 2×A100

GPU Hours 5 days 8 days 7 days
Optimizer AdamW AdamW AdamW
LR 1×10−4 1×10−4 1×10−4

Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Table 2: Training configurations for the three target tasks. “bert-base-uncased” refers to a vanilla Transformer with
the same architecture as BERT-base.
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