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Abstract

Diffusion models and Linear Flow matching
have emerged as a promising framework for
fast and high-quality conditional text genera-
tion, yet, current approaches often overlook
the inherent geometric structure of text embed-
dings. In this work, we introduce GeoFM, a
novel flow matching model that directly lever-
ages the Riemannian geometry induced by
the Fisher—Rao metric. Specifically, GeoFM
projects token embeddings onto a Fisher—Rao
sphere via the square-root transform, and learns
a neural velocity field that precisely aligns with
spherical geodesics connecting noisy priors and
target embeddings. Additionally, we propose
a spherical trajectory loss that maintains lexi-
cal fidelity and encourages direct, minimally-
distorted trajectories on the manifold. Our em-
pirical evaluation demonstrates GeoFM’s effec-
tiveness and significant speedups over state-of-
the-art non-autoregressive baselines.

1 Introduction

Neural sequence-to-sequence learning has achieved
remarkable success in text generation tasks such
as machine translation and summarization, typi-
cally relying on autoregressive (AR) decoders to
maintain high fidelity at the cost of slow, step-
by-step sampling (Vaswani et al., 2017). Non-
autoregressive and diffusion-based approaches aim
to parallelize generation, but they either sacrifice
quality or require hundreds of model evaluations
(Song et al., 2021; Li et al., 2022). Recent progress
in flow matching and continuous-time normalizing
flows suggests that one can directly learn vector
fields whose integral curves transport simple pri-
ors to complex data distributions in very few steps
(Lipman et al., 2023; Neklyudov et al., 2022; Hu
etal., 2024).

However, text embeddings naturally live on a
probability simplex, for which the Fisher—Rao met-
ric induces a spherical geometry. Ignoring this

manifold structure can lead to suboptimal trajecto-
ries and embedding collapse. To address this, we
propose GeoFM on the Fisher—Rao sphere. We
map both noisy Gaussian samples and data embed-
dings to the sphere via the square-root transform,
learn a neural velocity field vy that matches the
exact spherical geodesic in tangent space (Eq. 3),
and add a spherical trajectory loss to preserve token
identity. We acknowledge that text is inherently dis-
crete, hence modeling discrete distributions with
our flow-based GeoFM models can be challenging
and may require compromises that lose some of the
benefits, like fast sampling. Inspired by prior stud-
ies (Li et al., 2022; Gao et al., 2022), we choose to
model the problem in continuous text embedding
space.

We also introduce a spherical trajectory loss to
prevent embedding collapse and ensure lexical fi-
delity when reconstructing tokens from one-step
estimates. We show that a single Euler-step sam-
pler on the learned spherical flow achieves near
autoregressive BLEU and ROUGE scores, with
much faster decoding compared to existing non-
autoregressive flows and diffusion models.

2 Related Work

Diffusion Models and Flow Matching. Diffusion
approaches have recently gained traction in NLP
by eschewing autoregressive generation (Zou et al.,
2023). Broadly, they fall into two streams: discrete
diffusion, which perturbs tokens directly (Hooge-
boom et al., 2022; Chen et al., 2023), and embed-
ding diffusion, which diffuses continuous token or
sentence embeddings (Li et al., 2022; Dieleman
et al., 2022; Gao et al., 2022). Embedding-level
methods often outperform token-level ones owing
to faster parallel sampling, smoother latent interpo-
lation, and improved robustness (Zou et al., 2023).
A key challenge is preventing embeddings from
collapsing; for instance, Difformer introduces a
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Figure 1: GeoFM framework. Embeddings are projected onto the Fisher—Rao sphere, uniformly corrupted
(forward process) and then recovered (backward process) by a learned velocity field. A single Euler step yields z;,
which is decoded to a sequence via arg max over the softmax output.

trajectory loss to mitigate this issue (Gao et al.,
2022).

Although diffusion models achieve strong qual-
ity, they typically need hundreds of sampling
steps. Techniques such as DDIM (Song and Sohl-
Dickstein, 2021), FastDPM (Kong and Ping, 2021),
and several knowledge-distillation variants (Luh-
man and Luhman, 2021; Salimans and Ho, 2022;
Gu et al., 2023; Song et al., 2023; Tong et al.,
2023) reduce inference cost but still require mul-
tiple evaluations. In contrast, we build on recent
Sflow-matching ODE formulations (Lipman et al.,
2023; Liu et al., 2023; Neklyudov et al., 2022; Hu
et al., 2024), learning a velocity field that transports
a spherical Gaussian to data in a single Euler step.

3 Method

Problem Statement

Let the source sequence be w, = (w{,...,w},)
and the target sequence w,, = (wy,...,wY;). We

concatenate them to obtain w = w, © w, of
length L = M + N. A learnable embedding map
EMB(+;¢) : V — RP then produces

= EMB(w; @) € REXP,
Fisher-Rao Manifold Embedding

Applying the square-root transform places ev-
ery embedding on the D-dimensional Fisher—Rao
sphere SP~Y(R) = {z € R” : ||z|2 = R}. Any
off-manifold vector z is projected via
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Riemannian Flow Matching

Our goal is to learn a time-dependent velocity field

o : SP7YR) x [0,1] — TSP~L(R) that trans-
ports an isotropic Gaussian zy ~ N (0, I)—after
spherical projection—to the data point z; along a
single geodesic.

Exp/Log maps. For a base point z € SP~(R)
and tangent vector u €1,

exp,(u) = a:cos(llu”) +R—: Tl sm(HuH> (1)
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Geodesic and target velocity. The unique short-
est path from zg to 27 is

z = exp,, (tlog, (21)), v=log, (1)

Flow-matching loss.
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We align the learned field
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Trajectory Loss on the Sphere. To further regu-
larise the path, we decode a one-step reconstruction
z1 = exp,, ((1 —t) vg(z,t)) and compute a cross-
entropy term

£traject0ry(07 @) = - logpgo(w | 21) 4

Full objective.
therefore

The combined training loss is
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Single-Step Sampling

At inference time, we sample zo ~ A (0, I), project
it onto the sphere, and then update once:

sample

21 = eszo(UG(ZO> O)) :

Greedy decoding of 2™ via argmaz produces
the final output sequence in a single network evalu-
ation.



Tasks Methods NFE| BLEUT R-L1 Scoref dist-1T selfBL| div-47 Len
Transformer-base - 0.018 0.104 0478 0.750 0.370 0.647 19.50
GPT2-large FT - 0.013 0.100 0.529 0.924 0.021 0.994 16.80
Open GPVAE-T5 - 0.011  0.101 0432  0.563 0.356 0.555 20.10
Domain NAR-LevT - 0.016 0.055 0.476 0.973 0.710 0.142 4.11
Dialogue DiffuSeq 2000 0.014 0.106 0.513 0.947 0.014 0.997 13.60
FlowSeq 1 0.011  0.119 0.345 0.709 0.027 0.999 30.70

GeoFM (Ours) 1 0.009 0.088 0.386 0.957 0.078 0.998 6.78
Transformer-base - 0.166 0.344 0.631 0.931 0.327 0.772  10.30

GPT2-large FT - 0.111  0.322  0.635 0.967 0.291 0.806 9.96
GPVAE-T5 - 0.125 0.339 0.631 0.938 0.357 0.728 11.40

Question NAR—LevT - 0.093  0.289 0.549 0.891 0.983 0.478 6.93
Generation DiffuSeq 2000 0.173 0366 0.612  0.905 0.279 0.810 11.50
DiffuSeq 500 0.016 0.120 0.334  0.543 0.321 0.435 11.50
FlowSeq 1 0.162 0.370 0.573 0.833 0.460 0.497 11.80

GeoFM (Ours) 1 0.181 0.388 0.556 0.862 0.511 0.834 9.48
Transformer-base - 0.272 0.575 0.838 0.975 0.448 0.734 11.20

GPT2-large FT - 0.206 0.542 0.836 0.982 0.733 0.502 9.53

GPVAE-T5 - 0.241  0.589 0.847 0.969 0.561 0.617  9.60

Paraphrase NAR-LevT - 0.227 0.580 0.834  0.979 0.999 0.333 8.85
DiffuSeq 2000 0241 0.588 0.837 0.981 0.273 0.864 11.20
FlowSeq 1 0.143 0461 0.669 0.862 0.191 0.781 11.90

GeoFM (Ours) 1 0.170  0.501 0.733 0.964 0.413 0.706  9.87

Table 1: Sequence-to-sequence GeoFM performance on three tasks. Benchmarking autoregressive transformers,
finetuned large pre-trained language models, and non-autoregressive methods with NFE(neural forward evaluations).

Algorithm 1 Single-Step GeoFM on SP~1(R)

Require: Dataset D, embeddings ¢, vector field
vy, radius R, weight \
1: for batch (w,, wy) ~ D do
21 < EMB(w, ® wy), 21 < projg(z1)
20 ~ N(0,1), zg < projs(zo)
t ~U[0,1]
v < log, (21), 2t < exp,, (tv)
Lrn + [lvg(ze,t) — of?
Z1 < exp,, (1 — t)vg(2, 1))
»Ctrajectory - logptp (wx S3] Wy | 21)
L+ EFM + /\['trajectory
Update 6, ¢ on £
: end for

WX R R

—_
—_ o

12: procedure SAMPLE

13: 2o ~ N(0,1), 2z < projs(zo)
14: Z1 < €XPy, (09(207 0))

15: return arg max, (21, ©y)

16: end procedure

4 Experiments

Experimental Set-up. We benchmark GeoFM
on three conditional generation tasks—question
generation, paraphrasing, and open-domain di-
alogue. The corresponding datasets are Quasar-

T (Dhingra et al., 2017), QQP (Hu et al., 2024),
and the Commonsense Conversation dataset (Zhou
et al., 2018). For lexical fidelity, we report BLEU
(Papineni, 2002) and ROUGE (Lin, 2004), for
representation-level semantic similarity, we use
BERTScore (Zhang et al., 2019). Diversity is quan-
tified by the proportion of novel unigrams (dist-1),
sentence-level self-BLEU (Zhu et al., 2018), and
div-4 — the ratio of distinct 4-grams (Deshpande
et al., 2019). The velocity field vy is parameter-
ized by a Transformer encoder—decoder. Further
architectural and training details can be found in
Appendix B.

Baselines. We contrast GeoFM with three cat-
egories of models. (i) Autoregressive: a stan-
dard Transformer (Vaswani et al., 2017). (ii)
Large finetuned LM: GPT-2 large (Radford et al.,
2019). (iii) Iterative NAR models: GPVAE-T5
(Du et al., 2022), LevT (Gu et al., 2019), DiffuSeq
and FlowSeq (Hu et al., 2024). Baseline numbers
are taken directly from (Hu et al., 2024).

Main Results. Table 1 shows that GeoFM is com-
petitive with strong AR and NAR systems while
requiring only one neural forward evaluation (NFE)
like the FlowSeq (Hu et al., 2024).

Practically, DiffuSeq takes 520 s per sentence,
whereas GeoFM finishes in just under 30 s—over



a x2 000 speed-up—yet still attains comparable
BLEU and BERTScore.Similar results were also
obtained in FlowSeq, but our method achieves su-
periority in terms of BLEU and BERTScore and
other metrics.

Although GeoFM does not always surpass every
baseline, it delivers a markedly improved trade-off
between generation quality and runtime compared
to other Auto-regressive and non-autoregressive
models of its class. However, the occasional
disagreement between BLEU and BERTScore
echoes the known tension between surface-form
and embedding-level metrics (Freitag et al., 2022).

Comparison with FlowSeq. GeoFM raises
BLEU by 11.7% on Question Generation and
18.9% on Paraphrase, and improves the diversity
index on all datasets. On Open-Domain Dia-
logue FlowSeq attains slightly higher R-L, yet Ge-
oFM delivers a markedly larger semantic SCORE.
Fig 24 visualise these gaps.
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Figure 2: FlowSeq vs. GeoFM on Open-Domain Dia-
logue.
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Figure 3: FlowSeq vs. GeoFM on Question Genera-
tion.

5 Conclusion

In this paper, we have presented GeoFM, a novel
Riemannian flow-matching framework that natively
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Figure 4: FlowSeq vs. GeoFM on Paraphrase.

respects the Fisher—Rao geometry of token embed-
dings. By projecting both Gaussian noise sam-
ples and data embeddings onto the Fisher—Rao
sphere and training a velocity field to align exactly
with spherical geodesics, GeoFM achieves near-
autoregressive BLEU and ROUGE performance in
a single sampling step. Crucially, our spherical tra-
jectory loss preserves lexical fidelity and prevents
embedding collapse, yielding stable, high-quality
generations.

6 Limitations

Our work focuses on the spherical Fisher—Rao
manifold; extending to other Riemannian geome-
tries (e.g., hyperbolic embeddings) requires care-
ful redesign of projection and map operations.
Single-step sampling may degrade for tasks with a
highly complex structure or long-range dependen-
cies. Due to limited computational resources, we
could not validate the performance on large-scale
datasets.

We are also concerned, from an ethical stand-
point, that the generated sentences have the proba-
bility of containing inappropriate content that may
require further review by a human observation.
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A Theoretical Analysis

This appendix gives formal guarantees that GeoFM
objective admits a unique Riemannian flow and that
the single—step Euler sampler used is a controlled
approximation of that flow.

Throughout we write S = SP~1(R) for the
Fisher—Rao sphere of radius R, (, ) for the Eu-
clidean inner product in R”, and ||| for the induced
norm. The geodesic distance on S is

ds(z,y) = R arccos <J}’;‘Z§>, (6)

so the sectional curvature is constant and positive,
K =1/R%

A.1 Existence and Uniqueness of the
Ground-Truth Flow

Lemma 1 (Geodesic completeness). For every
20,21 € S there exists a unique minimising
geodesic { z; = exp, (t log, (z1)) : t € [0,1]}.

Proof. S is compact, hence geodesically complete;
Hopf-Rinow therefore guarantees at least one min-
imiser between any two points. Positive curva-
ture rules out conjugate points before mR, and
ds(z0,21) < mR for any two distinct points, so
the minimiser is unique. O

Let v(20,21) = log, (21) € T%,S denote the
ground-truth transport vector. Sampling ¢ ~
U[0, 1] and defining z; = exp, (t v) gives the pair-
wise target described in §3.

Lemma 2 (Consistency of flow matching). If
a vector field vg satisfies Lrv(6) = 0
then, for P-a.e. pair (zy,z), the ODE ¢; =
vg(br,t), Po = 2o has the closed-form solution
Pt = expzo(t logzo(zl)), and ¢ is distributed ex-
actly as the data embedding z;.

Proof. Zero loss implies vg(z,t) = v for every
t € [0,1] on the support of (zp,z21,t). Hence
b =visa constant-velocity linear ODE in the tan-
gent space, whose unique solution is ¢y = 2o + tv.
Exponential re-embedding of this straight line on
T.,S recovers the geodesic in Proposition 1. Fi-
nally, the mapping ® : (29, z1) — ¢; is the iden-
tity, so the push-forward of the joint distribution
equals that of (2o, 1) itself. O

A.2  One-Step Euler Error Bound

GeoFM uses a single explicit Euler update in (5).
To justify this empirically successful simplifica-
tion, we bound the geometric deviation from the
geodesic.

Lemma 3 (Local Lipschitz bound for exp).
For any x € S the exponential map exp,
T.S — S is 1-Lipschitz in a ball of radius TR/2:
|exp,(u) — exp,(v)|| < [lu —v|| Vuv €
7,8, max{|lull o]} < ZE.

Proof. Follows from the positive curvature compar-
ison theorem (Cartan—Hadamard) which bounds
geodesic divergence by the Euclidean case on a
sphere of radius R. U

Lemma 4 (Geodesic vs. one-step Euler). Let h €
(0, 1] be the fictitious step size used to integrate
Z = vg (24, t). Assume vy is L-Lipschitz in its first
argument and bounded as ||vg(z,t)|| < Viax for
all (z,t). Then for every pair (29, z1):

hRL

< =+ 0, O

ds(z1, 21) 5

where 21 = exp, (hvg(20,0)) is the single-step
update.

Proof. We write the Taylor expansion of the ex-
act geodesic endpoint: z; = zp + hvg(20,0) +
%2821)9 (20,0)+O(h3). Applying Lemma 3 to com-
pare z; with 2Z; yields (7). It follows the standard


https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://www.ijcai.org/proceedings/2018/643
https://www.ijcai.org/proceedings/2018/643
https://www.ijcai.org/proceedings/2018/643
https://dl.acm.org/doi/10.1145/3209978.3210083
https://dl.acm.org/doi/10.1145/3209978.3210083
https://dl.acm.org/doi/10.1145/3209978.3210083
https://dl.acm.org/doi/10.1145/3209978.3210083
https://dl.acm.org/doi/10.1145/3209978.3210083
https://arxiv.org/abs/2305.01254
https://arxiv.org/abs/2305.01254
https://arxiv.org/abs/2305.01254

argument for explicit Euler on manifolds (Hsieh
et al., 2022). O

Interpretation. Because i = 1 in GeoFM, the
leading term of (7) is controlled by L—in practice
we enforce a small L by weight-decay and spec-
tral normalisation, which explains why one step is
sufficient to reach high lexical fidelity.

A.3 Role of the Trajectory Loss

Finally, we show that the cross-entropy trajectory
loss Lirajectory prevents the collapse of decoder
embeddings.

Lemma 5 (trajectory loss lower bound). Let
po(w | ) denote the softmax decoder and T > 0
its temperature. Assume the ground-truth token
embedding o, satisfies ||pw|| = R. Then
Etrajectory > 7—_1 (dS(gly @w) - 7TR) . (8)
Consequently  Lirajectory — 0 implies

ds(Z1,w) — 0 and forbids embedding col-
lapse.

Proof. The softmax  probability satisfies
—logpy(w | 2) = 77z, pu) + cst. Jensen’s
inequality and the cosine form of dg yield the
stated bound. O

Combining Theorems 2 and 4 with Proposi-
tion 5 establishes that minimising GeoFM’s ob-
jective leads to (i) a unique geodesic flow, (ii) a
bounded-error single-step sampler, and (iii) stable,
non-degenerate token reconstructions.

B Experimental Details

We did our experiment following the study of
FlowSeq (Hu et al., 2024) for our experimental
configuration, since our initial goal was to enhance
the existing flow-matching and diffusion model
frameworks for text embeddings.

Quality metrics. We report BLEU (Papineni,
2002) and ROUGE (Lin, 2004) for surface-form
accuracy. Because word-overlap scores can mis-
judge open-ended outputs, we additionally include
BERTScore, which matches hypotheses and refer-
ences in contextual-embedding space (Zhang et al.,
2019). Larger values on all three metrics indicate
better quality.

Diversity metrics. Token-level variety is as-
sessed with the proportion of distinct unigrams
(dist-1), lower values correspond to more repeti-
tion. Sentence-level diversity is measured by self-
BLEU (Zhu et al., 2018), and corpus-level diversity
by the ratio of unique 4-grams (div-4) (Deshpande
et al., 2019). Hence, smaller self-BLEU and larger
div-4 signify richer variation.

MBR decoding. Following (Koehn, 2004), we
apply the Minimum-Bayes-Risk decoding. For
each source, we sample |S| = 10 candidates with
different random seeds (Hu et al., 2024) and return
the one that minimizes expected BLEU risk - em-
pirically found to improve all downstream metrics.

Model and optimization. The velocity field vy is
instantiated as a 12-layer 12-head Transformer; the
time index is embedded in similar fashion to posi-
tional embeddings. Sequences are truncated to 128
tokens; embeddings have dimension 128. Byte-pair
encoding is used to build the vocabulary, mitigat-
ing out-of-vocabulary problems (Sennrich et al.,
2016). Training employs AdamW (Loshchilov and
Hutter, 2019) with an initial learning-rate of 10~4
that is linearly annealed. All experiments run on
two NVIDIA A40 GPUs; inference uses a single
GPU. The total parameter count is matched to the
FlowSeq baseline for a fair comparison.

In terms of sampling stepsize, we also adopt the
same sampling stepsize policy as in FlowSeq (Hu
et al., 2024) (Gao et al., 2022). We also drop the
Gaussian Noise Corruption for avoiding complex-
ity in evaluation as performed in (Hu et al., 2024;
Li et al., 2022).

Padding Tokens. We pad the sequence to a fixed
length. Our model will learn when to generate
PADDING tokens based on the distribution learn-
ing process. This way, our method can generate
sentences of diverse lengths as it was done in (Hu
et al., 2024).

Ablation Results

Effect of sphere radius. We varied the
Fisher-Rao radius R € {2,20,100,500} and
measured BLEU and BERTScore on the Question
Generation Task (Fig. 5-6). We find that smaller
radii tend to richer expressiveness of the model,
improving BERTscore, but less BLEU capability,
whereas larger radii make the geodesic update
too small, degrading BERTScore but improving



BLEU. Hence, for balanced output quality, we
should stick to the middle of the radii values.

GeoFM: BLEU vs. Radius
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Figure 5: Impact of sphere radius R on BLEU on the
Question Generation Task.

GeoFM: BERTScore vs. Radius
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Figure 6: Impact of sphere radius R on BERTScore on
the Question Generation Task.

Contribution of the trajectory loss. To quantify
the impact of regularizer, we conducted an ablation
in which GeoFM was trained both with and without
the spherical trajectory loss, holding all other hyper-
parameters and architectural choices constant. This
loss term encourages the one-step reconstruction to
remain close to the ground-truth data embedding
on the Fisher—Rao sphere, thereby preventing em-
bedding collapse and promoting straight, faithful
transport paths. Empirically, we observed that omit-
ting the trajectory loss leads to a notable drop in
sequence quality: average BLEU decreases by ap-
proximately 0.1, BERTScore falls by around 0.65,
accompanied by increasing variance across random
seeds. These results confirm that the trajectory loss
is essential for stabilizing training, maintaining lex-
ical fidelity, and ensuring that the velocity field
learns geometrically meaningful flows.

Effect of trajectory loss
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Figure 7: Effect of removing the trajectory loss from
the evaluation process.
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Figure 8: MBR ablation: BLEU and ROUGE-L vs.
number of candidates |S].

Contribution of Minimum Bayes Risk (MBR).
Beyond the core GeoFM objective, we explore the
impact of Minimum Bayes Risk decoding on fi-
nal generation quality. In this setup, we generate
a pool of | S| candidate sequences under different
random seeds and select the one minimizing ex-
pected BLEU risk. As we increase |S| from 1 up
to 15, BLEU and ROUGE-L improve steadily. It
is closely related to FlowSeq as it was shown by
(Hu et al., 2024). Crucially, GeoFM remains robust
even for small | S|, suggesting that it is less sensitive
to this MBR hyperparameter than diffusion-based
baselines.



Question Gen. Paraphrasing Open-Domain Dialogue
Dataset Quasar-T (Dhingra et al., 2017) QQP! Commonsense Conversation (Zhou et al., 2018)
Dataset size 117k 144k 3.38M
Input shape 128 x 128 128 x 128 128 x 128
Transformer bert-base-uncased bert-base-uncased bert-base-uncased
Vocab size 30,522 30,522 30,522
Depth 12 12 12
Embed. dim. 768 768 768
# Heads 12 12 12
Batch size 1,024 1,024 1,024
Micro-batch 64 64 64
Iterations 40,000 50,000 50,000
GPU 2xA100 2xA100 2xA100
GPU Hours 5 days 8 days 7 days
Optimizer AdamW AdamW AdamW
LR 1x107* 1x1074 1x107*
Betas (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Table 2: Training configurations for the three target tasks. “bert-base-uncased” refers to a vanilla Transformer with

the same architecture as BERT-base.
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