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ABSTRACT

We develop a new method for generating prediction sets that combines the flexi-
bility of conformal methods with an estimate of the conditional distribution PY |X .
Existing methods, such as conformalized quantile regression and probabilistic con-
formal prediction, usually provide only a marginal coverage guarantee. In contrast,
our approach extends these frameworks to achieve approximate conditional cov-
erage, which is crucial for many practical applications. Our prediction sets adapt
to the behavior of the predictive distribution, making them effective even under
high heteroscedasticity. While exact conditional guarantees are infeasible without
assumptions on the underlying data distribution, we derive non-asymptotic bounds
that depend on the total variation distance between the conditional distribution and
its estimate. Using extensive simulations, we show that our method consistently
outperforms existing approaches in terms of conditional coverage, leading to more
reliable statistical inference in a variety of applications.

1 INTRODUCTION

Conformal prediction methods are widely used to construct prediction sets because they provide finite-
sample validity under minimal distributional assumptions (Vovk et al., 2005; Shafer & Vovk, 2008).
The split-conformal approach leverages a calibration dataset of size n, denoted as {(Xk, Yk)}k∈[n]

with Xk ∈ Rd and Yk ∈ Y , to construct prediction sets Cα(x) at a specified confidence level
α ∈ (0, 1). Given a conformity score function V : Rd × Y → R, the conformal prediction set for a
test point x ∈ Rd is defined as:

Cα(x) =
{
y ∈ Y : V (x, y) ≤ Q1−α

( 1

n+ 1

∑n

k=1
δV (Xk,Yk) +

1

n+ 1
δ∞

)}
, (1)

where δx denotes the Dirac mass at x, and Q1−α(µ) represents the (1− α)-quantile of the probabil-
ity measure µ. This formulation guarantees valid marginal coverage while being computationally
efficient. However, its performance may degrade under distributional heterogeneity, motivating
extensions to adapt to varying noise levels. If the calibration data {(Xk, Yk)}k∈[n] is drawn i.i.d.
from a population distribution PX,Y , then for any new data point (Xn+1, Yn+1) ∼ PX,Y sampled in-
dependently of the calibration data, the conformal theory ensures the marginal validity of Cα(Xn+1),
meaning that P (Yn+1 ∈ Cα(Xn+1)) ≥ 1− α. This marginal guarantee can hide significant discrep-
ancies in the coverage of different regions of the input space Rd; see e.g. (Izbicki et al., 2022; Hore
& Barber, 2024). Conditional validity is a more desirable guarantee than marginal validity: for any
x ∈ Rd, the set Cα(x) is conditionally valid if

P (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x) ≥ 1− α. (2)

However, this property cannot be achieved without further assumptions about the data distribution;
see (Vovk, 2012; Lei & Wasserman, 2014). For practical purposes, it is enough to construct sets Cα
which approximate (2), and ideally achieve it asymptotically under suitable conditions in the limit of
large sample size n.

∗Equal contribution

1

maxim.panov@mbzuai.ac.ae
eric.moulines@polytechnique.edu


Published as a conference paper at ICLR 2025

RELATED WORK

Conformal prediction with conditional guarantees. Much research has been devoted to this
problem, starting with the case where Y = R; see (Foygel Barber et al., 2021). For example,
Romano et al. (2019) and Kivaranovic et al. (2020) proposed methods based on estimates of the
lower and upper conditional quantile functions which are then conformalized. Sesia & Candès (2020)
have shown that the constructed interval converges to the narrowest possible interval that achieve
conditional coverage. We stress that these methods are specific to the case Y = R. In addition, when
the conditional distribution PY |X is multimodal, restricting prediction to intervals is suboptimal;
see (Wang et al., 2023) for a discussion.

Conformal prediction based on estimates of conditional distribution. A number of studies have
focused on the construction of prediction sets using an estimator of the conditional distribution PY |X .
In the case where Y = R, Cai et al. (2014) and Lei & Wasserman (2014) have constructed prediction
intervals based on a conditional density estimator and have established their asymptotic validity under
appropriate conditions. More recently, Han et al. (2022) have employed kernel density estimation to
construct asymmetric prediction bands. However, this method is inherently limited as it produces a
single interval and thus cannot effectively capture the multimodality of the predictive distributions.
On the other hand, Sesia & Romano (2021) partition the domain of Y into bins, forming a histogram-
based approximation of PY |X . The authors demonstrated that their method satisfies marginal validity
while achieving asymptotic conditional coverage; see also (Lei et al., 2018). Asymptotic conditional
coverage is also obtained using cumulative distribution function estimators (Izbicki et al., 2020;
Chernozhukov et al., 2021). Guha et al. (2024) introduced an approach that reformulates regression
tasks as classification problems by discretizing the output space into bins. This discretization enables
the approximation of the conditional density, facilitating the construction of prediction sets that
align with the highest posterior density (HPD) regions. However, a key limitation of this method is
the computational cost associated with fine-grained discretization, as the number of labels required
for complex scenarios can become prohibitive. In a complementary direction, Kiyani et al. (2024)
proposed a method to enhance adaptive coverage by learning a family of weights that dynamically
adjust the quantile of the conformity score based on the covariate x. Their approach ensures that the
conditional coverage remains close to the target level 1− α. (Guan, 2023; Alaa et al., 2023; Hore
& Barber, 2024) develop a localized conformal inference approach that partitions feature space and
applies conformal prediction within neighborhoods, aiming to achieve closer-to-conditional validity
by accounting for conditional distribution; see (Romano et al., 2020a; Melki et al., 2023).

Conformal prediction for multi-output regression. Very few studies have explored the setting
where the prediction target is multi-dimensional, i.e., Y = Rq with q > 1. Wang et al. (2023)
proposed the PCP method, which leverages implicit conditional generative models (CGMs) to
generate samples from the conditional distribution. The method constructs prediction sets as unions
of balls centered at CGM-generated samples. However, a key limitation of PCP lies in using a
fixed-radius ball across the space. This design can lead to over-coverage in low-variability regions,
where a smaller radius would suffice, and under-coverage in highly dispersed areas, where a larger
radius is needed to capture the conditional distribution fully. This underscores the need for a more
adaptive methodology to adjust the size of prediction sets in response to local variability in the data.

Our work addresses these challenges through the following main contributions.

• We propose a new CP2 method for constructing confidence sets that adapt to the local struc-
ture of the data distribution, capable of addressing complex multi-dimensional prediction
tasks where Y = Rq . Our approach is versatile in accommodating scenarios involving either
an explicit conditional density estimator or an implicit generative model; see Section 2.

• We develop a theoretical framework to analyze the properties of the proposed CP2 method,
establishing both its marginal and approximate conditional validity. Furthermore, we
demonstrate that asymptotic conditional coverage is attainable under a weak consistency
assumption on the predictive distribution; see Section 3.

• We demonstrate the effectiveness of the proposed method through a series of experiments
on synthetic and real-world datasets. The results indicate that our approach consistently
outperforms existing methods in terms of conditional coverage. Specifically, it excels in
handling classical regression problems, effectively addressing multimodality, and proves
robust in the more challenging setting of multidimensional prediction tasks; see Section 4.
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2 THE CP2 FRAMEWORK

2.1 CONFORMAL PREDICTION ASSISTED WITH DISTRIBUTION ESTIMATOR

Problem setup. Our goal is to construct marginally valid predictive sets with approximate conditional
validity. To achieve this, we adopt the split-conformal approach to conformal inference (Papadopoulos
et al., 2002; Papadopoulos, 2008; Romano et al., 2019; Plassier et al., 2024). Specifically, we
partition the data into two disjoint subsets: a training set, T = {(X̃k, Ỹk)}mk=1, and a calibration set,
C = {(Xk, Yk)}nk=1. We assume that the training and calibration samples are mutually independent
and i.i.d. according to the distribution PX,Y over the feature space Rd and response space Y . The
target space Y may be either discrete or continuous, allowing for broad applicability of the method.

Conditional distribution estimator. We assume that an estimator ΠY |X of the conditional probability
PY |X is learned from the training data T . A well-established body of research exists on nonparametric
conditional density estimation, with classical approaches relying on smoothing techniques such as
kernel smoothing and local polynomial fitting; see e.g. (Rosenblatt, 1969; Hyndman et al., 1996; Fan
& Yim, 2004). An alternative strategy reformulates conditional density estimation as a regression
task, enabling the use of nonparametric regression methods to approximate the conditional density.
More recently, generative approaches based on deep neural networks have been proposed, allowing
for efficient sampling from the conditional distribution; see (Abadi et al., 2016; Zhou et al., 2021) for
examples. In what follows, we treat the choice of this estimator / generator as a black box.

Motivation: Probabilistic Conformal Prediction (PCP). Having access to samples from the
conditional distribution, one, following Wang et al. (2023), may define the prediction set as
RZ(x; t) := ∪Mi=1B(Ŷi, t), where B(y, t) is a ball of radius t in Y centered at y. The set RZ(x; t)

and it depends on exogenous variables Z = (Ŷ1, . . . , ŶM ), where each Ŷi is sampled condi-
tionally independently from the conditional generative model ΠY |X=x. Now one can define a
confidence score VZ(x, y) = inf {t ≥ 0: y ∈ RZ(x; t)}. In the case of PCP the score becomes
VZ(x, y) = minMi=1 ∥y − Ŷi∥. The conformity scores VZk

(Xk, Yk) can be used in split-CP frame-
work straight ahead. The resulting confidence sets Cα(x) given by (1) satisfy marginal coverage
guarantees if marginalization is done over all the random variables involved, i.e. X,Y and Z. This
confidence set adapts to the conditional distribution at a given point as it depends on samples from
this distribution. However, still the sets at different points share the same radius parameter t. The
further adaptation of pointwise radius can improve conditional coverage.

Towards conditional coverage. Conditional coverage is automatically satisfied for methods based
on confidence scores of the form VZ(x, y) = inf{t ≥ 0 | y ∈ RZ(x; t)}, provided that one considers
the oracle set:

Cα(x) = {y ∈ R(x; t∗x,Z)}, (3)
where t∗x,Z is defined using the true predictive distribution PY |X=x as:

t∗x,Z = inf{t ≥ 0 | PY |X=x(RZ(x; t)) ≥ 1− α}. (4)
The oracle set (3) guarantees both conditional and marginal validity. However, in practical settings,
the true conditional distribution PY |X=x is unknown, and only an estimate ΠY |X=x is available.
Substituting ΠY |X=x directly into (4) and (3) introduces estimation errors, which can compromise
both marginal and conditional coverage guarantees.

2.2 CP2 FRAMEWORK

There are several main ingredients for our approach:

1. In classical conformal prediction, the shape of the prediction set is determined by the score
function V (x, y); see (1). Our approach builds on this framework by introducing a family of
confidence setsRz(x; t), explicitly parameterized by t ∈ T, where T ⊆ R and z ∈ Z represents
a vector of auxiliary variables. In most cases, the index set can be chosen as either T = R
or T = R+. For these confidence sets to be well-defined and meaningful, we impose the
following key assumptions: (a) Monotonicity: The size of Rz(x; t) increases with t for any
z ∈ Z . Furthermore, the entire output space Y is covered by ∪t∈TRz(x; t); (b) Continuity:
The mapping t 7→ Rz(x; t) exhibits a suitable form of continuity. Specifically, we assume the
following mathematical property:
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Table 1: Confidence setsR(x; t) found in the literature and also discussed in (Gupta et al., 2022).

Lei et al. (2018) Lei et al. (2018) Kivaranovic et al. (2020)
[pred(x)− t,pred(x) + t] [pred(x)− tσ(x),pred(x) + tσ(x)] (1 + t)[qα/2(x), q1−α/2(x)]− tq1/2(x)

Chernozhukov et al. (2021) Romano et al. (2019) Sesia & Candès (2020)
[qt(x), q1−t(x)] [qα/2(x)− t, q1−α/2(x) + t] [qα/2(x), q1−α/2(x)]± t(q1−α/2(x)− qα/2(x))

H 1. For any (x, z) ∈ Rd × Z , the confidence sets {Rz(x; t)}t∈T are non-decreasing,
ΠY |X=x(∩t∈TRz(x; t)) = 0, ∪t∈TRz(x; t) = Y . In addition, for any t ∈ T, ∩t′>tRz(x; t

′) =
Rz(x; t).
Example 2.1. For instance, R(x; t) can be chosen as a ball centered around an estimate of
conditional mean PY |X with radius t. There is no auxiliary variables then an we remove subscript
z. Examples of confidence intervals specialized to the case where Y = R are given in Table 1.
Example 2.2. If the predictive distribution is multimodal, a ball centered around the predictive
mean often fails to provide an informative prediction set. Ideally,Rz(x; t) should correspond to
the set with the highest predictive density (HPD) of PY |X . However, HPD regions are difficult
to determine in practice, even when PY |X is available. One of the viable options is given by
PCP approach (Wang et al., 2023) for which prediction set is RZ(x; t) := ∪Mi=1B(Ŷi, t) with
Z = (Ŷ1, . . . , ŶM ) ∈ Z and each Ŷi being an independent sample from ΠY |X=x.

2. As discussed above, a natural choice for the confidence score is the minimal size of the set
required to cover the observation y at the input x for the auxiliary variables z: Vz(x, y) =
inf {t ∈ T : y ∈ Rz(x; t)}.

3. The key step within the proposed approach is to adapt conformal prediction method by pointwise
adaptation of the confidence set radius t. While the oracle radius (4) is not achievable, we will
develop a data-driven procedure to approximate it. First, it is convenient to introduce a function
fτ (v) parameterized by τ . Such function aims to transform the conformity score v and was
introduced (albeit in a slightly different form) in (Han et al., 2022; Deutschmann et al., 2024;
Plassier et al., 2025). Examples of such a function are fτ (v) = τv and fτ (v) = τ + v. We
assume that:
H2. There exists φ ∈ T such that τ ∈ T 7→ fτ (φ) is increasing and bijective. In addition,
v ∈ T 7→ fτ (v) is increasing for any τ ∈ T.

We define τx,z using the estimated predictive density ΠY |X=x according to

τx,z = inf
{
τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α

}
. (5)

It is easily shown that for any α ∈ (0, 1), x ∈ Rd, z ∈ Z , it holds τx,z ∈ T and
ΠY |X=x(Rz(x; fτx,z

(φ))) ≥ 1− α; see Lemma A.3.

4. The resulting procedure works as follows. Let Π̄Z|X=x define a probability distribution on Z .
The standard choice is to use conditional distribution as a sampler: Π̄Z|X=x = Π⊗M

Y |X=x. For
k ∈ {1, . . . , n}, we set τk := τXk,Zk

and Vk := VZk
(Xk, Yk), where {Zk}nk=1 are sampled con-

ditionally independently from Π̄Z|X=Xk
. Given Xn+1 ∈ Rd, we sample Zn+1 ∼ Π̄Z|X=Xn+1

independently from {(Xk, Yk, Zk)}nk=1, and construct the resulting CP2 prediction set as

Cα(Xn+1) = RZn+1

(
Xn+1; fτn+1

(
Q1−α(µn)

))
, (6)

where Q1−α(µn) is the (1− α)-quantile of the distribution µn given by

µn =
1

n+ 1

∑n

k=1
δf−1

τk
(Vk)

+
1

n+ 1
δ∞. (7)

The transformation {v 7→ fτ (v)}τ∈T balances the following two factors: (a) The optimal
parameter Vz(x, y) ensuring that y is included in the confidence set Rz(x;Vz(x, y)); (b) The
parameter τx,z obtained from the probabilistic model ΠY |X=x.

We stress that CP2 is a general framework that can be adapted to many choices for conditional
predictive density estimates, constructing the family of confidence sets, and selecting the calibration
function fτ (v). However, we start with the simple example that shows that CP2 is more general than
the classical split-conformal CP approach.
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Algorithm 1 CP2-PCP

Input: dataset {(Xk, Yk)}k∈[n], significance level α, conditional distribution ΠY |X , function ft.
// Compute the (1− α)-quantile
for k = 1 to n do

Sample {Ŷk,i}Mi=1 and {Ỹk,j}M̃j=1 from ΠY |X=Xk

Set Vk = minMi=1 ∥Yk − Ŷk,i∥
Set τk = (t 7→ ft(φ))

−1{Q1−α(M̃
−1
∑M̃

j=1 δminM
i=1 ∥Ỹk,j−Ŷk,i∥)}

Q1−α (µn)← ⌈(1− α)(n+ 1)⌉-th smallest value in {f−1
τk

(Vk)}k∈[n] ∪ {∞}
// Compute the prediction set for a new point x ∈ Rd

Sample z = {Ŷi}Mi=1 and {Ỹj}M̃j=1 from ΠY |X=x

Set τx,z = (t 7→ ft(φ))
−1 {Q1−α(M̃

−1
∑M̃

j=1 δminM
i=1 ∥Ỹj−Ŷi∥)}

Output: Cα(x) = ∪Mi=1B(Ŷi, fτx,z
(Q1−α(µn))).

0.0 0.2 0.4 0.6 0.8 1.0

data

CP2

CP

Figure 1: Predictions sets obtained via the stan-
dard CP and CP2 methods.

Simple example of CP2. We begin with a simple
application of CP2 to highlight its differences from
the basic conformal approach, with Y = R. The
calibration sets are defined as: R(x; t) = {y ∈
Y : |y − pred(x)| ≤ t} for t ∈ R+. There are
no auxiliary variables z in this case, so we omit
z from the notation. Assumption H1 is easily sat-
isfied with T = R+. We then take fτ (v) = τv,
τ ∈ R+ and φ = 1: H2 is also satisfied. Note
that f−1

τ (v) = v/τ for τ ∈ R∗
+. Using the CP2

approach, we find that V (x, y) = |y − pred(x)|,
which corresponds to a standard conformity score.
The classical conformal prediction method defines
the (1 − α)-quantile based on the associated em-
pirical measure νn = 1

n+1

∑n
k=1 δVk

+ 1
n+1δ∞,

where Vk = |Yk − pred(Xk)|. CP2 differs from the basic conformal approach by introducing
τx = argmin{τ ∈ T : ΠY |X=x([pred(x) ± τ ]) ≥ 1 − α} as in (5), where [pred(x) ± τ ] =
[pred(x) − τ,pred(x) + τ ]. The prediction set becomes [pred(x) ± fτx(Q1−α(µn))], where
µn = 1

n+1

∑n
k=1 δVk/τk + 1

n+1δ∞. To illustrate the advantage of our method, in Figure 1 we
present the prediction sets obtained with the classical CP method and CP2 in the case of a Neal’s
funnel-shaped distribution in 2 dimensions; see (Neal, 2003, Section 9).

CP2 with Highest Predictive Density regions: CP2-HPD. The natural approach for the general
case is to use the conditional distribution PY |X=x or its estimate ΠY |X=x to find Highest Predictive
Density (HPD) regions and calibrate their size with the help of CP2. We develop the respective general
algorithm CP2-HPD in Appendix C.1. However, the procedures to find HPDs are usually highly non-
trivial and we only investigate this approach experimentally for synthetic data; see Section 4.1. Next,
we provide a specific implementation of our general CP2 framework that is universally applicable.

CP2 with Implicit Conditional Generative model: CP2-PCP. We also develop a second instance
of the CP2 algorithm, inspired by Wang et al. (2023). Unlike CP2-HPD, this approach does not
require the conditional density. It is designed for cases where the conditional generative model
(CGM) ΠY |X=x is implicit: we cannot evaluate it pointwise while being able to sample from it.
For each calibration point Xk, we draw M random variables {Ŷk,i}Mi=1 from ΠY |X=Xk

. We denote
Zk = (Ŷk,1, . . . , Ŷk,M ) and consider the confidence sets as the union of balls centered around the
sample points RZk

(Xk; t) = ∪Mi=1B(Ŷk,i, t). With such choice, we get Vk = minMi=1 ∥Yk − Ŷk,i∥.
We then draw a second sample {Ỹk,j}M̃j=1, and compute τk = inf{t ∈ R+ : M̃−1

∑M̃
j=1 1{Ỹk,j ∈

RZk
(Xk; ft(φ))} ≥ 1− α}. It is easily seen that

τk = (t 7→ ft(φ))
−1
{
Q1−α

(
1
M̃

∑M̃
j=1 δminM

i=1 ∥Ỹk,j−Ŷk,i∥

)}
.
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Given a new input Xn+1 ∈ Rd, we sample Zn+1 = (Ŷn+1,1, . . . , Ŷn+1,M ) and obtain prediction set

Cα(Xn+1) =
{
y ∈ Y : minMi=1 ∥y − Ŷn+1,i∥ ≤ fτn+1

(
Q1−α (µn)

)}
,

where µn is given in (7). The CP2-PCP method employs the same type of a confidence setRz(x; t)
as the one used by PCP and corresponding confidence score Vz(x, y). However, the key distinction
between the two algorithms lies in the additional parameter τx,z for CP2-PCP, which requires the
generation of a second random sample from ΠY |X=x. This method is especially useful when solving
equation (5) is intractable. We summarize CP2-PCP in Algorithm 1.

3 THEORETICAL GUARANTEES

In this section, we provide both marginal and conditional guarantees for the prediction set Cα(x)
given in (6). The validity of these guarantees is ensured by the exchangeability of the calibration data,
with the exception of Theorem 3.3 which relies on a concentration inequality and thus requires i.i.d.
calibration data.

Marginal and conditional validity of CP2. The following theorem establishes marginal validity of
the predictive set defined by CP2.
Theorem 3.1. Assume H1-H2. Then, for any α ∈ (0, 1), it holds 1− α ≤ P (Yn+1 ∈ Cα(Xn+1)).
Moreover, if the conformity scores {f−1

τk
(Vk)}n+1

k=1 are almost surely distinct, then it also holds that
P (Yn+1 ∈ Cα(Xn+1)) < 1− α+ (n+ 1)−1.

This is the standard conformal prediction result applied to the scores {f−1
τk

(Vk)}n+1
k=1 and its proof is

postponed to Appendix A.1. Importantly, the upper bound on the coverage always holds when the
distribution of f−1

τk
(Vk) is continuous.

Now, we will investigate the conditional validity. Denote by dTV the total variation distance and by
PT the conditional probability given the training data.
Theorem 3.2. Assume H1-H2, and let α ∈ (0, 1). For any x ∈ Rd and z ∈ Z , it holds
PT (Yn+1 ∈ Cα(x) | (Xn+1, Zn+1) = (x, z)) ≥ 1− α− dTV(PY |X=x; ΠY |X=x)− pn+1(x, z),

where pn+1(x, z) = PT
(
Q1−α(µn) < f−1

τn+1
(Vn+1) ≤ φ | (Xn+1, Zn+1) = (x, z)

)
.

The proof is postponed to Appendix A.1. This result shows the role of the accuracy of conditional
distribution estimator: the more accurately the estimator ΠY |X=x approximates the true conditional
distribution PY |X=x, the closer the result will be to 1− α. The second term in the lower bound is
pn+1(x, z). Its expected value is upper bounded by E[pn+1(X,Z)] ≤ α, and non-asymptotic bounds
for this error term are developed in Appendix A.2.

Asymptotic conditional coverage for CP2. In the following theorem, we examine the asymptotic
conditional conformal validity as the size of the training dataset, mn, goes to infinity with n. To make
the dependency of the estimator on the size of the training set explicit, we will denote the conditional
distribution as Π(mn)

Y |X . Consider the following assumption.

H3. There exists sequence (rn) such that lim
n→∞

P(dTV(PX,Y ;PX ×Π
(mn)
Y |X ) ≤ rn) = 1.

In most interesting case, we have limn→∞ rn = 0. Such types of bounds can be deduced from (De-
vroye & Lugosi, 2001, Chapter 9). Let (X,Y, Z) and (X, Ŷ , Z) be random variables distributed
according to PX,Y × Π̄Z|X and PX ×Π

(mn)
Y |X × Π̄Z|X , respectively.

Theorem 3.3. Assume H1-H2-H3 hold. If the distributions of f−1
τX,Z

(VZ(X,Y )) and
f−1
τX,Z

(VZ(X, Ŷ )) are continuous, then, it holds∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ = OP

(√
n−1 log n+ rn

)
.

In (Lei et al., 2018; Izbicki et al., 2020; Sesia & Candès, 2020), the asymptotic conditional validity is
demonstrated by assuming the consistency of their methods’ estimators. For instance, Romano et al.
(2019) assume that the conditional quantile regressor converges in L2 towards the true quantile with
high probability.

6



Published as a conference paper at ICLR 2025

X

Y

0

10

20

30

40

50

(a) Data and MDN estimate

−4 −2 0 2 4
X

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

C
on

d
it

io
n

al
co

ve
ra

ge

CP2-HPD

CQR

PCP

CP

(b) Conditional coverage

−4 −2 0 2 4
X

2

4

6

8

10

12

L
en

gt
h

of
th

e
P

re
d

ic
ti

on
S

et

CP2-HPD

CQR

PCP

CP

(c) Length of the prediction set

Figure 2: Experimental results on synthetic data in the multimodal case.

4 NUMERICAL EXPERIMENTS

In this section, we conduct a comprehensive analysis demonstrating the advantage of CP2 compared
to standard and adaptive split conformal algorithms. Specifically, we benchmark our algorithm
against several state-of-the-art methods: Conformalized Quantile Regression (Romano et al., 2019),
Conformalized Histogram Regression (Sesia & Romano, 2021), Probabilistic Conformal Predic-
tion (Wang et al., 2023) and several others. All these methods share some key aspects: they are built
on top of the pre-trained models and do not require access to training data or the model’s internals
on both calibration and prediction steps. We aim to answer these specific questions: how does CP2

performs in terms of coverage, conditional coverage and predictive set volume when compared to
state-of-the-art methods on synthetic and real data1.

4.1 SYNTHETIC DATA EXPERIMENT

In this example, (Xk, Yk) is sampled from a mixture of P = 4 Gaussians; see Figure 2a. The number
of training and calibration samples is m = 104 and n = 103, respectively. We fit a Mixture Density
Network (MDN) as an explicit generative model, ΠY |X=x(y) =

∑P
ℓ=1 πℓ(x)N (y;µℓ(x), σ

2
ℓ (x)),

where µℓ(·), σℓ(·) and πℓ(·) are all modeled by fully connected 2-layers neural networks (the
condition

∑P
ℓ=1 πℓ(x) = 1 is ensured by using softmax activation functions). We use CP2-HPD (the

calculation of the HPD rates as well as τx and V (x, y) is explicit in this case) with ft(v) = tv. The
parameters of the MDN are trained by maximizing the likelihood on the training set.

We compare the plain CP2-HPD, PCP (with the same MDN as CP2-HPD and M = 50 draws) and
CQR. All methods achieve the desired marginal coverage 1− α = 0.9. We illustrate the conditional
coverage in Figure 2b and the lengths of the predictive sets in Figure 2c. CP with a fixed-width
predictive set performs poorly in this multimodal example, both in terms of the size of the confidence
set and the conditional coverage CP2-HPD and CQR perform similarly in terms of conditional
coverage (which remains close to 1−α = 0.9). The conditional coverage of PCP varies between 0.85
and 0.95. CP2-HPD produces smaller prediction sets compared to CQR and PCP as HPD confidence
set is more suitable for multimodal applications than the interval produced by CQR.

4.2 REAL-WORLD REGRESSION DATA EXPERIMENTS

Datasets. We use publicly available regression datasets, which are also considered in (Romano
et al., 2019; Wang et al., 2023). Some of them come from the UCI repository: bike sharing (bike),
protein structure (bio), blog feedback (blog), Facebook comments (fb1 and fb2). Other datasets
come from US Department of Health surveys (meps19, meps20 and meps21), and from weather
forecasts (temp; Cho et al. (2020)).

Methods. We compare the proposed CP2-PCP method with Probabilistic Conformal Prediction
(PCP; Wang et al. (2023)), Conformalized Quantile Regression (CQR; Romano et al. (2019)), Con-
formalized Histogram Regression (CHR; Sesia & Romano (2021)), Conformal Prediction with
Conditional Guaranties (CPCG; Gibbs et al. (2023)), Localized Conformal Prediction (LCR; Guan

1Code of experiments can be found at https://github.com/stat-ml/conditional_cp

7

https://github.com/stat-ml/conditional_cp


Published as a conference paper at ICLR 2025

bike bio blog fb1 fb2 meps19 meps20 meps21 temp
0.75

0.80

0.85

0.90

0.95

1.00

W
or

st
-s

la
b

co
ve

ra
ge

,
1
−
δ

=
0.

1

CP PCP ΠY |X CP2-PCP-D CP2-PCP-L CHR CQR CQR2 CPCG LCP CD-split+

Figure 3: Worst-slab coverage on real data. Results averaged over 50 random splits of each dataset.
Calibration and test set sizes set to 2000, 50 conditional samples for PCP, CP2 and ΠY |X . Worst-slab
coverage parameter (1− δ) = 0.1. Nominal coverage level is (1− α) = 0.9 and is shown in dashed
black. Methods with conditional coverage below 0.75 shown as cross-hatched on horizontal axis.

bike bio blog fb1 fb2 meps19 meps20 meps21 temp

0.5

1.0

1.5

2.0

2.5

w
sd

CP PCP ΠY |X CP2-PCP-D CP2-PCP-L CHR CQR CQR2 CPCG LCP CD-split+

Figure 4: Sizes of the prediction sets on real data. We divide the size of the set by the standard
deviation of response to present the results on the same scale.

(2023)) and CDSplit+ (Izbicki et al. (2022)). We also consider CQR2 which is a modification of
CQR that uses inverse quantile as conformity score. For our method and PCP we use a Mixture Den-
sity Network (Bishop, 1994) to estimate the conditional distribution PY |X that was best-performing
in (Wang et al., 2023). We also consider different choices of ft for our method: CP2-PCP-L stands for
CP2-PCP with ft(v) = tv and CP2-PCP-D stands for CP2-PCP with ft(v) = t+ v. Additionally,
we consider ΠY |X which is a special case of CP2-PCP with ft(v) = t.

Metrics. Empirical coverage (marginal and conditional) is the main quantity of interest for prediction
sets. We evaluate worst-slab conditional coverage (Cauchois et al., 2020; Romano et al., 2020b) in
our experiments, see details in Appendix B.2. We also measure the total size of the predicted sets,
scaled by the standard deviation of the response Y .

Experimental setup. Our experimental setup largely follows the approach outlined in (Wang et al.,
2023). Specifically, we split each dataset into training, calibration, and testing sets. A Mixture Density
Network (MDN) with 10 components is then trained to approximate the conditional distribution
PY |X . For each calibration and test point, we first compute the Gaussian Mixture parameters, forming
ΠY |X , and subsequently draw M = 5, 20, 50 samples from these distributions, which yieldRz(x, t).
This process is repeated across 50 different random splits of each dataset.

Results of experiments for M = 50 samples are presented in Figures 3 and 4, additional results are
available in Appendix B. All methods achieve the target 1− α marginal coverage, except for ΠY |X .

Standard conformal prediction fails to maintain the conditional coverage as expected. We can also
observe that PCP consistently struggles with conditional coverage. On all the datasets CP2-PCP
provides valid conditional coverage, while CQR fails on blog and temp. CHR method shows unsta-
ble performance not achieving conditional coverage more often than other methods but sometimes
providing narrower predictions sets. Additionally, CP2-PCP significantly outperforms quantile
regression-based methods in terms of size of the prediction sets on bike, bio and temp datasets.
CPCG is a strong baseline, but our method shows better performance still. For example, on blog,
fb1 and f2 datasets conditional coverage of CP2-PCP is close to nominal, while prediction set size

8
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Figure 5: Conditional coverage for different clusters, fb1 dataset. We have used HDBSCAN
algorithm with minimum cluster size of 100, min_samples hyper-parameter of 20 and l2 metric.
Cluster label -1 corresponds to the outliers. Sample size for sampling-based methods was set to 50.
Nominal coverage equals (1− α) = 0.9 and is shown by a dashed black line.
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Figure 6: Marginal coverage for multi-target datasets, 50 replications. Sample size was set to 1000.
Nominal coverage equals (1− α) = 0.9 and is shown by a dashed black line.

are roughly the same between two methods. On meps datasets, conditional coverage is close, while
the CP2-PCP sets are smaller. Computational complexity of the prediction is the highest for CPCG,
about 10 times that of our approach. LCP shows significantly lower conditional coverage than most
methods on larger datasets. CDSplit+ shows good conditional coverage but also large variance
between runs. We also noticed that it consistently overcovers marginally, again with large variance.
Set sizes for this method are usually small but often comparable to CP2. Overall we consider this
method highly unstable on real datasets, requiring additional investigation or hyperparameter tuning.

Finally, we assess conditional coverage with the help of clustering. We apply HDBSCAN (Campello
et al., 2013; McInnes & Healy, 2017) method to cluster the test set and then compute coverage within
clusters. Results for fb1 dataset are presented in Figure 5. We again observe that CP and PCP do
not achieve conditional coverage and CHR and CQR performance is unstable. CP2-PCP on the other
hand maintains valid conditional coverage on all clusters and even on outliers (cluster label -1). Note
that these are all outliers combined and they may not lie in the same region of the input space.

4.3 REAL-WORLD REGRESSION DATA WITH MULTI-DIMENSIONAL TARGETS

We also study CP2 family of algorithms on the multi-target regression problems. Since selecting the
threshold τ for our methods is not dependent on the number of dimensions in Y their application
is straightforward. On the other hand, most other methods are inherently one-dimensional thus
require the use of the Bonferroni correction (Dunn, 1961). Each coordinate is treated independently
with miscoverage level adjusted to α/d, where d is the number of targets. As a result, for quantile
regression-based methods prediction sets are formed as a product of the corresponding intervals.

Datasets. We consider open-source multidimensional regression datasets: river flow data rf1
and rf2 (Xioufis et al., 2012), supply chain management scm1d and scm20d (Xioufis et al.,
2012), indoor localization indoor (Torres-Sospedra et al., 2014), GPU computation time
sgemm_small2 (Ballester-Ripoll et al., 2019).

2The full dataset contains 241600 examples. Due to computational constraints we randomly subsample
10000 examples for each replication of our experiment.
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Figure 7: Conditional coverage for multi-target datasets targets, 50 replications. Sample size was set
to 1000. Nominal coverage equals (1− α) = 0.9 and is shown in dashed black. Worst-slab coverage
parameter (1− δ) = 0.1.
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Figure 8: Average rank of the projected set size. For each pair of targets area of the corresponding
2D projection of the prediction set is calculated. For each test point and each pair of targets methods
are ranked. Lower rank is smaller area. This graph shows averaged results of 10 replications.

We use the same metrics as before: marginal coverage and worst-slab coverage. Evaluating the
difference in prediction set size is more complex in case of multiple dimensions. Due to computational
constraints we perform pairwise comparisons between our methods and selected baselines, measuring
approximate areas of 2D projections of the prediction sets (Wang et al., 2023). These results can be
found on Figure 8. We approximate areas using a grid and fewer samples.

Since our methods naturally extend beyond one dimension, the experimental setup is almost identical.
We use the same underlying model for PY |X , the prediction set is now a union of d-dimensional balls
of the same radius around the sampled centers. The number of samples is increased to 1000.

Results. In Figure 6 we show marginal coverage attained by different algorithms. As expected,
naive application of 1D techniques CQR, CQR2 and CHR to multiple outputs produces significant
overcover. PCP and CP2 methods naturally extend to multidimensional targets and provide correct
marginal coverage. In Figure 7 we present the conditional coverage estimates for multi-target datasets.
PCP significantly undercovers on rf1, rf2 and scm1d datasets, while CP2 comes very close to
the nominal coverage of 0.9. In case of CQR, CQR2 and CHR, they still overcover (scm20d,
sgemm) or perform comparably to our approach. Figure 8 shows the aggregated results of the set
size comparisons in multidimensional target setting. For each test point and each pair of axes we rank
the methods by the area of the projection of the corresponding prediction set. The plot shows average
rank for each method, aggregated across all axes pairs and replications. Lower rank corresponds to
smaller area, which is our goal. For datasets indoor, scm1d and sgemm_small our approach
performs better, while also providing sharper conditional coverage. On the remaining datasets CP2

performs similarly to the competitors.

5 CONCLUSION

We address the challenge of conditional coverage in CP, and overcome previous negative results by
assuming the knowledge of a good estimator of PY |X . Our proposed mechanism conformalizes the
conditional distribution estimator ΠY |X to ensure marginal validity while maintaining approximate
conditional coverage guarantees. Specifically, if experts can provide an accurate conditional estimator,
our algorithm CP2 generates nearly conditionally valid multidimensional prediction sets. This
approach offers a practical solution for tackling heteroscedasticity in machine learning applications.
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A ADDITIONAL RESULTS AND CALCULATIONS

In this section, we analyze the theoretical results of Section 3. First, let’s recall the definition of the
quantile function for any distribution µn living in R. For any α ∈ (0, 1), the quantile Q1−α(µn) is
defined by

Q1−α(µn) = inf {t ∈ R : µn((−∞, t]) ≥ 1− α} .
Given a measure ΠY |X=x defined on σ(Y), we consider for all x ∈ Rd, z ∈ Z , the parameters τx,z
and Vz(x, y) given by

τx,z = inf
{
τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α

}
,

Vz(x, y) = inf {t ∈ T : y ∈ Rz(x; t)} ,
(8)

where φ is chosen as in H2, and by convention we set inf ∅ =∞. We denote by δv the Dirac measure
at v ∈ R, and write τk = τXk,Zk

and Vk = VZk
(Xk, Yk). In this Appendix, we study the coverage

of the prediction set given ∀(x, z) ∈ R×Z by

Cα(x) = Rz

(
x; fτx,z

(
Q1−α(µn)

))
,

where the distribution µn is defined as

µn =
1

n+ 1

n∑
k=1

δf−1
τk

(Vk)
+

1

n+ 1
δ∞.

The key idea behind the choice of τk is to ensure that the conditional coverage of the prediction set
Cα(Xk) is approximately 1− α when the empirical distribution ΠY |X=Xk

is close to PY |X=Xk
. In

other words, τk is chosen such that the probability of the observed value Yk given Xk falling inside
the prediction set Cα(Xk) is close to 1− α. On the other hand, the parameter Vk is used to ensure
that the prediction set RZk

(Xk;Vk) contains the observed value Yk. Moreover, note that τk only
depends on the input data (Xk, Zk), while Vk depends on (Xk, Yk, Zk). Thus, the i.i.d. property of
{(Xk, Yk, Zk) : k ∈ [n+ 1]} ensures that the {(τk, Vk)}n+1

k=1 are also i.i.d.

A.1 PROOF OF THEOREMS 3.1 AND 3.2

Lemma A.1. Assume H1 hold. For any (x, y, z) ∈ Rd × Y × Z , Vz(x, y) exists in T, and we have
y ∈ Rz(x;Vz(x, y)).

Proof. Let (x, y, z) ∈ Rd × Y × Z be fixed. Since ∩t∈TRz(x; t) = ∅ and ∪t∈TRz(x; t) = Y ,
we deduce the existence of t0 and t1 such that y /∈ Rz(x; t0) and y ∈ Rz(x; t1). Therefore, {t ∈
T : y ∈ Rz(x; t)} is non-empty and lower-bounded by t0. Thus, the infimum Vz(x, y) exists. Now,
let’s prove that y ∈ Rz(x;Vz(x, y)). Since Vz(x, y) = inf{t ∈ T : y ∈ Rz(x; t)}, we deduce the
existence of a decreasing sequence {λn}n∈N such that y ∈ Rz(x;λn) and limn→∞ λn = Vz(x, y).
By definition of {λn}n∈N, we have y ∈ ∩n∈NRz(x;λn). However, using H1, remark that

∩n∈NRz(x;λn) = ∩n∈N ∩t>λn
Rz(x; t)

= ∩t> lim
n→∞

λn
Rz(x; t)

= ∩t>Vz(x,y)Rz(x; t) = Rz(x;Vz(x, y)).

Since y ∈ ∩n∈NRz(x;λn), it implies that y ∈ Rz(x;Vz(x, y)).

We will now present the proof for Theorem 3.1, which establishes the marginal validity of our
proposed method.

Theorem A.2. Assume H1-H2 hold, if {f−1
τk

(Vk)}n+1
k=1 are almost surely distinct, then it follows

1− α ≤ PT (Yn+1 ∈ Cα(Xn+1)) < 1− α+
1

n+ 1
. (9)

Proof. Using Lemma A.1, we have

PT (Yn+1 ∈ Cα(Xn+1)) = PT (Yn+1 ∈ RZn+1

(
Xn+1, fτn+1(Q1−α(µn))

))
= PT (Vn+1 ≤ fτn+1(Q1−α(µn))

)
.
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Since v 7→ fτn+1
(v) is increasing by H2, we deduce that

PT (Vn+1 ≤ fτn+1(Q1−α(µn))
)
= PT

(
f−1
τn+1

(Vn+1) ≤ Q1−α(µn)
)
.

Denote by Vk = f−1
τk

(Vk), the exchangeability of the data {(Xk, Yk, Zk) : k ∈ [n+ 1]} implies that

PT

(
Vn+1 ≤ Q1−α

(
n∑

k=1

δVk

n+ 1
+

δ∞
n+ 1

))
= PT

(
Vn+1 ≤ Q1−α

(
n+1∑
k=1

δVk

n+ 1

))

=
1

n+ 1

n+1∑
k=1

ET

[
1Vk
≤ Q1−α

(
1

n+ 1

n+1∑
k=1

δVk

)]

= ET

[
ET

[
1VI
≤ Q1−α

(
1

n+ 1

n+1∑
k=1

δVk

) ∣∣∣∣V1, . . . , Vn+1

]]
,

where I ∼ Unif(1, . . . , n+ 1). Therefore, the definition of the quantile function implies the lower
bound in (9). Moreover, if there are no ties between the {Vk}n+1

k=1 , then

PT
(
f−1
τn+1

(Vn+1) ≤ Q1−α(µn)
)
< 1− α+

1

n+ 1
.

The following lemma provides conditions under which ΠY |X=x(Rz(x; fτx,z (φ))) ≥ 1− α.

Lemma A.3. Assume H1-H2 hold, and let α ∈ (0, 1), x ∈ Rd, z ∈ Z . If ΠY |X=x is a probability
measure, then τx,z is defined in T and ΠY |X=x(Rz(x; fτx,z

(φ))) ≥ 1− α.

Proof. Let x ∈ Rd be such that ΠY |X=x is a probability measure, and fix z ∈ Z . Since τ 7→ fτ (φ)
is increasing and bijective by H2, we have

sup
τ∈T

ΠY |X=x(Rz(x; fτ (φ))) = ΠY |X=x (∪τ∈TRz(x; fτ (φ)))

= ΠY |X=x (∪t∈TRz(x; t)) = 1.

The previous equality shows the existence of τ ∈ T such that ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α.
Therefore {τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α} is non-empty. This proves the existence
of τx,z = inf{τ ∈ T : ΠY |X=x(Rz(x; fτ (φ))) ≥ 1 − α} in T ∪ {−∞}. Moreover, τx,z > −∞,
otherwise we would have

1− α ≤ inf
τ∈T

ΠY |X=x(Rz(x; fτ (φ))) = ΠY |X=x (∩t∈TRz(x; t)) = 0.

Therefore, we deduce that τx,z ∈ T. Lastly, remark that

ΠY |X=x(Rz(x; fτx,z
(φ))) = ΠY |X=x(∩τ>τx,z

Rz(x; fτ (φ)))

= inf
τ>τx,z

ΠY |X=x(Rz(x; fτ (φ))) ≥ 1− α.

Now, we prove Theorem 3.2. This result guarantees that the conditional confidence intervals
constructed by our method approximately satisfy the desired coverage of 1−α. Given (x, y) ∈ Rd×Z ,
let’s introduce

pn+1(x, z) = PT
(
Q1−α(µn) < f−1

τx,z
(Vz(x, Yn+1)) ≤ φ |Xn+1 = x, Zn+1 = z

)
,

qn+1(x, z) = PT
(
φ < f−1

τx,z
(Vz(x, Yn+1)) ≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
.
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Theorem A.4. Assume H1-H2 hold, let x ∈ Rd be such that ΠY |X=x is a probability measure. For
any z ∈ Z , it follows that

1−α−dTV(PY |X=x; ΠY |X=x)−pn+1(x, z) ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z
(φ))) + dTV(PY |X=x; ΠY |X=x) + qn+1(x, z).

Proof. First, recall that Cα(x) is given in (6), and Vz(x, Yn+1) is defined in (8). Applying Lemma A.1,
we know that Vz(x, Yn+1) is defined in T, and also that Yn+1 ∈ Rz(x;Vz(x, Yn+1)). Hence, it holds

PT (Yn+1 ∈ Cα(Xn+1) |Xn+1 = x, Zn+1 = z)

= PT (Yn+1 ∈ Rz

(
x; fτx,z

(Q1−α(µn))
)
|Xn+1 = x, Zn+1 = z

)
= PT (Vz(x, Yn+1) ≤ fτx,z

(Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)
. (10)

Let’s introduce the term PT (Vz(x, Yn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z) as follows:

PT (Vz(x, Yn+1) ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

= PT (Vz(x, Yn+1) ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

± PT (Vz(x, Yn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
. (11)

Now, we will control the difference between the two terms of the previous equation. Let A and B be
defined as

A = PT
(
f−1
τx,z

(Vz(x, Yn+1)) ≤ Q1−α(µn) < φ |Xn+1 = x, Zn+1 = z
)
,

B = PT
(
f−1
τx,z

(Vz(x, Yn+1)) ≤ φ ≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z
)
.

We have

PT (Vz(x, Yn+1) ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

= A+B + PT
(
φ < f−1

τx,z
(Vz(x, Yn+1)) ≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
,

and also

PT (Vz(x, Yn+1) ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
= A+B + PT

(
Q1−α(µn) < f−1

τx,z
(Vz(x, Yn+1)) ≤ φ |Xn+1 = x, Zn+1 = z

)
.

Therefore, the difference between the terms introduced in (11) can be rewritten as

PT (Vz(x, Yn+1) ≤ fτx,z (Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

− PT (Vz(x, Yn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)

= PT
(
φ < f−1

τx,z
(Vz(x, Yn+1)) ≤ Q1−α(µn) |Xn+1 = x, Zn+1 = z

)
− PT

(
Q1−α(µn) < f−1

τx,z
(Vz(x, Yn+1)) ≤ φ |Xn+1 = x, Zn+1 = z

)
. (12)

1. By definition of the total variation distance, we have

PT (Vz(x, Yn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)

≥ PT
(
Vz(x, Ŷn+1) ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)
− dTV(PY |X=x; ΠY |X=x).

Moreover, Lemma A.3 implies that

PT
(
Vz(x, Ŷn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z

)
= PT

(
Ŷn+1 ∈

{
y ∈ Y : Vz(x, y) ≤ fτx,z (φ)

}
|Xn+1 = x, Zn+1 = z

)
= PT

(
Ŷn+1 ∈ Rz(x; fτx,z (φ)) |Xn+1 = x, Zn+1 = z

)
= ΠY |X=x(Rz(x; fτx,z (φ))) ≥ 1− α.
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Therefore, we deduce that

PT (Vz(x, Yn+1) ≤ fτx,z (φ) |Xn+1 = x, Zn+1 = z
)
≥ 1− α− dTV(PY |X=x; ΠY |X=x).

Combining the previous result with (11) and (12) shows that

PT (Vz(x, Yn+1) ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
≥ 1−α−dTV(PY |X=x; ΠY |X=x)

− PT
(
Q1−α(µn) < f−1

τx,z
(Vz(x, Yn+1)) ≤ φ |Xn+1 = x, Zn+1 = z

)
.

Finally, using (10) gives a lower bound on PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z).

2. By definition of the total variation distance, we have

PT (Vz(x, Yn+1) ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
≤ PT

(
Vz(x, Ŷn+1) ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)
+ dTV(PY |X=x; ΠY |X=x).

Moreover, Lemma A.3 implies that

PT
(
Vz(x, Ŷn+1) ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)
= ΠY |X=x(Rz(x; fτx,z

(φ))).

Therefore, we deduce that

PT (Vz(x, Yn+1) ≤ fτx,z
(φ) |Xn+1 = x, Zn+1 = z

)
≤ ΠY |X=x(Rz(x; fτx,z (φ))) + dTV(PY |X=x; ΠY |X=x).

Finally, combining the previous result with (11) and (12) shows that

PT (Vz(x, Yn+1) ≤ fτx,z
(Q1−α(µn)) |Xn+1 = x, Zn+1 = z

)
≤ ΠY |X=x(Rz(x; fτx,z (φ))) + dTV(PY |X=x; ΠY |X=x) + qn+1(x, z).

A.2 BOUND ON p
(x,z)
n+1 AND q

(x,z)
n+1

The objective of this section is to study the conditional guarantee obtained in Theorem A.4. Under
some assumptions, we have demonstrated that the conditional coverage is controlled as follows:

1−α−dTV(PY |X=x; ΠY |X=x)−pn+1(x, z) ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z
(φ))) + dTV(PY |X=x; ΠY |X=x) + qn+1(x, z),

In the following, we consider the cumulative density functions F : t 7→ PT (f−1
τX,Z

(VZ(X,Y )) ≤ t)

and F̂ : t 7→ PT (f−1
τX,Z

(VZ(X, Ŷ )) ≤ t), where (X,Y, Z) ∼ PX × PY |X ×ΠZ|X and (X, Ŷ , Z) ∼
PX ×ΠY |X ×ΠZ|X . We denote by µ and µ̂ the law of the random variables f−1

τX,Z
(VZ(X,Y )) and

f−1
τX,Z

(VZ(X, Ŷ )). Moreover, recall that µn = 1
n+1

∑n
k=1 δf−1

τk
(Vk)

+ 1
n+1δ∞. Note, the quantile

Q1−α(µn) is an order statistic with a known distribution that converges to the true quantile Q1−α(µ).
The quantile is defined for any t ∈ (0, 1) by

Qt(ν) = inf{u ∈ R : ν((−∞, u]) ≥ t}, where ν ∈ {µ, µn, µ̂}. (13)

Theorem A.5. Assume H1-H2 hold, and let x ∈ Rd be such that ΠY |X=x is a probability measure.
For any ϵ ∈ [0, 1− α), if pϵ = PT (f−1

τX,Z
(VZ(X,Y )) < Q1−α−ϵ(µ)) ≤ 1− α, then it follows that

pn+1(x, z) ≤ PT
(
Q1−α−ϵ(µ) < f−1

τx,y
(Vz(x, Yn+1) ≤ Q1−α(µ̂) |Xn+1 = x, Zn+1 = z

)
+ exp

(
−npϵ(1− pϵ)h

(
1− α− pϵ
pϵ(1− pϵ)

))
,

where h : u 7→ (1 + u) log(1 + u)− u.
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Proof. Let ϵ ∈ [0, 1− α), x ∈ Rd, and consider

A = {Q1−α(µn) < Q1−α−ϵ(µ)} ,
Bx,z =

{
y ∈ Y : fτx,z (Q1−α−ϵ(µ)) < Vz(x, y) ≤ fτx,z (φ)

}
.

We have

PT (fτx,z
(Q1−α(µn)) < Vz(x, Yn+1 ≤ fτx,z

(φ) |Xn+1 = x, Zn+1 = z
)

≤ PT (A | Xn+1 = x, Zn+1 = z) + PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z) .

Now, let’s upper bound the first term of the right-hand side equation. First, remark that

{Q1−α(µn) < Q1−α−ϵ(µ)} ⇔
{

1

n+ 1

n∑
k=1

1f−1
τk

(Vk)<Q1−α−ϵ(µ)
≥ 1− α

}
.

Thus, we deduce that

PT (A | Xn+1 = x, Zn+1 = z) ≤ PT

(
n∑

k=1

1f−1
τk

(Vk)<Q1−α−ϵ(µ)
≥ (n+ 1)(1− α)

)
.

Recall that pϵ = PT (f−1
τX,Z

(VZ(X,Y )) < Q1−α−ϵ(µ)), and also that we assume pϵ ≤ 1 − α.
Therefore, the Bennett’s inequality (Boucheron et al., 2003, Theorem 2) implies that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp

(
−npϵ(1− pϵ)h

(
(n+ 1)(1− α)− npϵ

npϵ(1− pϵ)

))
, (14)

where h : u 7→ (1 + u) log(1 + u)− u. Moreover, define

uϵ =
1− α− pϵ
pϵ(1− pϵ)

, ũϵ =
(n+ 1)(1− α)− npϵ

npϵ(1− pϵ)
.

We have ũϵ ≤ uϵ, from the increasing property of h it follows that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp (−npϵ(1− pϵ)h(uϵ)) .

Furthermore, the definition of Bx,z gives

PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z)

= PT (fτx,z (Q1−α−ϵ(µ)) < Vz(x, Yn+1 ≤ fτx,z (φ) | Xn+1 = x, Zn+1 = z
)
.

Moreover, for any t ∈ (−∞, φ), we have

F̂ (t) = PT
(
f−1
τX,Z

(VZ(X, Ŷ )) ≤ t
)

=

∫
PT
(
f−1
τX,Z

(VZ(X, Ŷ )) ≤ t
∣∣∣X = x, Z = z

)
Π̄Z|X=x(dz)PX(dx)

=

∫
PT
(
Ŷ ∈ R

(
x, fτz,z (t)

) ∣∣∣X = x, Z = z
)
Π̄Z|X=x(dz)PX(dx).

Using H2, the bijective property of τ 7→ fτ (φ) implies the existence of ν ∈ T, such that fν(φ) =
fτz,z (t). Note that, ν < τx,z otherwise it would lead to fν(φ) ≥ fτx,z (φ) > fτx,z (t). The definition
of τx,z shows that

PT
(
Ŷ ∈ R (x, fν(φ))

∣∣∣X = x, Z = z
)
< 1− α.

Therefore, we deduce that Q1−α(µ̂) ≥ φ, and we can conclude that

PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z)

≤ PT
(
Q1−α−ϵ(µ) < f−1

τx,y
(Vz(x, Yn+1) ≤ Q1−α(µ̂) | Xn+1 = x, Zn+1 = z

)
. (15)

Finally, combining (14) and (15) concludes the proof.
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Given α ∈ (0, 1), define the threshold

ϵn =

√
8α(1− α) log n

n
. (16)

Lemma A.6. If the distribution of f−1
τX,Z

(VZ(X,Y )) is continuous, then for all ϵ ∈ [0, 1− α), we

have pϵ = PT (f−1
τX,Z

(VZ(X,Y )) < Q1−α−ϵ(µ)) = 1 − α − ϵ. Moreover, if ϵn ≤ α(1−α)
8 , then it

follows

exp

(
−npϵn(1− pϵn)h

(
1− α− pϵn
pϵn(1− pϵn)

))
≤ 1

n
,

where h : u 7→ (1 + u) log(1 + u)− u.

Proof. First, recall that Q1−α−ϵ(µ) is defined in (13). If the distribution of f−1
τX,Z

(VZ(X,Y )) is
continuous, then we have

1− α− ϵ ≤ F (Q1−α−ϵ(µ)) = sup
δ>0

F (Q1−α−ϵ(µ)− δ)

≤ PT
(
f−1
τX,Z

(VZ(X,Y )) < Q1−α−ϵ(µ)
)
= pϵ ≤ 1− α− ϵ.

Therefore, we deduce that pϵ = 1− α− ϵ. Let’s denote

δn = (n+ 1)(1− α)− npϵn , un =
(n+ 1)(1− α)− npϵn

npϵn(1− pϵn)
.

For any u ≥ 0, remark that log(1 + u) ≥ u− u2/2. Thus, we deduce

npϵn(1− pϵn)h (un) ≥ δn
(1 + un) log(1 + un)− un

un

≥ δn
un(1− un)

2
. (17)

Now, let’s show that un ≤ 1/4. We have

un =
(n+ 1)(1− α)− npϵn

npϵn(1− pϵn)

=
1− α

npϵn(1− pϵn)
+

1− α− pϵn
pϵn(1− pϵn)

=
1− α

n(α+ ϵn)(1− α− ϵn)
+

ϵn
(α+ ϵn)(1− α− ϵn)

.

Therefore, un ≤ 1/4 if and only if

1− α

n
+ ϵn ≤

(α+ ϵn)(1− α− ϵn)

4
.

The function ϵ ∈ [0, 1/2−α] 7→ (α+ϵ)(1−α−ϵ) is increasing. Since ϵn ≤ α(1−α)/8 ≤ 1/2−α,
it is sufficient to prove that

1− α

n
+ ϵn ≤

α(1− α)

4
.

Since ϵn ≤ α(1− α)/8, we just need to show that

1− α

n
≤ α(1− α)

8
, i.e.,

8α(1− α)

n
≤ α2(1− α). (18)

Again, using the fact that ϵn ≤ α(1− α)/8, we deduce that

8α(1− α)

n
=

ϵ2n
log n

≤ α2(1− α)2

8 log n
= α2(1− α)× (1− α)

8 log n
.
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Since (1−α)
8 logn ≤ 1, we deduce that (18) holds. This concludes that un ≤ 1/4. Moreover, for any

u ∈ [0, 0.25], we have

δn
u(1− u)

2
≥ uδn

4
.

Plugging the previous line in (17) implies that

exp (−npϵn(1− pϵn)h (un)) ≤ exp

(
− [(n+ 1)(1− α)− npϵn ]

2

4npϵn(1− pϵn)

)

≤ exp

(
− (1− α+ nϵn)

2

4n(α+ ϵn)(1− α− ϵn)

)

≤ exp

(
− nϵ2n
4(α+ ϵn)(1− α− ϵn)

)
. (19)

Lastly, since ϵn ≤ α, it follows that

nϵ2n
4(α+ ϵn)(1− α− ϵn)

=
2α(1− α) log n

(α+ ϵn)(1− α− ϵn)
≥ log n.

Combining the previous line with (19) completes the proof.

For any ϵ ∈ [0, α), define

qϵ = PT (f−1
τX,Z

(VZ(X,Y )) < Q1−α+ϵ(µ)).

Theorem A.7. Assume H1-H2 hold, and let x ∈ Rd be such that ΠY |X=x is a probability measure.
If the distribution of f−1

τX,Z
(VZ(X,Y )) is continuous and n−1 log n ≤ 8−3α(1− α), then, it holds

qn+1(x, z) ≤
1

n
+PT

(
Q1−α(µ̂) < f−1

τx,y
(Vz(x, Yn+1) ≤ Q1−α+ϵn(µ) |Xn+1 = x, Zn+1 = z

)
,

(20)

where ϵn is defined in (16).

Proof. Let’s consider

A = {Q1−α+ϵn(µ) < Q1−α(µn)} ,
Bx,z =

{
y ∈ Y : fτx,z

(Q1−α(µ̂)) < Vz(x, y) ≤ fτx,z
(Q1−α+ϵn(µ))

}
.

We have

PT (fτx,z
(Q1−α(µ̂)) < Vz(x, Yn+1 ≤ fτx,z

(Q1−α(µn)) |Xn+1 = x, Zn+1 = z
)

≤ PT (A | Xn+1 = x, Zn+1 = z) + PT (Yn+1 ∈ Bx,z | Xn+1 = x, Zn+1 = z) . (21)

Now, let’s upper bound the first term of the right-hand side equation. First, remark that

{Q1−α+ϵn(µ) < Q1−α(µn)} ⇔
{

1

n+ 1

n∑
k=1

1f−1
τk

(Vk)<Q1−α+ϵn (µ) < 1− α

}
.

Thus, we deduce that

PT (A | Xn+1 = x, Zn+1 = z) ≤ PT

(
n∑

k=1

1f−1
τk

(Vk)<Q1−α+ϵn (µn)
< (n+ 1)(1− α)

)
.

Recall that qϵn = PT (f−1
τX,Z

(VZ(X,Y )) < Q1−α+ϵn(µ)), and also that qϵn < 1 since the distribution
of f−1

τX,Z
(VZ(X,Y )) is continuous with 1 − α + ϵn < 1. Therefore, the Bennett’s inequality

(Boucheron et al., 2003, Theorem 2) implies that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp

(
−nqϵn(1− qϵn)h

(
(n+ 1)(1− α)− nqϵn

nqϵn(1− qϵn)

))
,

20



Published as a conference paper at ICLR 2025

where h : u 7→ (1 + u) log(1 + u)− u. Moreover, define

uϵn =
1− α− qϵn
qϵn(1− qϵn)

, ũϵn =
(n+ 1)(1− α)− nqϵn

nqϵn(1− qϵn)
.

We have ũϵn ≤ uϵn , from the increasing property of h combined with Lemma A.6, it follows that

PT (A | Xn+1 = x, Zn+1 = z) ≤ exp (−nqϵn(1− qϵn)h(uϵn)) ≤ n−1.

The previous inequality combined with (21) concludes the proof.

A.3 PROOF OF THEOREM 3.3

Oracle asymptotic conditional coverage. Before proving the result, we start by briefly discussing
the asymptotic conditional coverage guarantee. Assuming the availability of an oracle for the
predictive distribution, i.e., PY |X=x = ΠY |X=x,we get under H1 and H2, that for any t ∈ R,

P
(
VZ(X,Y ) ≤ fτX,Z

(t) |X = x, Z = z
)
= P

(
Y ∈ Rz(x; fτx,z

(t)) |X = x, Z = z
)

= ΠY |X=x

(
Rz(x; fτx,z

(t))
)
,

where (X,Y, Z) follows the same distribution than (Xk, Yk, Zk), k ∈ {1, . . . , n}. Note that
ΠY |X=x(Rz(x; fτx,z

(t))) ≥ 1− α if and only if t ≥ φ, which implies that

P(f−1
τX,Z

(VZ(X,Y )) ≤ t | (X,Z) = (x, z)) ≥ 1− α if and only if t ≥ φ. (22)

From (22) it is easily seen that the (1 − α)-quantile of f−1
τX,Z

(VZ(X,Y )) is φ. The Glivenko–
Cantelli Theorem (Van der Vaart, 2000, Theorem 19.1) demonstrates that supt∈R |µn(−∞, t] −
P(f−1

τX,Z
(VZ(X,Y )) ≤ t)| → 0 almost surely as n → ∞, where µn is defined in (7). Since the

convergence of the c.d.f. implies the convergence of the quantile function (Van der Vaart, 2000,
Lemma 21.2), we deduce that Q1−α(µn) → φ almost-surely as n → ∞. Under weak additional
conditions this implies that limn→∞ pn+1(x, z) = 0, Π̄Z|X × PX -almost everywhere, where Π̄Z|X
is the distribution used to draw the auxiliary variables z; see Appendix A.4. In this case, Theorem 3.1
implies the asymptotic validity of CP2.

Now we can prove a precise result that takes into account that only an estimate ΠY |X of the conditional
distribution PY |X=x is available.

Theorem A.8. Assume H1-H2 and suppose the distributions of f−1
τX,Z

(VZ(X,Y )) and
f−1
τX,Z

(VZ(X, Ŷ )) are continuous. For any α ∈ (0, 1) and ρ > 0, it holds

PT (∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ > ρ

)
≤ 2n−1 +

√
128α(1− α)n−1 log n+ 4dTV(PX,Y ;PX ×ΠY |X)

ρ
.

Proof. Let ρ > 0 be fixed. Applying Theorem 3.2, we obtain that

1−α−dTV(PY |X=x; ΠY |X=x)−pn+1(x, z) ≤ PT (Yn+1 ∈ Cα(Xn+1) | Xn+1 = x, Zn+1 = z)

≤ ΠY |X=x(Rz(x; fτx,z (φ))) + dTV(PY |X=x; ΠY |X=x) + qn+1(x, z). (23)

Step 1: Lower bound. Using the Markov’s inequality implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)
≤ PT (dTV(PY |X ; ΠY |X) + pn+1(X,Z) < ρ

)
≤ ET [dTV(PY |X ; ΠY |X)

]
+ ET [pn+1(X,Z)

]
ρ

. (24)

Moreover, using Theorem A.5 with Φ(ϵ) = ϵ[(u−1
ϵ −1) log(1+uϵ)−1] and uϵ = ϵ(α+ϵ)−1(1−α−ϵ),

it holds

ET [pn+1(X,Z)
]
= PT

(
Q1−α(µn) < f−1

τX,Z
(VZ(X,Y )) ≤ φ

)
≤ exp (−nΦ(ϵ)) + PT

(
Q1−α−ϵ(µ) < f−1

τn+1
(Vn+1) ≤ Q1−α(µ̂)

∣∣Xn+1 = x, Zn+1 = z
)
.
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By Lemma A.6, if n−1 log n ≤ 8−3α(1−α), then, setting ϵn =
√
8α(1− α)n−1 log n ensures that

exp(−nΦ(ϵn)) ≤ n−1. We assume in the following that n−1 log n ≤ 8−3α(1 − α), because, if it
not the case, the final upper bound obtained at the end of the proof is still valid. Thus, we get

ET [pn+1(X,Z)
]
≤ n−1 + PT

(
Q1−α−ϵn(µ) < f−1

τn+1
(Vn+1) ≤ Q1−α(µ̂)

)
. (25)

Let’s define γ̄ by
γ̄ = min(1, 1− α+ dTV(PX,Y ;PX ×ΠY |X)).

We now show that Q1−α(µ̂) ≤ Qγ̄(µ). By continuity of the cumulative density function of
f−1
τX,Z

(VZ(X, Ŷ )), we have

1− α = PT
(
f−1
τX,Z

(VZ(X, Ŷ )) ≤ Q1−α(µ̂)
)

≥ PT
(
f−1
τX,Z

(VZ(X,Y )) ≤ Q1−α(µ̂)
)
− dTV(PX,Y ;PX ×ΠY |X).

Hence, it follows that

PT
(
f−1
τX,Z

(VZ(X,Y )) ≤ Q1−α(µ̂)
)
≤ γ̄ ≤ PT

(
f−1
τX,Z

(VZ(X,Y )) ≤ Qγ̄(µ)
)
.

Thus, the previous line implies that Q1−α(µ̂) ≤ Qγ̄(µ). Once again, using the continuity of the
distribution of f−1

τX,Z
(VZ(X,Y )), we can write

PT
(
Q1−α(µ̂) < f−1

τx,y
(Vz(x, Yn+1)) ≤ Q1−α+ϵn(µ)

)
≤ PT

(
Q1−α−ϵn(µ) < f−1

τn+1
(Vn+1) ≤ Qγ̄(µ)

)
= F (Qγ̄(µ))− F (Q1−α−ϵn(µ)) = γ̄ + ϵn − 1 + α

= n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Plugging the previous inequality inside (25) yields

ET [pn+1(X,Z)
]
≤ n−1 +

√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Therefore, (24) implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)

≤ n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X) + ET [dTV(PY |X ; ΠY |X)

]
ρ

. (26)

Step 2: Upper bound. Using (23), we obtain

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) > 1− α+ ρ
)

≤ PT
(
ΠY |X=X(RZ(X; fτX,Z

(φ))) + dTV(PY |X=X ; ΠY |X=X) + q
(X,Z)
n+1 > 1− α+ ρ

)
.

The continuity of the distribution of f−1
τX,Z

(VZ(X, Ŷ )) implies

1− α = PT
(
f−1
τX,Z

(VZ(X, Ŷ )) ≤ φ
)
=

∫
ΠY |X=x(Rz(x; fτx,z

(φ)))Π̄Z|X=x(dz)PX(dx).

Since ΠY |X=x(Rz(x; fτx,z
(φ))) ≥ 1 − α, we deduce that ΠY |X=x(Rz(x; fτx,z

(φ))) = 1 − α
almost surely. Therefore, using the Markov’s inequality gives

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) > 1− α+ ρ
)
≤ ET [dTV(PY |X ; ΠY |X)

]
+ ET [q(X,Z)

n+1

]
ρ

.

(27)

Moreover, applying Theorem A.7 shows that

qn+1(x, z) ≤ n−1+PT
(
Q1−α(µ̂) < f−1

τx,y
(Vz(x, Yn+1)) ≤ Q1−α+ϵn(µ) |Xn+1 = x, Zn+1 = z

)
.

(28)
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Let’s define γ by
γ = min(1, 1− α− dTV(PX,Y ;PX ×ΠY |X)).

We now show that Qγ(µ) ≤ Q1−α(µ̂). By continuity of the cumulative density function of
f−1
τX,Z

(VZ(X, Ŷ )), we have

1− α = PT
(
f−1
τX,Z

(VZ(X, Ŷ )) ≤ Q1−α(µ̂)
)

≤ PT
(
f−1
τX,Z

(VZ(X,Y )) ≤ Q1−α(µ̂)
)
+ dTV(PX,Y ;PX ×ΠY |X).

Hence, it follows that

γ ≤ PT
(
f−1
τX,Z

(VZ(X,Y )) ≤ Q1−α(µ̂)
)
.

Thus, we deduce that Q1−α(µ̂) ≥ Qγ(µ). Using the continuity of the distribution of
f−1
τX,Z

(VZ(X,Y )), we can write

PT
(
Q1−α(µ̂) < f−1

τx,y
(Vz(x, Yn+1)) ≤ Q1−α+ϵn(µ)

)
≤ PT

(
Qγ(µ) < f−1

τx,y
(Vz(x, Yn+1)) ≤ Q1−α+ϵn(µ)

)
= F (Q1−α+ϵn(µ))− F

(
Qγ(µ)

)
= ϵn − 1 + α− γ

= n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Plugging the previous inequality inside (28) yields

ET [q(X,Z)
n+1

]
≤ n−1 +

√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X).

Therefore, (27) implies that

PT (PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1) < 1− α− ρ
)

≤ n−1 +
√
8α(1− α)n−1 log n+ dTV(PX,Y ;PX ×ΠY |X) + ET [dTV(PY |X ; ΠY |X)

]
ρ

. (29)

Step 3: Bound on ET [dTV(PY |X ; ΠY |X)
]
. Let’s denote νY |X=x = 2−1(PY |X=x + ΠY |X=x).

Since PY |X=x ≪ νY |X=x and ΠY |X=x ≪ νY |X=x, there exists two Radon–Nikodym derivatives
g1(x, ·) and g1(x, ·) of PY |X=x and ΠY |X=x with respect to νY |X=x. Moreover, g1 and g2 are also
the Radon–Nikodym derivatives of PX,Y and PX ×ΠY |X with respect to PX × νY |X . By definition
of the total variation distance, we have

ET [dTV(PY |X ; ΠY |X)
]
=

∫
dTV(PY |X ; ΠY |X)PX(dx)

=
1

2

∫
|g1(x, y)− g2(x, y)| νY |X=xPX(dx)

= dTV(PX,Y ;PX ×ΠY |X). (30)

Step 4: Combination. Finally, using (26)-(29) and (30), it follows that

PT (∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ > ρ

)
≤ 2n−1 +

√
128α(1− α)n−1 log n+ 4dTV(PX,Y ;PX ×ΠY |X)

ρ
.

Note that the proof assumes n−1 log n ≤ 8−3α(1 − α). To ensure the validity of the previous
bound even when this assumption does not hold, we increased the term

√
32α(1− α)n−1 log n to√

128α(1− α)n−1 log n.

Now we are ready to prove the result of Theorem 3.3.
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Theorem A.9. Assume H1-H2-H3 hold. If the distributions of f−1
τX,Z

(VZ(X,Y )) and

f−1
τX,Z

(VZ(X, Ŷ )) are continuous, then, ∀ϵ ∈ (0, 1) there exists (Λ
(ϵ)
n )n∈N such that

lim infn→∞ P((Xn+1, Zn+1) ∈ Λ
(ϵ)
n ) ≥ 1− ϵ and also

sup
(x,z)∈Λ

(ϵ)
n

∣∣PT (Yn+1 ∈ Cα(Xn+1) | (Xn+1, Zn+1) = (x, z))− 1 + α
∣∣ = OP

(√
n−1 log n+ rn

)
.

Proof. First of all, define the following variables

cn+1(x, z) =
∣∣PT (Yn+1 ∈ Cα(Xn+1) | (Xn+1, Zn+1) = (x, z))− 1 + α

∣∣ ,
dn = dTV(PX,Y ;PX ×Π

(mn)
Y |X ).

Applying Theorem A.8, we obtain

P (cn+1(Xn+1, Zn+1) > ρ) ≤ P (dn > rn) + P (cn+1(Xn+1, Zn+1) > ρ; dn ≤ rn)

≤ P (dn > rn) + E
[
1dn≤rnPT (cn+1(Xn+1, Zn+1) > ρ)

]
≤ P (dn > rn) +

2n−1 +
√

128α(1− α)n−1 log n+ 4rn
ρ

.

Finally, using H3, we get limn→∞ P(dn > rn) = 0. Therefore, for any ϵ > 0, there exist Mϵ > 0
and ñϵ ∈ N such that, ∀n ≥ ñϵ, it holds

P
(
cn+1(Xn+1, Zn+1) > Mϵ ×

(√
n−1 log n+ rn

))
≤ ϵ. (31)

Given ϵ ∈ (0, 1), let’s consider the following set

Λ(ϵ)
n =

{
(Xn+1(ω), Zn+1(ω)) : ω ∈ Ω, cn+1(Xn+1, Zn+1)(ω) ≤Mϵ ×

(√
n−1 log n+ rn

)}
.

Equation (31) implies that

lim inf
n→∞

P
(
(Xn+1, Zn+1) ∈ Λ(ϵ)

n

)
≥ 1− ϵ,

and by definition of Λ(ϵ)
n , we also have

sup
(x,z)∈Λ

(ϵ)
n

cn+1(x, z) = OP

(√
n−1 log n+ rn

)
.

Note that, (31) also shows that∣∣PT (Yn+1 ∈ Cα(Xn+1) |Xn+1, Zn+1)− 1 + α
∣∣ = OP

(
n−1/2

√
log n+ rn

)
.

A.4 ADDITIONAL RESULTS

Let’s denote the conditional c.d.f of f−1
τX,Z

(VZ(X,Y )) by

Fx,z(·) =
∫
Rd×Z

P
(
f−1
τx,z

(Vz(x, Y )) ≤ · | (X,Z) = (x, z)
)
Π̄Z|X=x(dz)PX(dx).

Lemma A.10. Assume that Q1−α(µn) → φ almost-surely as n → ∞. If FX,Z is continuous
almost-surely, then limn→∞ p

(x,z)
n+1 = 0, Π̄Z|X × PX -almost everywhere.

Proof. First, define the following sets:

A =
{
ω ∈ Ω: lim

n→∞
Q1−α(µn(ω)) = φ

}
,

B =
{
ω ∈ Ω: FX(ω),Z(ω) is continuous

}
.
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For all ω ∈ A ∩B, it holds

lim
n→∞

FX(ω),Z(ω) (Q1−α (µn(ω)) ∧ φ) = FX(ω),Z(ω) (φ) .

Moreover, note that we can write

p
(x,z)
n+1 = Fx,z(φ)− Fx,z(φ ∧Q1−α(µn)).

Hence, we deduce that

1 = P (A ∩B) ≤ P
(
ω ∈ Ω: lim

n→∞
FX(ω),Z(ω) (Q1−α (µn(ω)) ∧ φ) = FX(ω),Z(ω) (φ)

)
= P

(
lim
n→∞

p
(X,Z)
n+1 = 0

)
=

∫
Rd×Z

P
(
lim
n→∞

p
(x,z)
n+1 = 0

∣∣ (X,Z) = (x, z)
)

PZ|X=x(dz)PX(dx).

The last line implies that p(x,z)n+1 → 0 almost PZ|X × PX -everywhere.

The prediction set, defined in (6), is derived from the (1 − α)-quantile of the conformity scores
{f−1

τk
(Vk)}nk=1 ∪ {∞}. However, {∞} can be removed from these conformity scores. Inspired

by Romano et al. (2019); Sesia & Candès (2020), we prove a corollary of Theorem 3.1. Its result
demonstrates the marginal validity of the prediction set defined as

C̄α(x) = Rz

(
x; fτx,z

(
Q(1−α)(1+n−1)

(
1
n

∑n
k=1 δf−1

τk
(Vk)

)))
. (32)

While the prediction set C̄α(x) relies on the quantile of the distribution 1
n

∑n
k=1 δf−1

τk
(Vk)

, its proof
reveals that this prediction set is equivalent to Cα(x).

Corollary A.11. Under the same assumptions as in Theorem 3.1, for any α ∈ [1/(n + 1), 1], we
have

1− α ≤ P
(
Yn+1 ∈ C̄α(Xn+1)

)
< 1− α+

1

n+ 1
,

where the upper bound only holds if the conformity scores {f−1
τk

(Vk)}n+1
k=1 are almost surely distinct.

Proof. Let α ∈ R such that (n+ 1)−1 ≤ α ≤ 1, and recall that

µn =
1

n+ 1

n∑
k=1

δf−1
τk

(Vk)
+

1

n+ 1
δ∞.

Since α ≥ (n+ 1)−1, the quantile Q1−α(µn) is the kα-th order statistic of V̄1, . . . , V̄n, where

V̄k = f−1
τk

(Vk), and kα = ⌈(1− α)(n+ 1)⌉.

However, ∀β ∈ (kα−1
n , kα

n ], we have

Qβ

(
1
n

∑n
k=1 δV̄k

)
= V̄(kα).

Since Cα(Xn+1) = RZn+1
(Xn+1; fτn+1

(V̄(kα))), Theorem 3.1 implies that

1− α ≤ P
(
Yn+1 ∈ RZn+1

(
Xn+1; fτn+1

(
Qβ

(
1
n

∑n
k=1 δV̄k

))))
< 1− α+

1

n+ 1
.

Setting β = (1−α)(1 + n−1) in the previous inequality and using the definition of C̄α(Xn+1) given
in (32) concludes the proof.
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B EXPERIMENTAL SETUP AND RESULTS

B.1 DETAILS OF THE EXPERIMENTAL SETUP

We use the Mixture Density Network (Bishop, 1994) implementation from CDE (Rothfuss et al.,
2019) Python package3 as a base model for CP, PCP and CP2. The underlying neural network
contains two hidden layers of 100 neurons each and was trained for 1000 epochs for each split of the
data. Number of components of the Gaussian Mixture was set to 10 for all datasets.

For the CQR (Romano et al., 2019) and CHR (Sesia & Romano, 2021) we use the original authors’
implementation4. The underlying neural network that outputs conditional quantiles consists of two
hidden layers with 64 neurons each. Training was performed for 200 epochs for batch size 250.

For the CPCG (Gibbs et al., 2023) we also use the original authors’ implementation5. We use the
same splits and preprocessing steps as for other methods. The underlying prediction model is neural
network with of two hidden layers of 64 neurons and is trained for 1000 epochs with early stopping.
Embeddings from the last layer are collected to form feature maps, denoted as Φ(X) in the original
paper. A linear functional class F is used. We fixed some minor bugs in the authors code to avoid an
infinite loop and decreased maximum number of iterations to lower the computational cost.

For LCP (Guan, 2023) we once again used the original author’s implementation6. The only change
was that we supplied our own preprocessed and split data, the same for all the methods discussed.
Most datasets had to be subsampled for training the model since the method computes full Hessian
on the train set, its SVD decomposition, and also uses cross-validation estimates of the residuals
(scores). We kept all the hyperparameter values as in the original implementation.

For CDSplit+ we use the implementation from Wang et al. (2023) 7. The same repository also pro-
vides implementation of datasets preprocessing, Mixture Density Network training and an adaptation
of CQR that we built upon. The number of clusters for CDSplit+ was set to 20, the profile density
distance was estimated by partitioning y space into a grid of size 100.

We replicated the experiments for 50 random splits of all nine datasets. To lower noise in calculated
performance metrics, we reuse trained networks and samples across different top-level algorithms for
each replication.

B.2 WORST-SLAB COVERAGE

Here we present some additional experiments related to conditional coverage achieved by different
methods. We have used Worst Slab Coverage metric, which is sensitive to the set of labs considered
during the search. Following (Cauchois et al., 2020; Romano et al., 2020b), recall that a slab is
defined as

Sv,a,b =
{
x ∈ Rp : a < vTx < b

}
,

where v ∈ Rp and a, b ∈ R, such that a < b. Now, given the prediction set Cα(x) and δ ∈ [0, 1], the
worst-slab coverage is defined as:

WSC(Cα, δ) = inf
v∈Rp,a<b∈R

P (Y ∈ Cα(X) | X ∈ Sv,a,b) s.t. P(X ∈ Sv,a,b) ≥ 1− δ.

In our experiments we follow (Romano et al., 2020b) in our implementation of this metric. Namely,
we use 25% of the data to find the worst slab and the use the remaining 75% to calculate the final
value on this slab. We use 5000 randomly sampled directions, that are the same for each algorithm
and change for each replication.

B.3 EXTENDED RESULTS OF REAL DATA EXPERIMENTS

Table 3 summarizes all metrics from our real-world data experiments. For conditional coverage we
report worst-slab coverage with (1− δ) = 0.1. On six out of nine datasets CP2 method achieves the

3https://github.com/freelunchtheorem/Conditional_Density_Estimation
4https://github.com/msesia/chr
5https://github.com/jjcherian/conditional-conformal
6https://github.com/LeyingGuan/LCP
7https://github.com/Zhendong-Wang/Probabilistic-Conformal-Prediction
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best result in conditional coverage. In terms of interval width PCP method produces the narrowest
intervals.As we can see, it happens at the expense of conditional coverage: PCP often achieves
significantly lower values.

We also present a more detailed view of set size differences between the methods. In the main part we
reported average rank of each method in Figure 8. We ranked the algorithms by their projected area
at each test point and averaged the ranks. Here we show raw areas of the projections onto each pairs
of axes for sgemm_small dataset in Table 4. All targets were standardized to zero mean and unit
standard deviation so that different projections will be in the same scale. We see that PCP produces
smaller set sizes like in one-dimensional case. Quantile-regression based methods have the largest
sets, even larger than the fixed-sized sets of CP. Our approach demonstrates only modest increase in
prediction set size compared to PCP while achieving sharper conditional coverage.

Table 2: Summary results of experiments on real data.

Dataset Metric CP PCP ΠY |X CP2-D CP2-L CHR CQR CQR2 CPCG LCP CDS+

bike
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.92
C. Cov. 0.79 0.85 0.92 0.89 0.89 0.88 0.90 0.87 0.90 0.87 0.90
wsd 0.71 0.71 0.83 0.80 0.79 1.94 2.25 2.31 0.76 1.58 0.61

bio
M. Cov. 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90
C. Cov. 0.88 0.89 0.91 0.90 0.90 0.90 0.89 0.89 0.89 0.89 0.89
wsd 2.34 1.89 1.95 1.95 1.97 1.92 2.13 2.10 2.04 2.25 1.54

blog
M. Cov. 0.90 0.90 0.91 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.96
C. Cov. 0.60 0.74 0.91 0.90 0.89 0.87 0.87 0.86 0.87 0.74 0.93
wsd 0.60 0.30 0.72 0.71 0.72 0.31 0.44 0.39 0.71 0.59 0.67

fb1
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.96
C. Cov. 0.49 0.64 0.92 0.89 0.88 0.87 0.90 0.87 0.86 0.66 0.90
wsd 0.47 0.28 0.58 0.59 0.56 0.26 0.37 0.33 0.60 0.42 0.61

fb2
M. Cov. 0.90 0.90 0.93 0.90 0.90 0.90 0.90 0.90 0.89 0.90 0.96
C. Cov. 0.50 0.61 0.91 0.88 0.88 0.88 0.89 0.89 0.87 0.65 0.90
wsd 0.53 0.32 0.65 0.65 0.62 0.33 0.43 0.37 0.54 0.44 0.76

meps19
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.89 0.90 0.90 0.90 0.92
C. Cov. 0.54 0.78 0.89 0.89 0.90 0.90 0.88 0.89 0.89 0.68 0.88
wsd 1.05 0.73 1.02 1.07 1.19 0.76 1.14 1.19 1.19 0.98 0.71

meps20
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.92
C. Cov. 0.58 0.80 0.89 0.90 0.90 0.91 0.88 0.89 0.89 0.71 0.89
wsd 1.06 0.75 0.98 1.04 1.15 0.77 1.09 1.17 1.29 1.05 0.74

meps21
M. Cov. 0.90 0.90 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.92
C. Cov. 0.54 0.81 0.89 0.89 0.89 0.90 0.89 0.88 0.88 0.68 0.88
wsd 1.04 0.72 0.99 1.04 1.16 0.79 1.13 1.21 1.24 1.04 0.71

temp
M. Cov. 0.90 0.90 0.82 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.91
C. Cov. 0.87 0.89 0.81 0.89 0.88 0.86 0.85 0.86 0.89 0.87 0.89
wsd 0.87 0.92 0.78 0.93 0.96 1.31 1.48 1.30 1.18 1.25 0.86

Table 3: Summary results of experiments on real data. “M. Cov.” stands for marginal coverage, “C.
Cov.” is the worst-slab coverage (here (1−δ) = 0.1), and wsd is average total length of the prediction
sets, scaled by standard deviation of Y . Nominal coverage level is set to (1− α) = 0.9. For ΠY |X ,
PCP, CP2-PCP we use the same underlying mixture density network model with 50 samples. CHR
and CQR(2) also share the same base neural network model. We average results of 50 random data
splits. For each dataset, we highlighted the algorithm achieving conditional coverage closest to the
nominal level.

B.4 OTHER PERSPECTIVE ON CONDITIONAL COVERAGE

The worst-slab coverage metric used in the previous section is not always helpful: (1) it provides a
single number for each method, and (2) the selected slab is different for each algorithm. In practice we
might be interested in how sharp the coverage is along the portion of the input space spanned by the
test data. To explore this, we used two approaches: dimensionality reduction and clustering. Results
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Figure 9: Worst-slab coverage on real data (mean and stdev.). Results averaged over 50 random splits
of each dataset. Calibration and test set sizes set to 2000, 50 conditional samples for PCP, CP2 and
ΠY |X . Worst-slab coverage parameter (1− δ) = 0.1. Nominal coverage level is (1− α) = 0.9 and
is shown in dashed black. Methods with conditional coverage below 0.75 are not shown.

Table 4: Prediction set size comparison for sgemm_small dataset. Rows correspond to different
pairs of targets (dataset has 4 targets). For each method the reported value is the mean area of the 2D
projection of the prediction set to the corresponding axes pair.

CP2

Axes CP PCP ΠY |X PCP-L PCP-D CHR CQR CQR2

(0, 1) 2.137 0.435 0.517 0.576 0.560 2.290 2.550 2.436
(0, 2) 2.145 0.435 0.518 0.577 0.561 2.267 2.506 2.358
(0, 3) 2.145 0.436 0.519 0.578 0.561 2.086 2.366 2.172
(1, 2) 2.146 0.435 0.517 0.576 0.560 2.388 2.622 2.546
(1, 3) 2.146 0.435 0.517 0.576 0.560 2.166 2.461 2.314
(2, 3) 2.154 0.436 0.519 0.578 0.562 2.153 2.430 2.255

for clustering with HDBSCAN are presented in the main part in Figure 5, here turn to dimensionality
reduction.

First we apply UMAP algorithm to project data to two dimensions and then construct a heatmap
plot to show coverage in each bin of the histogram. Results for meps_19 dataset are presented in
Figure 10. Nominal coverage is set to (1− α) = 0.9 and corresponds to gray part of the color scale.
We can see that our method and baseline ΠY |X perform better than CP and PCP across the space.

B.5 ADDITIONAL SYNTHETIC DATA EXPERIMENTS

B.5.1 UNIMODAL SETTING

To extend our toy one-dimensional example from the main part, we also test out our algorithm
and other methods on a synthetic dataset with multiple input dimensions. We generate a dataset
with 10000 instances, 10 input features and one output as follows: first we sample features from
multivariate normal distribution with a random full rank covariance and then compute values of target
variable using the Rosenbrock function. We follow the same evaluation protocol as for our main
experiments and results are summarized in Figures 11 and 12.
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Figure 10: Conditional coverage after dimensionality reduction, meps_21 dataset. Data projected to
two dimensions using UMAP algorithm with Canberra metric, with the n_neighbors hyperpa-
rameter set to 2. Nominal coverage is set to (1− α) = 0.1, it corresponds to gray on the color scale.
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Figure 11: Conditional coverage for synthetic data. Nominal coverage is set to (1− α) = 0.1, shown
in dashed red.

On this data most methods provide adequate results with the exception on CP, which significantly
undercovers. The sharpest conditional coverage is demonstrated by our methods with CPCG following
close behind. Size of the intervals is also smaller for our methods, although CP and PCP produce
even shorter intervals. Methods based on NN quantile regression produce largest intervals, even
though we are in the unimodal setting, where we expect the opposite.
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Figure 12: Sizes of the prediction sets on synthetic data. We divide the size of the set by the standard
deviation of response to present the results on the same scale.
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Figure 13: Conditional coverage for high-dimensional synthetic data. Nominal coverage is set to
(1− α) = 0.1, shown in dashed black.

B.5.2 HIGH DIMENSIONAL SETTING

In this experiment we employ the same procedure to generate the datasets. This time we generate
multiple datasets with varying number of input features ranging from 10 to 20000 on a log scale. We
keep the size of training data fixed at 10000 instances, use 2000 samples for calibration and testing
and all other settings like in our previous setup. Due to computational constraints we consider a
limited number of methods. Results are shown in Figures 13 and 14. As shown by our baseline ΠY |X ,
conditional coverage performance of the base model decreases with the number of features, similar
results can be seen in set size plot. Other methods all increase the set size dramatically as well. We
do not see any performance benefits of our approach in this setting, perhaps due to the simplicity of
the underlying function. Generating complex multidimensional regression datasets and continuing
this line of analysis we will continue in future work.
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Figure 14: Sizes of the prediction sets for high-dimensional synthetic data. We divide the size of the
set by the standard deviation of response to present the results on the same scale.

C ADDITIONAL DISCUSSIONS

C.1 HIGHEST PREDICTIVE DENSITY (HPD) REGIONS

CP2 with Explicit Conditional Density estimate: CP2-HPD. Assume that an estimator the
conditional density function is known, denoted by γY |X=x. The confidence set is defined as
R(x; t) = {y ∈ Y : γY |X=x(y) ≥ −t}. We omit the variable z from the notation, as we do
not consider exogenous randomization in this case. The parameter τx is obtained by solving

τx = argmin
{
τ ∈ R :

∫
R(x;τ)

γY |X=x(y) dy ≥ 1− α
}
. (33)

We then compute V (x, y) = −γY |X=x(y) and derive the prediction set as

Cα(x) =
{
y ∈ Y : γY |X=x(y) ≥ −fτx (Q1−α (µn))

}
.

If we take fτ (v) = v and φ = 1, the method shares similarity with the CD-split method, proposed
in (Izbicki et al., 2020). While CD-split uses V (x, y) as the conformity score, our method uses
f−1
τx (V (x, y)), which incorporates the information from τx to modify γY |X=x(y). The CP2-HPD

workflow is summarized in Algorithm 2.

Of course, the computation of (33) is in general highly non-trivial. Izbicki et al. (2020) suggested to
use binning, therefore approximating the conditional predictive distribution with histograms. The
method is restricted to the case where the dimension of Y the response is small; see (Izbicki et al.,
2020) for the case of Y = R. When the dimension becomes larger, then the estimation of HPD is
typically based on Monte Carlo methods, thus requiring the introduction of auxiliary variables.

The HPD set is theoretically the optimal confidence region in terms of size. Izbicki et al. (2022)
developed two algorithms, CD-split and HPD-split, which converge to the HPD set; see Theorem 27
and Theorem 28. In HPD-split, the conformity score is Ĥ(f̂(y | x) | x) rather than f̂(y | x), where
H(z | x) approximates the conditional CDF of f(Y | X). This ensures that H(f(Y | X) | X) ∼
U(0, 1) given X , which implies that H(f(Y | X) | X) is independent of X . Consequently, if
f̂(y | x) converges to f(y | x), it is expected that Ĥ(f̂(Y | X)) becomes approximately independent
of X . However, computing H(f(Y | X) | X) requires integrating the conditional density, which can
be challenging in high-dimensional spaces.
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Our CP2-PCP method offers a more practical approach for high-dimensional settings by generating
balls centered at sampled points with radii set in function of x. This adaptive radius helps mitigate the
issues of under-coverage or over-coverage often encountered with PCP. Additionally, the prediction
set being a union of balls, is particularly beneficial when dealing with multimodal data.

Algorithm 2 CP2-HPD

Input: dataset {(Xk, Yk)}k∈[n], significance α, conditional density γY |X , function ft.
// Compute the (1− α)-quantile
for k = 1 to n do

Set Vk = −γY |X=Xk
(Yk)

Set τk = τXk
as given in (5)

Q1−α (µn)← ⌈(1− α)(n+ 1)⌉-th smallest value in {f−1
τk

(Vk)}k∈[n] ∪ {∞}
// Compute the prediction set for a new point x ∈ Rd

Compute τx in (5).
Output: Cα(x) = {y ∈ Y : γY |X=x(y) ≥ −fτx(Q1−α(µn))}.

C.2 DISCUSSION ON THE ASSUMPTIONS

H1: Assumption on the shape of confidence regions. This assumption does not impose restrictive
constraints on the shape of the confidence regions. It allows for a broad class of geometries, making
it widely applicable. Most prediction sets proposed in the literature naturally satisfy this assumption.
For instance, it permits level sets of a density function or unions of ellipsoidal regions.

H2: Monotonicity of τ 7→ fτ (φ). We assume that the function τ 7→ fτ (φ) is monotonic and
specifically increasing. This property ensures that the region R(x; fτx(φ)) expands as the parameter
τx increases. This assumption is crucial because we want the confidence region to grow in size as the
parameter τx increases.

H3: Convergence in total variation. This assumption ensures the convergence of PX ⊗ ΠY |X
to PX ⊗ PY |X in total variation. While this condition is essential for the theoretical validity of our
approach, it is also the most challenging to verify in practice. Kernel-based density estimators satisfy
this condition under specific choices of the kernel function and the bandwidth parameter; see, for
example, (Devroye & Lugosi, 2001, Chapter 9) and (Li et al., 2022).

C.3 DISCUSSION ON ADDITIONAL METHODS

Kiyani et al. (2024) introduce a Partition Learning Conformal Prediction (PLCP), a method designed
to improve conditional coverage by leveraging learned partitioning of the covariate space into m
groups. Key aspects of the methodology are as follows:

1. Optimization Framework. The optimization problem is framed to minimize the empirical risk
using the pinball loss function, a well-known loss metric for quantile regression. Specifically:

h∗, q∗ = arg min
q∈Rm, h∈H

1

n

n∑
j=1

m∑
i=1

hi(Xj) ℓα(qi, Sj),

where h represents the partitioning function over the covariate space and q represents
quantile thresholds.

2. Prediction Set Construction. The optimal prediction set is defined as:

C∗(x) = {y : S(x, y) ≤ q∗i ∼ h∗(x)}.

We used the notation qi ∼ p to denote the random variable that takes the value qi with
probability pi. [VP: change here.] This ensures that the prediction set provides conditional
guarantees by dynamically adapting to the learned partition.
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NAME fτ (v) f−1
τ (v) φ

Linear τv τ−1v 1
Difference τ + v v − τ 0

Table 5: Adjustment Functions ft, their inverses f−1
τ and φ values used in our experiments.

3. Pinball Loss. The pinball loss, a core component of the optimization problem, is defined as:

ℓα(q, s) =

{
α(q − s) if q ≥ s,

(1− α)(s− q) if q < s.

By minimizing this loss, the method aligns quantile estimation with desired coverage levels.
4. Optimal Prediction Set. The proposed prediction set Copt(x) guarantees full conditional

coverage:
Copt(x) = {y ∈ Y : S(X,Y ) ≤ q1−α(S | X = x)}.

Here, q1−α(x) is derived as the minimizer of the pinball loss over the joint distribution of
covariates X and outcomes S:

q1−α(·) ∈ arg min
f : X→R

E(X,S)∼D ℓα(f(X), S).

Theoretical results control the Mean Squared Conditional Error of PLCP (Kiyani et al., 2024,
Corollaries 3.7 and 3.12). It measures the deviation of the conditional coverage from the threshold
1− α.

Choice of ft. We present examples of mappings ft and their inverses f−1
τ in Table 5. The

choice of the mapping ft is crucial for the performance of the method, and we investigate their
impact in Section 4. For instance, choosing fτ (v) = τv results in approximately conditionally
valid prediction sets, as long as ΠY |X=x accurately estimates the conditional distribution PY |X=x;
see Theorems 3.2-3.3. Initially we also considered other adjustment functions based on exponent,
sigmoid and tanh functions, but they all performed worse than linear and sum. As we show in
Table 3, these two selected adjustment function perform similarly, showing only marginal differences
on some datasets. Designing new adjustment functions is a possible future research direction.
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