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1 Patch Alignment for Recurrent-based VSR Transformer
The proposed patch alignment method can also be applied to the recurrent VSR framework. Recurrent
VSR methods [2, 3, 13] use bidirectional propagation scheme to maximize information gathering in
VSR and have achieved the state-of-the-art performance. By replacing the CNN backbone with the
Transformer backbone, we can easily build a recurrent VSR Transformer. We employ the second-
order grid propagation framework similar to BasciVSR++ [3], where the intermediate features are
propagated both forward and backward in an alternating fashion. Through propagation, information
from different frames can be used for feature refinement. We replace the feature propagation bock with
the MFSAB blocks presented in the main text. The architecture of this recurrent VSR Transformer is
shown in Figure 2.

Alignment modules are not absent in the existing recurrent methods. In each feature propagation
block, features from different frames are aligned to extract information from the adjacent frames,
improving feature expressiveness. BasicVSR [2] uses flow-based alignment method for both images
and features and BasicVSR++ [3] uses flow-guided deformable convolution (FGDC) alignment. The
proposed patch alignment is also compatible with this architecture. We test different alignment
methods on the recurrent VSR Transformer; the results are shown in Table 1. In the recurrent VSR
Transformers in this Table, we use 12 MFSABs with shortcut connections every 3 MFSABs for each
feature propagation block. The feature size is set to 100, and the number of attention heads is 4.
The baseline is the original BasicVSR++ model that uses FGDC and CNN backbone. Replacing
the CNN with Transformer blocks can bring a PSNR improvement of 0.5dB on the REDS test set.
However, the FGDC alignment used 7.8M parameters, accounting for almost half of all parameters.
Replacing the FGDC alignment with the proposed patch alignment achieves competitive results
without introducing additional parameters – our method saves 7.8M of parameters. This experiment
illustrates the effectiveness of the proposed patch alignment method.

(a) VSR Transformer (window size 8)
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Figure 1: The distribution of the move-
ment for the Vid4 [9] test sets.

In the main text, we report that the proposed PSRT-
recurrent trained using 16 frames demonstrates the state-
of-the-art performance on the VSR task, even compared
with BasicVSR++, which was trained using 30 frames. We
also tried using 30 frames when training PSRT-recurrent.
The training curve is shown in Figure 3. It can be seen that
PSRT-recurrent can still be greatly improved from more
training frames. However, training with 30 frames takes
much longer time than with 16 frames, which makes this
method uneconomical. In Table 4 we also compare the
state-of-the-art contemporaneous work RVRT [7]. When
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Figure 2: The framework of the used recurrent-based VSR Transformer.
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Figure 3: The comparison of
with different training frames.
Training with 30 frames leads to
better performance at the cost of
a larger training cost.
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Figure 4: We compare the patch alignment method and no align-
ment on the Vimeo-90K dataset. In this case of small movements,
no alignment can already achieve good performance, and patch
alignment will not bring much improvement. This shows that
Transformers can directly handle a small range of misalignment.

RVRT uses 30 frames for training, it can achieve similar performance to PSRT-recurrent when it was
trained with 16 frames. This also demonstrates the superior performance of our method.

2 Patch Alignment for the Vimeo-90K Dataset
Unlike the REDS [10] dataset, the motion in the Vimeo-90K dataset [14] tends to be smaller.
According to Figure 2 in the main text, movement magnitudes of 98% pixels in the Vimeo-90K
dataset are less than 8. As shown from Table 1 in the main text, VSR Transformer without alignment
can outperform other alignment methods on this dataset. A natural question is whether the proposed
patch alignment is still effective for a small-motion dataset. We conduct an ablation study on the
Vimeo-90K and the Vid4 dataset. Table 2 reports the results. We also show the training curve of
these two methods in Figure 4 and the distribution of pixel movement for the Vid4 [9] test set in
Figure1. As can be observed from the distribution of movement, the Vid4 dataset contains no pixels
whose movement magnitudes are larger than 5. Since most of the motion in these two datasets
is within the range that VSR Transformer can handle, there is no significant difference between
patch alignment and no alignment method, even no alignment version performs slightly better on
Vimeo-90K. The validation curve also demonstrates that patch alignment and no alignment show
comparable performance. This experiment confirms our conclusions that (1) we can get good results
using VSR Transformers without additional alignment for a specific range of misalignment, and
(2) the proposed patch alignment does not introduce as many negative effects as other alignment
methods.

Finally, we present the results of recurrent VSR Transformer with patch alignment method trained
using 14 frames in Table 4. This method achieves state-of-the-art performance on both the Vimeo-90K
test set and the Vid4 test set.

3 The FLOPs and Runtime of the Proposed Method
We calculate the average FLOPs of our method and some existing methods. This FLOPs is calculated
using LR frames with size 180× 320. We also record their average runtime. The results are shown
in Table 3. As can be seen, the number of parameters of our method is less than other Transformer
methods. One of the reasons is that our method saves a lot of parameters on the alignment module.
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Table 1: Ablation study on the different alignment methods and backbone networks. The results are
tested on REDS4 [10] dataset for 4× video super-resolution on RGB channels.

Method Frames Params(M) PSNR SSIM

BasicVSR++ [3], The baseline model 6 7.3 31.38 0.8898
Flow-guided Deformable Alignment + Transformer 6 18.6 31.89 0.8967
Patch Alignment + Transformer 6 10.8 31.88 0.8964

Table 2: Ablation study of patch alignment method trained using the Vimeo-90K dataset. The results
are tested on Vimeo-90K-T and Vid4 for 4× video super-resolution on Y channel. The experiments
with 7 training frames were only trained from scratch for 300K iterations.

Method Frames Params Vimeo-90K-T Vid4
PSNR SSIM PSNR SSIM

PSRT-recurrent w/o alignment 7 12.0 37.87 0.9508 27.71 0.8403
PSRT-recurrent 7 13.4 37.80 0.9502 27.72 0.8409

Our FLOPs and runtime are also within a reasonable range. As the acceleration and optimization of
Transformers are still to be studied, we believe that given our relatively small FLOPs, there is room
for further optimization of the runtime of our method. For the training time, only VRT reports their
training time. VRT need 15 days to train and the proposed PSRT-recurrent needs 18 days to train.
Our method’s training time and cost are roughly the same compared with VRT.

4 Discussion about VSRT

We notice an exception in the effect of the alignment module to a VSR Transformer, i.e., the VSRT
model. Although the VSRT model [1] also employs Transformer as the backbone design, the
alignment module is necessary for it. Removing alignment in VSRT introduces severe performance
degradation. This conflicts with our conclusion. Our discussion on this issue is as follows. The VSRT
uses a token size of 8× 8. In the VSRT, self-attention is calculated between different tokens. This
calculation is free of the indicative bias of locality. But within the 8 × 8 token, only convolution
layers and MLP layers participate in the calculation. This calculation is subject to locality bias. If the
8× 8 token is not well-aligned, the convolution layers and MLP layers cannot handle unaligned video
frame tokens, and self-attention between tokens cannot help improve this. Therefore, the situation of
VSRT does not conflict with the argument of this paper.

5 Limitation

Our work discusses alignment in the VSR task, whose downsampling operation leads to unique LR
patterns. We believe that other downsampling methods will have similar effects, such as blurring
and directly downsampling (the “BD” downsampling in other papers). For these downsampling
methods, the conclusions of this paper are still valid. Some of the observations may not apply to
other video restoration tasks, because the multi-frame information they need to use may differ. For
other video restoration tasks, we believe that the proposed method will still lead to improvement
since theoretically patch alignment preserves more information. But if patch alignment is applied
without modification, the resulted improvement may not be as big as in the VSR task. Because the
nature of the sub-pixel information will change for other applications, the network design can also be
changed (such as adding multi-scale designs). We only have limited space in this paper. However, we
emphasise the importance of research in this direction and reserve it for future work.

6 More Experiments

We show more visual comparisons between the existing VSR methods and the proposed recurrent
VSR Transformer with the patch alignment method. We use 16 frames to train on the REDS dataset
and seven on the Vimeo-90K dataset. Figure 5 shows the visual results. It can be seen that, in addition
to its quantization improvement, the proposed method can generate visually pleasing images with
sharp edges and fine details, such as horizontal bar patterns of buildings and numbers on license
plates. In contrast, existing methods suffer from texture distortion or loss of detail in these scenes.
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Table 3: The comparison of the parameter numbers, FLOPs and the runtime for different methods.

Method Parameters (M) FLOPs (T) Runtime (ms)

DUF 5.8 2.34 974
RBPN 12.2 8.51 1507
EDVR [12] 20.6 2.95 378
VSRT [1] 32.6 1.6 –
VRT [5] 35.6 1.3 243
PSRT-recurrent (Ours) 13.4 1.5 812

Table 4: Quantitative comparison (PSNR↑ and SSIM↑) on the REDS4 [10] dataset, Vid4 [9], Vimeo-
90K-T [14] dataset for 4× VSR task. Red indicates the best and blue indicates the second best
performance (best view in color) in each group of experiments.

Method Frames Params REDS4 Vimeo-90K-T Vid4
REDS/Vimeo (M) PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic -/- - 26.14 0.7292 31.32 0.8684 23.78 0.6347
RCAN [15] -/- - 28.78 0.8200 35.35 0.9251 25.46 0.7395
SwinIR [6] -/- 11.9 29.05 0.8269 35.67 0.9287 25.68 0.7491

TOFlow [14] 5/7 - 27.98 0.7990 33.08 0.9054 25.89 0.7651
DUF 7/7 5.8 28.63 0.8251 - - 27.33 0.8319
PFNL 7/7 3.0 29.63 0.8502 36.14 0.9363 26.73 0.8029
RBPN 7/7 12.2 30.09 0.8590 37.07 0.9435 27.12 0.8180
EDVR [12] 5/7 20.6 31.09 0.8800 37.61 0.9489 27.35 0.8264
MuCAN [4] 5/7 - 30.88 0.8750 37.32 0.9465 - -
VSR-T [1] 5/7 32.6 31.19 0.8815 37.71 0.9494 27.36 0.8258
PSRT-sliding 5/- 14.8 31.32 0.8834 - - - -

VRT 6/- 30.7 31.60 0.8888 - - - -
PSRT-recurrent 6/- 10.8 31.88 0.8964 - - - -

BasicVSR [2] 15/14 6.3 31.42 0.8909 37.18 0.9450 27.24 0.8251
IconVSR [2] 15/14 8.7 31.67 0.8948 37.47 0.9476 27.39 0.8279
BasicVSR++ [3] 30/14 7.3 32.39 0.9069 37.79 0.9500 27.79 0.8400
VRT 16/7 35.6 32.19 0.9006 38.20 0.9530 27.93 0.8425
RVRT [7] 30/14 10.8 32.75 0.9113 38.15 0.9527 27.99 0.8462
PSRT-recurrent 16/14 13.4 32.72 0.9106 38.27 0.9536 28.07 0.8485

7 Detail of Experiments
We present details of the experiments involved in this paper so that anyone can reproduce our results.
Figure 2 and Figure 1 illustrate the distribution of the movement for three datasets used in our
work: Vimeo-90K test set [14], REDS [10] test set and Vid4 [9] test set. We use the pre-trained
SypNet [11] to calculate the optical flow. For clips in the Vimeo-90K and Vid4 test set, we measure
the motion of the 4th and the 7th frames. For clips in the REDS test set, we measure the motion of the
3rd and the 5th frames. This arrangement is related to the common usage of sliding-window-based
VSR models on these datasets: we use seven frames as input on Vimeo-90K, while we only use
five frames on REDS. The optical flow result contains two maps, which are the movement in the
x-direction Wx ∈ RH×W and the movement in the y-direction Wy ∈ RH×W . We use the magnitude
to indicate the movement of each pixel

Wm
i,j =

√
|Wx

i,j |2 + |Wy
i,j |2, Wm ∈ RH×W .

Figure 3 shows the variation curve of the total variation of the fine-tuned optical flow during
training. The total variation is often used to indicate how smooth the optical flow is. The total
variation of noise-contaminated optical flow is significantly larger than that of the noise-free optical
flow. Given the optical flow {Wx,Wy}, the total variation is calculated as

total variation =
1

2HW

H∑
i=1

W∑
j=1

(|Wx
i,j−1 −Wx

i,j |+ |Wy
i+1,j −Wy

i,j |).

We calculate the total variation every 5000 iterations.
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Figure 4 shows the performance differences between VSR Transformers with and without alignment
modules for different pixel movements. The VSR Transformer backbone used in this figure contains
16 Multi-Frame Self-Attention Blocks (MFSABs). Similar to SwinIR [6], we add shortcut connections
every 4 MFSABs. The feature dimension is 120, and the head number of the multi-head self-attention
is 6. To plot the differences, we first partition the pixels into different groups according to their
movement conditions and then calculate the mean square error for each group. We subtract the mean
square errors of the VSR Transformer with alignment from the errors of the VSR Transformer without
alignment. Thus, the parts greater than zero indicate better performance without alignment.

For the first sub-figure, we study the image alignment. The window size is set to 8. We keep the other
settings for the second sub-figure and enlarge the window size to 12. For the third sub-figure, we
replace the image alignment to feature alignment. In addition to the 2D convolution feature extraction,
we add one CNN residual block to extract deep features. These experiments are performed under the
same training settings described in Section 3 in the main text.

Table 1 shows the quantitative comparison of different VSR methods. For VSR CNNs, we use ten
residual blocks [8] to extract features for all the input frames. We concatenate the features and reduce
the channel number using a convolution layer. Five residual blocks are then used to conduct further
processing. The VSR Transformers involved in this table share similar backbone architecture with
the VSR Transformers in Figure 4, which contains 16 MFSABs with shortcut connections every 4
MFSABs. The feature dimension is 120, and the head number of the multi-head self-attention is 6.
The training method is the same as described in section 3 of the main text. For the methods in which
the flow network is not fixed, the learning rate for the flow network is 2.5× 10−5. For the first 5,000
iterations, the flow network is fixed.

Figure 5 shows the curves of some of the methods in Table 1. One can refer to Table 1 for the
experimental details. The calculation of the movement distribution is the same as in Figure 2. The
only difference is that we show the percentage in Figure 5, not the counts of pixels.

Table 2 and Table 3 share the same training setting and Transformer backbone. The VSR Trans-
former backbone contains 36 MFSABs with shortcut connections every 6 MFSABs. The window
size is set to 8. The channel size of the transformer and head size are set to 144 and 6. The training
method is the same as described in Section 3 of the main text. For the methods in which the flow
network is not fixed, the learning rate for the flow net is 5× 10−5. For the first 20,000 iterations, the
flow network is fixed. The implementation of different alignment methods is the same as described in
Section 3 of the main text.

Table 4 shows the quantitative comparison between the proposed method and the state-of-the-art
VSR methods. Due to the space limit, we only show limited results in the main text; the full version
is shown in Table 4.

The architecture of the PSRT-recurrent is shown in Figure 2 and described in Section 1. For each
feature propagation block in PSRT-recurrent, we use 18 MFSABs with shortcut connections every 6
MFSABs. The feature size is set to 120, and the number of attention heads is 6.

The PSRT-sliding backbone contains 36 MFSABs with shortcut connections every 6 MFSABs. The
window size is set to 8. The channel size of the transformer and head size are set to 144 and 6.

For the PSRT-recurrent with 16 input frames and the PSRT-sliding method, the total training iteration
is 600K. The initial learning rate for these experiments is set to 2× 10−4. All other settings remain
unchanged. For the PSRT-recurrent trained on Vimeo-90K, we follow [3] to initialize the model with
the well-trained model using REDS. We fine-tune it for the other 300K iterations. The initial learning
rate is 1× 10−4.
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Figure 5: Visual comparison of VSR (×4) on REDS, Vimeo-90K and Vid4 datasets.
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