
Under review as a conference paper at ICLR 2024

A CHARACTERIZATIONS OF CRITICAL COMPONENTS

Given the graph G = (V,E) and vertex labeling y, let S(y ∩ N(C)) = {A1, . . . , Am} be the
connected components induced by this labeling with Ai ⊆ F (y). Let G′ = (V ′, E′) be the subgraph
induced by this vertex labeling with V ′ =

⋃m
i=1 Ai and E′ =

⋃m
i=1 E[Ai] where E[Ai] = {{j, k} ∈

E : j, k ∈ Ai}. Given a set U ⊆ V ′, the subgraph induced by this set is G′[U] = (U,E[U]).

Let µ : P(G′) → N count the number of connected components in a given graph, where P(G′) is
the set of all subgraphs of a graph G′. We compute the disjoint union of subgraphs in the set P(G′).
Given the graphs G1 = (V1, E1) and G2 = (V2, E2), a disjoint union is defined as G1 ∪ G2 =
(V1 ∪ V2, E1 ∪ E2).

Lemma 1. µ has the following properties:

(i) µ(G′[∅]) = 0.
(ii) Non-negativity. µ(G′[U]) ≥ 0 for all U ⊆ V ′.

(iii) Finite additivity. For any collection {Ui}ni=1 of pairwise disjoint sets with Ui ⊆ V ′,

µ
(n⋃

i=1

G′[Ui]
)
=

∑
i=1

µ(G[Ui]).

Proof. µ(G′[∅]) = 0 because the empty set does not contain any vertices. This function is non-
negative by the definition of connected components. For finite additivity, a disjoint union over
pairwise disjoint graphs does not affect the connectivity among vertices. Thus, this property holds
by using basic set operations in an inductive argument.

A.1 GENERAL CASE

Lemma 2. Given any component C ∈ Sy(y9), there exists a unique A ∈ S(y ∩ N(C)) such that
C ⊆ A.

Proof. Choose any j ∈ C, then yj ̸= 0 by the definition of the false negative mask. Given that
j ∈ F (y), this implies that there exists some Ai ∈ S(y) with j ∈ Ai and so C ⊆ ∪mi=1Ai. Using
this inclusion, the set C can be decomposed as

C = C ∩
m⋃
i=1

Ai =

m⋃
i=1

C ∩Ai.

This collection of sets is pairwise disjoint since {Ai}mi=1 is a collection of connected components.

Next, we claim that there exists a unique Aj ∈ S(y) such that C ∩ Aj ̸= ∅. By contradiction,
suppose there exists a distinct Ak ∈ S(y) with C ∩ Ak ̸= ∅. But this assumption implies the
existence of a path between Aj and Ak via C because C ⊆ F (y ∩N(C)) along with C ∩ Aj ̸= ∅
and C ∩ Ak ̸= ∅. Since this contradicts Aj and Ak being disjoint, Aj must be unique. Lastly, we
can use this uniqueness property to conclude that

C =

m⋃
i=1

C ∩Ai = C ∩Aj

which implies that C ⊆ Aj .

Theorem 1. A component C ∈ Sy(ŷ9) is negatively critical if and only if there exists an A ∈
S(y ∩N(C)) with A ⊇ C such that either: (1) A = C or (2) ∃ v0, vk ∈ A \C such that there does
not exist a path (v0, . . . , vk) ⊆ N(C) with vi /∈ C for i = 1, . . . , k − 1.

Proof. (⇒) Consider the case when C ∈ Sy(ŷ9) is negatively critical due to |S(y ∩ N(C))| >
|S((y⊖C)∩N(C))|. Suppose that S(y ∩N(C)) = {A1, . . . , Am}, then starting from Equation 1

12

Under review as a conference paper at ICLR 2024

leads to the identity

|S((y ⊖ C) ∩N(C))| = µ
(m⋃

i=1

G′[Ai \ C]
)

=

m∑
i=1

µ(G′[Ai \ C])

=

m∑
i=1
i ̸=j

µ(G′[Ai]) + µ(G′[Aj \ C])

= |S(y ∩N(C))| − 1 + µ(G′[Aj \ C]) (2)

where the second equality holds by µ being a finitely additive function defined over a collection
of pairwise disjoint sets by Lemma 1. The third equality holds by using that there exists a unique
Aj ∈ S(y) such that C ⊆ Aj by Lemma 2. Under the assumption that |S(y ∩N(C))| > |S((y ⊖
C) ∩N(C))|, it must be the case that µ(G′[Aj \ C]) = 0. Thus, we have that Aj \ C = ∅ which
implies Aj ⊆ C and so Aj = C.

Next consider the case when C ∈ Sy(ŷ9) is negatively critical due to |S(y ∩ N(C))| < |S((y ⊖
C)∩N(C))|. Again using the identity in Equation 2, the assumed inequality implies that µ(G′[Aj \
C]) ≥ 2 and so G′[Aj \ C] must contain at least two connected components. Thus, this set can be
decomposed into connected components such that

Aj \ C =

K⋃
k=1

Bk ⊆ S((y ⊖ C) ∩N(C))

with K ≥ 2. For any v0 ∈ B1 and vk ∈ B2, it is impossible to construct a path between these ver-
tices that does not pass through C. Otherwise, this would imply that B1 and B2 are path-connected
in the graph G′[Aj \ C] and not distinct connected components.

(⇐) Assume that Condition 1 holds, then ∃Aj ∈ S(y ∩ N(C)) such that Aj = C. The follows
immediately by

|S((y ⊖ C) ∩N(C))| = |S(y ∩N(C))| − 1 + µ(G′[Aj \ C])

= |S(y ∩N(C))| − 1 + µ(G′[C \ C])

= |S(y ∩N(C))| − 1 + µ(G′[∅])

= |S(y ∩N(C))| − 1

=⇒ |S((y ⊖ C) ∩N(C))| < |S(y ∩N(C))|.
Now assume that Condition 2 holds, then there exists distinct components B1, B2 ∈ S((y ⊖ C) ∩
N(C)) with B1, B2 ⊂ A \ C such that v0 ∈ B1 and vk ∈ B2. Since B1, B2 ⊂ A \ C are distinct
components in the graph G′[A \ C], the final result holds by

|S((y ⊖ C) ∩N(C))| = |S(y ∩N(C))| − 1 + µ(G′[Aj \ C])

≥ |S(y ∩N(C))| − 1 + µ(G′[B1] ∪G′[B2])

= |S(y ∩N(C))| − 1 + µ(G′[B1]) + µ(G′[B2])

= |S(y ∩N(C))|+ 1

=⇒ |S((y ⊖ C) ∩N(C))| > |S(y ∩N(C))|.

A.2 SPECIAL CASE

Lemma 3. A component C ∈ Sy(ŷ9) is negatively critical with if and only if there exists an A ∈
S(y ∩N(C)) with A ⊇ C such that either: (1) A = C or (2) ∃ v0, vk ∈ A \C such that there does
not exist a path (v0, . . . , vk) ⊆ N(C) with vi /∈ C for i = 1, . . . , k − 1.

13

Under review as a conference paper at ICLR 2024

Proof. The forward direction holds by applying the same argument use to prove Theorem 1. For
the converse, we can again apply the same argument to prove that |S(y)| ̸= |S(y ⊖ C)| which then
implies that C is negatively critical.

Lemma 4. Given a component C ∈ Sy(ŷ9) and A ∈ S(y) with A ⊇ C, ∃ v0, vk ∈ A such that
there does not exist a path (v0, . . . , vk) ⊆ A \ C with vi /∈ C for i = 1, . . . , k − 1 if and only if
∃B′

1, B
′
2 ∈ S(y ⊖ C) with B′

1, B
′
2 ⊂ A such that B′

1 ∪ C ∪B′
2.

Proof. (⇒) It must be the case that ŷv0 = yv0
since {v0, v1} ∈ E and v1 ∈ C. This implies that

(y ⊖ C)v0 ̸= 0 and so there exists some B′
1 ∈ S(y ⊖ C) with v0 ∈ B′

1. By the same argument,
(y ⊖ C)vk ̸= 0 and there exists some B′

2 ∈ S(y ⊖ C) with vk ∈ B′
2. Moreover, v0 and vk must

belong to distinct component, i.e. B′
1 ̸= B′

2, since these nodes are not connected in the subgraph
induced by y ⊖ C. Lastly, B′

1 ∪ C ∪ B′
2 is connected due to the existence of the path (v0, . . . , vk)

from B′
1 to B′

2 via C.

(⇐) The converse holds immediately since B′
1 and B′

2 are disjoint by definition.

Lemma 5. Given a component C ∈ Sy(ŷ9) and A ∈ S(y) with A ⊇ C, ∃B′
1, B

′
2 ∈ S(y ⊖ C)

with B′
1, B

′
2 ⊂ A such that B′

1 ∪ C ∪ B′
2 is connected if and only if ∃B1, B2 ∈ S(y ⊖ ŷ9) with

B1, B2 ⊂ A such that B1 ∪ C ∪B2 is connected.

Proof. (⇒) Given that B′
1∪C∪B′

2 is connected, there exists a path (v0, . . . , vk) from B′
1 to B′

2 via
C since B′

1 and B′
2 are disjoint. It must be the case that ŷv0 = yv0 since {v0, v1} ∈ E and v1 ∈ C.

This implies that (y⊖C)v0 ̸= 0 and so ∃B1 ∈ S(y⊖ ŷ9) with v0 ∈ B1. The same argument can be
applied to vk to prove ∃B2 ∈ S(y ⊖ ŷ9) with vk ∈ B2. Thus, the same path that connects the sets
B′

1, B
′
2, and A also connects B1, B2, and A.

(⇐) The converse holds by applying the same argument.

Corollary 1. A component C ∈ Sy(ŷ9) is negatively critical with |S(y)| ≠ |S(y ⊖ C)| if and only
if there exists an A ∈ S(y) with A ⊇ C such that either: (1) A = C or (2) ∃B1, B2 ∈ S(y ⊖ ŷ9)
with B1, B2 ⊂ A such that B1 ∪ C ∪B2 is connected.

Proof. This result nearly follows immediately by applying Lemmas 3 - 5.

Corollary 2. A component C ∈ Sy(ŷ+) is positively critical with |S(ŷ)| ̸= |S(ŷ ⊖ C)| if and only
if there exists an A ∈ S(ŷ) with A ⊇ C such that either: (1) A = C or (2) ∃B1, B2 ∈ S(ŷ ⊖ ŷ+)
with B1, B2 ⊂ A such that B1 ∪ C ∪B2 is connected.

Proof. Let z = ŷ and ẑ9 = ŷ+, then the result follows immediately by applying Corollary 1.

A.3 COMPUTATION

Corollary 3. A component C ∈ Sy(ŷ9) is negatively critical with |S(y)| ≠ |S(y ⊖ C)| if and only
if ∃A ∈ S(y) with A ⊇ C such that either: (1) ∄ i ∈ D(C) with i ∈ A or (2) ∃B1, B2 ∈ S(y⊖ ŷ9)
with B1, B2 ⊂ A such that i ∈ B1 and j ∈ B2 for some i, j ∈ D(C).

Proof. First, we prove that Condition 1 is equivalent to Condition 1 in Corollary 1. For the forward
direction, Lemma 2 implies that C ⊆ A. Now choose any i ∈ A, then it must be the case that i ∈ C
since A is connected and ∄j ∈ D(C) with yi = yj . The converse is trivial since A = C implies that

D(C) = N(C) \ C = N(A) \A

and so ∄i ∈ D(C) with i ∈ A since the set A is entirely removed from D(c).

Next, we prove that Condition 2 is equivalent to Condition 2 in Corollary 1. Let v0 = i and vk = j,
there exists a path connecting these vertices contained in C since these nodes are connected to the
boundary of C which is a connected set. For the converse, B1∪C∪B2 being connected but B1∪B2

being disconnected implies that there exists a path (v0, . . . , vk) from B1 to B2 via C. Since this path
passes through C, it must be the case that ∃vi, vj ∈ D(C) such that vi ∈ B1 and vj ∈ B2.

14

Under review as a conference paper at ICLR 2024

Theorem 2. The computational complexity of computing critical components is O(n) with respect
to the number of voxels in the image.

Proof. This algorithm involves first precomputing the false negative and false positive masks which
can be computed in linear time by comparing each entry in the prediction and ground truth. Next,
we must also precompute the following sets of connected components: S(y), S(ŷ), S(y ⊖ ŷ9), and
S(ŷ⊖ ŷ+). Since connected components can be computed in linear time, these precomputations can
also be done in linear time Cormen et al. (2009).

Next, a BFS is performed over both ŷ9 and ŷ+ to extract the connected components of the false
negative and/or positive masks. During this BFS, we can determine whether a component satisfies
Corollary 3 in lines 13-21 in Algorithm 2. A BFS is a linear time algorithm Cormen et al. (2009).
Since the operations in lines 13-18 can be achieved in constant time, the complexity of this BFS is
still linear.

B EXTENSION TO AFFINITY MODELS

An affinity model is a graph-based segmentation model where the main objective is to determine
whether neighboring nodes belong to the same segment. Given a graph G = (V,E) and ground
truth segmentation y, let δ : E → {0, 1} be the affinity function given by

δ({i, j}) =
{
1 if i, j ∈ A

0 otherwise

for some A ∈ S(y). One important advantage of affinity models is that instance segmentation can
be equivalently formulated as a binary classification task. This property is especially useful when
the number of segments is unknown and distinct objects may touch.

In recent years, neural networks have been successfully used to learn edge affinities (Turaga et al.,
2010). This model is formulated as learning affinity channels where each channel represents the
connectivity along a certain direction (e.g. vertical or horizontal). Thus, the loss function is defined
as a sum over loss functions corresponding to each channel.
Definition 4. Let L : Rnk × Rnk → R be the topological loss function for an affinity-based model
with k channels be given by

L(Y, Ŷ) =

k∑
i=1

L0(y
(i), ŷ(i)) + αL−(y

(i), ŷ(i)) + β L+(y
(i), ŷ(i))

such that α, β ∈ R+ and L0 is an arbitrary loss function (e.g. cross entropy or Dice coefficient).

Affinity-based models involve a transformation between voxel and edge-based representations of an
image. It is important to note that critical components are defined with respect to the voxel-based
representation of an image. This means that training an affinity-based model with our topological
loss function involves performing this transformation after generating each prediction.

Although each prediction can be directly transformed to voxels, it is more computationally efficient
to first compute the false negative and positive mask of each channel and then perform the transfor-
mation. The reason being that computing connected components in linear in the number of voxels
in the foreground. Since the false negative and positive masks can be computed in constant time
and typically have significantly fewer foreground voxels, it’s much faster to compute connected
components of these masks as opposed to the prediction.

C EXPERIMENTS

C.1 TRAINING PROTOCOL

For the neuron segmentation experiments, we trained a U-Net performs segmentation by learn-
ing 3-d affinities (see Appendix B for more details), then apply a watershed-based algo-
rithm that agglomerates a 3D over-segmentation computed from the 3D affinity prediction. In

15

Under review as a conference paper at ICLR 2024

this experiment, we implemented these methods by using the following Github repositories:
https://github.com/jgornet/NeuroTorch and https://github.com/funkey/waterz.

Each model was trained for a total of 1500 epochs with a learning rate of 10−3 and batch size of
8. For the topological loss functions, we used the first 300 epochs to train a baseline model, then
fine-tuned the model for the last 1200 epochs.

C.2 EVALUATION METRICS

C.2.1 NEURON SEGMENTATION

The main objective of neuron segmentation is to reconstruct the morphology of individual neurons
and uncover the connectivity between them. Following segmentation, each object is skeletonized to
produce a graphical representation of the neuron. Thus, we use skeleton-based metrics, rather than
voxel-based metrics, to evaluate the performance of each model since the final result is a skeleton
(Januszewski et al., 2017).

Let Si = (Vi, Ei) be an undirected graph that represents the skeleton of the i-th object in a ground
truth segmentation y. Let {S1, . . . , Sn} be a collection of skeletons such that there exists is a bijec-
tion between skeletons and objects in the segmentation. Let Vi be the vertex set and assume that a
node u ∈ Vi is defined by the 3-d coordinates φ(u). Given a node u ∈ Vi, let y[φ(u)] be the label
of node u in the ground truth segmentation. Let ŷ be the predicted segmentation to be evaluated.

A split is a pair of nodes u1, u2 ∈ Vi such that ŷ[φ(u1)] ̸= ŷ[φ(u2)] and either (i) {u1, u2} ∈ Ei

or (ii) there exists a path (u1, w1, . . . , wt, u2) such that wr = 0 for all r = 1, . . . , t. The metric #
Splits is the number of splits in the collection of ground truth skeletons {S1, . . . , Sn},

Splits =
n∑

i=1

∣∣{{u1, u2} ∈ V 2
i : u1, u2 is a split

}∣∣
An edge {u, v} ∈ Ei is said to be omit if (i) ŷ[φ(u)] = 0 or ŷ[φ(v)] = 0 and (2) there exists a path
(ws, . . . , w1, u, v, w

′
1, . . . , w

′
t) such that ws, w

′
t is a split where wr = 0 for all r = 1, . . . , s− 1 and

w′
r = 0 for all r = 1, . . . , t − 1. The metric % Omit is the percentage of edges that are omit from

the ground truth,

% Omit = 100 ·
∑n

i=1

∣∣{e ∈ Ei : e is omit}
∣∣∑n

i=1 |Ei|
Note that one challenge of detecting omit edges is that this criteria is sensitive to minor misalign-
ments between the ground truth skeleton and predicted segmentation mask. The purpose of the
second criteria is to prevent misalignments from being detected as omits.

Figure 6: Here we see a single ground truth skeleton and predicted segmentation mask that consists
of three connected components. Edge {1, 2} is omit but not considered a split. Edges {3, 4} and
{4, 5} are not considered to be omit, these edges are only slightly misaligned with the predicted
segmentation. Edge {5, 6} is a split. Edges {6, 7} and {7, 8} are both omits. In addition, there is a
split between nodes 6 and 8.

16

Under review as a conference paper at ICLR 2024

Figure 7: In this example, we see that edge {1, 2}, {3, 4}, and {4, 5} are merged.

Let Ŝi = (V̂i, Êi) be an undirected graph that represents the skeleton of the i-th object in a predicted
segmentation ŷ. Let {Ŝ1, . . . , Ŝm} be a collection of skeletons such that there exists is a bijection
between skeletons and objects in the segmentation.

A merge is a pair of nodes u1, u2 ∈ V̂i such that y[φ(u1)] ̸= y[φ(u2)] and either (i) {u1, u2} ∈ Êi

or (ii) there exists a path (u1, w1, . . . , wt, u2) such that wr = 0 for all r = 1, . . . , t. The metric #
Merges is the number of merges in the collection of predicted skeletons {Ŝ1, . . . , Ŝn},

Merges =
m∑
i=1

∣∣{{u1, u2} ∈ V̂ 2
i : u1, u2 is a merge

}∣∣
Note that the definition of a merge is nearly identical to the definition of a split. The difference
is that splits are detected by comparing the ground truth skeletons and predicted segmentation. In
contrast, merges are detected by comparing the predicted skeletons and ground truth segmentation.

An edge {uj , vj} ∈ Ei is merged if these exists an edge {uk, vk} ∈ Ei such that ŷ[φ(ui)] =
ŷ[φ(uk)] and ŷ[φ(vi)] = ŷ[φ(vk)] but y[φ(ui)] ̸= y[φ(uk)] and y[φ(vi)] = y[φ(vk)]. The metric
% Merged is the fraction of edges that are merged,

% Merged = 100 ·
∑n

i=1

∣∣{e ∈ Ei : e is merged}
∣∣∑n

i=1 |Ei|

The metric Edge Accuracy is the fraction of correctly reconstructed edges in the ground truth skele-
tons,

Edge Accuracy = 100− (% Omit + % Merged)

C.2.2 VESSEL SEGMENTATION

We use the following metrics to evaluate our proposed loss function in the vessel segmentation task:

Accuracy: Fraction of correctly labeled voxels.

Dice: Metric that combines precision and recall into a single value to provide a balanced measure
of a model’s performance.

Adapted Rand Index (ARI): Metric used to measure the similarity between two clusterings by
comparing the agreement and disagreement in pairwise assignments. In this version of the Rand,
index zero is excluded as a component.

Variation of Information (VOI): Variation of Information (VOI): distance measure between
two clusterings by measuring the amount of information lost or gained when transitioning from one
clustering to another.

C.2.3 ADDITIONAL EXPERIMENTAL RESULTS

Figure 5 from Section 4 shows qualitative results on image patches from the DRIVE dataset. In
Figure 8, we show the predicted segmentations on the full images.

17

Under review as a conference paper at ICLR 2024

Figure 8: Qualitative results of the proposed method on the EXASPIM and DRIVE dataset. Baseline
is a U-Net trained with cross entropy and Proposed is a U-Net trained with our supervoxel loss.

18

Under review as a conference paper at ICLR 2024

Table 3: Quantitative results on individual blocks from the EXASPIM dataset
Method Block Dimensions # Splits % Omitted # Merges % Merged % Accuracy

Cross Entropy

(512, 1024, 1024) 23 2.61 0 0 97.39
(1024, 1024, 1024) 78 20.71 8 27.19 52.10
(1024, 1024, 1024) 27 4.20 2 13.16 82.64
(1024, 1024, 1024) 30 13.23 6 12.36 74.41

Dice

(512, 1024, 1024) 14 5.50 0 0 94.50
(1024, 1024, 1024) 92 38.31 7 32.92 28.87
(1024, 1024, 1024) 13 7.96 0 0 92.04
(1024, 1024, 1024) 34 15.66 9 23.51 60.83

clDice

(512, 1024, 1024) 2 0.86 0 0 99.24
(1024, 1024, 1024) 126 16.69 4 8.13 75.18
(1024, 1024, 1024) 11 5.11 1 7.17 87.72
(1024, 1024, 1024) 30 3.33 5 9.21 87.46

Simple Voxel

(512, 1024, 1024) 22 3.54 0 0 96.46
(1024, 1024, 1024) 107 16.62 6 4.83 78.55
(1024, 1024, 1024) 9 5.26 1 17.01 94.57
(1024, 1024, 1024) 22 10.29 13 2.42 87.29

MALIS

(512, 1024, 1024) 4 0.50 0 0 99.50
(1024, 1024, 1024) 82 14.63 6 6.32 79.05
(1024, 1024, 1024) 13 5.31 1 5.58 89.11
(1024, 1024, 1024) 22 9.55 5 8.54 81.91

Ours

(512, 1024, 1024) 1 0.90 0 0 99.10
(1024, 1024, 1024) 50 7.83 8 9.21 82.96
(1024, 1024, 1024) 6 2.86 0 0 97.14
(1024, 1024, 1024) 10 6.41 6 7.67 85.92

19

