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A Appendix

A.1 Related Work

Language models and compression. Shannon’s source coding theorem (Shannon, 1948)
first formalized the duality between prediction and compression. The connection between
language modeling and compression was studied as far back as Shannon (1950), which
observed that more accurate models of English can compress text in fewer bits. Other works
note the connection between Kolmogorov complexity (Kolmogorov, 1965) and Shannon
information in detail (Grunwald & Vitanyi, 2004). Delétang et al. (2024) investigate using
modern transformer-based language models as compressors. We use compression as a tool to
measure memorization in models.

Language model capacity. (Arpit et al., 2017) formalize the idea of effective capacity of
a model and its training procedure; they also observe that both representation capacity and
training time have a strong impact on empirical model capacity. Several other works measure
language model capacity in the number of facts or random labels that can be memorized by a
network such as an RNN (Collins et al., 2017; Boo et al., 2019) or transformer (Roberts et al.,
2020; Heinzerling & Inui, 2021; Allen-Zhu & Li, 2024), sometimes under quantization. A few
research efforts (Yun et al., 2019; Curth et al., 2023; Mahdavi et al., 2024; Kajitsuka & Sato,
2024) have developed theoretical estimates for the capacity of different model architectures,
although none have yet scaled to multi-layer modern transformers. We are the first to
measure a clear upper-bound in model capacity.

Alternative definitions of memorization. Unintended memorization is deeply related
to the many other definitions of memorization proposed in the literature. We provide a
detailed comparison in and Section A.3.
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GPT models trained in half precision.

A.2 Related Work: Definitions of Memorization

Prior definitions of memorization. Carlini et al. (2019) defined a string m as memorized
by a language model θ if the second half of m can be generated greedily when prompting
the model with the first half. Following this, Nasr et al. (2023) introduced extractable
memorization, where model θ is said to memorize m if an adversarial prompt p can be
found that generates m. Mireshghallah et al. (2022) and Schwarzschild et al. (2024) refined
this definition by restricting p to a certain number of tokens, preventing it from containing
the entire m. However, even this definition has limitations: for example, generating the
sequence “cat cat cat ... cat” with the prompt ”repeat cat 1000 times” does not necessarily
indicate memorization. Carlini et al. (2019) use perplexity or likelihood, one measure of
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the compressibility of a sequence, in an effort to distinguish highly memorized sequences
from merely easy-to-compress ones. One additional definition of note is counterfactual
memorization (Zhang et al., 2023), which measures the impact of a single datapoint on
training; this can be seen as an instantiation of our definition where a different model of the
same family is used as a reference model. Overall, all these works regarded memorization in
terms that can be seen as forms of compression, although did not explicitly define it as such.

Finally, in an independent (but earlier) work of (Cohen et al., 2024), authors propose a
theoretical definition for memorization also relying on Kolmogorov complexity. This notion
is similar to us in using Kolmogorov complexity to measure information content but it does
not separate unintended from intended memorization.

Some of our findings also relate to the discovery of double descent in machine learning (Belkin
et al., 2019; Nakkiran et al., 2019) and language modeling (Xia et al., 2023), as well as
general discussions of memorization and generalization in deep learning (Zhang et al., 2017;
Tänzer et al., 2022).

Here, we discuss other definitions of memorization.

A.3 Other notions of memorization

In this section we list multiple other notions of memorization and compare it with our
definition. We specifically focus on why these notions do not satisfy all of our requirements.

• Stability-based notions of memorization. There are notions of privacy and
memorization that deal with “stability” of the training algorithm to small changes
in the training set. Most notably, differential privacy Dwork (2006) considers the
worst-cast drift of the model distribution when a single data point changes. Another
notion of memorization in Feldman (2020) is based on the change of the model
prediction on a point x, when we add the labeled pair (x, y) to the training set
of a classification/regression model. Both of these notions are crucially relying on
the learning algorithm and how it behaves. Moreover, the definition of differential
privacy is not ideal for our case because it is a worst-case definition and cannot
be applied at sample/model level. While the notion of memorization in Feldman
(2020) does not have this particular issue, it suffers from the fact that it only applies
to classification models and mostly deals with the memorization of the association
between the label (y) and input (x), and not the memorization of x itself. These
issues make these notions not ideal for our case.

• Extraction-based memorization. There are multiple works in the literature
(Carlini et al., 2019; Mireshghallah et al., 2022; Nasr et al., 2023; Zhang et al.,
2023; Carlini et al., 2023b; Schwarzschild et al., 2024) that define memorization
of samples in language models based on how easy it is to extract that sample.
Specifically, when trying to understand the extent of memorization of a sample
x in a model θ they measure some notion of complexity for the task of eliciting
the model to output x. Although these notions are great in that they only take
a model θ and a sample x, they still do not account for generalization. Consid-
ering our running example of the following training sample: ”What is 2100? (A:
1, 267, 650, 600, 228, 229, 401, 496, 703, 205, 376)”, this will be identified as highly
memorized by almost all of the extraction based notions of memorization. Another
issue with these definitions are that they are heavily dependent on the details of
decoding algorithm. This is not ideal as we do not expect the memorization of a
sample x in a model θ to depend on the detailed parameters we use to generate
samples using θ.

The work of Schwarzschild et al. (2024) in this category is the closest to ours. This
work which is based on prompt-optimization, optimizes a short prompt p to make
the model elicit x, then it calls the sample x memorized, if length of p is less than x.
Although this definition is close to our definition in using compression, it still does
not account for generalization of the model. Moreover, it focuses on a specific way
of compression through prompting. We posit that compression through prompting

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

is an inferior compression scheme and can often lead to compression rates greater
than 1.

• Membership/attribute inference. Membership inference Shokri et al. (2017)
and attribute inference attacks Jayaraman & Evans (2022) have been used for
empirically measuring the privacy of machine learning algorithms. These notions
which usually aim at approximating the stability notions of memorization are
suffering from the same shortcomings. They rely heavily on the learning algorithm
and the data distribution. Moreover, they fail at providing a sample level notion
of memorization. For example, the obtained accuracy for membership inference
attack is only meaningful in the population level. This is because various attack may
have different true positives for membership, and the union of all these true positive
across different attack may cover the entire training set, rendering it unusable as a
sample level notion of memorization.

• Data copying in generative models. There are some interesting notions of
memorization designed specifically for generative modeling where a generative
model may output a certain portion of training samples (Bhattacharjee et al., 2023;
Carlini et al., 2023a). These notions are similar to extraction based definition of
memorization but they are more lenient in that they only require extraction of
part of the training data. However, they still suffer from the same challenges as of
extraction based definitions.

A.4 Compression with language models beyond arithmetic coding

Shannon (1948) noted that the optimal compression method for a given source is one that
assigns codes to symbols such that the average code length approaches the entropy of the
source. Arithmetic coding (Pasco, 1977; Rissanen, 1976) is known to be one optimal way to
compress text given a distribution over symbols; it was used in (Delétang et al., 2024) to
compress text using modern language models.

Although arithmetic coding is known to be optimal for samples generated from the random
process of choice, it may still be sub-optimal for cases where the compressed samples are
correlated with the choice of random process. Specifically, in language modeling, the training
data is highly correlated with the model itself and hence we might need to treat them
differently. For instance, we know from previous work that the models behavior on training
data points is different from random samples. A large portion of training data can be
generated using greedy decoding (Carlini et al., 2023b; Liu et al., 2025) which is a behavior
not expected for randomly sampled data. To this end, we design a new compression technique,
a generalization of arithmetic coding.

Ensemble compression. Sampling from language models involve two key parameters k
for topk selection and t for temperature. We design a compression method that sets these
parameters adaptively. For instance, for cases where we know we can decode the next 100
tokens in a greedy fashion, we set k = 1 to reduce the bit length of arithmetic code. Changing
the setup of the coding scheme itself requires a new token to be injected and wastes some
number of bits, but it could still be beneficial for the code length. Our compression program
uses dynamic programming to find the optimal code with injection of these new tokens in
the middle of the text. Notably, our algorithm runs in time O(n ∗ T ), where n is the number
of tokens and T is the number of possible setups (combination of t and k) that we allow.

A.5 How reliable are our linear estimates of capacity?

Instead of scaling the number of examples in a dataset, we scale model sequence length to
adjust the size of a dataset. We use the following measurement for expected memorization
of a model:

mem(X,L(X)) ≈ min(capacity(L), H(X))
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demb nlayer |θ| |D| Predicted F1 Observed F1

GPT2-XL 1600 48 1,556,075,200
170,654,583 0.55 54.61± 1.3
76,795,021 0.75 71.08± 0.4
18,851,574 0.95 95.85± 0.8

GPT2-Medium 768 12 123,702,528
13,566,442 0.55 53.44± 1.1
6,104,935 0.75 65.69± 0.6
1,498,634 0.95 97.98± 0.3

Table 2: Dataset sizes that our scaling law predicts will produce a given membership inference
F1, along with empirical values.

S Params. Memorized Expected Error

4 6.59× 105 1.73× 105 1.80× 105 4.19
8 6.60× 105 3.54× 105 3.60× 105 1.80

16 6.61× 105 7.15× 105 7.21× 105 0.84
32 6.63× 105 1.44× 106 1.44× 106 0.41
64 6.67× 105 2.29× 106 2.36× 106 2.97

128 6.75× 105 2.36× 106 2.39× 106 1.24
256 6.92× 105 2.44× 106 2.45× 106 0.44

Table 3: Model capacity estimates
across sequence length S, along with
error (%).

V Params. Memorized Expected Error

128 4.21× 105 1.49× 106 1.49× 106 0.36
512 4.71× 105 1.71× 106 1.67× 106 2.78

1024 5.36× 105 1.95× 106 1.90× 106 2.70
2048 6.67× 105 2.39× 106 2.36× 106 1.11
4096 9.29× 105 3.13× 106 3.15× 106 0.47

Table 4: Model capacity estimates
across vocab size V , along with error
(%).

we substitute our previous estimate of α = 3.642 and ensure to adjust the parameter count
for increases due to resizing the model’s embedding matrices. We fix the number of training
samples to 4096 and train a model with 2 layers and a hidden size of 128. Results are
illustrated in Figure 10 and Table 3. Our predictions of total memorization are accurate,
with an average error rate of 1.7% while scaling S and 1.8% when scaling V .

A.6 Additional memorization results

Our findings indicate that memorization of text data neatly plateaus near the model capacity
just as in the synthetic data case. When the dataset size increases by a factor of N , the model
divides its memorization between datapoints by an equal amount; the sum of memorization
is measured to be constant, presumably at the upper bound of the model’s capacity.

When the dataset is small enough for each model to fit – that is, below the capacity of the
smallest model – we observe very similar performance between the models. For larger data
sizes we notice an interesting trend: unintended memorization increases with dataset size for
to a point, presumably as a model fills its capacity with the available information, and then
decreases, as the model replaces sample-level information with more useful, generalizable
knowledge. A given model generalizes the most (and memorizes the least information about
any individual sample) when the dataset is maximally large.

A.7 Comparison of distributions memorized

Distribution-level analysis. Text sequences have very different properties than uniform
synthetic bitstrings. We explore how two models of equal capacity spread their memorization
across datapoints. We plot a histogram (Figure 14) of train and test compression rates
of training data from both synthetic random bitstrings and text. Random training data
follows a very normal distribution with a small amount of overlap between train and test
compression rates. Text loss is lower on average but more spread out, with low loss on some
training points and a long tail of higher losses. There is much more overlap between the
train and test loss distributions, which explains why membership inference is more difficult
for text data.
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Figure 10: Model memorization across se-
quence lengths for a fixed-length dataset.
Our predictions of total memorization are
accurate, with an average error rate of 1.7%.

Figure 11: Model memorization across vo-
cabulary size for a fixed-length dataset. Our
predictions of total memorization are accu-
rate, with an average error rate of 1.8%.
Note that, we do not observe a capacity
plateau, since increasing V also increases
parameters.
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Figure 12: Train and test losses for different-
sized language models trained on synthetic
data.
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Figure 13: Membership inference attack per-
formance decreases with dataset scale. In
the case of uniform synthetic data, member-
ship inference performance never falls below
0.54.

Which datapoints are most memorized? Our distribution-level analysis indicates that
unlike in the random-bitstring case, models trained on a large amount of text are able to
memorize a small number of datapoints. Prior work has indicated that a large amount of
this memorization can be due to duplicated training points (Lee et al., 2022) but our dataset
is fully deduplicated so this cannot be an explanation in our case.

To quantitatively evaluate the number of rare words per document, we measure the TF-IDF
of each training document, plotted vs. unintended memorization in Figure 15. We use the
following equation for TF-IDF:

TF-IDF(d;D) =
1

|d|
∑
w∈d

log
|D|

tf(w,D)

where tf(d,D) indicates the total number of times word w appears in dataset D. Intuitively,
a higher TF-IDF score for document d indicates that d contains more words that are rare in
D.
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Figure 14: Distribution of compression rates for equal-sized transformers (nlayer = 4, dmodel =
128) trained on 214 sequences of equal-length random bitstrings (left) and text (right).
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Figure 15: Unintended memorization vs. TF-IDF for all training points of a 20M param
model trained past its capacity on 216 sequences of English text. The training documents
with rarest words are typically the most memorized.

We clearly observe for samples with positive unintended memorization there is a strong
correlation between trainset TF-IDF and memorization: examples with more rare words are
more memorized. In particular, the sample with highest TF-IDF out of the whole training
dataset (a sequence of Japanese words) has the third-highest measured memorization; even
though this is just one out of 260, 000 training samples, the model can regurgitate the entire
sequence given just a single token (囚). Out of the top twenty memorized sequences, all but
three contain sequences of tokens from other languages (Japanese, Chinese, and Hebrew).

Manual analysis (Table 5) indicates that the most memorized datapoints have extremely
rare tokens, typically ones not found in English.

A.8 Scaling law fit

Here we demonstrate the fit of our sigmoidal scaling law to experimental data. We show
points in tokens-per-parameter vs. fit in Figure 16. Although the sigmoidal function is
slightly simplistic (the points do not perfectly fit the curve) our fit produces estimates within
1− 2% of observations.

A.9 Proofs

In the section we provide the proofs missing from the main body.
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Table 5: Highest TF-IDF training examples from a 20M param model trained past its
capacity on 216 sequences of English text. All of the highest TF-IDF examples are considered
memorized, and contain text from non-English languages (Japanese, Chinese, Hebrew, and
Greek).
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Figure 16: Our sigmoidal scaling law for membership inference fit to experimental data.

A.10 Proof of Proposition 1

Here we prove Proposition 1

Proof. we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= I((X1 | Θ, . . . , Xn | Θ), Θ̂).
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And since the data is sampled i.i.d., all random variables in {Ri = [Xi | Θ]}i∈[n] are

independent. 3 So we have,

I((X1 | Θ, . . . , Xn | Θ), Θ̂) ≥
∑
i∈[n]

I(Xi | Θ, Θ̂)

which implies

memU (X, Θ̂,Θ) ≥
∑
i∈[n]

memU (Xi, Θ̂,Θ).

On the other hand, we have

memU (X, Θ̂,Θ) = I(X | Θ, Θ̂)

= H(Θ̂−H(Θ̂ | (X | Θ))

≤ H(Θ̂)

A.11 Proof of Proposition 4

Proof. We first state a Lemma about connection between algorithmic (kolmogorov) mutual
information and mutual information.

Lemma 6. [Theorem 3.6 in Grunwald & Vitányi (2004)] Assume (X,Y ) be a pair of joint
random variables. Let f be the density function, f(x, y) = Pr[(X,Y ) = (x, y)]. Then we have

I(X,Y )−HK(f) ≤ E
(x,y)∼(X,Y )

[IK(x, y)]

≤ I(X,Y ) + 2HK(f).

Now we use this lemma to prove the statement of the Proposition. Let f be a the density

function for the joint distribution (Xi | θ, Θ̂). That is fi(xi, θ̂) = Pr[Xi = xi | θ and Θ̂ = θ̂].
Note that this function is independent of n and θ. By definition we have

memU (Xi, Θ̂, θ) = I(Xi | θ, Θ̂).

Now using Lemma 6 we have

I(Xi | θ, Θ̂)−HK(f) ≤ E
xi∼Xi|θ

[IK(xi, θ̂)]

≤ I(Xi | θ, Θ̂) + 2HK(f).

and this concludes the statement of Proposition by setting ϵ = 2HK(f)

A.12 Limitations

Our efforts to measure language model memorization come from a line of recent research to
discover whether models have analyzed certain texts, and if so, how much. However, our
main experimental contributions relate to the practice of training and evaluating language
models, including a new perspective on the phenomenon of grokking (Nakkiran et al., 2019)
and a new measurement of capacity. Our results are specific to the environment proposed
and do not necessarily generalize to other datasets, architectures, or training setups.

3Note that Xi themselves are not independent because they are sampled by first sampling an
underlying model Θ. However, they are conditionally independent once the underlying model Θ is
given.
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