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ABSTRACT

Deep generative models for video primarily treat videos as visual representations of
agents (e.g., people or objects) performing actions, often overlooking the underlying
intentions driving those actions. In reinforcement learning, the policy determines
actions based on the current context and is analogous to the underlying intention
guiding those actions. Through the acquisition of policy representations, we can
generate a video capturing how an agent would behave when following a specific
policy in a given context. In this paper, we aim to learn the representation of the
policy without supervision and the dynamics of the environment conditioned to the
policy. We propose Policy Disentangled Variational Autoencoder (PDVAE) which
can generate diverse videos aligned with the specified policy where the user can
alter the policy during the generation. We demonstrate PDVAE with three video
datasets: Moving MNIST, KTH action dataset, and VizDoom.

1 INTRODUCTION

Videos consist of temporally consistent images and exhibit diverse temporal variations in their visual
signals, resulting in numerous semantic features. Deep generative models have effectively captured
these semantic features in latent representations for video generation, with motion and content being
common approaches for the representation learning (Tulyakov et al., 2018; Wang et al., 2020; 2021;
Hyun et al., 2021; Khan & Storkey, 2022; Skorokhodov et al., 2022). The motion representation
captures the dynamic changes within the video whereas the content representation encodes the static
visual information. Some methods have focused on learning the representation of actions between
consecutive frames of video in discrete space to control the generation process (Kim et al., 2020;
2021; Menapace et al., 2021). However, these approaches often overlook the intention behind the
actions performed by objects or individuals in the video, viewing them primarily as visual signals.

Distinguishing between different intentions or behavioral goals behind the same action is challenging.
For instance, on Figure 1, these players may perform identical actions initially, but their subsequent
actions diverge based on their behavioral goals. Distinguishing intentions or behavioral goals requires
a deep understanding of context, the agent’s decision-making, and the environment. The action
representations, which focus solely on frame-to-frame action, are inadequate for distinguishing the
behavioral goal of a single action. Similarly, motion representations that emphasize spatiotemporally
consistent motion trajectories struggle to differentiate between distinct trajectories by the intention
behind the actions. To address this issue, different types of representations that can account for a
player’s specific behavioral goals are needed. By learning such representation, we can generate a
video of a player converting from time attacker to treasure hunter in front of the entrance to a boss.

The intention behind an action is analogous to the policy in reinforcement learning, representing an
agent’s decision-making process in various situations. This policy can be seen as the cognitive process
guiding an agent’s actions, while the video serves as the observations of an agent (e.g., a person or
object). In this paper, we introduce a model that learns the representation of policy without labels and
the dynamics of the environment characterized by the policy. The model can distinguish the video
by the policy of an agent and generates a video aligned with the policy. For instance, the model can
differentiate between gameplay videos where a player’s objective is to either achieve a high score or
finish a session quickly. The model produces diverse videos where each agent demonstrates distinct
actions that adhere to the specified policy. Furthermore, by altering the policy from one to another,
the model has the capacity to produce a video that is not present in the sample dataset.

The concept of a generative model that takes into account the environment’s dynamics is not new
to the literature. Temporal-difference variational autoencoder (TD-VAE) (Gregor et al., 2019) is
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Figure 1: Different game styles (policies) by players. Upper: time-attacker ignores the miscella-
neous objects in the dungeon, and run straight to the objective of the game. Lower: treasure-hunter
enjoys the easter eggs planted by developer and tries to find out every treasure.

designed to learn the representation of the dynamics of the environment through a state-space model.
TD-VAE encodes input video frames into a state that encompasses all relevant information about the
environment for the prediction. The policy-related information is also embedded in the state, hence
the model cannot distinguish the underlying behavioral goal of an agent.

We propose Policy Disentangled Variational Autoencoders (PDVAE) which extracts the policy of an
agent in a video and generates video conditioned to the policy and the state encoded from the past
frames. We assume the videos are the observations of agents, in which each agent acts upon own
behavioral goal. PDVAE learns the goal as a policy and categorizes it into discrete numbers. We add
the term, policy, in the derivation of the ELBO of TD-VAE to acquire the ELBO of our model. As
the ELBO of PDVAE indicates, we use auxiliary modules to extract the policy from the video and
use it as an additional input to TD-VAE. We have added a regularization term to prevent the state
from having information on the policy, achieving the disentanglement of the state and the policy. The
generated video of PDVAE maintains the background and the figure of the agent while the agent
acts according to the given policy. Through qualitative and quantitative experimental validations, we
verify the effectiveness of PDVAE.

2 PRELIMINARIES

A partially observable Markov decision process (POMDP) (Smallwood & Sondik, 1973; Kaelbling
et al., 1998) is a common reinforcement learning framework for modeling agents that interact in
partially observed environments. Formally, it is defined as a tuple ⟨Z,A,X, T,O,R⟩ where Z is the
state space, A is the action space, X is the observation space, T is the transition probability, O is the
observation probability, and R is the reward function 1. The transition probability T describes the
dynamics of the environment by mapping the state and action to another state, and the reward function
R represents the agent’s behavior goal to act. The state contains the full information about the world
or environment but cannot be known, so the agent maintains the probability distribution, called belief
bt, over the states with the past observation history x≤t or x1:t at time t. Policy π represents the
agent’s behavioral rule as a function of given the belief bt to the action at.

Temporal-difference variational autoencoder (TD-VAE) (Gregor et al., 2019) is a sequence generative
model which assumes the POMDP framework to generate future observation sequence. TD-VAE
derives the evidence lower bound (ELBO) from the conditional likelihood p(xt|x<t) of an observation
xt at time t given the past observations x<t, by inferring over two states zt−1 and zt as follows:

log p(xt|x<t) ≥ E
(zt−1,zt)∼q(zt−1,zt|x≤t)

[
log p(xt|zt) + log p(zt−1|x<t)− log q(zt|x≤t) (1)

+ log p(zt|zt−1)− log q(zt−1|zt, x≤t)
]
.

From the above belief-based ELBO in Equation 1, the following loss can be obtained:

LTD-VAE = E
zt∼pB(zt|bt)

zt−1∼qS(zt−1|zt,bt,bt−1)

[
log pD(xt|zt) + log pB(zt−1|bt−1)− log pB(zt|bt) (2)

+ log pT (zt|zt−1)− log qS(zt−1|zt, bt, bt−1)
]
.

1In reinforcement learning, it is a common practice to represent the state and observation space as S and O,
respectively. In our generative model framework, we adopt the notation Z and X to refer to these spaces.
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In the above two equations, p(xt|zt) in Equation 1 corresponds to the probability of observing xt

given the latent state zt, which can be interpreted as the decoder network pD in Equation 2 from
the generative model perspective. Since the past observations x<t and x≤t become the belief states
bt−1 and bt respectively, despite the difference between p and q, both p(zt−1|x<t) and q(zt|x≤t) in
Equation 1 can be regarded as one belief network pB as pB(zt−1|bt−1) and pB(zt|bt) in Equation 2.
The filtering distribution p(zt|zt−1) and the smoothing distribution q(zt−1|zt, x≤t) in Equation 1
can be denoted as the transition network pT (zt|zt−1) and inference network qS(zt−1|zt, bt, bt−1) in
Equation 2 by using the filtering and smoothing technique.

TD-VAE employs a common network architecture, D block, to output the parameters for the dis-
tributions pB , qS , and pT

2. Each network takes the conditioned variables as an input and outputs
the mean and log standard deviation of the normal distribution. For the belief network pB(zt|bt),
the D block utilizes the encoded bt obtained from the forward RNN as input, generating a normal
distribution from which the state zt is sampled using reparameterization trick (Kingma & Welling,
2013). The transition network pT and the inference network qS utilize a similar D block architecture,
yet their weights are not shared. Both networks produce a normal distribution of state as their output.

3 POLICY DISENTANGLED VARIATIONAL AUTOENCODER (PDVAE)

Since the transition network of TD-VAE solely uses the state for the generation of future sequences,
we interpret that the state encapsulates all relevant information for the prediction, including the policy.
The aim of this paper is to generate videos aligned with the specified policy, whether the policy
of input video and the generation is the same or not. We propose Policy Disentangled Variational
Autoencoder (PDVAE) which generates such video by learning the disentangled representation of
the policy and the state. In subsection 3.1, we add policy π to derive ELBO, which is the theoretical
basis of PDVAE. In subsection 3.2, we describe the policy extraction module that can unsupervisedly
extract the agent’s policy without label information about which policy the collected sequence data
was generated from. In subsection 3.3, we proposes a method for integrating policies in the form of
extracted code vectors into TD-VAE. Finally, subsection 3.4 presents the PDVAE’s overall training
and generation procedures.

3.1 DERIVATION OF ELBO

We extend TD-VAE to PDVAE by incorporating the policy π into the Equation 1. The Equation 1
uses the posterior distribution q(zt−1, zt|x≤t) to derive the ELBO from the conditional likelihood of
observations given the past observations x≤t. In the case of PDVAE, we modify this by adding the
policy π to the posterior distribution, resulting in q(zt−1, zt, π|x≤t), as illustrated in the following
Equation 3 3:

log p(xt|x<t) ≥ E
(zt−1,zt,π)∼

q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(zt−1|x<t)− log q(zt|x≤t) (3)

+ log p(zt|zt−1, π)− log q(zt−1|zt, π, x≤t) + log p(π|x<t)− log q(π|x≤t)
]
.

By following the same process as in Equation 1 and 2, we can obtain Equation 4 from Equation 3.

LPDVAE = E
zt∼pB(zt|bt)

zt−1∼qS(zt−1|zt,π,bt,bt−1)

[
log pD(xt|zt) + log pB(zt−1|bt−1)− log pB(zt|bt) (4)

+ log pT (zt|zt−1, π)− log qS(zt−1|zt, π, bt, bt−1)
]

+ E
π∼qP (π|x≤t)

[
log p(π|x<t)− log qP (π|x≤t)

]
Remarkably, we note two important facts. Firstly, in the first expectation, we observe that the
policy π is explicitly separated within the environment’s dynamics pT and qS . Furthermore, the first

2Detailed network architecture for D block is in the appendix.
3Detailed derivation for the ELBO is in the appendix.
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Figure 2: (a) the modules for policy extraction from the video, where the policy module is the single
HQA layer with the codebook of size K. (b) the lossy compression module which consists of stacked
HQA layers. (c) the single HQA layer used in both modules.

expectation takes the policy and the observations as the input whereas the second expectation solely
learns the policy from the observations. As the Equation 4 suggests, we use an auxiliary module to
separately learn the representation of policy and add the policy in TD-VAE.

3.2 EXTRACT POLICY FROM VIDEOS

We extract the policy from the video with two modules detailed in Figure 2: a lossy compression
module and a policy module. We consider the videos capture an agent acting upon policies πi, i ∈
{1, ...,K}, where the number of policy K is a hyper-parameter specified before the training. Both
modules utilize Hierarchical Quantized Autoencoders (HQA), a model designed for extreme lossy
compression (Williams et al., 2020).

HQA consists of multiple layers, each including a CONV2D encoder, decoder, and codebook layer for
quantization. The model is trained in a greedy layer-by-layer fashion, where each layer begins training
after the preceding layer has completed its training. Each layer of HQA depicted in Figure 2(c) is
trained with the following loss where the first term is the reconstruction loss, the second is the entropy
of q, and the third is probablistic commitment loss:

LHQA = − log p(x|z = k)−H[q(z|x)] + E ||ze(x)− ez||22. (5)

The lossy compression module illustrated in Figure 2(b) preserves the global semantic features,
including policy, and loses the local features. To preserve the features related to the temporal
dimension, we use the timestep of the video as the channel dimension x1:T ∈ RH×W×T , hence we
convert the video to the greyscale. Each layer of the module compresses the video by a factor of
two in terms of H and W . The module is stacked until it encodes the observations to ze ∈ R2×2×dπ

where dπ is the dimension of the code vector. The lossy compression module is pre-trained before
the training of PDVAE. The module encodes the video to ze which is the input for the policy module.

The policy module learns the categorical distribution of policy p(πi|x<t) and is jointly trained with
the TD-VAE built upon the first expectation term in Equation 4. The second expectation term is
replaced with the Equation 5 for the training. The policy module extracts the policy from the video
with the constraint on the codebook and the usage of policy in the TD-VAE. We set the number of
code vectors in the codebook of the policy module to K, where the code vector serves as the policy.
The policy module encodes ze to zp ∈ R1×1×dπ and quantizes to a code vector, which serves as the
policy. The constraint alone is not sufficient for extracting the policy from the observations. We use
modified TD-VAE to model the dynamics of the environment conditioned to the policy. The modified
TD-VAE serves as a regularizer for the policy module to preserve policy-related information in the
code vector.

3.3 ENVIRONMENT DYNAMICS CONDITIONED TO POLICY

PDVAE employs a modified version of TD-VAE to learn environmental dynamics, featuring two key
alterations. Firstly, the transition and inference networks now take policy π from the policy module
as an additional input as illustrated on Figure 3. The difference between the first expectation term of
PDVAE loss (Equation 4) and TD-VAE loss (Equation 2) is the conditioned policy π in pT and qS .
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Figure 3: Training Procedure. PDVAE extends TD-VAE by incorporating modules highlighted in
yellow for policy extraction and regularization using the Siamese architecture, which results in the
inclusion of extra terms in the loss function: LHQA and DKL(p

t
B ||ptO)). For the succinctness, we

have denoted the belief distributions pB(zt|bt) as ptB , pB(zt−1|bt−1) as pt−1
B , and D for the D Block

in Figure 9. The detailed model architectures are in the appendix.

Figure 4: Generation Procedure. The state is sampled with the input video and the policy is selected
by the user. The transition network takes the state and policy to generate pT . The state zt+1 is sampled
from pT and again passed to the transition network with the policy for the roll-out. The sequence of
states are decoded to video with decoder.

Secondly, the regularization is introduced to the belief bt through the incorporation of a Siamese
architecture (Chopra et al., 2005; Koch et al., 2015). The model encodes the state zt with the input
video x1:t using the forward RNN as illustrated on the belief network of Figure 3, so the information
related to the policy is encapsulated in the state. To distill the policy-related information in the state,
we add regularization to the belief with the Siamese architecture. We utilize the single observation
xt to regularize the belief, since the single observation does not contain policy-related information.
Using the same D block, which encodes a state zt to belief ptB , we encode the observation xt to ptO,
and add DKL(pB∥pO) to the Equation 4 as following:

LPDVAE-reg = E
zt∼pB(zt|bt)

zt−1∼qS(zt−1|zt,bt,bt−1,π)

[
log pD(xt|zt)− log pB(zt|bt) + log pT (zt|zt−1, π) (6)

+ log pB(zt−1|bt−1)− log qS(zt−1|zt, π, bt, bt−1)
]

+ LHQA + DKL(pB(zt|bt)||pO(zt|xt))

3.4 TRAINING AND GENERATION PROCEDURES

We first elaborate on the training procedure of PDVAE as illustrated on the Figure 3. We provide
the detailed structure of each network in the appendix. The model encodes the video into a code
vector πi with the lossy compression module and the policy module, retrieving the ingredients for
LHQA. Then, the model encodes the video again into a sequence of belief states b1:T with the forward
RNN. PDVAE randomly selects t ∈ [1, T ] and obtains the distributions: pt−1

B , ptB , p
t
O, qS , pT . Note

that the same D block used to gain ptB and pt−1
B is used to obtain the ptO, the distribution for the

regularization purpose, with a frame of the video. The state is sampled from ptB and qS and the rest
of the distributions are used for the loss of the model. PDVAE tries to match the (qS , pt−1

B ) pair and
(pT , ptB) pair with KL divergence and log probability, respectively.
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Figure 5: Different predictions by policy. PDVAE generates different outcomes (right) given the
same input observation (left) depending on the choice of policy. The box represents the codebook of
the policy module where the code vector is annotated with the direction.

During the generation, PDVAE employs only the belief network, transition network, decoder, and
codebook from the policy module as illustrated in Figure 4. Given an arbitrary length of a video, the
belief network encodes the video into a state. The policy is selected by the user and is concatenated
with the state for the input of the transition network. The model generates video in an autoregressive
manner, by passing the state sampled from the pT into the transition network again. The decoder
decodes the sequence of states to the video.

4 RELATED WORK

Recent progress in the deep generative model has led to the advancement on the video generation
models. Broadly speaking, the video generation model can be categorized into unconditional video
generation or conditional video generation. The former one aims to generate any video that follows
the distribution of training dataset (Vondrick et al., 2015; Saito et al., 2020). The conditional video
generation can be categorized by the type of conditioning signal.

Among the conditional video generation models, the video prediction problem has been widely
studied (Mathieu et al., 2015; Finn et al., 2016; Babaeizadeh et al., 2017; Gregor et al., 2019; Kwon
& Park, 2019; Franceschi et al., 2020). The objective of video prediction is to generate future frames
given the past frames where the generated frames are spatiotemporally consistent. Earlier works
(Mathieu et al., 2015; Finn et al., 2016) have modeled the prediction with the deterministic predictive
models, which are unable to account for the inherent stochasticity of the real-world video. In order
to integrate the stochasticity, several methods employed the GAN (Kwon & Park, 2019) and VAE
formulations (Babaeizadeh et al., 2017; Gregor et al., 2019; Franceschi et al., 2020). These methods
are able to generate diverse frames which are consistent to input frame spatially and temporally.
Inspired from TD-VAE (Gregor et al., 2019), we additionally condition the policy to generate diverse
frames aligned to the policy.

The conditional video generation model can control the generation with the action label (Kim et al.,
2020; Menapace et al., 2021). GameGAN (Kim et al., 2020) is proposed as the neural simulator of
a game. GameGAN generates the gameplay video accordingly to the user’s keyboard action input.
During the training, the model takes sequence of frames and keyboard actions to learn the dynamics
of game environment conditioned to the action label. Menapace et al. (2021) has proposed a model
CADDY for the playable video generation, with which the user can interact with the video generation
by giving the action label. CADDY learns a set of distinct action from the real-world video without the
label information. The model learns the action space by maximizing the mutual information between
embeddings of encoded features of and ground-truth of consecutive frames. Our approach also learns
the latent feature that controls the frame-by-frame generation without the label information.

The semantic feature that is most similar to the policy is the categorical dynamics of MoCoGAN
(Tulyakov et al., 2018). The model assumes the dynamics in the video can be categorized into discrete
action such as walking or running and generates video conditioned to the categorical action signal.
The model can be trained without the label information by adopting the InfoGAN learning (Chen
et al., 2016). Similar to our model, MoCoGAN assumes the number of discrete action K is known
and learns the categorical action label with the one-hot vector.
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Figure 6: Policy space learned independently of PDVAE. Each point represents a video where the
color indicates the direction, which is annotated on top of the video in the input section. The video is
reconstructed using a single code vector from the policy module trained independently of PDVAE.
The dotted arrow points out the location of the video in the embedding space. The policy module
categorizes the video with left or right directions into the shape of the digit rather than direction.

5 EXPERIMENT

In this section, we provide the evaluations of our method on three datasets: Moving MNIST, KTH
action (Schuldt et al., 2004), and VizDoom (Kempka et al., 2016). With the Moving MNIST, we
demonstrate that PDVAE learns to distinguish the policy and generates a video aligned with the
specified policy along with the ablation of the role of TD-VAE as the regularizer for the policy module.
With KTH, we show that the model can alter the policy during the generation which exhibits the
smooth transition in change of the policy. With VizDoom, we demonstrate the PDVAE’s capability
of a neural simulator in the reinforcement learning domain, by generating diverse videos aligned
with the specified policy. We provide the experimental setup and qualitative analysis on the generated
frames conditioned to the policy for each dataset, followed by the quantitative evaluation compared to
the baseline. The choice of hyper-parameters and the detailed model architectures are in the appendix.

5.1 MOVING MNIST

We consider a video of 20 frames where a digit from MNIST moves two pixels at each time step in
the chosen direction (left, right, up or down). We consider the digit as the agent and the direction
as the policy. In this setup, the policy constantly outputs the direction of the movement. The height
and width of the video are 32, so the pre-trained module for the lossy compression is stacked four
times. We set the codebook slot of the policy module to be four, equal to the number of directions.
We consider the digit to be an agent and the direction to be the policy.

Figure 5 demonstrates that PDVAE generates the video in accordance with the specified policy, where
the digit’s shape remains consistent while the movement direction aligns with the policy. We have
annotated the code vector in Figure 5 with the label that appears most frequently in the quantized
video. The code vector from the policy modules contains the information related to the policy, whereas
the state encapsulates relevant information for prediction except the policy. PDVAE generates videos
in which only the direction changes when the conditioned policy differs from the policy of the input
video: the lower three rows of the Figure 5. The policy is explicitly disentangled from the state, as the
alternation of the policy during the generation only affects the movement of the digit.

We demonstrate the role of the TD-VAE as the regularizer for the policy module with Figure 6.
We provide two inductive biases to the model for the extraction of the policy: (1) the constraint
to the codebook slots of the policy module and (2) the usage of the policy in the state transitions.
Figure 6 depicts the policy space of the policy module without the second inductive bias. With the first
inductive bias, the module categorizes the video into four different categories, but not by the policy.
Instead, the policy module distinguishes videos of left and right direction by the shape of the digit,
which reflects that the policy module preserves the digit-related information to the code vector. Both
inductive biases are necessary to extract the policy from the video. We present an extended version
of Figure 6 in the appendix, featuring additional digits and directional information. Furthermore,
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Figure 7: Smooth transition on the change of the policy. Four different states from the same pB ,
the decoded version is marked with red perimiter, and are rolled out with policy indicated above the
sequence. Each agent demonstrates the smooth transition between the change in the policy.

Figure 8: Diverse simulations by the policy. The first four frames of the videos in each row are the
input to PDVAE. The video on the top two rows are generated with the policy facing fire whereas the
bottom two are generated with the policy avoiding.
we include video reconstructions using the policy module trained alongside PDVAE, along with a
scatterplot, all of which can be found in the appendix.

5.2 KTH ACTION

The KTH dataset is comprised of videos featuring an individual carrying out a single action in four
different backgrounds. We have selected a video of a person either running or walking in the outdoor
background, where the person’s action remains unchanged throughout each video. We consider the
person in the video as an agent and the action as the policy. For the pre-processing, we center crop
and set the resolution to 64x64. The lossy compression module is stacked five times and the The
lossy compression module is stacked five times and the codebook slots for the policy module are set
to two. We have added the cross entropy loss with the pseudo label to the loss from the pre-trained
policy module to enhance the generation quality of generation (Lee et al., 2013).

The Figure 7 depicts generations of four distinct videos, all based on the same input frames but
conditioned on different sets of policies. These policies are annotated based on their most frequent
occurrence in the quantized video data. The upper two rows of the Figure 7 are generated with the
constant policy. Although the input sequences are the same, the agent’s actions differ according
to the conditioned policy. In contrast, the lower two rows of generated video employ alternating
policies. When the policy shifts (e.g., from "run" to "walk"), the agent within the generated video
gradually adjusts its behavior to align with the new policy. The state encapsulates the information
on the environment and the current status of an agent. Moreover, the transition process, guided by
the policy, effectively reflects the agent’s status, resulting in a seamless transition in video when
policies change. By alternating policies, PDVAE is capable of generating videos that are not that are
not present in the training dataset.

5.3 VIZDOOM

The video from the VIZDOOM-TAKECOVER environment contains the egocentric view of a person in
an enclosed room, with the person serving as the agent. In this environment, devils randomly appear
and shoot fireballs at the agent, who can take an action from (move left, move right, or stay) on
each time step. We have created 10k episodes in which random actions were taken at each time step.
These episodes are categorized as "avoiding" if the agent’s health remains intact and "facing fire" if
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Table 1: Comparison with the baseline on all dataset. π-Acc in %. The MoCoGAN on the first row is
trained with the label information and the MoCoGAN- on the second row is trained without the label.

MNIST KTH vizdoom
Model FID ↓ FVD ↓ π-Acc ↑ FID ↓ FVD ↓ π-Acc ↑ FID ↓ FVD ↓ π-Acc ↑

MoCoGAN 24.6 282 98.8 61.9 511 70.4 14.3 903 69.8
MoCoGAN- 24.2 391 24.8 70.5 604 50.4 11.8 587 50.7
PDVAE 8.63 64 99.6 50.2 449 72.7 27.0 637 73.8

the agent’s health is diminished. These categories, "avoiding" and "facing fire", serve as the agent’s
policies. We have stacked five times for the lossy compression module and the input video for the
module is converted to greyscale videos.

PDVAE produces videos featuring diverse action trajectories, with the agent adhering to the specified
policy, as depicted in the Figure 8. For instance, when the "avoiding" policy is conditioned to
the transition, the agent takes different actions, with one moving right and another left, yet both
successfully avoid the fireballs. In the generated video of top two rows, the agents initially perform
similar actions, resulting in them getting hit by the fireballs, but their subsequent actions differ. Given
the state and the policy, the model obtains the distribution over a future state with the transition
network and samples the state to move forward, where the state transition is characterized by the
policy. The innate stochasticity of the state transition enables PDVAE to generate diverse videos but
an agent within the video acts according to the conditioned policy.

5.4 QUANTITATIVE EVALUATION

We evaluate the generated video with quantitative metrics and compare it to the baseline we select.
Video Quality We evaluate the quality of the generated video with FID (Heusel et al., 2017) and
FVD (Unterthiner et al., 2018). We have generated 16 frames of video conditioned to the designated
policy and calculated the score with the ground truth video of the respective policy. The test set is
considered for the calculation of both metrics. We report the average FVD score from each policy.
We calculate the average FID of 16 frames from each policy and report the average of it.
Policy Metric We introduce π-Acc to evaluate the quality of policy space. This metric measures how
well the generated frames follow the conditioned policy. To this aim, we train a linear or convolutional
classifier with the label. We have generated 16 frames of video to obtain the metric. We report the
π-Acc measured on the generated video from the test set.
Baseline Selection Since we are the first to extract the policy from the video and generate frames
conditioned to the policy, we have selected a model that learns the closest resemblance of the policy.
As mentioned in the section 4, the MoCoGAN shares a similar latent feature to ours, known as
Categorical Dynamics, which influences the motion trajectories of the entire video, mirroring our
policy. We have conducted evaluations of the MoCoGAN with and without label information, yielding
quantitative metrics for video quality and the policy space, as displayed in Table 1. The first row
presents results for MoCoGAN trained with label information, while the second row depicts outcomes
for MoCoGAN trained without label information.

6 CONCLUSION

In this paper, we present PDVAE to generate videos aligned with the specified policy by a user, by
learning to extract the policy from the video without label information and to model the transition
conditioned to the policy. PDVAE can generate diverse scenarios aligned with the conditioned policy
where the user can alter the policy during the generation. We have derived a novel ELBO to learn such
disentangled representation along with the architecture and training procedure for the model. The
experiments with three datasets, Moving MNIST, KTH action dataset, and VizDoom, demonstrate the
capability of PDVAE. PDVAE uses basic neural network architecture such as convolutional LSTM,
convolutional layer, and multi-layer perceptron with one or two residual layers. Compared to the
state-of-the-art video generative models, PDVAE consists of simple architecture, which restricts
us from performing experiments in rather smaller size of videos. In future works, to overcome the
limitation of PDVAE, we aim to find suitable neural architecture, rather than basic ones, to test our
model with the more complex dataset. We also explore several potential applications in reinforcement
learning, with the simulation results generated with PDVAE.
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A ELBO DERIVATION

log p(xt|x<t)

≥ E (zt−1,zt,π)∼
q(zt−1,zt,π|x≤t)

[
log

p(zt−1, zt, π, xt|x<t)

q(zt−1, zt, π|xt, x<t)

]
≥ E (zt−1,zt,π)∼

q(zt−1,zt,π|x≤t)

[
log p(zt−1, zt, π, xt|x<t)− log q(zt−1, zt, π|xt, x<t)

]
= E (zt−1,zt,π)∼

q(zt−1,zt,π|x≤t)

[
log p(xt|zt−1, zt, π, x<t) + log p(zt−1, zt, π|x<t)− log q(zt−1, zt, π|x≤t)

]
(since xt only depends on zt)

= E (zt−1,zt,π)∼
q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(zt−1, zt, π|x<t)− log q(zt−1, zt, π|x≤t)

]
= E (zt−1,zt,π)∼

q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(π|x<t) + log p(zt−1|π, x<t) + log p(zt|zt−1, π, x<t)

− log q(zt−1, zt, π|x≤t)
]

(since zt only depends on zt−1 and π)

= E (zt−1,zt,π)∼
q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(π|x<t) + log p(zt−1|π, x<t) + log p(zt|zt−1, π)

− log q(zt−1, zt, π|x≤t)
]

= E (zt−1,zt,π)∼
q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(π|x<t) + log p(zt−1|π, x<t) + log p(zt|zt−1, π)

− log q(π|x≤t)− q(zt|π, x≤t)− q(zt−1|zt, π, x≤t)
]

(since zt−1 (and zt) only depends on past history x<t (and x≤t))

= E (zt−1,zt,π)∼
q(zt−1,zt,π|x≤t)

[
log p(xt|zt) + log p(π|x<t) + log p(zt−1|x<t) + log p(zt|zt−1, π)

− log q(π|x≤t)− q(zt|x≤t)− q(zt−1|zt, π, x≤t)
]

The last line of the equation is the Equation 3 which is the ELBO of the PDVAE. We have changed
the sequence of the terms for better understanding of ELBO in Equation 3.

B MODEL ARCHITECTURE

In this section, we illustrate the detailed architecture of PDVAE where the choice of parameters can
be found on Appendix C. The notations used to describe the modules are as follows:

Linear(a): Linear layer with the output dimension a

Conv2D(a,b,c,d): 2D-Convolution layer with output channel size a, kernel size bxb, stride size c,
and padding size d.

ConvLSTM(a,b,c,d): 2D Covolutional LSTM layer with output channel size a, kernel size b x b,
stride size c, and padding size d Shi et al. (2015)

Mish: Mish activation function Misra (2019)

Upsample(a): Upsample the height and width of an input image or image sequence with the nearest
neighbor interpolation of scaling factor a

Reshape(a) Reshape the input to output size of a, which can be a tuple or an integer
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B.1 POLICY MODULE

Each layer of the lossy compression module and the policy module consists of an encoder, a vector
quantization layer, and a decoder, where the architecture for encoder and decoder are illustrated on
Table 2. The encoder and decoder are stacked up with the following layers as a feed-forward network
where dE and dD represent the dimensions of the encoder and decoder. The decoder of the bottom
layer of the lossy compression module has an additional sigmoid function for the reconstruction of
the image. The inputs for encoders except one from the bottom layer are normalized with running
statistics for the stable training as HQA does. The code vector of the VQ layer codebook has the
dimension of dπ .

In order to compress the video to a 1D vector, we take the sequences of images as the input for the
lossy compression module. T indicates the length of the sequences. We have used the grayscale
images instead of RGB images as the policy is irrelevant to the channel, hence the input shape for the
lossy compression module H ×W × T where H and W are the height and width of the video. The
policy module takes the encoded video from the lossy compression module with shape 2× 2× dπ

Encoder Decoder
Conv2D(dE /2, 3, 2, 1) Conv2D(dD, 3, 0, 1)

Mish Upsample(2)
Conv2D(dE , 3, 0, 1) Conv2D(dD/2, 3, 0, 1)

Mish Mish
Conv2D(dπ ,1,0,0) Conv2D(ts, 3, 0, 1)

Table 2: Encoder and Decoder architecture of the Policy Extraction Module

B.2 MODULES FOR PDVAE

We elaborate on the networks used in PDVAE except for the lossy compression module and the policy
module. As TD-VAE utilized the hierarchical structure, we have used the same hierarchical structure
of the state space model. We have used the same D block from TD-VAE, which outputs a normal
distribution, and modified the block as HB to output a vector instead, illustrated in Figure 9. We
have used Resblock as depicted in Figure 9 in the decoder of PDVAE.

The Table 3 illustrates the modules for the VizDoom experiment, where the difference with other
experiments is the number of ResBlock in the decoder and the existence of the HB Block. Both
experiments does not have the HB block to resize the state, the Moving MNIST experiment does not
use the ResBlock, and the KTH action experiment uses a single ResBlock.

In the Table 3, D and HB indicate the D Block and HB block from the Figure 9. db, dz , and dπ
stands for the dimension of the belief, state, and policy, respectively. dx is the multiplication of the
height and width of the input image sequence, and Cx stands for the channel of the input image. Ch is
the hidden size of the channel in the ConvLSTM. Nh indicates the number of hierarchy (stack) of the
PDVAE and h represents the size of hidden units. We have employed the same hierarchical (stacked)
structure of TD-VAE with the addition of the policy π in the transition and inference networks.

The transition and inference networks except the ones from the top of the stack additionally takes
the input from the upper hierarchy, hence the input size of D block becomes Nh ∗ dz + dπ + dz and
db +Nh ∗ dz + dπ + dz , respectively.

The belief network creates the belief state with two ConvLSTM and HB Block. Then, the network
samples the state from belief on each hierarchy using the belief state with size db. The networks
except the one from the top level, similarly to transition and inference network, takes the additional
input of state sampled from the layer below. The belief network except the top takes db + dz as the
input. The Siamese architecture shares HB Block and D block to produce the distribution for the
regularization and takes xt as the input instead of the hidden state from the ConvLSTM.
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Belief Network Decoder Network
ConvLSTM(Ch, 3, 1, 1) HB(Nh ∗ dz , h, dx/4)
ConvLSTM(Cx, 3, 1, 1) Reshape((

√
dx/2,

√
dx/2))

Reshape((Cx ∗ dx)) Conv2D(db,3,0,1)
HB((Cx ∗ dx), 2 ∗ h, db) ResBlock(db, db/2)

ResBlock(db, db/2)
D(db, h, dz) Upsample(2)

Transition Network Conv2D(db/2, 3, 0, 1)
D(Nh ∗ dz + dπ , h, dz) Mish

Inference Network Conv2D(Cx, 3,0,1)
D(db +Nh ∗ dz + dπ , h, dz) Sigmoid

Table 3: Architecture of the networks used in PDVAE except the Policy Extraction Module

Figure 9: HB Block(a,b,c): given the input x with the size a, HB Block outputs a vector y, with
linear layers with hidden unit size b and output size c. D Block(a,b,c): given the input x with the
size a, D Block outputs a normal distribution [µ, log σ] with linear layers with hidden unit size b
and output size c. ResBlock(a,b): residual, which outputs the same channel to input channel, of
convolution layers with hidden channel size a and input channel size b.

C PARAMETER CHOICE

We have trained our model with a single GPU, NVIDIA GeForce 3090 RTX.

C.1 LOSSY COMPRESSION MODULE AND POLICY MODULE

In this section, we illustrate the parameter choice for the lossy compression module and the policy
module along with the shape of input video and the preprocess method by dataset. The Table 4
illustrates the parameter choice for each experiment. The codebook slots indicate the number of
code vectors in the codebook of VQ layer of the policy extraction module. dE and dD consist of the
hidden channel size of the encoder and decoder of each layer where the leftmost is the parameter for
the bottom layer and the rightmost is the parameter for the top layer. We have changed the image
sequence to grayscale for the KTH action and VizDoom Experiment. We have used the timesteps of
the image sequence as the channel of an image for all experiments. Therefore, the tuple in the input
size stands for the height, width, and length of the sequences of images.

Preprocess For the KTH action experiment, we have adjusted the contrast by a factor of two to
the images to highlight the action of a person more. For the input, we have used the difference
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between frames as the behavior of a person becomes more explicit, hence the length of the sequence
becomes 19. For the VizDoom experiment, we sample the episodes with ScreenFormat of RGB24,
ScreenResolution of RES_200X125, and skip rate of 3. We have resized the image of 200x125 to
height 64 and cropped the center of the image to make a 64x64 square image. We have normalized
the video with pixel values between [0,255] to [0,1].

Moving MNIST KTH action VizDoom
Input shape (32,32,20) (64,64,19) (64,64,20)
Batch size 2048 128 128

dE [96, 96, 192, [96, 96, 192, [96,96, 192,
288, 480] 288, 480, 960] 288, 480, 960]

dD [128, 128, 256, [96, 192, 288, [160, 320, 480,
384, 640] 480, 768, 1536] 800, 1280, 2560]

dπ 128 256 512
Codebook Slots [256,256,256,256,4] [256,256,256,256,2] [256,256,256,256,2]

Epoch [150,150,150,150,150] [200,200,200,200,200] [200,200,200,200,200]
learning rate 4e-4 4e-4 4e-4

Table 4: Parameter choice of the Policy Extraction Module

C.2 PDVAE

In this section, we illustrate the parameter choice for the networks in PDVAE with Table 5. PDVAE
takes video as an input, hence the input shape (ts, H, W, C) represents the length, height, width, and
channel of the sequences of images. For KTH, we have added the cross entropy loss with the pseudo
label from the pre-trained policy module to enhance the generation quality (Lee et al., 2013).

Preprocess We have not done any preprocess to Moving MNIST. For KTH action, we adjust the
contrast by a factor of two for the input and use the original frames, not the difference. We have
applied the same prerprocess as the one from the training of the lossy compression module and policy
module to the Vizdoom except for the conversion of grayscale. We have used the RGB video for the
PDVAE.

Moving MNIST KTH action VizDoom
Input shape (20,32,32,1) (20, 64,64, 1) (20,64,64,3)
Batch size 128 128 32

dx 1024 4096 12288
Cx 1 1 3
Ch 1 3 50
db 256 1024 512
dz 128 512 64
dπ 128 256 512
h 1024 2048 2048
Nh 2 2 4
β 1 1 1

Epoch 6000 10000 10000
learning rate 4e-4 2e-4 1e-4

Table 5: Parameter choice of the networks in PDVAE

D ADDITIONAL EXPERIMENT RESULTS ON MOVING MNIST

In this section, we present additional experiment results on the Moving MNIST data.

As one can observe, the reconstructed images from the top layer are similar across the digit within
the same direction. The policy extraction module has compressed the sequences of images and learns
the representation of the policy.
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Figure 10: Different choice of policy for the generation of every digit

Figure 13 demonstrates the generated image sequence of every digit for every direction. This figure
is the extended experiment results of the Figure 5. Given any input sequence, PDVAE can alter the
policy of an agent and generates accordingly to the policy without changing the shape of the digit.

E ADDITIONAL EXPERIMENT RESULTS ON VIZDOOM

In this section, we present additional experiment results on the Vizdoom data. Figure 13 demonstrates
the generated image sequence of every digit for every direction. This figure is the extended experiment
results of the Figure 5. Given any input sequence, PDVAE can alter the policy of an agent and generates
accordingly to the policy without changing the shape of the digit.

F COMPARISON WITH TD-VAE

In this section, we provide the quantitative comparison between TD-VAE (Gregor et al., 2019) and
PDVAE. PDVAE is the TD-VAE with the lossy compression module, policy module, and the siam
architecture. TD-VAE for the comparison is trained with the same hyperparameters of PDVAE. Since
TD-VAE encodes the complete information for prediction, including policy, to the state zt, TD-VAE
performs better on the generation quality. However, the difference in FVD and FID are not not
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Figure 11: The scatter plot indicates the policy module trained with PDVAE distinguishes the videos
into four categories by the policy. Input video and the reconstruction of the video from the policy
module in PDVAE using a single code vector. Each row in the table represents the input video and the
reconstruction video from the policy module where the upper one is the input and lower one is the
reconstruction. The reconstructions of different digits with the same digit are analogous. The policy
module trained with PDVAE preserves only the policy-related semantic feature in the code vector.
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Figure 12: The scatter plot indicates the policy module trained independently of PDVAE failed to
distinguish the videos by the policy. Input video and the reconstruction of the video from the policy
module trained independently of PDVAE using a single code vector. Each row in the table represents
the input video and the reconstruction video from the policy module where the upper one is the input
and lower one is the reconstruction. The reconstructions of different digits with the same digit are not
analogous.
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Figure 13: Each row represents a generated sequence with the policy and situations (the first four
images). Given the same situations, the agent acts according to the policy. However, even with the
same policy and situation, the generated videos shows diverse outcomes because of the stochasticity
within the model. The above figures demonstrate the capability of PDVAE over the question on "what
if someone with different intention/policy/strategy will do in a given situation?"
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Table 6: Quantitative comparison between PDVAE and TD-VAE

MNIST KTH vizdoom
Model FID ↓ FVD ↓ FID ↓ FVD ↓ FID ↓ FVD ↓

TD-VAE 7.99 53 57.8 364 26.5 621
PDVAE 8.63 64 50.2 449 27.0 637

meaningful enough in Moving MNIST and VizDoom. As Figure 7 indicates, it takes a few frames for
the person to switch the motion from one another. The generated video does not exist in the original
dataset, hence the FVD score of PDVAE is lower than the score of TD-VAE. Despite the lower
performance, PDVAE can control the generation according to the policy, which can be potentially
utilized to gaming, video, and robotics tasks.
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