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1 Details on Training Data Generation

This section contains details of the training data generation procedure. The Section 1.1 presents
the parameters used for sampling the training RMPs. Section 1.2 covers implementation details
of the RMP selection algorithm. Section 1.3 discusses combinatorial properties of RMP
enumeration and feasibility issues. Section 1.4 focuses on details of the extended RMP selection
method using RMP recombination.

1.1 Parameters

All parameters used for the training data generation are listed in Table 1.

Table 1: Training data generation parameters.

Parameter Description Value

I Instruction Set add, mult, inv, neg, sin, cos, log,
exp, sq, sqrt

I1 Unary Instructions inv, neg, sin, cos, log, exp, sq,
sqrt

I2 Binary Instructions add, mult
D Number of Input Dimensions d ∈ {1, . . . , 10}
L Program Lengths l ∈ {1, . . . , 12}
A Sampling Range a ∈ [−10, 10]
N Number of Sample Points n ∈ {192, 448, 960}
B Constant Range b ∈ [−10, 10]

Dmax Max Input Dimension 10
Lmax Max RMP Length 12

1.2 Implementation Details

The detailed RMP selection procedure for training data generation consists of the following
steps:

1. Enumeration

(a) Hyperparameters. Determine the input dimension D ∈ {1, . . . , Dmax} and the max-
imum length L ∈ {1, . . . , Lmax} of RMPs that are feasible to enumerate within the
constraints of the available computational budget. In our case, these are programs with
a maximum length of 5 lines, thus allowing a maximum of 6 input variables.

(b) Enumeration. Generate all |I|L instruction sequences as skeletons for the RMPs. Turn
each RMP skeleton into a list of valid RMPs by generating all valid combinations of
registers for all instruction steps of the RMP. In the corresponding DAG, this is equivalent
to all the possible wirings of the DAG with the given number of operators. The result is
a list of all enumerable, valid RMPs for the given length.
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(c) Equivalence Check. Generate a verification set of N random input points x ∈
{−a, a}Dmax and store it as the base for the following hash generation procedure. We
set N = 1000 and a = 10 in our case. Infer all RMPs on this verification set. Check if
at least 10% of the points are valid/non-NaN values. If not, the program is rejected.
Standardize the resulting output array {yi}Ni=1 of each RMP by subtracting the mean
and dividing by the standard deviation. Then hash all standardized output arrays and
store the hashes in a hash table. In the event of a hash collision, keep only the RMP
with the shorter length. In the case of equal length, add the RMP to the list of minimal
alternatives. This effectively compresses the list of enumerated RMPs to the minimal
RMPs, including alternatives.

2. Recombination

(a) Hyperparameters. Set an upper bound on the length L of RMPs to be generated from
combinations. In our case, we generate programs up to a length of L = 12.

(b) Recombination. Randomly select two RMPs from the enumerated, compressed set
of minimum RMPs from step 1. Connect the output of the first RMP to a randomly
selected input variable of the second RMP. Then randomly select variables from all the
input variables xi of the first RMP, all the intermediate variables ai of the first RMP,
and the remaining input variables xj of the second RMP and connect them to the inputs
of the second RMP until all the inputs of the second RMP are connected. The result is
a new, larger RMP that is considered a candidate for the dataset. To be included in the
data set, the candidate undergoes a series of checks.

3. Verification

(a) Common Subexpression Check. Eliminate RMPs that are longer than the specified
maximum length, L. Also, reject candidates that contain common subexpressions (CSEs).
For these RMPs, we know that shorter representations must exist.

(b) Gradient Check. Infer all candidates on the verification set of N random points
generated in step 1. For each intermediate variable ai in the RMP, trace back the
input variables that influence it. Then, for each intermediate variable, check that the
gradients of all influencing input variables are non-zero. This ensures that the instruction
at this step does not lead to the elimination of input variables, as in x/x = 1 or
sin2(x) + cos2(x) = 1. Furthermore, we check if the output variable ai receives gradients
from all input and intermediate variables. Otherwise, we know that an intermediate
variable does not contribute to the program and is therefore redundant, and a shorter
representation must exist.

(c) Equivalence Check. Standardize the output array {yi}Ni=1 by subtracting the mean
and dividing by the standard deviation. Then hash it and store the hash in the hash
table. In case of collisions, keep only the RMP with the shorter length. In the case of
equal length, add the RMP to the list of minimal alternatives.
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Figure 1: Enumeration and verifiability of RMPs. Left: Total number of programs per
length and dimension (y-axis is log scale). Right: Feasible number of RMPs distributed across
(D,L) buckets that can be checked within a given computation budget of 109 equivalence
checks.

1.3 Register Machine Program Enumeration

Feasibility issues. Register machine program enumeration allows to find exhaustively minimal
RMPs by enumerating them and then filtering them by efficient equivalence checking. However,
due to the exponential growth of the space of possible RMPs over their length, the range that
can be effectively enumerated in our computational budget is limited. The left part of Figure 1
illustrates the large increase in the number of programs as program length increases. The right
part of Figure 1 illustrates the small number of programs that can be feasibly enumerated
versus the large number of (D,L) buckets that cannot be feasibly enumerated. A (D,L) bucket
is colored in dark blue if the number of programs is below the given computational budget
of 109 equivalence checks. In practice, we try to maximize the total number of buckets that
can be enumerated within a computational budget of 109 equivalence checks. This includes all
RMPs with a maximum length of 5 lines and a maximum of 5 inputs and takes approximately
1 hour.

Growth behavior of RMPs. Within the feasibly enumerable range of programs (D <=
5, L <= 5), we compare the total number of enumerable programs with the number of
equivalence classes reached by these programs, as well as the total number of minimal RMP
alternatives. As equivalence classes, we count the number of different unique hashes of the
outputs of all enumerated programs. As minimal RMPs, we count all RMPs of the same length
that produce the same output, including all minimal alternatives. The left part of the Figure 2
shows the results of the comparison. It can be seen that the number of equivalence classes,
while still growing exponentially (y-axis is log scale), grows much slower than the total number
of programs. We can also see that the number of minimal RMPs including alternatives grows
at about the same rate as the number of equivalence classes. This shows that for a single
equivalence class there are only a small number of minimal programs that generate it.
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Figure 2: Total number of programs vs. equivalence classes. Left: Relation of total
number of programs to minimal RMPs. The total number of programs grows several orders of
magnitude faster than the number of equivalence classes (y-axis is in logarithmic scale). For a
given equivalence class, there may be several minimal RMP alternatives. Right: Comparison of
random RMP generation, expression tree generation after Kamienny et al. [2022], and minimal
RMP generation in terms of the number of different equivalence classes reached by each training
data generation method after taking 10k samples from each. The values presented have been
normalized.

Comparing training data generation methods. To evaluate the quality of our training
data generation method with other synthetic data generation methods, we place it in the
context of pure random RMP instruction sequence generation and the expression tree generation
method used by Kamienny et al. [2022]. For all three methods, we use the same instruction
set I as listed in Table 1. First, we compute a test set of N = 1000 random input points
x ∈ RD in the range [−10, 10]D. Then we draw 10k samples from each training data generation
method, resulting in 10k expressions for each method. We then execute the expressions as
lambda functions on the test input points and hash the output arrays {yi}Ni=1. Then we
determine the number of different equivalence classes reached by each method. This is done by
counting the unique hashes reached by each approach. The right part of the Figure 2 shows
the results of the comparison. Random RMP generation within 10k samples achieves only 760
different equivalence classes. This is due to the fact that without any restriction on the program
structure, many generated programs lead to poorly connected instruction sequences, where
only a subset of the input variables affect the output. The random expression tree generation
method imposes more restrictions on the structure of the expression tree, leading to more
diverse expressions even for a higher number of input variables and length. However, without
explicitly optimizing the procedure to achieve a high diversity of equivalence classes, it only
achieves about 6360 different equivalence classes on 10k samples. Another problem with both
approaches is that, because there are no implemented checks on the structure of the generated
expressions, we have no confidence that the generated programs, even if they reach different
equivalence classes, are actually guaranteed to be compact representations. Our method is
specifically optimized to sample only minimal RMPs from different equivalence classes. When
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10k samples are taken, the generation algorithm is designed to return only RMPs that reach
different equivalence classes.

Figure 3: Statistics of verified minimal RMPs. Left: Number of minimal RMPs per length.
Center: Number of minimal RMPs per input dimension. Right: Distribution of minimal RMPs
over different input dimension-length buckets.

Statistics of the enumerable RMPs. Figure 3 shows the statistics of the minimal RMPs
generated by filtering the enumerated set of all RMPs in (D <= 5, L <= 5). We can see that,
as expected, longer programs contain exponentially more minimal RMPs than shorter ones.

1.4 Extended Register Machine Program Selection

We extend our RMP selection method with a recombination step to generate RMPs with
compact representations for buckets with (D > 5, L > 5). RMP recombination allows to
efficiently generate good candidates for compact programs from existing verified minimal
RMPs.

Figure 4: Statistics of recombination from initial instruction set. Statistics of the
minimal RMPs generated by random recombination starting with the basic instruction set I as
initial set functions. Only the programs with the shortest length after 109 equivalence checks
are kept.

As an absolute base case, we illustrate how the combinatorial process evolves when only the
basic instructions in I are set as the initial set of programs for recombination. In practice, this
means that we start with all unary instructions as RMPs of length one with input dimension
one, and all binary instructions as RMPs of length one with input dimension two. Figure 4
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shows the distribution of minimal RMPs over the length, dimension, and (D,L) buckets. We
can see that when programs are randomly recombined from the initial instruction set without
restrictions, the programs rapidly evolve towards programs of larger length.

To mitigate this behavior and ensure a recombination process that generates programs dis-
tributed over all (D,L) buckets equally, we make a few changes to the base case above. First,
we set the initial set for recombination to the minimal RMPs enumerated and verified in step 1
of the training data generation procedure. Then, when recombining, we sample programs for
recombination uniformly at random across all (D,L) buckets. This results in the generation of
novel, compact RMPs that are roughly evenly distributed across all (D,L) buckets, forming a
balanced training data set. Figure 5 shows the resulting statistics of the RMPs obtained from
recombination step 2.

Figure 5: Statistics of recombination from minimal RMPs as seed set. Statistics of
the set of RMPs generated by random recombination from an initial set of minimal RMPs
obtained from step one of the data generation process. The algorithm is stopped after 16M
equivalence classes are reached.

2 Details on Model Training

The Table 2 contains the hyperparameters used to train the transformer model. The model
is trained by minimizing a cross-entropy loss using the Adam optimizer. The learning rate is
initially set to 10−7 and then, over the first 2000 steps, warmed up to 10−4. Subsequently, a
cosine learning rate decay to 10−5 is employed, as in Lewkowycz [2021].

3 Details on Experiments

This section presents additional details on the results of the experiments. Section 3.1 discusses
additional results on metrics other than recovery on the SRBench benchmark. Section 3.2
presents details on the ablation studies, specifically looking at recovery performance over certain
program lengths, dimensions, and (D,L) buckets, as well as providing additional metrics on the
Feynman dataset.
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Table 2: Model training hyperparameters.

Parameter Value

Embedding Dimension 512
Num Encoder Layers 4
Encoder Block Size {192, 448, 960}
Num Decoder Layers {1, 2, 4, 8, 16}
Decoder Block Size 64
Num Attention Heads 16
Batch Size 32
Learning Rate 10−4

Warmup Iterations 2000
Weight Decay 10−1

Adam Betas (0.9, 0.95)
Dropout 0.0
Grad Clip 0.5

3.1 Additional SRBench Results

The SRBench test suite provides insight into other metrics besides recovery. Kahlmeyer et al.
[2024] suggest using the Jaccard index metric as a non-binary measure of recovery to illustrate
how many components of a formula were correctly recovered by a symbolic regressor. The left
part of the Figure 6 shows the result of this evaluation. Our E2E-RMP approach ranks second
in this evaluation, indicating a high recovery of correct components.
Looking at model fit metrics such as the R2-score, we can see that our E2E-RMP approach
ranks lower than the E2E approach. This can be explained by the fact that we restrict our
RMPs to contain at most 1 constant in order to obtain very compact program representations.
Other methods do not have this limitation and are therefore allowed to include an unlimited
number of constants in the functions. This gives the generated candidates a much higher degree
of freedom than the programs generated by our E2E-RMP regressor and explains their higher
R2-scores on the SRBench benchmark. Nevertheless, our method is deliberately designed with
a recovery-first approach in mind, and therefore omits additional complexity in the form of
constants wherever possible. The trade-off between the fit of the generated expression and its
complexity is illustrated in Figure 7.

Table 3 compares the recovery rates and the Jaccard index as the main metrics of recovery,
as well as the model fit metric R2 and the expression complexity between transformer-based
end-to-end symbolic regression approaches. The influence of the synthetic training data in
the form of compact RMPs can be clearly seen in the recovery and Jaccard index metrics,
representing a large improvement on these metrics.
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Figure 6: SRBench model fit evaluation. Left: Average Jaccard index, which measures the
overlap of the predicted formulas with the ground truth formulas. Right: Average R2 score on
the SRBench benchmark. The reported values are averages over 10 runs.
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Figure 7: SRBench pareto evaluation. Left: Model fit to model complexity tradeoff for all
compared methods. Right: Recovery to model complexity trade-off for all methods compared.

3.2 Details on Ablation Studies

In Table 4, we present additional results for the scaling experiments over the parameter size of
the model. The parameter size is increased by scaling the number of decoder layers from one to
16. We report recovery, R2-score, Root Mean Squared Error (RMSE), and complexity on the
Feynman data set [Udrescu and Tegmark, 2020b]. In addition, we report recovery performance
on the training and test sets. Larger parameter sizes consistently show higher recovery rates.
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Table 3: Comparison of transformer-based end-to-end approaches on SRBench and
reduced Feynman dataset. The upper part of the table shows the recovery results of
transformer-based approaches on SRBench. The transformer approach trained on minimal
RMPs shows higher overall recovery and higher overlap with ground truth formulas (Jaccard
index), as well as low formula complexity. In the middle of the table, the performance of
the transformer-based approaches are compared with state-of-the-art approaches that are not
transformer-based. At the bottom of the table, we separately compare the E2E-RMP approach
with the transformer of Biggio et al. [2021], because Biggio et al. [2021] only allows evaluation
on formulas with an input dimension < 4. We therefore evaluated the approach on the 48
possible formulas out of the 119 formulas in the Feynman dataset and compared it with our
approach on the same dataset. We compare our 86M variant with the 100M variant of Biggio
et al. [2021]. First, we compare both approaches on points sampled in-domain in [−10, 10],
which we highlight with ID in the table. The E2E-RMP transformer has a seven per cent higher
recovery rate on this split of the data. We explain this effect by the systematic generation of
minimal RMPs for training. Then, we compared the out-of-domain performance by moving the
domain progressively to the right, starting from ten up to 40. What we observe is a decrease
in recovery performance for both methods, although E2E-RMP degrades much more gracefully,
which we attribute to standardization. Out-of-domain performance results are marked OOD.

Method Recovery in % Jaccard Index R2 Complexity

TF-approaches on SRBench

Kamienny et al. [2022] 1.59 0.08 0.88 31.95
Vastl et al. [2022] 2.87 0.12 0.43 17.63
Lalande et al. [2023] 0.00 0.14 0.05 8.36
Shojaee et al. [2023] 33.89 0.29 0.99 35.74
E2E-RMP 34.02 0.51 0.72 11.22

Non TF-approaches on SRBench

Cranmer [2023] 44.73 0.58 0.97 13.15

TF-approaches on reduced Feynman dataset

Biggio et al. [2021]-ID 47.92 0.59 0.85 8.27
E2E-RMP-ID 54.67 0.55 0.87 9.89
Biggio et al. [2021]-OOD 4.16 0.19 0.29 13.60
E2E-RMP-OOD 14.58 0.26 0.09 8.21

For the largest model variant with 16 decoder layers, we perform ablations over dataset size,
beam size, and input length. In the dataset size experiments, we scale the number of equivalence
classes a model sees during training from one to 16. We train each model until the validation
loss is saturated and then measure the recovery performance. Regardless of the number of
model parameters, we observe a stable increase in recovery performance as more equivalence
classes are seen during training. Given the synthetic nature of the data generation method, we
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Table 4: Detailed recovery results on the Feynman dataset. Comparison of the
recovery performance of the transformer model with different numbers of decoder layers on the
well-known Feynman dataset, the training set, and the test set.

Model Recov Feynman R2 RMSE Complexity Recov Test Recov Train

TF-1 0.40 0.83 0.09 10.7 0.09 0.11
TF-2 0.40 0.86 0.09 11.0 0.10 0.11
TF-4 0.43 0.85 0.07 11.4 0.10 0.13
TF-8 0.47 0.85 0.06 11.4 0.12 0.14
TF-16 0.49 0.87 0.07 11.2 0.13 0.15

expect the recovery performance to increase further as more synthetic data is generated. In
the beam size experiments, we infer the model with varying beam sizes from one to 16. The
larger the beam size, the better the recovery performance. In the input length experiments, we
fine-tune model variants for encoder input sizes of 192, 448, and 960 tokens. As the number of
tokens in the input increases, the recovery performance decreases, indicating an increase in the
difficulty for the model. The performance degradation seems to slow down as the number of
parameters increases, comparing the 8-layer and 16-layer variants. One potential explanation
for this phenomenon is the increasing computational complexity of the task for a model with
the same parameter size when presented with a greater number of inputs.

Recovery per length and dimension. Figure 8 illustrates the recovery performance of
the model on the Feynman dataset over different program lengths and dimensions. It can be
observed that programs with shorter lengths and programs with fewer input dimensions are
generally recovered better than longer programs or programs with a larger number of inputs.
This is not a phenomenon specific to the E2E architecture. Furthermore, the steady decline
in recovery performance can be observed for various state-of-the-art symbolic regressors such
as UDFS Kahlmeyer et al. [2024], DSR Landajuela et al. [2021] or PySR Cranmer [2023], as
shown in Figure 9. Note that complexity here is usually measured as the size of the minimal
expression tree of the target expression to be recovered.

Recovery over dimension-length buckets. Figure 10 illustrates the recovery performance
of model ablations with different parameter sizes over all (D,L) buckets. Models with a larger
number of parameters consistently achieve higher recovery across all buckets.

Inference speed comparison. To put the inference speeds of the various state-of-the-art
symbolic regression methods in the context of the end-to-end approach, we measure the
performance of the E2E-RMP transformer on our setup with a single NVIDIA RTX A6000
GPU. Table 6 shows the results of the comparison. Compared to other methods, speedups of
2.3 to 3 orders of magnitude (depending on the inference platform) are achieved.
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Table 5: Detailed ablation study results on the Feynman dataset. Applying different
ablations to the dataset size, beam size, and input length to the 16-decoder layer variant of the
transformer model. The bottom shows an additional ablation. It compares an 8 decoder layer
variant at different input lengths.

Ablation Recov Feynman R2 RMSE Complexity

TF-16 Dataset Size 1M 0.34 0.79 0.07 11.72
TF-16 Dataset Size 2M 0.36 0.76 0.07 12.86
TF-16 Dataset Size 4M 0.38 0.79 0.07 12.06
TF-16 Dataset Size 8M 0.45 0.79 0.06 11.51
TF-16 Dataset Size 16M 0.50 0.88 0.07 11.30

TF-16 Beam Size 1 0.21 0.56 0.05 17.68
TF-16 Beam Size 2 0.45 0.76 0.05 12.28
TF-16 Beam Size 4 0.48 0.80 0.04 11.52
TF-16 Beam Size 8 0.48 0.84 0.07 11.16
TF-16 Beam Size 16 0.51 0.91 0.06 10.97

TF-16 Input Length 192 0.50 0.88 0.07 11.30
TF-16 Input Length 448 0.43 0.77 0.05 12.42
TF-16 Input Length 960 0.39 0.81 0.07 12.35

TF-8 Input Length 192 0.45 0.88 0.07 11.66
TF-8 Input Length 448 0.39 0.80 0.06 12.81
TF-8 Input Length 960 0.33 0.82 0.04 13.12

Detailed analysis of the formulas recovered from the Feynman data set. The Feynman
problems comprise formulas from the renowned Feynman Lectures Feynman et al. [2011] and
were initially introduced by Udrescu and Tegmark [2020a] to assess the efficacy of their symbolic
regressor. Subsequently, it has been employed and validated by La Cava et al. [2021] in their
comprehensive benchmark suite. The database can be accessed via the following link: here.
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II.34.29b* 2πx0x2x3x4
x1

II.34.2a x0x1
2πx2

II.35.18 x0

e
x3x4
x1x2 +e

−x3x4
x1x2

II.35.21 x0x1 tanh
Ä
x1x2
x3x4

ä
II.36.38 x0x1

x2x3
+ x0x4x7

x2x3x5x2
6

II.37.1 x0x1 (x2 + 1)

II.38.14 x0
2x1+2 II.38.3 x0x1x3

x2

II.4.23 x0
4πx1x2

II.6.11 x1 cos (x2)
4πx0x2

3

II.6.15a 3x1x5

√
x2
3+x2

4

4πx0x5
2

II.6.15b 3x1 sin (x2) cos (x2)
4πx0x3

3

II.8.31 x0x2
1

2 II.8.7 3x2
0

20πx1x2

III.10.19 x0
»
x21 + x22 + x23 III.12.43 x0x1

2π

III.13.18 4πx0x2
1x2

x3
III.14.14 x0

(
e

x1x2
x3x4 − 1

)
III.15.12 2x0 · (1− cos (x1x2)) III.15.14 x2

0

8π2x1x2
2

III.15.27 2πx0
x1x2

III.17.37 x0 (x1 cos (x2) + 1)

III.19.51 − x0x4
1

8x2
2x

2
3x

2
4

III.21.20 −x0x1x2
x3

III.4.32 1

e
x0x1

2πx2x3 −1
III.4.33 x0x1

2π

Å
e

x0x1
2πx2x3 −1

ã
III.7.38 4πx0x1

x2
III.8.54 sin2

Ä
2πx0x1

x2

ä
test 1 x2

0x
2
1x

2
2x

2
3x

2
4

16x2
5 sin

4 (x6
2 )

test 2
x0x1

Ç 
1+

2x22x3

x0x
2
1

cos (x4−x5)+1

å
x2
2

test 3 x0·(1−x2
1)

x1 cos (x2−x3)+1 test 4
√
2

 
x1−x2−

x23
2x0x

2
4

x0

test 5 2πx
3
2
0√

x1(x2+x3)
test 6

…
2x2

0x
2
1x6

x2x2
3x

2
4x

4
5
+ 1

test 7
…

8πx0x1
3 − x2x2

3

x2
4

test 8 x0
x0·(1−cos (x3))

x1x
2
2

+1

test 9 −32x4
0x

2
2x

2
3(x2+x3)

5x5
1x

5
4

test 11 4x0 sin
2 (x1

2 ) sin
2 (x2x3

2 )
x2
1 sin

2 (x2
2 )

test 12
x0

(
− x0x

3
1x3

(x21−x23)
2+4πx2x3x4

)
4πx2

1x4
test 13 x0

4πx4

√
x2
1−2x1x2 cos (x3)+x2

2

test 14 x0

(
−x2 +

x3
3(x4−1)

x2
2(x4+2)

)
cos (x1) test 15

x2

 
1−

x21
x20

1+
x1 cos (x3)

x0

test 16 x3x5 +
»
x20x

4
1 + x21 (x2 − x3x4)

2 test 17
x2
0x

2
1x

2
4·
(
1+

x4x5
x3

)
+x2

2

2x0

test 18
3

Å
x1x

2
4

x22
+x2

3

ã
8πx0

test 19 −
x1x

4
5

x22
+x2

3x
2
5·(1−2x4)

8πx0

Table 7: Feynman dataset. The Feynman dataset contains 119 formulas from Feynman’s
lectures. Formulas successfully recovered by the model are shown in bold. In addition,
successfully recovered formulas resulting from generalization are indicated by an asterisk.
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Figure 8: Detailed recovery analysis on the Feynman dataset. Left: Recovery results
per program length on Feynman dataset. Right: Recovery results per input dimension on
Feynman dataset.
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Figure 9: Comparison of recovery over complexity for state-of-the-art symbolic
regressors. The recovery performance steadily decreases as the formulas to be recovered
become more complex. This is a phenomenon observed for several state-of-the-art symbolic
regressors.
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(a) 1 Layer (b) 2 Layers (c) 4 Layers

(d) 8 Layers (e) 16 Layers (f) Dataset Distribution

Figure 10: Distribution of recovery results over (D,L) buckets. Distribution of recovery
results for different model sizes over the different combinations of length and input dimension
of the Feynman data set. The plot in the lower right-hand corner shows the overall distribution
of the test programs in the data set.
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Table 6: Inference speed results. Comparison of the inference speed of the transformer-
based symbolic regression approach with state of the art search-based methods such as
UDFS [Kahlmeyer et al., 2024]. The average inference time for a single program is 2.3
orders of magnitude faster when inferred on an Intel(R) Xeon(R) Gold 6226R CPU @ 2.90GHz
and 3 orders of magnitude faster when inferred on a single NVIDIA RTX A6000 GPU. The
average times are calculated for a beam size of k = 10 over all programs of the Feynman
dataset.

Method Avg. Time per Program (s)

DSR 20.05
gplearn 9.10
Operon 7.28
PySR 3.82
UDFS 61.10

TF-1 CPU 0.32
TF-2 CPU 0.42
TF-4 CPU 0.59
TF-8 CPU 0.91
TF-16 CPU 1.58

TF-1 GPU 0.06
TF-2 GPU 0.08
TF-4 GPU 0.11
TF-8 GPU 0.17
TF-16 GPU 0.32
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