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A Model Details and Experimental Settings

A.1 Simulation Environment for Empirical Study

In our research, we introduce RoboKoop, an algorithm distinguished by its sample efficiency, which
processes pixel-based inputs to simultaneously learn linear dynamics and develop an effective con-
trol policy. This algorithm demonstrates versatility across a broad spectrum of environments. We
have rigorously tested RoboKoop against continuous control challenges within the DeepMind Con-
trol Suite. Our selection of these particular tasks is grounded in several critical considerations:

1. Existing baseline methods exhibit suboptimal performance on these tasks, highlighting a
gap that RoboKoop aims to fill.
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2. Recent advancements have introduced both model-free and model-based strategies aimed
at enhancing the sample efficiency of similar algorithms. Our work contributes to this
ongoing dialogue by presenting an alternative approach.

3. The performance metrics obtained from these simulated tasks are highly indicative of real-
world applicability, underscoring the practical relevance of our findings in broader contexts.

Cartpole Swingup This task is centered around the goal of swinging up a pole, initially in a down-
ward orientation, attached to a moving cart, and then maintaining its upright position. Success in
this task requires the precise application of forces to the cart, navigating through a 4D state space
that represents the cart-pole system’s kinematics, complemented by a 1D control space for force
application.

Cheetah Run The objective here is to orchestrate the movements of a simulated planar cheetah to
achieve rapid and stable running. This involves managing an 18D state space that encapsulates the
kinematics of the cheetah’s entire body, including its joints and limbs, while employing 6D torques
as controls to manipulate the joints for optimal locomotion.

Reacher The Reacher task is designed to test precise motor control by requiring an agent to maneu-
ver a simulated two-joint robotic arm to a target location in a 2D plane. This task involves navigating
through an 11D state space that includes the positions and velocities of the arm’s joints, as well as
the position of the target. The control space is 2D, representing the torques applied at each joint.
Success in this task is measured by the agent’s ability to accurately and efficiently move the arm to
the target position and maintain it there.

Ball in Cup In the Ball in Cup task, the objective is to control a simulated robot arm to swing
and catch a ball attached to a string in a cup. This task is particularly challenging due to the non-
linear dynamics involved in swinging the ball and the precision required to catch it in the cup. The
environment’s state space is 8D, capturing the positions and velocities of the ball and the robot arm,
as well as the angular position of the cup. The control space is 3D, representing the forces applied
to the robot arm to achieve the desired swing motion. Success in this task requires a combination of
dynamic coordination and precise timing.

Walker The Walker task involves controlling a bipedal robot to achieve stable and efficient loco-
motion. The state space for this task is 17D, encompassing the kinematic properties of the robot’s
body and legs, including joint positions and velocities. The control space is 6D, corresponding to the
torques applied to the robot’s joints. The objective is to navigate the robot through various terrains,
maintaining balance and forward motion. Success in this task is determined by the robot’s ability to
move swiftly and stably without falling.

A.2 Model Hyper parameters

Table 1 provides a comprehensive enumeration of the hyperparameters employed in our model,
along with detailed descriptions of each parameter. For To-KPM [2] also, we use the same hyper-
parameters as our model for a fair evaluation.

B Baselines

This section delineates the comparative analysis of baselines utilized in our study and elucidates
how our approach diverges from them.

B.1 CURL: Contrastive Unsupervised Representations for Reinforcement Learning [1]

CURL, which stands for Contrastive Unsupervised Representations for Reinforcement Learning,
employs contrastive learning to derive high-level features from raw pixels for reinforcement learning
tasks. Our methodology, however, adopts a spectral Koopman operator model to explicitly learn
system dynamics, a feature absent in CURL. This distinction permits an in-depth analysis of system
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Table 1: Hyperparameters and Configuration Details

Name Value Description
Environment
Pre transform image size 100 Initial size of images before applying transforms.
Frame stack 3 Number of frames stacked together as input.
Image size 84 The resolution of input images to the network.
Replay buffer capacity 100000 Maximum size of the replay buffer.
Agent
Hidden dim 1024 Dimension of hidden layers in neural networks.
Discount factor 0.99 Discount factor for future rewards (7).
Init temperature 0.1 Initial temperature parameter for SAC algorithm.
Alpha Ir 0.0001 Learning rate for the temperature parameter.
Alpha beta 0.5 Beta parameter for the Adam optimizer for temperature.
Actor Ir 0.001 Learning rate for the actor network.
Actor beta 0.9 Beta parameter for the Adam optimizer for the actor net-
work.
Actor update freq 1 Frequency of actor network updates.
Critic Ir 0.001 Learning rate for the critic network.
Critic beta 0.9 Beta parameter for the Adam optimizer for the critic net-
work.
Critic tau 0.01 Tau parameter for soft updates of the target networks.
Critic target update freq 1 Frequency of target network updates.
Encoder feature dim 256 Dimensionality of the encoded features.
Control encode dim 128 Dimensionality of the encoded control input.
Encoder Ir 0.001 Learning rate for the encoder.
Encoder tau 0.05 Tau parameter for soft updates of the encoder.
Num layers 4 Number of layers in the convolutional neural networks.
Num filters 32 Number of filters in the first convolutional layer.
Curl latent dim 128 Dimensionality of the latent space in CURL.
Koopman update freq 1 Frequency of updating the Koopman operator.
Koopman fit optim Ir 0.001 Learning rate for optimizing the Koopman operator.
Koopman fit coeff 0.1 Coefficient for fitting the Koopman operator.
Koopman horizon 5 Horizon length for Koopman predictions.
Training
Init steps 1000 Number of steps collected with random actions at the start
of training.
Num train steps 150000 Total number of training steps.
Batch size 128 Batch size for training.

stability and provides valuable insights into controller design. Unlike non-linear control policies
that lack a comprehensive system analysis, linear systems can be thoroughly examined through
eigenvalue analysis. We demonstrate this through a pole analysis of the Koopman operators in
Section 5, highlighting the methodological differences and advantages.

B.2 To-KPM [2]

To-KPM introduces a task-oriented approach that integrates a contrastive encoder with Koopman-
based control. Unlike our model, To-KPM relies on a dense Koopman operator, leading to unstable
poles and reduced sample efficiency due to the increased parameters required for learning the Koop-
man operator. These limitations are substantiated by the instability of poles (refer to Figures 4 and
5 in Section 5 of our paper) and underscore the efficiency of our approach.

B.3 Planet [3]

Planet is a model-based agent that discerns environment dynamics directly from pixels, facilitating
action selection through online planning within a compact latent space. The latent space is structured
around a recurrent state-space model, which is computationally intensive, as evidenced in Section 5
(Figure 6). Additionally, its emphasis on multi-step prediction in pixel space compromises sample
efficiency, necessitating extensive interactions with the environment.
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B.4 Koopman AE [4]

The Koopman AE methodology leverages a soft actor-critic policy, underpinned by a regularized
autoencoder (AE), to learn a latent space model atop AE features. Unlike Planet, this approach also
explicitly models dynamics using a Koopman operator. In contrast, our method eschews the use
of VAEs or AEs for pixel reconstruction, opting instead to learn features via contrastive learning
alone. This strategy ensures the prioritization of task-relevant features over the reconstruction of
pixel space, enhancing task efficiency and model performance.

C Analytical Results

C.1 Convergence of Contrastive Learning

Definitions and Assumptions

1. Smoothness: The function L. is assumed to be L-smooth with respect to #, meaning it has
Lipschitz continuous gradients:

HVACcst(el) - vgcst(02)” S LHgl - 62”7 V91,02.
2. Unbiased Gradient Estimates: The stochastic gradient @gﬂcst is an unbiased estimate of the

true gradient: .
E[VoLest(0)] = VoLest(0).

3. Bounded Variance: The variance of the stochastic gradient is bounded by a constant o:

E[||VoLest(6) — VoLes(6)]%] < 02

4. Diminishing Learning Rates: The learning rate o satisfies the Robbins-Monro conditions:
oo o0
Z Qp = 00, Z ozf < 0.
t=1 t=1

Convergence of Contrastive Loss via Gradient Descent

Theorem 1.: Ler L.y(0) be an L-smooth contrastive loss function for encoder parameters 0
and assuming stochastic gradient descent (SGD) updates with learning rate o satisfying Robbins-
Monro conditions. If @gﬁm is an unbiased estimate of the gradient with bounded variance, then
hmt*)c,o E[Hveﬁm(@t) HQ] =0.

Proof: Given the Lipschitz continuity of 1y, and assuming the loss L inherits this property with
respect to 6, the Descent Lemma can be applied. The lemma states that for a Lipschitz continuous
function f with Lipschitz constant L,

flz+ Az) < flz)+ Vf(z) Az + gHAJ;HQ

Given the L-smoothness of L., we have for any 61, 05:

L
Lost(62) < Los(61) + VLex(61) T (62 — 01) + 5 162 — 61>
Substituting the gradient descent update 6; 1 = 0; — Ve Lest(6):

La? .
LI VoLest(60)]17.

Let(0r11) < Lost(0:) — rV Lt (0:) T Vo Lest (0:) + "

Taking expectations on both sides, and using the fact that E[@gﬁw] = Vy Ly (unbiased gradient
estimates) and the bounded variance assumption:
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L 2
ElLea(01+1)] < ElLan(80)] = atl|VoLeal00)|2 + S50 + | VaLen(6)]).

Rearranging the terms, we aim to show that:

La?o?

2

O‘t<1 - %)||V0‘Ccst(9t)”2 < E[‘Ccst(et)] - ]E[Ecst(etJrl)] +

Given oy satisfies the Robbins-Monro conditions and 1— % > ( for sufficiently small a;;, summing
both sides over ¢ and applying the law of total expectation give:

La?o?
)

Loy 9 N
_ = ) < L. — Lo
él ay(1 5 YE[IVoLest (00)]17] < Lest(01) — Lest(07) + tEZI 5

where 0* is a local minimum of L.
Given the right-hand side is bounded (due to the boundedness of

L and the conditions on «;), and Zfil (1 — %) = 00, it follows from the quasi-martingale
convergence theorem and the Robbins-Monro conditions that:

. 21
tli>Holo E“|v9£cst(et)|| ] =0.

This implies that, in expectation, the gradient norm converges to 0, indicating convergence to a
stationary point. Now using the Polyak-Lojasiewicz condition, it can be shown that this is a local
minimum.

The exact form of L and its gradient VL. The Lipschitz constants for 1y and L.y Conditions
under which the stochastic gradient is an unbiased estimate of the true gradient and has bounded
variance. A suitable learning rate schedule oy that guarantees convergence.

C.2 Stability and Convergence of the Koopman Operator Approximation

Theorem 2: Convergence of Koopman Operator Approximations: Given (i) a discrete-time
linear dynamical system with states z € R™ and control inputs u € R™, evolving according to
Zp+1 = AtrueZi + Biryeug, where Ayye € R™™ and Bypye € R™™ ™ are the true system
matrices; and (ii) the Koopman operator approximation approach, which seeks to estimate matrices
A and B such that z;11 ~ Az + Buy, based on a loss function £,,(A, B;zk, ug, zg+1), the
minimization of L,, with respect to A and B over the observed data converges to the true system
matrices, i.e.,

lim (A,B) - (Atru57 Bt’rue)7

n—r oo

where n represents the number of observations.
Proof

We model the evolution of the system’s state as a linear regression problem, where:

* Znext 18 the matrix of next states zg 1,
* X is the design matrix composed of current states z;, and control inputs uy,
* O is the parameters matrix to be estimated, combining A and B,

* ¢ is the error term.
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The equation Z,.x; = X® + € encapsulates this linear relationship.

The objective function to minimize the difference between the predicted next states and the actual
next states, quantified by the Frobenius norm of their difference can be written as:

£m = HZnext - XQH%U

where || - || denotes the Frobenius norm. To minimize £,,, we calculate the gradient of the loss
function with respect to © and set it to zero: Ve L, = —2X " (Zyexy — XO) = 0.

Solving this equation for © gives: ® = (XTX) !X TZ,.. This is the least squares solution,
providing the best estimate of ® given the data.

With the assumption that the observations X and Z.x; sufficiently cover the entire state and control
input space and as the number of observations n approaches infinity (N — 00), the matrices X ' X
and X7 Z,exe will converge to their expected values. This ensures that the estimated parameters ©,
which combine A and B, converge to the true system matrices Ay, and By, that govern the
system’s dynamics.

The solution involves setting the gradient of £,,, with respect to ® to zero, leading to:

VeoLln=—2X" (Zux — XO) =0

Solving this equation yields the estimate for ®:

0= (X"X)"'X"Zex

Given a sufficiently diverse and large dataset (n — 00), the estimates converge to the true system
dynamics because the matrices XTX and X T Zpext approach their expected values, ensuring the
estimated parameters (A and B) converge to the true parameters (A, and Byye).

This proof assumes sufficient data coverage across the state and control input space, which guaran-
tees the convergence of the Koopman operator approximations to the true system dynamics, thereby
validating the theorem.

C.3 Convergence of the LQR Control Policy

Theorem 3: Convergence of the LQR Control Policy Given a discrete-time linear system char-
acterized by state transition matrix A € R™*™ and control input matrix B € R™*™ and the LQR
problem aims to minimize a quadratic cost function J = Y77 (x/} Qxj + u} Ruy) with Q > 0
and R > 0, the iterative solution to the Discrete-time Algebraic Riccati Equation (DARE)

P,,,=A"P,A-ATP,B(R+B'P,B) B P,A+Q,
converges to the optimal solution P* for the LQR problem, ensuring that the optimal control gains
G* = —(R+B"P*B)"!B"P*A yield a stable and optimal control policy.
Proof:

To prove the convergence of the Linear Quadratic Regulator (LQR) control policy, we focus on the
discrete-time setting, where the goal is to design an optimal control policy that minimizes a given
cost function. The essence of the proof involves showing that the solution to the Discrete-time
Algebraic Riccati Equation (DARE) converges to a unique positive semidefinite matrix, which then
defines the optimal control gains.

We are given a discrete-time linear system:

Xp+1 = Axy + Buy,
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and aim to minimize the infinite-horizon quadratic cost function:

o0
J= Z (x, Qx; +u, Ruy) ,
k=0

where Q > 0 (positive semidefinite) and R > 0 (positive definite) are the state and control weight
matrices, respectively.

The optimal control policy for this problem can be derived using dynamic programming, leading to
the DARE:

P—A"PA-A'PB(R+B"PB) 'BTPA +Q,

where P is the solution that defines the optimal cost-to-go matrix.

The convergence of the LQR control policy essentially means proving that the iterative solution to
the DARE converges to a unique positive semidefinite matrix P*. Here are the key steps:

1. Monotonicity and Boundedness:

To prove that the sequence {P;} generated by the Discrete-time Algebraic Riccati Equation (DARE)
iterations is monotonically decreasing and bounded below, thus ensuring convergence, let’s delve
into equations and inequalities that illustrate these properties. Consider the iterative update rule for
the DARE:

P,,,=A'P,A-A"P,B(R+B'P,B)  B'P,A+Q,

where:

- A and B define the system dynamics, - R is the control weighting matrix, which is positive
definite (R > 0), - Q is the state weighting matrix, which is positive semidefinite (Q > 0), - P, is
the cost-to-go matrix at iteration <.

To show that P,; < P;, we need to establish that P; — P, ; is positive semidefinite for each
1. The Riccati update aims to minimize the cost function J; associated with using the control law
derived from P;. Therefore, if we define the cost reduction as AP; = P; — P; 1, we seek to show

that AP; > 0 (i.e., AP; is positive semidefinite).

Starting from the DARE update rule and rearranging terms gives us:

AP;=P;-P; ;1 =A"P,B(R+ BTPiB)71 B'P;A,

Given that R > 0 and P; is positive semidefinite, it follows that the right-hand side of the equation
above is positive semidefinite. This is because the term inside the parenthesis, R + BTP;B, is
positive definite, making its inverse also positive definite, and thus AP; is positive semidefinite,
indicating that P, ; < P;.

The sequence is bounded below by the zero matrix, given that the cost-to-go matrices P; represent
quadratic cost functions which are non-negative:

P, >0 Vi,

implying that the sequence cannot decrease indefinitely and is bounded below by a matrix where all
elements are greater than or equal to zero. Given the monotonicity and boundedness of the sequence
{P,}, it follows from the Monotone Convergence Theorem for matrices that the sequence converges
to a limit, say P*, which is the solution to the DARE and represents the optimal cost-to-go matrix:
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lim P; = P*,

11— 00
where P* satisfies the DARE and thus confirms the optimality and stability of the LQR control
policy derived from it.

By establishing the monotonic decrease and boundedness below of the sequence {P;}, we have
shown that this sequence converges to a matrix P* that minimizes the LQR cost function. This P*
is the fixed point of the DARE, providing the optimal cost-to-go estimate and ensuring the stability
and optimality of the LQR control policy derived from it.

2. Fixed Point Convergence: Under the assumptions that A, B, Q, and R satisfy certain control-
lability and observability conditions, it can be shown that the iteration converges to a fixed point.
To prove that the limit of the sequence {P;}, denoted as P*, satisfies the Discrete-time Algebraic
Riccati Equation (DARE) and is thus a fixed point of the iteration process, we employ the properties
of convergence and continuity of matrix operations.

Given the iterative process:

P,.,=A'P,A-A"P,B(R+B'P,B)  B'P,A+Q,

we aim to show that, as © — oo, P; — P* and that P* satisfies the DARE:

P*—A"P*'A-A"P'B(R+B'P'B) ' B'P*A +Q.

From previous steps, we have shown that the sequence {P;} is monotonically decreasing and
bounded below, which guarantees convergence to a limit P* due to the Monotone Convergence
Theorem for matrices.

The operations involved in the iterative update rule, including matrix addition, multiplication, and
inversion, are continuous functions of their arguments. This means that if a sequence of matrices
{X;} converges to X, then the limit of a continuous function f(X;) is f(X). The update rule can
be seen as the application of a continuous function f to P;:

fP)=ATP,A-A"P,B(R+BP,B) 'BTP,A+Q.

Given the convergence P; — P*, by continuity, we have:

lim f(P;) = f(lim P;) = f(P").

1—00 1—»00

This implies:

P*=A"P*A-A'P*'B(R+B'P*B)  B'P*A +Q,

which is precisely the DARE. By showing that P* satisfies the DARE, we’ve proven that P* is a
fixed point of the iteration process. This fixed point represents the solution to the DARE, establishing
the optimality of the limit matrix P* for the LQR problem.

Thus, by leveraging the properties of monotonicity, boundedness, convergence, and the continuity
of matrix operations, we’ve demonstrated that the limit of the sequence {P;}, P*, satisfies the
Discrete-time Algebraic Riccati Equation, making it the optimal solution and a fixed point of the
iterative process.

The convergence of the LQR control policy to an optimal solution involves demonstrating that the
iterative solution to the DARE converges to a unique matrix that minimizes the cost function and
that the corresponding control policy stabilizes the system. The proof relies on algebraic properties
of the Riccati equation, control theory, and the system’s controllability and observability conditions.
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C.4 Integration of LQR within SAC Framework Optimizes Koopman Control Policy

Lemma: Given a loss function £ that is Lipschitz continuous with respect to the parameters €2,
and bounded below, the sequence {€2;} generated by the gradient descent updates:

Qt+1 =Q; — nvnﬁ(ﬂt)7

with a sufficiently small, fixed learning rate > 0, converges to a stationary point €2*, where
Val(2*)=0.

Proof: Given that £ is Lipschitz continuous with Lipschitz constant L, we have for the gradient
descent update:

L
L(Qu41) < L) + VaL(Q) " (Qusr = Q) + 2 [1Qer — Q*, (1)
=1 — Q = —Val(Q). 2
L 2
=L(Q11) < L) =0 VaL(@)|? + S [Val()] ©

Choosing 7: Select 1) such that 0 < 1 < 2, ensuring that:

2
L) £ 260 - (1= 5 ) IVaL@)

Since L is bounded below, and £(€2;11) < L(€;) for all ¢, the sequence {L£(€2;)} is non-increasing
and bounded. This implies convergence of the loss function values.

The reduction of the loss at each step is proportional to the square of the norm of the gradient. If the
sequence {€2;} did not converge to a stationary point, the gradient norm would not approach zero,
contradicting the boundedness and convergence of the loss function values. Therefore, the gradient
norm must approach zero, i.e., Vo £(Q") = 0, indicating convergence to a stationary point.

Theorem 4: Let Ly, be the Soft Actor-Critic (SAC) loss function for a given policy my,.(u|z) in-
tegrated with the Linear Quadratic Regulator (LOR) control policy w1 or(z|G) in a latent space Z,
derived via the Koopman operator theory for a nonlinear dynamical system. If the SAC loss L, is
Lipschitz continuous with respect to the parameter set Q = {Q, R, A, B, g} and Ly, is bounded
below, then applying gradient descent updates on €2 to minimize L, guarantees convergence to a
stationary point of L.

Proof: Assume Ly, satisfies the Lipschitz condition with Lipschitz constant L > 0, i.e.,
|»Csac(ﬂl) - »Csac(ﬂ2)‘ S L”Ql - 92”7

for any €21, 5 in the parameter space.

Now, the update rule for the parameters €2 via gradient descent is given by:

Qt+1 = Qt - nvﬂﬁsac(ﬂt)a

where 77 > 0 is the learning rate.

Using Lemma 1, given L, is bounded below and Lipschitz continuous, the sequence {2} pro-
duced by the gradient descent updates will converge to a stationary point £2*, characterized by:

Ve Lae(2) = 0.
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Hence we show the optimality and stability via LQR Integration. The integration of the LQR policy
mLQr ensures that within the linear approximation of the dynamical system dynamics in the latent
space Z, the SAC framework, enhanced with LQR, converges towards optimal control actions. The
LQR component provides an optimal control policy for linearized dynamics around the current state
and control, ensuring that the SAC algorithm’s policy updates enhance both stability and optimality
in control decisions.

For a linear system zy11 = Az, + Buy, the LQR aims to minimize the cost function:

J = Z (z;—sz + u,;rRuk) ,
=0

where Q > 0 and R > 0. The optimal control law is u; = —Kz; with K = (R +
B"PB) !BTPA, where P solves the Algebraic Riccati Equation (ARE):

P=A"PA-A'PB(R+B'PB)"'B'PA +Q.

The SAC algorithm seeks to optimize the policy g, (u|z) by solving:

max E
s

3 F Rz w) + aH<w<~|z,c>>>] ,
k=0

where H denotes the entropy of the policy, promoting exploration, and « is the temperature param-
eter that balances reward and entropy.

Integration means adjusting the SAC optimization to include the LQR solution as a baseline or
regularization term. The objective becomes:

max E
s

Z’yk (R(zk,ui) + aH(n(-|zx)) — AJLor (2, uk))l ,
k=0

where X is a weighting coefficient, and Jigr is the LQR cost function introduced above. This
formulation explicitly guides the SAC policy towards the LQR’s optimal policy within the linear
approximation of the dynamics.

The optimal policy 7* and the corresponding control law u* from this integrated optimization prob-
lem are given by (1) the policy 7* that maximizes the augmented objective, and (2) the control law
that minimizes the LQR cost, ensuring stability as P guarantees the eigenvalues of (A — BK) lie
within the unit circle, ensuring the system’s stability.

The parameter update rule incorporating both SAC optimization and LQR regularization is given
by:

Qi1 =2 — Vo (Lac(Q) — AMigr(2:)) ,

where L, and Jigr are differentiable with respect to €2, ensuring that the gradient descent steps
move the parameters towards minimizing the SAC loss while adhering to the LQR optimality cri-
teria. Given the Lipschitz continuity and differentiability of Ly, — AJrgr, the updates guarantee
convergence to a stationary point 2 where Vg (L () — AJLor(€27)) = 0, encapsulating both
the optimal policy in the SAC framework and the stability provided by the LQR control law.

Thus, we’ve shown how this combined approach integrating LQR within the SAC framework lever-
ages LQR’s optimality and stability, guiding the policy updates in SAC towards enhanced control
decisions. The integration explicitly incorporates the LQR’s linear control optimality into SAC’s
nonlinear policy optimization, ensuring convergence towards optimal and stable control actions in

10
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Figure 1: Eigenspectrum of To-KPM Figure 2: Eigenspectrum of our model

the latent space Z. Thus, we show that under the conditions of Lipschitz continuity and boundedness
of the SAC loss function, gradient descent optimization of the combined SAC and LQR policies in
the Koopman latent space converges to a stationary point, optimizing the overall Koopman control
policy. This integration not only leverages the strengths of both SAC and LQR but also ensures that
the optimization process is theoretically grounded and guaranteed to reach a point of stability and
optimality.

D Empirical Results

In this section, we conduct an ablation study to identify which components of our network contribute
to its superior performance with a limited number of training steps. First, to demonstrate the effect
of nonlinearity, we use CURL[1] as a baseline. CURL features a contractive encoder similar to ours
but employs nonlinear dynamics, unlike our spectral dynamics. For comparison with a linear dense
model, we use TOKPM[2], which relies on dense linear dynamics as opposed to our spectral model.
Throughout the ablation studies, we demonstrate that our model outperforms both baselines. For this
section, we present the results for models trained for 150,000 steps, as the other baselines showed
poor performance when evaluated at 100,000 time steps.

D.1 Eigenspectrum of our model

In Figures 1 and 2, we present the eigenspectrum contour plots for the To-KPM model and our
proposed model, respectively. Analysis reveals that the eigenvalues of the To-KPM model predom-
inantly reside on the positive real axis, with an average value of approximately 0.4. Conversely,
our model exhibits a symmetric distribution of eigenvalues across the imaginary axis, featuring an
equal proportion of positive and negative real eigenvalues. This distribution aligns with an increas-
ing trend of eigenvalues as per w = jm. Within the framework of the Koopman operator theory,
negative eigenvalues signify that the system’s observables exhibit exponential decay over time, as
these eigenvalues are integral to the exponential term in the solution to the linear system governed
by the Koopman operator. Hence, negative eigenvalues are indicative of stable observable behaviors,
whereas positive eigenvalues suggest exponential growth in observables, pointing to instability. The
presence of positive eigenvalues in the To-KPM model undermines its ability to learn stable rep-
resentations from images using a finite-dimensional Koopman operator, leading to inferior perfor-
mance compared to our model, which benefits from a balanced distribution of positive and negative
eigenvalues.
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Figure 3: Performance of models in rainy conditions.

D.2 Ablation Study on Spectral Koopman Operator Initialization

In this section, we conduct an ablation study to evaluate various initialization strategies for the
Koopman spectral method, as detailed in Section 3.2. Our baseline configuration sets the Koopman
operator’s real value at -0.2, with frequencies arranged in increasing order. To assess the impact
of initialization on performance, we explore three additional designs: (a) learnable real values with
increasing frequency, (b) constant real values with random frequency, and (c) learnable real val-
ues with random frequency. This examination seeks to identify the initialization method that most
effectively enhances the accuracy and stability of the spectral Koopman method.

Table 2 presents the mean reward for all the models across cheetah and cartpole simulations. Our
analysis reveals that the strategy of employing constant real values with increasing frequency for the
imaginary component of the initialization yields superior results.

Table 2: Summary of Experimental Results for Different Model Initializations

Model Initialization Cartpole  Cheetah
i wW; Reward  Reward
Constant  Random 85 21.36
Learnable Random 85 9.04
Learnable Increasing freq 155 285

Constant Increasing freq 874 311.19

D.3 Ablation study on Performance under Imperfect Sensing

This section delves into the resilience of our model when faced with imperfect sensing conditions
during evaluation. We specifically examine its performance in two challenging scenarios: a.) Rainy
Environment with Structured Noise: Unlike Gaussian noise, rain noise presents a more structured
and challenging interference, making it difficult for common denoising techniques to effectively mit-
igate. We evaluate the model’s performance under three distinct levels of rain density: Low (0.03),
Medium (0.75), and High (0.0125). The comparison encompasses predictive models equipped with
dynamic predictors, and the outcomes are depicted in Figure 3. The results indicate a general degra-
dation in control performance across all models under test, except for ours, which notably excels
by achieving a reward of approximately 400. This demonstrates our model’s superior capability to
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Figure 5: Performance of Models under Gaussian Noise

maintain effective system control even in the presence of high noise levels. b.) Imperfect Sensing
due to Camera Jerk: To further assess our model’s robustness, we introduce random camera jerks
into the video input stream, simulating real-world sensing imperfections. Three levels of camera
jerk are considered: Low jerk (SSIM > 0.8), Medium Jerk (SSIM between 0.4 and 0.5), and High
Jerk (SSIM < 0.3). Our findings from Figure 4 reveal that our model consistently outperforms
the others under these conditions as well. However, it’s noteworthy that the performance gap be-
tween our model and the To-KPM model narrows as the jerk intensity increases, with both models
exhibiting similar performance metrics at higher jerk levels. Conversely, methods based on autoen-
coders demonstrate significantly lower performance across all jerk conditions. These evaluations
underscore our model’s robustness and adaptability to imperfect sensing scenarios, highlighting its
potential for real-world applications where sensing conditions are often less than ideal.
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D.4 Ablation Study on Performance under Gaussian Noise

In this experiment, we analyze the robustness of our model’s control performance under the influence
of Gaussian noise. We introduce zero-mean Gaussian noise to the input images with increasing
standard deviation. Figure 5 illustrates the comparative performance of our model and to-kpm [2]
model in the presence of Gaussian noise. We exclude models that under performed significantly from
this figure, as their performance was too low to be meaningful. Notably, our model demonstrates
exceptional resilience, maintaining high performance even under substantial Gaussian noise in the
visual input.
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