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A Model Details and Experimental Settings19

A.1 Simulation Environment for Empirical Study20

In our research, we introduce RoboKoop, an algorithm distinguished by its sample efficiency, which21

processes pixel-based inputs to simultaneously learn linear dynamics and develop an effective con-22

trol policy. This algorithm demonstrates versatility across a broad spectrum of environments. We23

have rigorously tested RoboKoop against continuous control challenges within the DeepMind Con-24

trol Suite. Our selection of these particular tasks is grounded in several critical considerations:25

1. Existing baseline methods exhibit suboptimal performance on these tasks, highlighting a26

gap that RoboKoop aims to fill.27
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2. Recent advancements have introduced both model-free and model-based strategies aimed28

at enhancing the sample efficiency of similar algorithms. Our work contributes to this29

ongoing dialogue by presenting an alternative approach.30

3. The performance metrics obtained from these simulated tasks are highly indicative of real-31

world applicability, underscoring the practical relevance of our findings in broader contexts.32

Cartpole Swingup This task is centered around the goal of swinging up a pole, initially in a down-33

ward orientation, attached to a moving cart, and then maintaining its upright position. Success in34

this task requires the precise application of forces to the cart, navigating through a 4D state space35

that represents the cart-pole system’s kinematics, complemented by a 1D control space for force36

application.37

Cheetah Run The objective here is to orchestrate the movements of a simulated planar cheetah to38

achieve rapid and stable running. This involves managing an 18D state space that encapsulates the39

kinematics of the cheetah’s entire body, including its joints and limbs, while employing 6D torques40

as controls to manipulate the joints for optimal locomotion.41

Reacher The Reacher task is designed to test precise motor control by requiring an agent to maneu-42

ver a simulated two-joint robotic arm to a target location in a 2D plane. This task involves navigating43

through an 11D state space that includes the positions and velocities of the arm’s joints, as well as44

the position of the target. The control space is 2D, representing the torques applied at each joint.45

Success in this task is measured by the agent’s ability to accurately and efficiently move the arm to46

the target position and maintain it there.47

Ball in Cup In the Ball in Cup task, the objective is to control a simulated robot arm to swing48

and catch a ball attached to a string in a cup. This task is particularly challenging due to the non-49

linear dynamics involved in swinging the ball and the precision required to catch it in the cup. The50

environment’s state space is 8D, capturing the positions and velocities of the ball and the robot arm,51

as well as the angular position of the cup. The control space is 3D, representing the forces applied52

to the robot arm to achieve the desired swing motion. Success in this task requires a combination of53

dynamic coordination and precise timing.54

Walker The Walker task involves controlling a bipedal robot to achieve stable and efficient loco-55

motion. The state space for this task is 17D, encompassing the kinematic properties of the robot’s56

body and legs, including joint positions and velocities. The control space is 6D, corresponding to the57

torques applied to the robot’s joints. The objective is to navigate the robot through various terrains,58

maintaining balance and forward motion. Success in this task is determined by the robot’s ability to59

move swiftly and stably without falling.60

A.2 Model Hyper parameters61

Table 1 provides a comprehensive enumeration of the hyperparameters employed in our model,62

along with detailed descriptions of each parameter. For To-KPM [2] also, we use the same hyper-63

parameters as our model for a fair evaluation.64

B Baselines65

This section delineates the comparative analysis of baselines utilized in our study and elucidates66

how our approach diverges from them.67

B.1 CURL: Contrastive Unsupervised Representations for Reinforcement Learning [1]68

CURL, which stands for Contrastive Unsupervised Representations for Reinforcement Learning,69

employs contrastive learning to derive high-level features from raw pixels for reinforcement learning70

tasks. Our methodology, however, adopts a spectral Koopman operator model to explicitly learn71

system dynamics, a feature absent in CURL. This distinction permits an in-depth analysis of system72
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Table 1: Hyperparameters and Configuration Details

Name Value Description
Environment

Pre transform image size 100 Initial size of images before applying transforms.
Frame stack 3 Number of frames stacked together as input.
Image size 84 The resolution of input images to the network.
Replay buffer capacity 100000 Maximum size of the replay buffer.

Agent
Hidden dim 1024 Dimension of hidden layers in neural networks.
Discount factor 0.99 Discount factor for future rewards (γ).
Init temperature 0.1 Initial temperature parameter for SAC algorithm.
Alpha lr 0.0001 Learning rate for the temperature parameter.
Alpha beta 0.5 Beta parameter for the Adam optimizer for temperature.
Actor lr 0.001 Learning rate for the actor network.
Actor beta 0.9 Beta parameter for the Adam optimizer for the actor net-

work.
Actor update freq 1 Frequency of actor network updates.
Critic lr 0.001 Learning rate for the critic network.
Critic beta 0.9 Beta parameter for the Adam optimizer for the critic net-

work.
Critic tau 0.01 Tau parameter for soft updates of the target networks.
Critic target update freq 1 Frequency of target network updates.
Encoder feature dim 256 Dimensionality of the encoded features.
Control encode dim 128 Dimensionality of the encoded control input.
Encoder lr 0.001 Learning rate for the encoder.
Encoder tau 0.05 Tau parameter for soft updates of the encoder.
Num layers 4 Number of layers in the convolutional neural networks.
Num filters 32 Number of filters in the first convolutional layer.
Curl latent dim 128 Dimensionality of the latent space in CURL.
Koopman update freq 1 Frequency of updating the Koopman operator.
Koopman fit optim lr 0.001 Learning rate for optimizing the Koopman operator.
Koopman fit coeff 0.1 Coefficient for fitting the Koopman operator.
Koopman horizon 5 Horizon length for Koopman predictions.

Training
Init steps 1000 Number of steps collected with random actions at the start

of training.
Num train steps 150000 Total number of training steps.
Batch size 128 Batch size for training.

stability and provides valuable insights into controller design. Unlike non-linear control policies73

that lack a comprehensive system analysis, linear systems can be thoroughly examined through74

eigenvalue analysis. We demonstrate this through a pole analysis of the Koopman operators in75

Section 5, highlighting the methodological differences and advantages.76

B.2 To-KPM [2]77

To-KPM introduces a task-oriented approach that integrates a contrastive encoder with Koopman-78

based control. Unlike our model, To-KPM relies on a dense Koopman operator, leading to unstable79

poles and reduced sample efficiency due to the increased parameters required for learning the Koop-80

man operator. These limitations are substantiated by the instability of poles (refer to Figures 4 and81

5 in Section 5 of our paper) and underscore the efficiency of our approach.82

B.3 Planet [3]83

Planet is a model-based agent that discerns environment dynamics directly from pixels, facilitating84

action selection through online planning within a compact latent space. The latent space is structured85

around a recurrent state-space model, which is computationally intensive, as evidenced in Section 586

(Figure 6). Additionally, its emphasis on multi-step prediction in pixel space compromises sample87

efficiency, necessitating extensive interactions with the environment.88
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B.4 Koopman AE [4]89

The Koopman AE methodology leverages a soft actor-critic policy, underpinned by a regularized90

autoencoder (AE), to learn a latent space model atop AE features. Unlike Planet, this approach also91

explicitly models dynamics using a Koopman operator. In contrast, our method eschews the use92

of VAEs or AEs for pixel reconstruction, opting instead to learn features via contrastive learning93

alone. This strategy ensures the prioritization of task-relevant features over the reconstruction of94

pixel space, enhancing task efficiency and model performance.95

C Analytical Results96

C.1 Convergence of Contrastive Learning97

Definitions and Assumptions98

1. Smoothness: The function Lcst is assumed to be L-smooth with respect to θ, meaning it has99

Lipschitz continuous gradients:100

∥∇Lcst(θ1)−∇Lcst(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2.

2. Unbiased Gradient Estimates: The stochastic gradient ∇̂θLcst is an unbiased estimate of the101

true gradient:102

E[∇̂θLcst(θ)] = ∇θLcst(θ).

3. Bounded Variance: The variance of the stochastic gradient is bounded by a constant σ2:103

E[∥∇̂θLcst(θ)−∇θLcst(θ)∥2] ≤ σ2.

4. Diminishing Learning Rates: The learning rate αt satisfies the Robbins-Monro conditions:104

∞∑
t=1

αt = ∞,

∞∑
t=1

α2
t <∞.

Convergence of Contrastive Loss via Gradient Descent105

Theorem 1.: Let Lcst(θ) be an L-smooth contrastive loss function for encoder parameters θ106

and assuming stochastic gradient descent (SGD) updates with learning rate αt satisfying Robbins-107

Monro conditions. If ∇̂θLcst is an unbiased estimate of the gradient with bounded variance, then108

limt→∞ E[∥∇θLcst(θt)∥2] = 0.109

Proof: Given the Lipschitz continuity of ψθ, and assuming the loss Lcst inherits this property with110

respect to θ, the Descent Lemma can be applied. The lemma states that for a Lipschitz continuous111

function f with Lipschitz constant L,112

f(x+∆x) ≤ f(x) +∇f(x)⊤∆x+
L

2
∥∆x∥2.

Given the L-smoothness of Lcst, we have for any θ1, θ2:113

Lcst(θ2) ≤ Lcst(θ1) +∇Lcst(θ1)
⊤(θ2 − θ1) +

L

2
∥θ2 − θ1∥2.

Substituting the gradient descent update θt+1 = θt − αt∇̂θLcst(θt):114

Lcst(θt+1) ≤ Lcst(θt)− αt∇Lcst(θt)
⊤∇̂θLcst(θt) +

Lα2
t

2
∥∇̂θLcst(θt)∥2.

Taking expectations on both sides, and using the fact that E[∇̂θLcst] = ∇θLcst (unbiased gradient115

estimates) and the bounded variance assumption:116
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E[Lcst(θt+1)] ≤ E[Lcst(θt)]− αt∥∇θLcst(θt)∥2 +
Lα2

t

2
(σ2 + ∥∇θLcst(θt)∥2).

Rearranging the terms, we aim to show that:117

αt(1−
Lαt

2
)∥∇θLcst(θt)∥2 ≤ E[Lcst(θt)]− E[Lcst(θt+1)] +

Lα2
tσ

2

2
.

Given αt satisfies the Robbins-Monro conditions and 1−Lαt

2 > 0 for sufficiently small αt, summing118

both sides over t and applying the law of total expectation give:119

∞∑
t=1

αt(1−
Lαt

2
)E[∥∇θLcst(θt)∥2] ≤ Lcst(θ1)− Lcst(θ

∗) +

∞∑
t=1

Lα2
tσ

2

2
,

where θ∗ is a local minimum of Lcst.120

Given the right-hand side is bounded (due to the boundedness of121

Lcst and the conditions on αt), and
∑∞

t=1 αt(1 − Lαt

2 ) = ∞, it follows from the quasi-martingale122

convergence theorem and the Robbins-Monro conditions that:123

lim
t→∞

E[∥∇θLcst(θt)∥2] = 0.

This implies that, in expectation, the gradient norm converges to 0, indicating convergence to a124

stationary point. Now using the Polyak-Łojasiewicz condition, it can be shown that this is a local125

minimum.126

The exact form of Lcst and its gradient ∇θLcst. The Lipschitz constants for ψθ and Lcst Conditions127

under which the stochastic gradient is an unbiased estimate of the true gradient and has bounded128

variance. A suitable learning rate schedule αt that guarantees convergence.129

C.2 Stability and Convergence of the Koopman Operator Approximation130

Theorem 2: Convergence of Koopman Operator Approximations: Given (i) a discrete-time131

linear dynamical system with states z ∈ Rn and control inputs u ∈ Rm, evolving according to132

zk+1 = Atruezk + Btrueuk, where Atrue ∈ Rn×n and Btrue ∈ Rn×m are the true system133

matrices; and (ii) the Koopman operator approximation approach, which seeks to estimate matrices134

A and B such that zk+1 ≈ Azk + Buk, based on a loss function Lm(A,B; zk,uk, zk+1), the135

minimization of Lm with respect to A and B over the observed data converges to the true system136

matrices, i.e.,137

lim
n→∞

(A,B) = (Atrue,Btrue),

where n represents the number of observations.138

Proof139

We model the evolution of the system’s state as a linear regression problem, where:140

• Znext is the matrix of next states zk+1,141

• X is the design matrix composed of current states zk and control inputs uk,142

• Θ is the parameters matrix to be estimated, combining A and B,143

• ϵ is the error term.144
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The equation Znext = XΘ+ ϵ encapsulates this linear relationship.145

The objective function to minimize the difference between the predicted next states and the actual146

next states, quantified by the Frobenius norm of their difference can be written as:147

Lm = ∥Znext −XΘ∥2F ,

where ∥ · ∥F denotes the Frobenius norm. To minimize Lm, we calculate the gradient of the loss148

function with respect to Θ and set it to zero: ∇ΘLm = −2X⊤(Znext −XΘ) = 0.149

Solving this equation for Θ gives: Θ = (X⊤X)−1X⊤Znext. This is the least squares solution,150

providing the best estimate of Θ given the data.151

With the assumption that the observations X and Znext sufficiently cover the entire state and control152

input space and as the number of observations n approaches infinity (N → ∞), the matrices X⊤X153

and X⊤Znext will converge to their expected values. This ensures that the estimated parameters Θ,154

which combine A and B, converge to the true system matrices Atrue and Btrue that govern the155

system’s dynamics.156

The solution involves setting the gradient of Lm with respect to Θ to zero, leading to:157

∇ΘLm = −2X⊤(Znext −XΘ) = 0

Solving this equation yields the estimate for Θ:158

Θ = (X⊤X)−1X⊤Znext

Given a sufficiently diverse and large dataset (n → ∞), the estimates converge to the true system159

dynamics because the matrices X⊤X and X⊤Znext approach their expected values, ensuring the160

estimated parameters (A and B) converge to the true parameters (Atrue and Btrue).161

This proof assumes sufficient data coverage across the state and control input space, which guaran-162

tees the convergence of the Koopman operator approximations to the true system dynamics, thereby163

validating the theorem.164

C.3 Convergence of the LQR Control Policy165

Theorem 3: Convergence of the LQR Control Policy Given a discrete-time linear system char-166

acterized by state transition matrix A ∈ Rn×n and control input matrix B ∈ Rn×m and the LQR167

problem aims to minimize a quadratic cost function J =
∑∞

k=0(x
⊤
k Qxk + u⊤

k Ruk) with Q ≥ 0168

and R > 0, the iterative solution to the Discrete-time Algebraic Riccati Equation (DARE)169

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

converges to the optimal solution P∗ for the LQR problem, ensuring that the optimal control gains170

G∗ = −(R+B⊤P∗B)−1B⊤P∗A yield a stable and optimal control policy.171

Proof:172

To prove the convergence of the Linear Quadratic Regulator (LQR) control policy, we focus on the173

discrete-time setting, where the goal is to design an optimal control policy that minimizes a given174

cost function. The essence of the proof involves showing that the solution to the Discrete-time175

Algebraic Riccati Equation (DARE) converges to a unique positive semidefinite matrix, which then176

defines the optimal control gains.177

We are given a discrete-time linear system:178

xk+1 = Axk +Buk,

6



and aim to minimize the infinite-horizon quadratic cost function:179

J =

∞∑
k=0

(
x⊤
k Qxk + u⊤

k Ruk

)
,

where Q ≥ 0 (positive semidefinite) and R > 0 (positive definite) are the state and control weight180

matrices, respectively.181

The optimal control policy for this problem can be derived using dynamic programming, leading to182

the DARE:183

P = A⊤PA−A⊤PB
(
R+B⊤PB

)−1
B⊤PA+Q,

where P is the solution that defines the optimal cost-to-go matrix.184

The convergence of the LQR control policy essentially means proving that the iterative solution to185

the DARE converges to a unique positive semidefinite matrix P∗. Here are the key steps:186

1. Monotonicity and Boundedness:187

To prove that the sequence {Pi} generated by the Discrete-time Algebraic Riccati Equation (DARE)188

iterations is monotonically decreasing and bounded below, thus ensuring convergence, let’s delve189

into equations and inequalities that illustrate these properties. Consider the iterative update rule for190

the DARE:191

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

where:192

- A and B define the system dynamics, - R is the control weighting matrix, which is positive193

definite (R > 0), - Q is the state weighting matrix, which is positive semidefinite (Q ≥ 0), - Pi is194

the cost-to-go matrix at iteration i.195

To show that Pi+1 ≤ Pi, we need to establish that Pi − Pi+1 is positive semidefinite for each196

i. The Riccati update aims to minimize the cost function Ji associated with using the control law197

derived from Pi. Therefore, if we define the cost reduction as ∆Pi = Pi −Pi+1, we seek to show198

that ∆Pi ≥ 0 (i.e., ∆Pi is positive semidefinite).199

Starting from the DARE update rule and rearranging terms gives us:200

∆Pi = Pi −Pi+1 = A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA,

Given that R > 0 and Pi is positive semidefinite, it follows that the right-hand side of the equation201

above is positive semidefinite. This is because the term inside the parenthesis, R + B⊤PiB, is202

positive definite, making its inverse also positive definite, and thus ∆Pi is positive semidefinite,203

indicating that Pi+1 ≤ Pi.204

The sequence is bounded below by the zero matrix, given that the cost-to-go matrices Pi represent205

quadratic cost functions which are non-negative:206

Pi ≥ 0 ∀i,

implying that the sequence cannot decrease indefinitely and is bounded below by a matrix where all207

elements are greater than or equal to zero. Given the monotonicity and boundedness of the sequence208

{Pi}, it follows from the Monotone Convergence Theorem for matrices that the sequence converges209

to a limit, say P∗, which is the solution to the DARE and represents the optimal cost-to-go matrix:210
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lim
i→∞

Pi = P∗,

where P∗ satisfies the DARE and thus confirms the optimality and stability of the LQR control211

policy derived from it.212

By establishing the monotonic decrease and boundedness below of the sequence {Pi}, we have213

shown that this sequence converges to a matrix P∗ that minimizes the LQR cost function. This P∗214

is the fixed point of the DARE, providing the optimal cost-to-go estimate and ensuring the stability215

and optimality of the LQR control policy derived from it.216

2. Fixed Point Convergence: Under the assumptions that A, B, Q, and R satisfy certain control-217

lability and observability conditions, it can be shown that the iteration converges to a fixed point.218

To prove that the limit of the sequence {Pi}, denoted as P∗, satisfies the Discrete-time Algebraic219

Riccati Equation (DARE) and is thus a fixed point of the iteration process, we employ the properties220

of convergence and continuity of matrix operations.221

Given the iterative process:222

Pi+1 = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q,

we aim to show that, as i→ ∞, Pi → P∗ and that P∗ satisfies the DARE:223

P∗ = A⊤P∗A−A⊤P∗B
(
R+B⊤P∗B

)−1
B⊤P∗A+Q.

From previous steps, we have shown that the sequence {Pi} is monotonically decreasing and224

bounded below, which guarantees convergence to a limit P∗ due to the Monotone Convergence225

Theorem for matrices.226

The operations involved in the iterative update rule, including matrix addition, multiplication, and227

inversion, are continuous functions of their arguments. This means that if a sequence of matrices228

{Xi} converges to X, then the limit of a continuous function f(Xi) is f(X). The update rule can229

be seen as the application of a continuous function f to Pi:230

f(Pi) = A⊤PiA−A⊤PiB
(
R+B⊤PiB

)−1
B⊤PiA+Q.

Given the convergence Pi → P∗, by continuity, we have:231

lim
i→∞

f(Pi) = f( lim
i→∞

Pi) = f(P∗).

This implies:232

P∗ = A⊤P∗A−A⊤P∗B
(
R+B⊤P∗B

)−1
B⊤P∗A+Q,

which is precisely the DARE. By showing that P∗ satisfies the DARE, we’ve proven that P∗ is a233

fixed point of the iteration process. This fixed point represents the solution to the DARE, establishing234

the optimality of the limit matrix P∗ for the LQR problem.235

Thus, by leveraging the properties of monotonicity, boundedness, convergence, and the continuity236

of matrix operations, we’ve demonstrated that the limit of the sequence {Pi}, P∗, satisfies the237

Discrete-time Algebraic Riccati Equation, making it the optimal solution and a fixed point of the238

iterative process.239

The convergence of the LQR control policy to an optimal solution involves demonstrating that the240

iterative solution to the DARE converges to a unique matrix that minimizes the cost function and241

that the corresponding control policy stabilizes the system. The proof relies on algebraic properties242

of the Riccati equation, control theory, and the system’s controllability and observability conditions.243
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C.4 Integration of LQR within SAC Framework Optimizes Koopman Control Policy244

Lemma: Given a loss function L that is Lipschitz continuous with respect to the parameters Ω,245

and bounded below, the sequence {Ωt} generated by the gradient descent updates:246

Ωt+1 = Ωt − η∇ΩL(Ωt),

with a sufficiently small, fixed learning rate η > 0, converges to a stationary point Ω∗, where247

∇ΩL(Ω∗) = 0.248

Proof: Given that L is Lipschitz continuous with Lipschitz constant L, we have for the gradient249

descent update:250

L(Ωt+1) ≤ L(Ωt) +∇ΩL(Ωt)
⊤(Ωt+1 −Ωt) +

L

2
∥Ωt+1 −Ωt∥2. (1)

⇒Ωt+1 −Ωt = −η∇ΩL(Ωt). (2)

⇒L(Ωt+1) ≤ L(Ωt)− η∥∇ΩL(Ωt)∥2 +
Lη2

2
∥∇ΩL(Ωt)∥2. (3)

Choosing η: Select η such that 0 < η < 2
L , ensuring that:251

L(Ωt+1) ≤ L(Ωt)−
(
η − Lη2

2

)
∥∇ΩL(Ωt)∥2.

Since L is bounded below, and L(Ωt+1) ≤ L(Ωt) for all t, the sequence {L(Ωt)} is non-increasing252

and bounded. This implies convergence of the loss function values.253

The reduction of the loss at each step is proportional to the square of the norm of the gradient. If the254

sequence {Ωt} did not converge to a stationary point, the gradient norm would not approach zero,255

contradicting the boundedness and convergence of the loss function values. Therefore, the gradient256

norm must approach zero, i.e., ∇ΩL(Ω∗) = 0, indicating convergence to a stationary point.257

Theorem 4: Let Lsac be the Soft Actor-Critic (SAC) loss function for a given policy πsac(u|z) in-258

tegrated with the Linear Quadratic Regulator (LQR) control policy πLQR(z|G) in a latent space Z,259

derived via the Koopman operator theory for a nonlinear dynamical system. If the SAC loss Lsac is260

Lipschitz continuous with respect to the parameter set Ω = {Q,R,A,B, ψθ} and Lsac is bounded261

below, then applying gradient descent updates on Ω to minimize Lsac guarantees convergence to a262

stationary point of Lsac.263

Proof: Assume Lsac satisfies the Lipschitz condition with Lipschitz constant L > 0, i.e.,264

|Lsac(Ω1)− Lsac(Ω2)| ≤ L∥Ω1 −Ω2∥,

for any Ω1,Ω2 in the parameter space.265

Now, the update rule for the parameters Ω via gradient descent is given by:266

Ωt+1 = Ωt − η∇ΩLsac(Ωt),

where η > 0 is the learning rate.267

Using Lemma 1, given Lsac is bounded below and Lipschitz continuous, the sequence {Ωt} pro-268

duced by the gradient descent updates will converge to a stationary point Ω∗, characterized by:269

∇ΩLsac(Ω
∗) = 0.
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Hence we show the optimality and stability via LQR Integration. The integration of the LQR policy270

πLQR ensures that within the linear approximation of the dynamical system dynamics in the latent271

space Z, the SAC framework, enhanced with LQR, converges towards optimal control actions. The272

LQR component provides an optimal control policy for linearized dynamics around the current state273

and control, ensuring that the SAC algorithm’s policy updates enhance both stability and optimality274

in control decisions.275

For a linear system zk+1 = Azk +Buk, the LQR aims to minimize the cost function:276

J =

∞∑
k=0

(
z⊤k Qzk + u⊤

k Ruk

)
,

where Q ≥ 0 and R > 0. The optimal control law is u∗
k = −Kzk with K = (R +277

B⊤PB)−1B⊤PA, where P solves the Algebraic Riccati Equation (ARE):278

P = A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA+Q.

The SAC algorithm seeks to optimize the policy πsac(u|z) by solving:279

max
π

E

[ ∞∑
k=0

γk (R(zk,uk) + αH(π(·|zk)))

]
,

where H denotes the entropy of the policy, promoting exploration, and α is the temperature param-280

eter that balances reward and entropy.281

Integration means adjusting the SAC optimization to include the LQR solution as a baseline or282

regularization term. The objective becomes:283

max
π

E

[ ∞∑
k=0

γk (R(zk,uk) + αH(π(·|zk))− λJLQR(zk,uk))

]
,

where λ is a weighting coefficient, and JLQR is the LQR cost function introduced above. This284

formulation explicitly guides the SAC policy towards the LQR’s optimal policy within the linear285

approximation of the dynamics.286

The optimal policy π∗ and the corresponding control law u∗ from this integrated optimization prob-287

lem are given by (1) the policy π∗ that maximizes the augmented objective, and (2) the control law288

that minimizes the LQR cost, ensuring stability as P guarantees the eigenvalues of (A − BK) lie289

within the unit circle, ensuring the system’s stability.290

The parameter update rule incorporating both SAC optimization and LQR regularization is given291

by:292

Ωt+1 = Ωt − η∇Ω (Lsac(Ωt)− λJLQR(Ωt)) ,

where Lsac and JLQR are differentiable with respect to Ω, ensuring that the gradient descent steps293

move the parameters towards minimizing the SAC loss while adhering to the LQR optimality cri-294

teria. Given the Lipschitz continuity and differentiability of Lsac − λJLQR, the updates guarantee295

convergence to a stationary point Ω∗ where ∇Ω (Lsac(Ω
∗)− λJLQR(Ω

∗)) = 0, encapsulating both296

the optimal policy in the SAC framework and the stability provided by the LQR control law.297

Thus, we’ve shown how this combined approach integrating LQR within the SAC framework lever-298

ages LQR’s optimality and stability, guiding the policy updates in SAC towards enhanced control299

decisions. The integration explicitly incorporates the LQR’s linear control optimality into SAC’s300

nonlinear policy optimization, ensuring convergence towards optimal and stable control actions in301
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Figure 1: Eigenspectrum of To-KPM Figure 2: Eigenspectrum of our model

the latent space Z. Thus, we show that under the conditions of Lipschitz continuity and boundedness302

of the SAC loss function, gradient descent optimization of the combined SAC and LQR policies in303

the Koopman latent space converges to a stationary point, optimizing the overall Koopman control304

policy. This integration not only leverages the strengths of both SAC and LQR but also ensures that305

the optimization process is theoretically grounded and guaranteed to reach a point of stability and306

optimality.307

D Empirical Results308

In this section, we conduct an ablation study to identify which components of our network contribute309

to its superior performance with a limited number of training steps. First, to demonstrate the effect310

of nonlinearity, we use CURL[1] as a baseline. CURL features a contractive encoder similar to ours311

but employs nonlinear dynamics, unlike our spectral dynamics. For comparison with a linear dense312

model, we use ToKPM[2], which relies on dense linear dynamics as opposed to our spectral model.313

Throughout the ablation studies, we demonstrate that our model outperforms both baselines. For this314

section, we present the results for models trained for 150,000 steps, as the other baselines showed315

poor performance when evaluated at 100,000 time steps.316

D.1 Eigenspectrum of our model317

In Figures 1 and 2, we present the eigenspectrum contour plots for the To-KPM model and our318

proposed model, respectively. Analysis reveals that the eigenvalues of the To-KPM model predom-319

inantly reside on the positive real axis, with an average value of approximately 0.4. Conversely,320

our model exhibits a symmetric distribution of eigenvalues across the imaginary axis, featuring an321

equal proportion of positive and negative real eigenvalues. This distribution aligns with an increas-322

ing trend of eigenvalues as per ω = jπ. Within the framework of the Koopman operator theory,323

negative eigenvalues signify that the system’s observables exhibit exponential decay over time, as324

these eigenvalues are integral to the exponential term in the solution to the linear system governed325

by the Koopman operator. Hence, negative eigenvalues are indicative of stable observable behaviors,326

whereas positive eigenvalues suggest exponential growth in observables, pointing to instability. The327

presence of positive eigenvalues in the To-KPM model undermines its ability to learn stable rep-328

resentations from images using a finite-dimensional Koopman operator, leading to inferior perfor-329

mance compared to our model, which benefits from a balanced distribution of positive and negative330

eigenvalues.331
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Figure 3: Performance of models in rainy conditions.

D.2 Ablation Study on Spectral Koopman Operator Initialization332

In this section, we conduct an ablation study to evaluate various initialization strategies for the333

Koopman spectral method, as detailed in Section 3.2. Our baseline configuration sets the Koopman334

operator’s real value at -0.2, with frequencies arranged in increasing order. To assess the impact335

of initialization on performance, we explore three additional designs: (a) learnable real values with336

increasing frequency, (b) constant real values with random frequency, and (c) learnable real val-337

ues with random frequency. This examination seeks to identify the initialization method that most338

effectively enhances the accuracy and stability of the spectral Koopman method.339

Table 2 presents the mean reward for all the models across cheetah and cartpole simulations. Our340

analysis reveals that the strategy of employing constant real values with increasing frequency for the341

imaginary component of the initialization yields superior results.342

Table 2: Summary of Experimental Results for Different Model Initializations

Model Initialization Cartpole Cheetah

µi ωi Reward Reward

Constant Random 85 21.36
Learnable Random 85 9.04
Learnable Increasing freq 155 285
Constant Increasing freq 874 311.19

D.3 Ablation study on Performance under Imperfect Sensing343

This section delves into the resilience of our model when faced with imperfect sensing conditions344

during evaluation. We specifically examine its performance in two challenging scenarios: a.) Rainy345

Environment with Structured Noise: Unlike Gaussian noise, rain noise presents a more structured346

and challenging interference, making it difficult for common denoising techniques to effectively mit-347

igate. We evaluate the model’s performance under three distinct levels of rain density: Low (0.03),348

Medium (0.75), and High (0.0125). The comparison encompasses predictive models equipped with349

dynamic predictors, and the outcomes are depicted in Figure 3. The results indicate a general degra-350

dation in control performance across all models under test, except for ours, which notably excels351

by achieving a reward of approximately 400. This demonstrates our model’s superior capability to352
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Figure 4: Performance of models with camera jerk

Figure 5: Performance of Models under Gaussian Noise

maintain effective system control even in the presence of high noise levels. b.) Imperfect Sensing353

due to Camera Jerk: To further assess our model’s robustness, we introduce random camera jerks354

into the video input stream, simulating real-world sensing imperfections. Three levels of camera355

jerk are considered: Low jerk (SSIM > 0.8), Medium Jerk (SSIM between 0.4 and 0.5), and High356

Jerk (SSIM < 0.3). Our findings from Figure 4 reveal that our model consistently outperforms357

the others under these conditions as well. However, it’s noteworthy that the performance gap be-358

tween our model and the To-KPM model narrows as the jerk intensity increases, with both models359

exhibiting similar performance metrics at higher jerk levels. Conversely, methods based on autoen-360

coders demonstrate significantly lower performance across all jerk conditions. These evaluations361

underscore our model’s robustness and adaptability to imperfect sensing scenarios, highlighting its362

potential for real-world applications where sensing conditions are often less than ideal.363
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D.4 Ablation Study on Performance under Gaussian Noise364

In this experiment, we analyze the robustness of our model’s control performance under the influence365

of Gaussian noise. We introduce zero-mean Gaussian noise to the input images with increasing366

standard deviation. Figure 5 illustrates the comparative performance of our model and to-kpm [2]367

model in the presence of Gaussian noise. We exclude models that under performed significantly from368

this figure, as their performance was too low to be meaningful. Notably, our model demonstrates369

exceptional resilience, maintaining high performance even under substantial Gaussian noise in the370

visual input.371
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