
Published as a conference paper at ICLR 2024

MOTOR: A TIME-TO-EVENT FOUNDATION MODEL
FOR STRUCTURED MEDICAL RECORDS

Ethan Steinberg1∗, Jason Alan Fries2∗, Yizhe Xu2, Nigam H. Shah3

1Department of Computer Science, Stanford University
2Center for Biomedical Informatics Research, Stanford University
3Stanford University, Stanford Health Care
{ethanid, jfries, yizhex, nigam}@stanford.edu

ABSTRACT

We present a self-supervised, time-to-event (TTE) foundation model called MOTOR (Many
Outcome Time Oriented Representations) which is pretrained on timestamped sequences of
events in electronic health records (EHR) and health insurance claims. TTE models are used
for estimating the probability distribution of the time until a specific event occurs, which is
an important task in medical settings. TTE models provide many advantages over classifica-
tion using fixed time horizons, including naturally handling censored observations, but are
challenging to train with limited labeled data. MOTOR addresses this challenge by pretrain-
ing on up to 55M patient records (9B clinical events). We evaluate MOTOR’s transfer learn-
ing performance on 19 tasks, across 3 patient databases (a private EHR system, MIMIC-IV,
and Merative claims data). Task-specific models adapted from MOTOR improve time-
dependent C statistics by 4.6% over state-of-the-art, improve label efficiency by up to 95%,
and are more robust to temporal distributional shifts. We further evaluate cross-site porta-
bility by adapting our MOTOR foundation model for six prediction tasks on the MIMIC-IV
dataset, where it outperforms all baselines. MOTOR is the first foundation model for
medical TTE predictions and we release a 143M parameter pretrained model for research
use at https://huggingface.co/StanfordShahLab/motor-t-base.

1 INTRODUCTION

Many applications in medicine require predicting not only the overall likelihood of an event, but also when
that event will occur. Time-to-event (TTE) models (also called survival models) are commonly used to estimate
the probability distribution of TTE data given a set of features. TTE models have two primary advantages
over standard classification approaches using fixed time horizons. First, they can estimate temporal quantities
of interest such as the hazard rate or the median time until an event occurs. Second, TTE models account for
various types of censoring induced by different data collection mechanisms, which is critical for obtaining
accurate estimates and fair models (Chang et al., 2022). TTE models are commonly used, inter alia, in
medicine (Lambert et al., 2010; Lin et al., 2014; Fernández et al., 2016; Alaa & van der Schaar, 2017), churn
prediction (Perianez et al., 2016), real time advertisement bidding (Wu et al., 2015), recommendation systems
(Jing & Smola, 2017), and other business analytics.

Despite the benefits of TTE models, they come with the downside of requiring large training sets in order
to estimate TTE probability distributions without bias (Wey et al., 2015). High censoring rates, common in
medical events with long time horizons, further limit the available training data and exacerbate the risk of
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overfitting. A variety of methods have been proposed to mitigate this issue, generally by making assumptions
about the TTE distribution such as proportional hazards (Cox, 1972) or parametric distributions (Martinsson,
2016; Avati et al., 2020). These assumptions significantly reduce the number of learnable parameters, but
may also degrade predictive performance when they do not hold (Schemper, 1992).

Recent work in deep learning has approached the challenge of limited training data by relying on transfer
learning via increasingly powerful foundation models (Bommasani et al., 2021). Foundation models leverage
advances in self-supervised learning to train models using large collections of unlabeled data. The resulting
pretrained models can be quickly adapted to new tasks while improving accuracy, using less labeled training
data, and being more robust to distributional shifts (Liang et al., 2023) – key desiderata in medical machine
learning. Prior research has explored self-supervised pretraining with structured medical records (procedure
and diagnosis codes, lab results, etc.) by using autoregressive or "next code"-style pretraining objectives
(Steinberg et al., 2021), however significant gaps remain when considering TTE modeling. First, large-scale
pretraining using heterogeneous patient data is underexplored for TTE modeling, with prior work focusing on
models trained from scratch, using limited input features, small numbers of target tasks, and disease-specific
patient cohorts (Li et al., 2016; Wang & Sun, 2022). Second, standard autoregressive pretraining objectives
may not be effective for TTE modeling, as they do not directly capture long-term time horizons commonly
found in patient medical records. Finally, existing pretrained foundation models for structured medical
record data are generally not released to researchers (Wornow et al., 2023), creating serious reproducibility
challenges when evaluating transfer learning, the primary benefit afforded by foundation models.

To address these challenges, we introduce MOTOR (Many Outcome Time Oriented Representations), a
foundation model for medical TTE trained on up to 55M patient records (comprising 9B clinical events). Our
main contributions are:

1. A self-supervised pretraining objective that uses thousands of TTE tasks (8,192 in our experiments)
during pretraining to learn broadly useful features for TTE modeling. This novel pretraining task
outperforms autoregressive pretraining by an average of 2.0%.

2. An efficient Transformer-based piecewise exponential model architecture that leverages shared
time-dependent weights and sparsity to scale to thousands of TTE pretraining tasks while reducing
memory usage by up to 35%.

3. Experiments demonstrating that TTE pretraining improves accuracy by an average of 4.6% over
state-of-the-art methods for 19 evaluation tasks. We further verify that MOTOR has many important
foundation model properties, including robustness over time, the ability to transfer a pretrained
model for reuse in another dataset, and the ability to fine-tune task models with limited labeled data.

4. A 143M parameter MOTOR model pretrained on EHR data, released for non-commercial research
use. To our knowledge, this is the first release of a medical foundation model for TTE.

2 RELATED WORK

Time-to-Event Models: Accelerated failure time (AFT) models are a fully parametric approach for modeling
TTE outcomes where the TTE distribution is parameterized with a specified probability distribution. AFT
models assume that the parameters of that specified probability distribution are a learnable function of
the features. Common probability distributions include exponential, gamma, log-normal, log-logistic, and
Weibull. Piecewise distributions enable the use of different distribution parameters across different regions
of time and thus provide additional flexibility, with the piecewise exponential distribution (Friedman, 1982)
being a popular choice. More recently, AFT models have been combined with deep learning by using a neural
network to map between input features and distribution parameters (Fornili et al., 2014; Martinsson, 2016;
Ren et al., 2019; Avati et al., 2020; Ryu et al., 2020; Lee et al., 2020; Kopper et al., 2021; Kvamme & Borgan,
2021; Nagpal et al., 2021).
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Cox proportional hazards models (PH) (Cox, 1972) reduce the complexity of the model space by assuming
a constant hazard ratio between instances. Cox models can also be combined with deep learning by using
a neural network to map between the input features and the learned hazard ratio (Katzman et al., 2018).
Random survival forests (RSF) (Ishwaran et al., 2008) are an extension of random forests to the time-to-event
setting. The key features of RSF are that it supports non-linear feature interactions and is non-parametric.

Some work has explored using multi-task learning to fit TTE models with limited data. Li et al. (2016)
proposed treating the pieces in piecewise TTE models as instances of related tasks and regularizing models to
share weights across pieces. Gao & Cui (2022) explored choosing “compatible” clinical tasks (i.e., clinical
tasks with similar risk structure) to better learn neural network featurized Cox models. Wang & Sun (2022)
evaluated learning mortality and length of stay models simultaneously while training cancer models. Lim
& van der Schaar (2018) combined a TTE task with two continuous and twenty binary tasks to learn better
models for cystic fibrosis. Kim et al. (2020) used existing VAE techniques to pretrain cancer survival models.

MOTOR differs from these approaches in several ways. First, we focus on a self-supervised pretraining
objective that captures temporal structure from clinical events. Second, we massively increase the scale of
patients (up to 55M) and tasks (8,192 tasks) used for pretraining and outline methods required to efficiently
train at this scale. Finally, we explore the benefits of this pretraining on various downstream adaptation tasks.

Deep Learning for Structured Medical Record Data: There is considerable prior work using deep learning
with structured medical records for medical classification tasks. State-of-the-art work directly incorporates
the temporal structure of medical record data by using recurrent neural networks (RNNs) (Che et al., 2016;
Choi et al., 2016) or Transformers (Li et al., 2020). While initial deep learning efforts focused on end-to-end
training using small, task-specific cohorts, more recent work has explored using self-supervised learning to
pretrain models using millions of patient records. Various self-supervised objectives have been proposed for
learning meaningful patterns in structured medical record data, including denoising autoencoders (Miotto
et al., 2016), autoregressive “next day” code prediction (Steinberg et al., 2021), and masked language
modeling (Li et al., 2020; Rasmy et al., 2021b; Pang et al., 2021; Zeng et al., 2022).

The majority of recent architectures are formulated for classification tasks with fixed time horizons, e.g.,
3-12 month mortality (Avati et al., 2018). However, there are several efforts that combine deep learning with
TTE modeling on EHR data. Avati et al. (2020) used RNNs and feedforward neural networks to power AFT
models for estimating time until death. Rasmy et al. (2021a) used RNNs to train Cox models for hospital
mortality and ventilation need. Wen et al. (2022) used feedforward networks to parameterize Cox and DeepHit
models for predicting time until discharge. MOTOR differs from these prior works in two ways: 1) We use a
Transformer-based piecewise exponential model to handle complex and nonlinear relationships in data, and
2) we leverage TTE pretraining at a massive scale to estimate model parameters more effectively.

3 METHODS

Problem Setup: We consider a set of N patients and their medical records X , where Xi denotes patient i’s
information and consists of a sequence of timestamped events, where each event is defined by a code that
is a symbol drawn from a finite set defined by standard medical ontologies (Sciences & Informatics, 2021).
Let Xij denote the j-th event in the sequence, where each event consists of a code for that event and the
corresponding timestamp for when that event occurs.

We are interested in learning models to predict the time-to-event for various tasks. Let Ti denote the event time
and let Ci denote the censoring time for patient i. Our goal is to estimate the probability distribution of event
times P(Ti = t), accounting for censoring. We make the standard non-informative censoring assumption (i.e.
that censoring times are independent of event times).
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MOTOR Overview: We introduce MOTOR, a Transformer-based neural network model that is pretrained
with a self-supervised, TTE objective defined using structured medical records data. Figure 1 provides an
overview of our approach, where inputs are patient timelines of time stamped clinical events. Once pretrained,
MOTOR is combined with a linear head to train downstream models for particular tasks of interest such as
predicting the time until a heart attack.
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Figure 1: MOTOR architecture and TTE pretraining tasks, as applied to a patient. Note how tasks (survival
curves) vary at each time step j, e.g., atorvastatin risk increases given a history of cardiovascular disorders.

Transformer: We use a standard Transformer with local attention and causal masking (Roy et al., 2021) to
compute embeddings for every patient at every time step. The full details for how this is implemented to
process structured medical data, including time embeddings, is specified in Appendix F, but the overall theme
is to transform each patient Xi into a single matrix per patient Ri, where each row Rij corresponds to patient
i’s representation for event j that contains cumulative information up to and including event j.

Piecewise Exponential Time-to-Event Model: Given the representations computed by the Transformer,
MOTOR constructs a large-scale TTE model that can generate survival predictions for thousands of tasks.
We derive and implement a scalable approach based on the Piecewise Exponential Artificial Neural Networks
(PEANN) (Fornili et al., 2014) framework that can work with a large number of tasks.

Piecewise exponential models approximate the TTE distribution with a piecewise exponential function
using a total number of pieces, P . Each piece p covers the time period starting at Sp and ending at
Ep. For every patient i, event j, task k, and piece p, a hazard λijkp must be estimated to formulate a
piecewise exponential TTE distribution for each patient. Formally, the piecewise exponential distribution is
defined by the hazard function Hijk(t) =

∑P
p=1 I(Sp ≤ t < Ep)λijk and the survival function Sijk(t) =∏P

p=1 e
−λijkp∗(min(t,Ep)−Sp)∗I(t≥Sp).

This piecewise exponential model is combined with the event indicator tensor δ (defined as δijkp indicating
whether or not subject i at the time of event j has an event for task k within the piece p) and event time tensor
U (defined as Uijkp being the time to either the task event or censorship within piece p for patient i, event j
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and task k) to construct the standard piecewise exponential likelihood loss function:

L(Uijkp|λijkp) = {λijkp exp(−λijkp Uijkp)}δijkp{exp(−λijkp Uijkp)}1−δijkp (1)

Large Scale Piecewise Exponential Optimizations: Computing this loss requires the evaluation of large
matrix operations due to the dependence on i, j, k, and p , so we employ three optimizations to make this
more tractable. First, we assume that the transformation Rij 7→ log(λijkp) is a linear mapping of low rank,
and compute it with two smaller matrix multiplications. This is done by learning a time-independent task
embedding βk of size b for each pretraining task k and learning a time-dependent linear transformation to
Mijp from patient representation Rij , in which Mijp represents the state of patient i at event j within piece p.
We can then compute log(λijkp) = Mijp · β̂k. This requires P times fewer parameters per task compared to a
full rank transformation from Rij to λijkp. The intuition here is that tasks should be largely time-independent
as the risk factors for diseases mostly remain constant. Tasks further exhibit a high degree of censorship,
with a low probability for any particular event in a time bin, meaning δ and U can be implemented using
sparse matrix operations to significantly reduce compute and memory. For example, in our STARR-OMOP
experiments, only 0.6% of entries are non-duplicate, reducing the memory required to store and process δ and
U from 4 GB to 0.05 GB per batch. Finally, as we only require the product of the likelihood loss function and
not the individual terms, we fuse most operations into a single kernel such that large matrix intermediates
like λ and exp(−λijkp Uijkp)} are never fully materialized. This reduces memory by a further 4 GB per
batch. As our largest trained architecture (12 layers) itself requires 14.59 GB of memory, these optimizations
combine to reduce our memory requirements by 35%.

Time-to-Event Pretraining: Given our Transformer encoder and piecewise exponential TTE setup, we
define a pretraining task of predicting the time to the next time a code is assigned for various codes. To
achieve a general TTE model, we train on a larger number of codes. We use a simple entropy based-heuristic
to rank and select the most informative codes, described in Appendix N.

To provide a more conservative measure of performance on novel TTE tasks, we explicitly removed codes for
our evaluation target tasks from the set of pretraining tasks. Note that removing codes for evaluation is not
strictly necessary for correctness as we are using a patient split to ensure no leakage between pretraining and
evaluation. We pretrain our model end-to-end using the likelihood in Equation (1). Hyperparameters are set
through a grid search (detailed in Appendix A) on the validation set.

Adapting MOTOR to Target Tasks: Given the pretrained model above, we can then train models for
new target tasks of interest through the process of adaptation. Specifically, we need to estimate a new
vector of parameters β̂ new

k which will be used to provide piecewise exponential estimates for the new task.
We evaluate two methods of adapting MOTOR, using a linear probe (MOTOR-Probe) and full finetuning
(MOTOR-Finetune). In the linear probe setup, only β̂ new

k are tuned for the new task and no other weights are
modified. This simple approach allows models to be trained quickly as gradients only have to be evaluated
over a small fraction of the model. Alternatively, in the full finetuning setup, all of MOTOR’s weights are
updated when finetuning. This is a flexible approach that can enable higher prediction accuracy but comes at
the cost of requiring increased runtime as gradients have to be computed throughout the entire model. As an
ablation, we also evaluate training MOTOR from scratch, without any adaptation (MOTOR-Scratch). In this
setup, we randomly initialize MOTOR and train the whole model on the target task.

4 EXPERIMENTS

We evaluate the effectiveness of MOTOR by comparing the performance of MOTOR-derived models to
several state-of-the-art TTE models. All training and evalation code is open source and available on GitHub1.

1Code Repository: https://github.com/som-shahlab/motor_code_release
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Datasets and Compute We use two healthcare datasets for our main experiments: STARR-OMOP, a de-
identified EHR dataset from Stanford Hospital (Callahan et al., 2023), and MERATIVE, the 2017 release of
the de-identified Merative™ MarketScan® Commercial Claims and Encounters Database (Merative). STARR-
OMOP contains EHR data for adult and pediatric populations with a total of 2.7M patient records (2.4B
clinical events) spanning 2014 - 2022. Each record includes demographics (age, sex, ethnicity) and medical
codes for diagnoses, labs, medications, procedures, and visits. MERATIVE contains claims information (i.e.,
billing diagnoses, medications, procedures, and visits) for 78M patients (12.8B clinical events) spanning 2007
- 2017. Data processing and splitting details are in Appendix B, with compute information in Appendix C.

Setup of Target Tasks: We derive 19 target tasks for evaluating models. Our evaluation set consists of six
code-based target tasks (predicting the time to a particular diagnosis code is assigned) and 13 text-based
target tasks (predicting the time to a radiology note that refers to a condition). For all tasks, a prediction time
is defined by choosing the end of a random visit after at least a year of medical history. We use one sample
per patient to better match the structure of existing cohort datasets frequently used for evaluating TTE models
(such as SUPPORT or SEER) and avoid issues related to baselines overfitting on highly correlated samples
from the same patient. For simplicity, we assume death is the only competing risk and censor each record at
death. Since our patient datasets are large, we subsample low-information censored cases (see Appendix D).

The six code-based tasks are Celiac Disease, Heart Attack (HA), Lupus, Nonalcoholic Fatty Liver Disease
(NAFLD), Pancreatic Cancer, and Stroke. These tasks were chosen to cover a spectrum of acute and chronic
health conditions where a prediction model is believed to have clinical utility (Hujoel et al., 2018; Kingsmore
& Lipsky, 2022; Lee et al., 2022; Wong et al., 2022; Razmpour et al., 2023). These clinical events are defined
by a set of ICD-10 codes that are expanded using OMOP SNOMED based ontology mappings (Sciences
& Informatics, 2021). We remove these codes and related concepts from pretraining to better evaluate
performance on unseen tasks. Table S4 in Appendix E lists the codes-based task definitions and statistics.

One limitation of code-based tasks is that coded data may be incomplete and thus many useful tasks can only
be defined using information derived from text (Xu et al., 2011). To evaluate this setting, we additionally
perform a separate analysis on STARR-OMOP with 13 text-based tasks, using the 13 radiology note NLP
labeling functions provided by Irvin et al. (2019). Further details for this evaluation are in Appendix J.4.

Baselines: We compare MOTOR-derived models with five other TTE approaches: Cox PH, DeepSurv,
DeepHit, DSM, and RSF. Appendix G contains details for how we implemented these baselines.

Evaluation Metrics: We evaluate model performance using four metrics, the time-dependent C statistic
(Heagerty & Zheng, 2005), Harrell’s C-index (Harrell et al., 1982), the Nam-D’Agostino (ND) calibration
metric (D’Agostino & Nam, 2003), and the Integrated Brier Score (IBS) (Graf et al., 1999). The C statistics
provide an estimate of ranking performance, i.e., the ability of the model to rank higher-risk patients over
lower-risk patients. IBS and ND calibration inform us about whether the estimated survival curves contain
correct probabilities. Details on these metrics (including statistical significance), are in Appendix H.

5 RESULTS

Overall Performance: Table 1 provides the time-dependent concordance performance of the various methods
for the code-based tasks. Both pretrained MOTOR variants (MOTOR-Finetune and MOTOR-Probe) generally
outperform all of our baselines, providing statistically significant higher C statistics in all six code-based
tasks (confidence intervals are shown in Table S5 in Appendix I). Comprehensive calibration metrics are also
included in the Appendix, specifically Harrell’s C-index (J.2) and Integrated Brier Score (J.3). Results on the
13 text-based tasks are in Appendix J.4, with the same pattern of MOTOR outperforming all baselines.

The comparison between MOTOR-Scratch (where the model is trained from scratch only on the target task
without any pretraining) and MOTOR-Finetune is particularly important, as it directly tests the importance of
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pretraining. As MOTOR combines a sophisticated neural network model with pretraining, it is important
to evaluate whether pretraining itself provides value. For a fair comparison, MOTOR-Scratch uses the
same piecewise exponential setup, Transformer backbone, and hyperparameter grid as MOTOR-Finetue.
MOTOR-Scratch performs worse, demonstrating the importance of pretraining.

Table 1: Time-dependent C statistic on the code-based tasks. Bolding indicates the best performing model.

Method Dataset Celiac HA Lupus NAFLD Cancer Stroke

Cox PH STARR-OMOP 0.689 0.761 0.770 0.726 0.793 0.779
DeepSurv - 0.704 0.823 0.790 0.800 0.811 0.830
DSM - 0.707 0.828 0.784 0.805 0.809 0.835
DeepHit - 0.695 0.826 0.807 0.805 0.809 0.833
RSF - 0.729 0.836 0.787 0.802 0.824 0.840
MOTOR-Scratch - 0.696 0.795 0.803 0.821 0.777 0.831
MOTOR-Probe - 0.802 0.884 0.850 0.859 0.865 0.874
MOTOR-Finetune - 0.802 0.887 0.863 0.864 0.865 0.875
Cox PH MERATIVE 0.538 0.783 0.749 0.799 0.628 0.693
DeepSurv - 0.719 0.814 0.809 0.828 0.801 0.753
DSM - 0.725 0.814 0.812 0.833 0.805 0.758
DeepHit - 0.722 0.815 0.809 0.828 0.802 0.753
RSF - 0.705 0.810 0.805 0.838 0.798 0.746
MOTOR-Scratch - 0.737 0.821 0.826 0.850 0.821 0.775
MOTOR-Probe - 0.755 0.828 0.833 0.856 0.825 0.789
MOTOR-Finetune - 0.762 0.831 0.838 0.862 0.834 0.794
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Comparison To Next Code Pretraining
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Figure 2: Per-time horizon performance differences (in
time-dependent C statistic) when replacing autoregres-
sive pretraining with TTE pretraining. Blue indicates
better performance with TTE pretraining and red indi-
cates worse.

Choice of Pretraining Objective: One major part
of MOTOR is our TTE pretraining objective. To
investigate how TTE pretraining contributes to MO-
TOR’s performance, we perform a comparison with
the common pretraining task of next code predic-
tion. Here pretraining predicts the next code in a
patient’s timeline, similar to autoregressive pretrain-
ing in NLP (see Appendix K for more details). We
perform this ablation on the smaller STARR-OMOP
dataset where pretraining is the most impactful.

Table 2 compares the next code pretraining task to
our TTE pretraining task on STARR-OMOP. The
TTE pretraining task outperforms the next code pre-
training task, as indicated by the statistically signif-
icant higher C statistics on four of the target tasks
(confidence intervals in Table S6).

In order to better understand how these objectives
differ in performance, we also performed a time-horizon oriented evaluation where we evaluate the time-
dependent C statistic within time horizon deciles, with results in Figure 2 (the same time horizon analysis for
all baselines is in Appendix J.5). We observe benefits of TTE pretraining for most time horizons and tasks.
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Table 2: Impact of the pretraining objective on model performance in terms of the time-dependent C statistic.

Objective Celiac HA Lupus NAFLD Cancer Stroke

Next Code 0.774 0.862 0.842 0.860 0.860 0.857
Time-to-Event 0.802 0.887 0.863 0.864 0.865 0.875
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Figure 3: Performance for code-based tasks on STARR-
OMOP when tuning the number of piecewise pieces,
attention width, and number of pretraining tasks. Lines
are average performance (blue) and per-task perfor-
mance (light blue).

Hyperparameter Ablations: MOTOR has a vari-
ety of important hyperparameters that all potentially
contribute to performance. In order to better under-
stand MOTOR, we have performed a series of hyper-
parameter ablations on the STARR-OMOP dataset
using linear probe adaption on the code-based tasks.
Figure 3 shows the performance when ablating: the
number of pretraining tasks, the attention width, and
the number of pieces in the piecewise exponential
model. We find that MOTOR is robust to small
changes in these hyperparameters but that perfor-
mance degrades when all three are majorly reduced,
showing the validity of our chosen hyperparameters.

Robustness Across Time And Portability Across
Datasets: Two key questions are whether MOTOR
is robust to shifts over time and whether it is portable
to other sites (e.g., whether a pretrained MOTOR
model can be reused on data from other hospitals). We test robustness across time by performing an out-of-
time evaluation using a prospective sample constructed from nine months of the most recent STARR-OMOP
data. Likewise, to address model portability, we perform experiments on MIMIC-IV (Johnson et al., 2023)
where we transfer a MOTOR model that was pretrained on STARR-OMOP to MIMIC-IV using linear probe
adaptation (MOTOR-Transfer Probe). We compare that adapted model to baselines trained from scratch on
MIMIC-IV. Table 3 contains the best baseline and MOTOR time-dependent C statistics for each of these
experiments. We find that MOTOR outperforms all baselines. Further details and the full tables for these
experiments can be found in Appendices J.6 and J.7.

Table 3: Time-dependent C statistic on an out-of-time STARR-OMOP sample and MIMIC-IV.

Method Dataset Celiac HA Lupus NAFLD Cancer Stroke

Best Baseline Out-of-time STARR-OMOP 0.682 0.776 0.810 0.750 0.786 0.768
Best MOTOR - 0.792 0.843 0.880 0.809 0.870 0.836
Best Baseline MIMIC-IV 0.625 0.820 0.807 0.736 0.748 0.780
Best MOTOR - 0.628 0.850 0.819 0.802 0.828 0.812

Sample Efficiency: A key benefit of foundation models is improved sample efficiency, being able to learn
task models with few labels. We evaluate MOTOR’s sample efficiency in two ways: first, how performance
changes as we pretrain with fewer patients and, second, how it changes as we adapt with fewer patients.

Figure 4 contains the results of these experiments using the linear probe adaptation strategy. We use 5%, 10%,
and 25% samples of the dataset for both the pretraining and fine-tuning experiments. We find that MOTOR is
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robust to the amount of adaptation data available, performing well with limited task labels. However, MOTOR
performance degrades quite rapidly when the pretraining dataset is reduced. This aligns with the intuition
on the importance of pretraining in foundation models. In the same theme of investigating low resource
environments, we also evaluate the compute efficiency of adapting MOTOR in Appendix J.8 and find that
MOTOR-Linear Probe is ten times faster than RSF, the strongest baseline.

6 DISCUSSION
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Figure 4: Performance when MOTOR is pretrained or
adapted with less data. Lines are average performance
(blue) and per-task performance (light blue).

We used TTE pretraining to create the MOTOR foun-
dation model and have reported its performance
for a wide variety of time-to-event tasks across
datasets. The process of pretraining allows us to
use a high-parameter (143M parameters) model
even with limited data. Our results show that
MOTOR-derived models outperform state-of-the-
art approaches across a range of clinical tasks. This
success is owed to the novel TTE pretraining ob-
jective that enables MOTOR to learn sophisticated
interactions and event distributions.

We have also verified that MOTOR has many of the
desirable foundation model properties. It is compu-
tational and label efficient in that it can be adapted to
downstream TTE tasks with minimal compute and
labeled data (only requiring 1/10th the time and 5% of the labeled task data to match RSF). It is robust
over both time and can be reused in other datasets, with out-of-time and MIMIC-IV experiments showing
better predictive performance than all baselines. Finally, MOTOR is general purpose, with demonstrated
performance for 19 tasks, including text based tasks that are completely out of the domain of the pretraining
tasks.

This work has limitations. First, pretraining MOTOR is expensive, requiring up to two GPU weeks for
MERATIVE. Second, our experiments perform evaluations on subsampled target task datasets, which
introduces censoring bias (as discussed in Appendix D), which might affect our results. Third, our handling
of competing risks (censoring at death) may not be appropriate for every setting.

Finally, to enable reproducibility, which is hampered (McDermott et al., 2021; TSIMA, 2023) by challenges in
releasing datasets and large pretrained models (Wornow et al., 2023), we release a 143M parameter MOTOR
model pretrained on STARR-OMOP under a research DUA, which prohibits re-identifying patients as well as
commercial and non-research use. We discuss further details, including safeguards, in Appendix L.

7 CONCLUSION

Time-to-event prediction is an important but challenging problem in the medical setting. A foundation model
pre-trained with the TTE objective can enable transfer learning across datasets. We have pretrained such a
model - MOTOR - on 55M patient records spanning 9B events and demonstrated transfer learning ability for
19 tasks across 3 datasets. The use of pretraining, and in particular specialized TTE pretraining, allows us to
learn a TTE foundation model that can be adapted even in low label settings. Task-specific models based on
MOTOR improved time-dependent C statistic by 4.6% over state-of-the-art, were more robust to temporal
distributional shifts, and outperformed all baselines when porting across datasets.
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ETHICS STATEMENT

We follow current best practices to ensure that our use of structured medical data is safe, fair, and ethical.
To protect patient privacy, we follow the standard practice for healthcare machine learning reproducibility
established by PhysioNet (Goldberger et al., 2000) and Medical AI Research Foundations (Azizi et al., 2023),
an open-source repository of medical foundation models, which provide several mechanisms to protect
patient privacy. We summarize specific ethical considerations below and, where appropriate, provide links to
expanded discussion in the appendix.

Data Deidentification: All data used for model training and evaluation were stripped of protected health
information. STARR-OMOP is de-identified at the institutional level using the Safe Harbor standard to satisfy
HIPAA’s Privacy Rule. MERATIVE was de-identified by IBM to meet the limited data set HIPAA standard.
All MOTOR model artifacts underwent an additional automated and manual human review process to verify
the absence of incidental PHI. We have received permission from our academic institution to release this
model given the model protections and data use agreement (DUA) outlined in Appendix L.

Training Data Storage & Security: All training data was stored in a HIPAA-compliant compute environment
(Appendix C) with access limited to accredited individuals. MOTOR will be hosted in a gated environment
similar to PhysioNet, where access requires a credentialed account and a non-commercial research DUA.

Patient Consent: For STARR-OMOP, all included patients from our medical center signed a privacy notice
informing them that their records may be used for research purposes. De-identified data is made available
to researchers via a school-wide IRB protocol. MERATIVE is provided to us in de-identified form, with
assurance that it meets the requirements for a limited data set, which does not require patient consent for use
in research.

Algorithmic Bias: We acknowledge that healthcare machine learning models are vulnerable to algorithmic
bias, which can be especially problematic if used to guide treatment. Unfortunately, bias mitigation in medical
foundation models, which prioritize learning generalizable feature representations that are useful for a wide
range of tasks, is still an open research question (Jones et al., 2023) and not addressed by this work. Therefore,
we take two steps to mitigate risk. First, as described in Appendix L, our model release comes with a DUA
that expressly prohibits using MOTOR to guide medical care. Second, per the recommendations of (Chang
et al., 2022), we perform an analysis in Appendix J.12 to characterize performance in sensitive subgroups
to make sure that our model doesn’t unfairly penalize sensitive groups compared to existing methods. We
measure performance using the time-dependent C statistic on STARR-OMOP and compare MOTOR-Finetune
and the strongest baseline RSF. We find that with one statistically insignificant exception, MOTOR-Finetune
does not reduce performance within sensitive groups and instead broadly improves risk ranking across groups.

Risk of Harm From Misuse: Possible model misuse, e.g., for surveillance purposes, is a serious concern in
domains like medicine. To mitigate these risks, we implement the following guardrails. (1) We restrict access
to MOTOR weights via user credentialing and gated hosting akin to PhysioNet. (2) We prohibit medical
decision making, diagnoses, and other non-research use cases of MOTOR in our DUA and can revoke model
access for violations. (3) We do not release our MERATIVE models pretrained on insurance claims data,
which may be easier for entities to obtain commercially vs. longitudinal EHR data.
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REPRODUCIBILITY STATEMENT

The code necessary for reproducing the experiments in this paper can be found in the supplemental materials
as a zip file. Our hyperparameter search grids can be found in Appendix A. To aid reproducibility we have
performed evaluations on the public MIMIC-IV dataset (see Appendix J.7) using a pretrained MOTOR model
that we will be releasing (see Appendix L). It is important to note that while we do have approval for model
release, our approved protocol does not allow release to anonymous reviewers. In addition, due to our data
usage agreements, we are not allowed to share the source training datasets for STARR-OMOP or MERATIVE,
however MERATIVE is commercially available.
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APPENDICES

APPENDIX A HYPERPARAMETER SEARCH GRIDS

Table S1: Hyperparmeter search grids and software versions of methods under comparison.
Hyperparameters Values

Cox PH
lambda automatic
min_patients_per_feature 100, 1000
software_version glmnet 4.1-6

DeepSurv
dropout 0, 0.1
first_layer_size 32, 128, 256, 512
second_layer_size 32
learning_rate 10−3, 10−4, 10−5

min_patients_per_feature 100, 1000
software_version pycox 0.2.3

DeepSurvivalMachines
first_layer_size 32, 128, 256, 512
second_layer_size 32
learning_rate 10−3, 10−4, 10−5

k 3, 4, 6
distribution LogNormal, Weibull
min_patients_per_feature 100, 1000
software_version auton-survival 0.0.0

DeepHit
dropout 0, 0.1
first_layer_size 32, 128, 256, 512
second_layer_size 32
learning_rate 10−3, 10−4, 10−5

num_bins 8, 16, 32
min_patients_per_feature 100, 1000
software_version pycox 0.2.3

Random Survival Forests
node_size 5 , 15, 50, 100
min_time_bins 8, 16, 32
min_patients_per_feature 100, 1000
software_version randomForestSRC 3.1.0

MOTOR
dropout 0, 0.1
learning_rate 10−3, 10−4, 10−5

num_time_pieces 8, 16
survival_dim 256, 512
inner_dim 768
layers 6, 12
max_sequence_length 16,384
vocabulary_size 65,536

1
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APPENDIX B DATA PROCESSING DETAILS

We first harmonize MERATIVE by converting it to the Observational Medical Outcomes Partnership (OMOP)
schema (Overhage et al., 2012) (STARR-OMOP comes in the OMOP schema). We then process our datasets
by converting all of the tables within the OMOP schema to a uniform timeline format of timestamped events,
where each event is annotated with both the time and the clinical code for that event. We additionally perform
some post-processing to correct several timestamp-related issues in the source data. In particular, we move
billing codes to the end of visits to better reflect when those billing codes are clinically available and move
all events annotated at 12:00 AM to 11:59 PM to better account for how 12:00 AM timestamps frequently
represent day-level timestamps and we do not want to have that data available to models before the end of the
day. We also adjust for events before birth by moving them to the date of birth.

To obtain unbiased evaluation metrics for the performance of methods, we randomly split our data into
training, validation, and test sets, containing 70%, 15% and 15% of the patients in the dataset. We use
a hash-based splitting algorithm so that splits are stable across dataset versions. The training set is used
for all model training, the validation set is used for hyperparameter selection, and the test set is used for
out-of-sample evaluation.

Table S2 contains the number of patients and events in each split for both datasets.

Table S2: Dataset split details

Split Name STARR-OMOP MERATIVE

# Patients # Events # Patients # Events

Training Set 1,910,887 3,149,948,337 54,721,282 8,976,493,594
Validation Set 409,704 672,623,024 11,719,566 1,922,762,263
Test Set 409,820 673,687,781 11,726,429 1,923,815,575

We also compute some summary statistics for both of our datasets, which are shown in Table S3.

Table S3: Demographic statistics for STARR-OMOP and MERATIVE. All patients have unknown race in
MERATIVE as race is not provided. Standard deviations are provided in parenthesis when applicable.

Statistic Name STARR-OMOP MERATIVE

Total Patients 2,730,411 78,167,277
Total Events 4,496,259,142 12,823,071,432
Average Events Per Patient 1,646.7 (7,356.3) 164.0 (241.8)
Average Age 42.4 (24.3) 35.9 (19.0)

% Male 45.1 45.0

% American Indian or Alaska Native 0.3 N/A
% Asian 15.7 N/A
% African American 3.5 N/A
% Native Hawaiian or Other Pacific Islander 1.0 N/A
% White 42.9 N/A
% Unknown 36.7 100

2
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APPENDIX C COMPUTE ENVIRONMENT

Experiments are performed in a local on-prem university compute environment using 24 Intel Xeon 2.70GHz
CPU cores and 8 Nvidia V100 GPUs. All compute environments supported HIPAA-compliant data protocols.,
with access limited to accredited individuals. Each pretraining and/or finetuning job is only assigned one
V100 at a time. Pretraining on STARR-OMOP takes 111 V100 GPU hours, while pretraining on MERATIVE
takes 330 V100 GPU hours.

APPENDIX D TARGET TASK SUBSAMPLING

Our task definition, of predicting the time until a coded event given a year of history, would generate a single
label per patient in our dataset. This produces millions of labels for STARR-OMOP (tens of millions for
MERATIVE) and is not feasible to analyze with most existing TTE modeling approaches. In order to work
around this, in our experiments, we use a simple subsampling strategy where we drop a fraction d of the
censored examples in our dataset before modeling and evaluation. This causes a non-uniform scaling of the
hazard rates. However, this does not affect our primary results as the resulting hazard rate scaling bias is
shared across all methods and the primary goal of this study is to evaluate the relative performance of different
modeling approaches. Since we evaluate and train all models using the same subsampling, the censoring
bias affects them in a similar manner and our ranking of models’ performance should not be impacted. We
considered correcting for this bias with a weighting strategy (Kohler et al., 2002; Van der Laan & Robins,
2003), but extreme weights induce unstable training. We additionally do one other step of subsampling, where
if the number of labels is still over 200,000 despite the prior strategy, we simply select a random sample of
200,000 when training models.

Even though subsampling controls in principle shouldn’t affect our ranking of methods, it is still useful to
derive the exact hazard rate scaling induced by it. Let Hi(t) be the hazard rate for a particular time t and let
H̃i(t) be the hazard rate for a particular time t induced by our subsampling strategy. Equation 2 provides the
ratio of H̃i(t) and Hi(t). Proof D is the derivation of that equation.

H̃i(t)
Hi(t)

=
1

1− dP(Ci < Ti|Ci > t, Ti > t)
(2)

Proof. The hazard in our original dataset before sampling is

Hi(t) =
P(Ti = t)

P(Ti > t)

=
P(Ti = t)P(Ci > t)

P(Ti > t)P(Ci > t)

=
P(Ti = t, Ci > t)

P(Ti > t,Ci > t)
assume Ci ⊥⊥ Ti

=
P(Ti = t, Ci > t)

P(Ci < Ti, Ci > t, Ti > t) + P(Ci ≥ Ti, Ci > t, Ti > t)

3
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The hazard in our dataset after sampling is

H̃i(t) =
P(Ti = t, Ci > t)

(1− d)P(Ci < Ti, Ti > t,Ci > t) + P(Ci ≥ Ti, Ti > t,Ci > t)

=
P(Ti = t, Ci > t)

((1− d)P(Ci < Ti|Ti > t,Ci > t) + P(Ci ≥ Ti|Ti > t,Ci > t))P(Ti > t,Ci > t)

=
P(Ti = t, Ci > t)

((1− d)P(Ci < Ti|Ti > t,Ci > t) + (1− P(Ci < Ti|Ti > t,Ci > t)))P(Ti > t,Ci > t)

=
P(Ti = t, Ci > t)

(1− dP(Ci < Ti|Ti > t,Ci > t))P(Ti > t,Ci > t)

=
Hi(t)

1− dP(Ci < Ti|Ti > t,Ci > t)

Thus,
H̃i(t)

Hi(t)
=

1

1− dP(Ci < Ti|Ci > t, Ti > t)

4
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APPENDIX E TARGET TASK DETAILS

Table S4: Task details for six code based tasks on STARR-OMOP and MERATIVE. We report the number of
cases, the number of controls, the median event time, and the 90th percentile event time for each task. Times
are reported in years.

Task Name ICD 10 Codes STARR-OMOP MERATIVE

# Cases # Controls # Cases # Controls

Celiac Disease K90.0 3,453 13,812 91,119 364,476
Heart Attack I21.* 2,815 11,260 116,085 464,340
Lupus M32.* 3,274 13,812 90,002 360,008
Pancreatic Cancer C25.* 2,163 8,652 16,175 64,700
NAFLD K76.0 22,013 88,052 666,345 2,665,380
Stroke I63.* 11,855 47,420 43,338 173,352

Task Name STARR-OMOP MERATIVE

Median Time 90th Percentile Time Median Time 90th Percentile Time

Celiac Disease 0.540 4.254 0.496 2.458
Heart Attack 0.512 4.824 0.545 2.606
Lupus 0.572 5.202 0.455 2.301
Pancreatic Cancer 0.464 5.511 0.323 2.329
NAFLD 0.862 5.293 0.496 2.521
Stroke 0.900 5.502 0.399 2.126

APPENDIX F TRANSFORMER DETAILS

Following the prior work of BEHRT (Li et al., 2020), we use a Transformer-based neural network for
processing our medical record data. Xi, the sequence of codes and timestamps for patient i, is first transformed
into a combination of code and time embeddings. Just as in BEHRT, missing data is not explicitly handled
(since no codes are generated when data is missing), but time embeddings should in principle provide the
necessary signal for learning important information about missingness. Code embeddings are generated with
a standard embedding layer. Time embeddings are generated using a rotary position embedding (Su et al.,
2024) with time (in days since birth) instead of the more standard position index. These embeddings are then
fed into a Transformer to generate representations for every event in each patient’s record.

Our Transformer differs from the main prior work of BEHRT in four major aspects. First, unlike BEHRT,
which uses a masked language modeling objective that incorporates bidirectional information from patient
sequences, we use causally masked attention (Dai & Le, 2015; Peters et al., 2018; Raffel et al., 2022). This
attention pattern ensures information only flows forwards in the sequence and not backwards to guarantee
that the model does not “cheat” by using information from the future. If fully connected attention is used
instead, models quickly learn shortcuts to use future information to predict the past, which then results in
failure when the models are applied to real data. Second, we use rotary position embeddings (Su et al., 2024)
for combining the time and code embeddings at every attention subunit in the network. Third, we use a local
attention mechanism, where attention is limited to 512 token context windows, to enable the use of sequence
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lengths up to 16,384 events and avoid quadratic complexity (Roy et al., 2021). Fourth, we do not use the
explicit visit-based components of BEHRT (the segment and position features) as our source medical record
data contains overlapping visits that are not compatible with BEHRT’s approach. Instead, we represent visits
as additional clinical events within the timeline.

APPENDIX G BASELINE DETAILS

In order to verify the performance benefits of our method, we compared it to five commonly used state-of-art
time-to-event approaches: Cox PH, DeepSurv, DeepHit, DSM, and RSF.

Cox PH and RSF cannot naively handle our sequential event format as they require input features to be in
the form of a feature matrix. In order to run those methods on our dataset, we implement a featurization
strategy to transform our timestamped event data into rows and columns that can be used for those methods.
Following prior standard practice in the medical domain (OHDSI, 2019), we implement count featurization,
where a column is created for each event code in the source data and each value in that column corresponds
to the number of times that event code appears in the patient record.

In principle, DeepSurv, DeepHit, and DSM can accept the same event/timestamp input format as MOTOR
by using a Transformer, however we observe poor performance due to overfitting on our small task datasets.
Instead, we train these three baselines on the same feature matrices used for RSF and Cox PH. Training in
this way requires learning many fewer parameters and thus is less prone to overfitting. We parameterize these
three models with feedforward neural networks with two hidden layers, rectified linear unit (ReLU) activation
functions, and batch-normalization. As in MOTOR, we use dropout and early stopping for regularization.

Appendix A contains the hyperparameter search grids and software versions for each baseline method.

APPENDIX H EVALUATION METRICS DETAILS

The time-dependent C statistic summarizes the ability of a predictive model to rank patients by risk based
on their instantaneous hazard functions. Specifically, we apply the incident and dynamic definitions for the
time-dependent sensitivity and specificity, respectively, following the choices in Heagerty & Zheng (2005):

senI(c, t) = P(Si > c|dN∗
i (t) = 1)

speD(c, t) = P(Si ≤ c|N∗
i (t) = 0),

where Si is a predicted risk score for subject i. N∗
i (t) = 1{Ti ≤ t} and dN∗

i (t) = N∗
i (t)−N∗

i (t−) follow
the standard definitions of a counting process. Then, the concordance can be expressed as a weighted average
of the area under the time-dependent receiver operating curve (ROC)

Ctd =

∫
t
AUC(t)w(t) dt∫

t
w(t) dt

(3)

where w(t) = f(t) · S(t). f(t) is the event rate at a particular time t and S(t) is the survival probability at
that time. Both f(t) and S(t) are estimated using the Kaplan-Meier estimator. AUC(t) is the time-specific
area under ROC and can be computed by integration, and ROC can be calculated using senI and speD with
the standard formulation.

Note that the formula in Equation (3) is slightly modified from Heagerty & Zheng (2005) because our dataset
contains many events that happened at the exact same time due to some events having only day-level time
resolution. Heagerty & Zheng (2005) assumes that all event times are distinct thus the sum of the weights
(the term in the denominator) is 1

2 . As we have many tied event times, we cannot make the same assumption
and have to explicitly compute the denominator as

∫
t
w(t) dt.
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Harrell’s C-index (Harrell et al., 1982) is an alternative type of C statistic that summarizes the ability of
a predictive model to rank patients. There are two primary limitations of the Harrell’s C-index that the
time-dependent C statistic does not have (Hartman et al., 2023). First, Harrell’s C-index does not account
for censoring so it will be biased when used for evaluating TTE modeling performance. Second, Harrell’s
C-index requires the predictive model to output a single risk per patient, as opposed to risk over time. This
causes problems when evaluating non-proportional hazards models such as RSF and MOTOR that have
time-varying relative risks. We adjust for this by using the average hazard for models with time-varying risks.
This will underestimate the performance of RSF and MOTOR, but will allow us to apply this metric.

We then use the standard formulation for computing Harrell’s C-index. First, we find all possible pairs P ,
where one patient is known to have the event before another, and split that set into Pcorrect (if the higher risk
patient has the event first), Ptied (if both patients have the same risk), and Pincorrect (if the lower risk patient
has the event first).

CH =
Pcorrect + 0.5× Ptied

Pcorrect + Ptied + Pincorrect
(4)

The Nam-D’Agostino (ND) calibration metric (D’Agostino & Nam, 2003) is constructed based on the idea
that the survival probability estimates, Ŝ(t) = P (Ti > t), for a particular time t should be calibrated with
respect to the number of observed survivors past that time point, which is not available in censored data, thus
we estimate it using the Kaplan-Meier estimator per D’Agostino & Nam (2003). First, the data is sorted by
Ŝ(t) given by a model and split into M equal size risk bins, where p(t)m is the average value of Ŝ(t) within
bin m. Second, a KM estimator is fit within each risk bin for computing actual survival probabilities. Finally,
the squared difference between the expected and actual values is computed and summed across bins. The
resulting statistic is χ2 with M − 1 degrees of freedom. In principle, you can run hypothesis tests using this
statistic, but we instead directly report and compare the following raw statistic between models:

χ2(t) =

M∑
m=1

[KM(t)m − p(t)m]2 nm

p(t)m(1− p(t)m)
, (5)

where nm is the number of observations in bin m and n1 = n2 = ... = nM . For all evaluations, we set t to
the median event time. In addition, we make one minor modification to this metric in that we remove the
nm term in the numerator as we are primarily concerned about relative performance. nm a constant factor
that only depends on the number of patients for each task, and removing it makes it easier to compare results
across target tasks.

The Integrated Brier Score (IBS) (Graf et al., 1999) simultaneously measures the ability of a time-to-event
model to both rank patients correctly and have calibrated estimates. We directly use the implementation of
IBS provided by the scikit-survival package (Pölsterl, 2020), which integrates the standard Brier Score metric
using numeric integration. For all of our experiments, we integrate from the 10th to the 90th percentile of
event times, using 256 trapezoids to estimate the integral.

The time-dependent C statistic and ND test become increasingly unstable as the censoring rate increases since
they rely on Kaplan Meier estimators that themselves become unstable at higher censoring rates. As such, it
is generally recommended to only compute these statistics on a subset of the possible times to reduce the
variance of estimates. As suggested by Heagerty & Zheng (2005), we use the time-restricted variants of these
evaluation metrics by setting a time limit of the 90th percentile of observed event times and only perform
evaluations up to that time point. We report the 90th percentile time for each task on each dataset in Appendix
E.

In order to accurately quantify statistical significance, we use the paired test-set bootstrap approach (Koni-
etschke & Pauly, 2013) to estimate the 95% confidence interval for the difference in model performance
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between MOTOR and every other method. For every target task, we resample our test set with replacement to
obtain 1000 bootstrap samples. We then compute all metrics for all of our models on each bootstrap sample,
subtracting MOTOR’s performance each time to obtain an estimate of how each method differs from MOTOR.
We finally compute confidence intervals by extracting the 2.5% and 97.5% percentiles of the bootstrapped
samples. All of our confidence intervals for the differences in performance between methods are reported in
Appendix I. As an additional aid, we also report standard deviations using the same bootstraping approach in
Appendex M.

APPENDIX I CONFIDENCE INTERVALS

Table S5: 95% confidence intervals of difference in time-dependent C statistic between MOTOR-Finetune and
the other methods. Higher numbers are considered better for this metric. ∗ indicates statistically significant
entries at p = 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH [-0.140, -0.088]* [-0.146, -0.105]* [-0.113, -0.073]* [-0.147, -0.129]* [-0.093, -0.050]* [-0.105, -0.086]*
DeepSurv [-0.120, -0.076]* [-0.079, -0.048]* [-0.091, -0.056]* [-0.070, -0.057]* [-0.075, -0.035]* [-0.052, -0.037]*
DSM [-0.115, -0.075]* [-0.076, -0.043]* [-0.097, -0.060]* [-0.065, -0.054]* [-0.078, -0.035]* [-0.047, -0.034]*
DeepHit [-0.132, -0.084]* [-0.078, -0.043]* [-0.074, -0.038]* [-0.065, -0.052]* [-0.079, -0.037]* [-0.049, -0.035]*
RSF [-0.096, -0.051]* [-0.067, -0.036]* [-0.094, -0.057]* [-0.068, -0.055]* [-0.060, -0.023]* [-0.041, -0.027]*
MOTOR-Scratch [-0.131, -0.083]* [-0.114, -0.073]* [-0.081, -0.041]* [-0.047, -0.037]* [-0.114, -0.064]* [-0.050, -0.036]*
MOTOR-Probe [-0.010, 0.009] [-0.008, 0.001] [-0.020, -0.005]* [-0.008, -0.002]* [-0.006, 0.004] [-0.004, 0.003]
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

MERATIVE

Cox PH [-0.273, -0.251]* [-0.051, -0.043]* [-0.095, -0.085]* [-0.069, -0.056]* [-0.219, -0.203]* [-0.107, -0.096]*
DeepSurv [-0.048, -0.037]* [-0.019, -0.013]* [-0.034, -0.028]* [-0.039, -0.028]* [-0.036, -0.029]* [-0.046, -0.038]*
DSM [-0.041, -0.031]* [-0.020, -0.015]* [-0.029, -0.023]* [-0.034, -0.024]* [-0.033, -0.027]* [-0.040, -0.032]*
DeepHit [-0.045, -0.034]* [-0.018, -0.014]* [-0.032, -0.026]* [-0.039, -0.028]* [-0.036, -0.030]* [-0.045, -0.036]*
RSF [-0.062, -0.052]* [-0.022, -0.017]* [-0.037, -0.031]* [-0.028, -0.019]* [-0.039, -0.032]* [-0.053, -0.045]*
MOTOR-Scratch [-0.029, -0.021]* [-0.011, -0.006]* [-0.015, -0.011]* [-0.015, -0.008]* [-0.015, -0.010]* [-0.023, -0.017]*
MOTOR-Probe [-0.010, -0.004]* [-0.003, 0.000] [-0.008, -0.004]* [-0.008, -0.002]* [-0.011, -0.007]* [-0.008, -0.004]*
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

Table S6: 95% confidence intervals for the difference in MOTOR’s time-dependent C statistic on the code-
based tasks when the pretraining objective is changed. We evaluate both a “next code” baseline as well as our
proposed time-to-event objective. ∗ indicates statistically significant entries at p = 0.05.

Objective Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

Next Code [-0.045, -0.010]* [-0.036, -0.013]* [-0.034, -0.009]* [-0.008, 0.000] [-0.021, 0.010] [-0.023, -0.013]*
Time-to-Event [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]
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Table S7: 95% confidence intervals for the difference in ND calibration between MOTOR-Finetune and other
methods. Lower numbers are better for this metric. ∗ indicates statistically significant entries at p = 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH [-0.123, 0.202] [-0.005, 0.309] [0.082, 0.473]* [0.029, 0.114]* [-0.174, 0.190] [-0.062, 0.026]
DeepSurv [-0.220, 0.058] [-0.111, 0.165] [-0.138, 0.115] [2.564, 3.231]* [-0.190, 0.171] [-0.058, 0.019]
DSM [0.014, 1.875]* [0.126, 3.849]* [-0.107, 0.484] [-0.066, -0.003]* [0.193, 8.457]* [-0.024, 0.523]
DeepHit [0.850, 4.997]* [0.025, 0.807]* [-0.030, 0.604] [-0.027, 0.082] [0.049, 1.597]* [0.031, 0.377]*
RSF [-0.021, 0.390] [-0.029, 0.329] [-0.179, 0.116] [-0.004, 0.088] [0.064, 0.481]* [0.005, 0.121]*
MOTOR-Scratch [2.540, 10.180]* [2.110, 10.715]* [10.933, 51.137]* [-0.013, 0.070] [2.839, 19.885]* [-0.020, 0.134]
MOTOR-Probe [-0.202, 0.043] [-0.147, 0.063] [-0.179, 0.037] [-0.059, -0.004]* [-0.134, 0.047] [-0.061, 0.021]
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

MERATIVE

Cox PH [-0.147, -0.077]* [0.036, 0.076]* [0.070, 0.138]* [0.130, 0.244]* [0.350, 0.523]* [0.059, 0.096]*
DeepSurv [-0.093, -0.035]* [-0.016, 0.010] [18.721, 21.664]* [0.001, 0.062]* [-0.110, -0.046]* [2.870, 3.455]*
DSM [-0.082, -0.023]* [0.006, 0.130]* [0.061, 0.162]* [0.033, 0.196]* [-0.009, 0.087] [0.009, 0.123]*
DeepHit [-0.065, 0.037] [0.063, 0.109]* [0.045, 0.096]* [0.042, 0.313]* [-0.057, 0.017] [0.028, 0.084]*
RSF [-0.076, -0.017]* [0.014, 0.060]* [-0.004, 0.047] [0.281, 0.436]* [-0.037, 0.036] [-0.004, 0.043]
MOTOR-Scratch [-0.139, -0.061]* [0.004, 0.057]* [-0.021, 0.014] [0.019, 0.091]* [-0.026, 0.033] [0.026, 0.061]*
MOTOR-Probe [-0.131, -0.064]* [-0.014, 0.007] [-0.021, 0.019] [-0.022, 0.025] [-0.081, -0.010]* [-0.016, 0.006]
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

Table S8: 95% confidence intervals of difference in Harrell C-index between MOTOR-Finetune and the other
methods. Higher numbers are considered better for this metric. ∗ indicates statistically significant entries at p
= 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH [-0.122, -0.069]* [-0.162, -0.117]* [-0.107, -0.068]* [-0.148, -0.129]* [-0.120, -0.074]* [-0.111, -0.088]*
DeepSurv [-0.100, -0.056]* [-0.059, -0.035]* [-0.077, -0.050]* [-0.061, -0.047]* [-0.074, -0.041]* [-0.045, -0.029]*
DSM [-0.091, -0.051]* [-0.411, -0.384]* [-0.089, -0.056]* [-0.058, -0.046]* [-0.080, -0.046]* [-0.045, -0.031]*
DeepHit [-0.130, -0.084]* [-0.136, -0.092]* [-0.145, -0.104]* [-0.195, -0.176]* [-0.246, -0.177]* [-0.239, -0.210]*
RSF [-0.072, -0.033]* [-0.056, -0.032]* [-0.079, -0.045]* [-0.079, -0.065]* [-0.063, -0.024]* [-0.053, -0.036]*
MOTOR-Scratch [-0.089, -0.049]* [-0.078, -0.046]* [-0.077, -0.042]* [-0.045, -0.036]* [-0.087, -0.044]* [-0.047, -0.034]*
MOTOR-Probe [-0.017, 0.001] [-0.011, -0.002]* [-0.029, -0.016]* [-0.012, -0.006]* [-0.004, 0.001] [-0.006, 0.000]
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

MERATIVE

Cox PH [-0.292, -0.279]* [-0.064, -0.055]* [-0.110, -0.098]* [-0.090, -0.076]* [-0.218, -0.205]* [-0.125, -0.112]*
DeepSurv [-0.053, -0.043]* [-0.021, -0.016]* [-0.036, -0.030]* [-0.040, -0.031]* [-0.038, -0.031]* [-0.049, -0.040]*
DSM [-0.292, -0.279]* [-0.344, -0.334]* [-0.355, -0.345]* [-0.394, -0.381]* [-0.351, -0.341]* [-0.311, -0.300]*
DeepHit [-0.072, -0.061]* [-0.034, -0.027]* [-0.078, -0.067]* [-0.176, -0.153]* [-0.059, -0.051]* [-0.062, -0.052]*
RSF [-0.071, -0.061]* [-0.027, -0.022]* [-0.044, -0.037]* [-0.039, -0.030]* [-0.046, -0.039]* [-0.054, -0.045]*
MOTOR-Scratch [-0.024, -0.017]* [-0.011, -0.007]* [-0.010, -0.006]* [-0.013, -0.007]* [-0.016, -0.011]* [-0.017, -0.011]*
MOTOR-Probe [-0.018, -0.012]* [-0.008, -0.005]* [-0.013, -0.009]* [-0.008, -0.004]* [-0.018, -0.014]* [-0.013, -0.009]*
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]
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Table S9: 95% confidence intervals of difference in IBS between MOTOR-Finetune and the other methods.
Lower numbers are considered better for this metric. ∗ indicates statistically significant entries at p = 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH [0.015, 0.029]* [0.030, 0.048]* [0.025, 0.042]* [0.042, 0.048]* [0.034, 0.051]* [0.027, 0.036]*
DeepSurv [0.011, 0.023]* [0.013, 0.028]* [0.012, 0.027]* [0.025, 0.031]* [0.023, 0.039]* [0.010, 0.017]*
DSM [0.013, 0.025]* [0.015, 0.029]* [0.012, 0.026]* [0.017, 0.022]* [0.030, 0.044]* [0.010, 0.016]*
DeepHit [0.016, 0.030]* [0.011, 0.025]* [0.007, 0.024]* [0.012, 0.017]* [0.027, 0.047]* [0.006, 0.012]*
RSF [0.012, 0.025]* [0.011, 0.025]* [0.009, 0.022]* [0.022, 0.027]* [0.017, 0.031]* [0.011, 0.018]*
MOTOR-Scratch [0.028, 0.044]* [0.031, 0.054]* [0.020, 0.038]* [0.013, 0.018]* [0.039, 0.066]* [0.014, 0.021]*
MOTOR-Probe [-0.004, 0.002] [-0.003, 0.003] [0.005, 0.012]* [-0.001, 0.002] [0.000, 0.004]* [-0.007, -0.003]*
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]

MERATIVE

Cox PH [-0.273, -0.251]* [-0.051, -0.043]* [-0.095, -0.085]* [-0.069, -0.056]* [-0.219, -0.203]* [-0.107, -0.096]*
DeepSurv [-0.048, -0.037]* [-0.019, -0.013]* [-0.034, -0.028]* [-0.039, -0.028]* [-0.036, -0.029]* [-0.046, -0.038]*
DSM [0.009, 0.011]* [0.007, 0.009]* [0.008, 0.010]* [0.013, 0.017]* [0.008, 0.010]* [0.009, 0.012]*
DeepHit [0.012, 0.015]* [0.008, 0.010]* [0.010, 0.013]* [0.018, 0.023]* [0.011, 0.014]* [0.008, 0.011]*
RSF [-0.062, -0.052]* [-0.022, -0.017]* [-0.037, -0.031]* [-0.028, -0.019]* [-0.039, -0.032]* [-0.053, -0.045]*
MOTOR-Scratch [-0.029, -0.021]* [-0.011, -0.006]* [-0.015, -0.011]* [-0.015, -0.008]* [-0.015, -0.010]* [-0.023, -0.017]*
MOTOR-Probe [-0.010, -0.004]* [-0.003, 0.000] [-0.008, -0.004]* [-0.008, -0.002]* [-0.011, -0.007]* [-0.008, -0.004]*
MOTOR-Finetune [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]
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APPENDIX J ADDITIONAL EXPERIMENTS

J.1 CALIBRATION PERFORMANCE

Table S10 provides ND calibration results for both baselines and MOTOR on our six code-based tasks.
MOTOR yields the best calibration for most of the tasks; however, the improvements are not statistically
significant given the overlapping confidence intervals in Table S7. Of note is that the MOTOR-Scratch
baseline has substantially worse calibration, which is a common failure mode for neural network models
(Guo et al., 2017).

Table S10: ND calibration for the various methods on the full datasets on the code-based tasks. Smaller
values indicate smaller calibration errors. Bolding indicates the best performing model.

Method Dataset Celiac HA Lupus NAFLD Cancer Stroke

Cox PH STARR-OMOP 0.167 0.214 0.373 0.121 0.141 0.031
DeepSurv - 0.041 0.089 0.102 2.911 0.081 0.023
DSM - 0.541 0.953 0.155 0.012 1.186 0.114
DeepHit - 1.997 0.234 0.179 0.050 0.512 0.183
RSF - 0.299 0.225 0.095 0.091 0.345 0.112
MOTOR-Scratch - 4.970 3.990 23.882 0.077 7.104 0.083
MOTOR-Probe - 0.045 0.029 0.059 0.019 0.046 0.032
MOTOR-Finetune - 0.092 0.031 0.109 0.043 0.059 0.046

Cox PH MERATIVE 0.029 0.068 0.122 0.205 0.503 0.093
DSM - 0.060 0.040 0.111 0.097 0.107 0.056
DeepHit - 0.098 0.097 0.085 0.117 0.062 0.066
DeepSurv - 0.048 0.007 20.001 0.051 0.005 3.158
RSF - 0.064 0.048 0.039 0.381 0.081 0.032
MOTOR-Scratch - 0.013 0.034 0.015 0.067 0.086 0.058
MOTOR-Probe - 0.014 0.007 0.017 0.017 0.037 0.010
MOTOR-Finetune - 0.108 0.009 0.014 0.016 0.075 0.015

J.2 HARRELL’S C-INDEX

Table S11 provides Harrell C-index results for both baselines and MOTOR on our six code-based tasks.
MOTOR yield the best Harrell C-index on all of the tasks and the differences are statistically significant (see
Table S8 for the confidence intervals).

J.3 INTEGRATED BRIER SCORE

Table S12 provides Integrated Brier Score (IBS) metrics for both baselines and MOTOR on our six code-based
tasks. MOTOR yield the best IBS on all of the tasks and the differences are statistically significant (see Table
S9 for the confidence intervals).

J.4 PERFORMANCE ON TEXT-BASED TASKS

One limitation of our primary code-based task set is that all of the tasks are defined with code-based labels,
which might not generalize to a more diverse set of applications. In order to better evaluate performance
on more diverse tasks, we define some additional tasks derived from clinical notes on STARR-OMOP
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Table S11: Harrell’s C-index for all methods on the code-based tasks. Bolding indicates the best performing
model.

Method Dataset Celiac HA Lupus NAFLD Cancer Stroke

Cox PH STARR-OMOP 0.704 0.758 0.790 0.727 0.798 0.777
DeepSurv - 0.722 0.851 0.814 0.811 0.838 0.839
DSM - 0.728 0.500 0.806 0.813 0.832 0.838
DeepHit - 0.692 0.785 0.754 0.679 0.682 0.651
RSF - 0.747 0.853 0.816 0.793 0.852 0.831
MOTOR-Scratch - 0.730 0.837 0.819 0.824 0.830 0.836
MOTOR-Probe - 0.792 0.891 0.855 0.856 0.894 0.873
MOTOR-Finetune - 0.799 0.898 0.878 0.865 0.895 0.876
Cox PH MERATIVE 0.500 0.779 0.746 0.805 0.635 0.687
DeepSurv - 0.738 0.820 0.817 0.852 0.811 0.761
DSM - 0.500 0.500 0.500 0.500 0.500 0.500
DeepHit - 0.719 0.809 0.777 0.724 0.791 0.748
RSF - 0.720 0.814 0.809 0.853 0.804 0.755
MOTOR-Scratch - 0.765 0.830 0.842 0.878 0.833 0.792
MOTOR-Probe - 0.771 0.833 0.839 0.882 0.830 0.795
MOTOR-Finetune - 0.786 0.839 0.850 0.888 0.846 0.805

Table S12: The IBS for the various methods on the full datasets on the code-based tasks. Smaller values are
better for this metric. Bolding indicates the best performing model.

Method Dataset Celiac HA Lupus NAFLD Cancer Stroke

Cox PH STARR-OMOP 0.142 0.136 0.136 0.141 0.125 0.129
DeepSurv - 0.137 0.118 0.122 0.124 0.114 0.110
DSM - 0.139 0.119 0.122 0.116 0.119 0.110
DeepHit - 0.143 0.116 0.118 0.111 0.119 0.106
RSF - 0.139 0.115 0.118 0.121 0.107 0.112
MOTOR-Scratch - 0.156 0.140 0.132 0.112 0.136 0.114
MOTOR-Probe - 0.119 0.098 0.112 0.096 0.085 0.092
MOTOR-Finetune - 0.120 0.097 0.103 0.096 0.083 0.097

Cox PH MERATIVE 0.137 0.115 0.119 0.112 0.136 0.126
DeepSurv - 0.120 0.107 0.126 0.094 0.107 0.144
DSM - 0.119 0.108 0.101 0.092 0.107 0.117
DeepHit - 0.122 0.110 0.104 0.098 0.110 0.116
RSF - 0.123 0.109 0.103 0.093 0.109 0.119
MOTOR-Scratch - 0.114 0.104 0.095 0.082 0.100 0.112
MOTOR-Probe - 0.113 0.102 0.096 0.080 0.102 0.109
MOTOR-Finetune - 0.109 0.101 0.093 0.077 0.098 0.107

(MERATIVE does not contain textual notes so cannot be used to create tasks). Irvin et al. (2019) created
labeling functions to extract imaging observations from chest x-ray radiology notes, designed and tested
to identify 13 different categories including fractures, lung lesions, and the presence of support devices.
We construct time-to-event tasks for each possible observation by predicting the time until one of these
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observations from the end of a random visit. For example, we construct an “Edema” task that predicts the
time until a radiology note has a positive present mention of “Edema”. The list of tasks and number of cases
/ controls for each task are detailed in Table S13. Note that these tasks are generally much larger than the
code-based tasks.

Table S13: Task setup details for text based tasks on STARR-OMOP.
Task Name # Cases # Controls

Atelectasis 28,465 113,860
Cardiomegaly 15,528 62,112
Consolidation 15,678 62,712
Edema 38,619 154,476
Enlarged Cardiomediastinum 10,778 43,112
Fracture 51,011 204,044
Lung Lesion 77,848 311,392
Lung Opacity 75,688 302,752
Pleural Effusion 46,255 185,020
Pleural Other 6,362 25,448
Pneumonia 17,165 68,660
Pneumothorax 9,123 3,6492
Support Devices 91,498 365,992

Due to the vastly increased size of these datasets, we only, we only compare MOTOR-Probe, RSF and Cox
PH. Table S14 provides the C statistics of each evaluated method on each task.

Table S14: Time-dependent C statistic for various methods on the text based tasks. Larger values indicate
better ranking performance.

Task Cox PH RSF MOTOR-Probe

Atelectasis 0.773 0.858 0.880
Cardiomegaly 0.778 0.873 0.899
Consolidation 0.787 0.857 0.895
Edema 0.724 0.804 0.841
Enlarged Cardiomediastinum 0.733 0.823 0.863
Fracture 0.680 0.753 0.777
Lung Lesion 0.741 0.804 0.824
Lung Opacity 0.739 0.825 0.858
Pleural Effusion 0.730 0.808 0.836
Pleural Other 0.754 0.840 0.856
Pneumonia 0.781 0.813 0.853
Pneumothorax 0.781 0.883 0.893
Support Devices 0.699 0.811 0.840

Results are very similar to the main code-based tasks as the relative ranking of methods stays the same.
MOTOR is better than RSF, which in turn is better than Cox PH. This confirms that MOTOR continues to
perform well, even on a diverse out of range task set that is based on radiology text labels.
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J.5 PERFORMANCE AS A FUNCTION OF TIME HORIZON

One interesting question is how the difference in ranking performance changes as a function of the time
horizon. Figure S1 plots a heatmap of the difference between MOTOR-Finetune and our six baselines across
different time horizons on STARR-OMOP. We see that the largest benefit of MOTOR is for short time
horizons, but there is a general improvement across all time horizons. The decreased improvement in the later
time horizons probably reflects a lower maximum potential performance for longer predictions as longer time
horizons are fundamentally harder to predict.
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Figure S1: The difference in time-dependent C statistic between MOTOR-Finetune and various baselines on
STARR-OMOP as a function of time-horizon.

J.6 OUT-OF-TIME PERFORMANCE

Our primary experiments consider out-of-patient evaluation, which measures how well models generalize
to patients not used for training. However, it is often useful to also consider out-of-time evaluation, where
models are evaluated on times outside the period where the models were trained. As noted in the main body
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of our paper, all of our models were trained on STARR-OMOP data up until 2022/09/05. We have constructed
a 9 month out-of-time evaluation set by obtaining additional STARR-OMOP data until 2023/06/11, labeling
that data, then applying previously trained models to it. Table S15 contains the time-dependent C statistics for
all models on this prospective set.

Table S15: Time-dependent C statistic for all methods on the code-based tasks on a prospective 9-month
STARR-OMOP dataset. Bolding indicates the best performing model.

Method Celiac HA Lupus NAFLD Cancer Stroke

Cox PH 0.682 0.718 0.808 0.632 0.728 0.740
DeepSurv 0.663 0.703 0.799 0.689 0.767 0.767
DSM 0.657 0.776 0.810 0.715 0.786 0.768
DeepHit 0.585 0.553 0.589 0.540 0.653 0.558
RSF 0.651 0.719 0.793 0.654 0.744 0.728
MOTOR-Scratch 0.660 0.768 0.810 0.750 0.740 0.750
MOTOR-Probe 0.778 0.831 0.874 0.794 0.858 0.836
MOTOR-Finetune 0.792 0.843 0.880 0.809 0.870 0.833

We observe that all models appear to degrade in the prospective setting, but that MOTOR degrades to a lesser
extent.

J.7 MIMIC-IV TRANSFER

One important property of a foundation model is its ability to transfer across datasets. In order to evaluate
cross-site transfer, we perform experiments where we transfer a MOTOR model that was pretrained on
STARR-OMOP to MIMIC-IV 2.2 (Johnson et al., 2023) and perform linear probe adaptation on the smaller
MIMIC-IV dataset. For comparison, we train baselines from scratch on MIMIC-IV. In order to process
MIMIC-IV, we use the MIMIC-OMOP (MIMIC-OMOP) ETL to transform MIMIC-IV into OMOP and then
process it with the same OMOP-based code used for the rest of our experiments. We evaluate using the same
six code-based tasks, with the same task setup (i.e. predicting the time until the first diagnosis from the end of
a random visit).

One major difference between MIMIC-IV and STARR-OMOP / MERATIVE is that MIMIC-IV is drastically
smaller. Table S16 contains the label counts for the six code-based tasks on MIMIC-IV. To adjust for this in
our baselines, we expand our hyperparameter grid with an additional entry allowing features that are only
present in ten patients in addition to our existing one hundred and a thousand patient minimums.

Table S16: Task details for six code based tasks on MIMIC-IV.
Task Name ICD 10 Codes # Cases # Controls

Celiac Disease K90.0 142 568
Heart Attack I21.* 2,241 8,964
Lupus M32.* 166 664
Pancreatic Cancer C25.* 244 976
NAFLD K76.0 1,714 6,856
Stroke I63.* 1,907 7,628
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Table S17 contains the time-dependent C statistic for all baselines and MOTOR-Transfer Probe on MIMIC-IV,
where MOTOR-Transfer Probe is the result of linear probe adaptation on a model that was pretrained on
STARR-OMOP.

Table S17: Time-dependent C statistic for MOTOR-Transfer Probe vs baselines for the code-based tasks on
MIMIC-IV. Bolding indicates the best performing model.

Method Celiac HA Lupus NAFLD Cancer Stroke

Cox PH 0.620 0.783 0.631 0.691 0.673 0.730
DeepSurv 0.625 0.805 0.807 0.702 0.748 0.738
DSM 0.561 0.820 0.679 0.692 0.598 0.754
DeepHit 0.618 0.808 0.754 0.670 0.646 0.750
RSF 0.527 0.817 0.717 0.736 0.656 0.780
MOTOR-Transfer Probe 0.628 0.850 0.819 0.802 0.828 0.812

J.8 TIME TO TRAIN

The ability to fit TTE models quickly is essential for a variety of scenarios such as interactive model training
and limited resource environments. One of the main advantages of MOTOR is that almost all of the weights
can be frozen during finetuning, which means that one can learn target task models very quickly by only
computing gradients for the linear heads.

In order to evaluate model training time, we perform timing experiments to compare the state of the art,
RSF, to MOTOR in the fast linear probe setting. To simplify our experimental setup, we ignore the cost of
hyperparameter tuning and focus solely on the time to fit a single final target task models with the optimally
determined hyperparameters. In order to estimate the time to train as a function of sample size, we perform
all experiments on random subsets of the NALFD task with the STARR-OMOP dataset, varying the training
set size with each run. We provide 16 CPU cores, one V100 GPU, and 100 GB of RAM on isolated machines
to both RSF and MOTOR.

Figure S2 plots the clock time for both methods as a function of the number of labels (with the farthest right
point representing the size of the NALFD task). RSF is competitive in instances with fewer labels, where
the overhead of MOTOR is slightly higher, but becomes much slower with increased label counts where
the increased efficiency of MOTOR allows us to train target task models much more quickly. In the most
extreme case, when we use the full NALFD task, MOTOR is 10x faster, achieving an average throughput of
147 patients per second (almost all of which is spent in representation generation). We note this is a somewhat
conservative time comparison that ignores the cost and additional workflow complexity of materializing
RSF’s feature matrix.

J.9 PERFORMANCE OF PRETRAINING TASK

When MOTOR is being pretrained, we are implicitly training 8,192 piecewise exponential TTE models across
a variety of medical codes. Assessing pretraining performance is important because it allows us to evaluate
MOTOR’s performance on a wider variety of tasks than the limited subset we explicitly evaluated on. Figure
S3 provides the time-dependent C statistic as a function of the amount of uncensored data for each task, with
lines indicating the first quartile, median, and third quartile.

Performance on the pretraining tasks is strong across the vast majority of tasks, as indicated by the relatively
high median C statistic of 0.842 for STARR-OMOP and 0.806 for MERATIVE. It is noteworthy that
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Figure S2: The time it takes to train target task models with MOTOR compared to RSF on varying amounts
of patients.

performance is also strong for highly censored tasks, even when only one in a thousand patients have an
uncensored event.

J.10 CENSORING RATE WHEN FINETUNING

In order to better evaluate less efficient TTE methods, we artificially lower the censoring rate to 80% for all
of our tasks. However, many tasks in real life have a censoring rate higher than 80%. In order to evaluate
in this setting, we perform some experiments where we remove some of the uncensored examples in our
dataset to increase the censoring rate. For the sake of time and compute, we only perform this analysis on
STARR-OMOP.

Table S18 contains the time-dependent C statistics when MOTOR is fine-tuned using increasingly censored
datasets. As the censoring rate increases, the performance decreases but only by an average of 1% even at
98% censored. This indicates that MOTOR performs fairly well even with highly censored data.

Table S18: Impact of the censoring rate when fine-tuning MOTOR on the time-dependent C statistic. We
artificially increase the censoring rate by discarding increasing amounts of events. Experiments performed
with STARR-OMOP.

% Censored Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

98% 0.792 0.882 0.844 0.851 0.863 0.863
95% 0.800 0.883 0.847 0.855 0.863 0.865
90% 0.801 0.884 0.850 0.858 0.864 0.870
80% 0.802 0.884 0.850 0.859 0.865 0.874
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Figure S3: Pretraining task time-dependent C statistic as a function of the fraction of uncensored data. The
dotted lines indicate specified quantiles for the C statistic.

J.11 WEIGHTED EVALUATION CONSIDERING FREQUENCY OF VISITS

In our default evaluation setup, we weight patients equally. This is a common way of evaluating models,
especially for the long term TTE predictions we evaluate in our study, but it is also sometimes useful in a
clinical setting to consider other weighting strategies.

One other common weighting strategy is to weight by the number of visits so that patients with more clinical
interactions are assigned greater weight. In order to understand how our results would change with that
weighting strategy, we perform a weighted evaluation in STARR-OMOP where each patient is assigned a
weight equal to the number of visits that they have. Table S19 contains the performance of our models and
baselines in this setting.

We find that performance numbers do change with this weighting strategy, but that the ranking of methods
largely does not.

J.12 SUBGROUP PERFORMANCE

One commonly accepted necessary condition for a fair model is that it must not have reduced performance
within sensitive subgroups (Chang et al., 2022).

In order to evaluate this, we have performed a subgroup analysis comparing the performance in terms of the
time-dependent C statistic of MOTOR-Finetune with the strongest baseline RSF within the STARR-OMOP
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Table S19: The time-dependent C statistic for all methods on the code-based tasks within STARR-OMOP
when patients are weighted by the number of visits that they have. Bolding indicates the best performing
model.

Method Celiac HA Lupus NAFLD Cancer Stroke

Cox PH 0.642 0.634 0.706 0.680 0.688 0.699
DeepSurv 0.653 0.730 0.715 0.731 0.721 0.746
DSM 0.655 0.730 0.730 0.746 0.720 0.744
DeepHit 0.656 0.707 0.735 0.740 0.713 0.747
RSF 0.652 0.734 0.702 0.728 0.708 0.753
MOTOR-Scratch 0.648 0.711 0.772 0.762 0.668 0.750
MOTOR-Probe 0.757 0.802 0.768 0.800 0.767 0.805
MOTOR-Finetune 0.760 0.807 0.801 0.808 0.772 0.802

dataset (MERATIVE lacks ethnicity data and thus cannot be used for a fairness evaluation). Table S20
contains the results of this analysis.

Table S20: The average time-dependent C statistic for RSF, MOTOR-Finetune, and the difference between
the two models within important subgroups. The 95% confidence interval for the difference is also included.
Bolding indicates the best-performing model. ∗ indicates statistically significant entries at p = 0.05.

Group RSF MOTOR-Finetune Delta [Confidence Interval]

Female 0.799 0.856 0.058 [0.049, 0.067]∗
Male 0.790 0.845 0.055 [0.041, 0.069]∗
American Indian or Alaska Native 0.810 0.787 -0.022 [-0.209, 0.171]
Asian 0.793 0.853 0.059 [0.039, 0.081]∗
African American 0.761 0.834 0.073 [0.006, 0.132]∗
Native Hawaiian or Other Pacific Islander 0.841 0.914 0.073 [-0.044, 0.154]
White 0.788 0.850 0.062 [0.054, 0.070]∗
Unknown Race 0.832 0.887 0.055 [0.039, 0.073]∗
Unknown Ethnicity 0.847 0.883 0.036 [0.014, 0.065]∗
Hispanic 0.794 0.857 0.063 [0.041, 0.087]∗
Non-Hispanic 0.794 0.853 0.059 [0.052, 0.066]∗

MOTOR-Finetune has better performance within almost every subgroup. The one exception is the very small
American Indian or Alaska Native subgroup, and the difference within the margin of error for that group (as
shown by the 95% confidence interval containing 0).

APPENDIX K NEXT CODE PRETRAINING TASK SETUP

As a baseline, we construct a next code pretraining task in order to better understand the importance of our
proposed time-to-event pretraining. Instead of predicting when a future target code occurs, we instead predict
whether the code for the next event in the time series is equal to a particular target k. This is analogous to the
standard autoregressive pretraining task in NLP language modeling. We formalize and implement this next
code task as follows.
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First, we construct a dictionary of potential target codes to predict. In order to ensure a fair comparison in our
context of limited compute, we match the TTE pretraining setup by choosing the 8,192 highest entropy codes
as our targets.

Given this fixed dictionary, we can construct a classification task. Each target k is assigned an embedding Ek

that is the same width as the internal Transformer representation size. At each event j for every patient i, we
compute a logit for each target k as the dot product of the final Transformer representation and the embedding
logitijk = Rij ·Ek. We can then train our model end-to-end with the standard cross-entropy classification
likelihood loss. Let Iijk be an indicator (1 if true, 0 if false) for whether the code for patient i at event j’s
next event is equal to the target code k.

L(I|logit) =
∏
i,j,k

Iijk · σ(logitij)k,

where σ(z)l =
ezl∑n

l′=1
ezl′

is the standard softmax function.

This loss function can then be used to train a model end-to-end using the same setup as for MOTOR (with an
Adam optimizer, decreasing learning weight schedule, etc.)

APPENDIX L MOTOR MODEL RELEASE

We release a copy of the MOTOR weights trained on STARR-OMOP for external use to aid re-
producibility and help others build off this work. The model, and model card, can be found at
https://huggingface.co/StanfordShahLab/motor-t-base. Due to the sensitivity of the data involved, we are
doing a gated release (Solaiman, 2023) with a mandatory DUA to help prevent inappropriate use. In particular,
we explicitly do not permit the use of our released model for providing medical care or to inform medical
decision making.

We also take a number of other steps to ensure the safety and privacy of the patients used during pretraining.
First, we only train on de-identified, structured data to minimize any identifiable information that could leak
into the model. All codes are restricted to a vocabulary defined by public medical ontologies and training data
is de-identified to HIPAA standards to remove structured fields that are uniquely identifying, such as patients
that are more than 90 years old. Second, all unique textual sequences in our model dictionaries (which are
primarily categorical indicators like "Yes" or "No" for lab tests) have been manually verified to contain no
PHI. Third, we release our model under a DUA that requires registering the identity of the user of the model
and observing a policy where users will make no attempts to re-identify or extract patient level information
from the model.

APPENDIX M STANDARD DEVIATIONS
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Table S21: Estimate and the standard deviation of the difference in time-dependent C statistic between
MOTOR-Finetune and the other methods. Higher numbers are considered better for this metric.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH -0.113 ± 0.013 -0.126 ± 0.011 -0.093 ± 0.010 -0.138 ± 0.004 -0.072 ± 0.011 -0.095 ± 0.005
DeepSurv -0.098 ± 0.012 -0.063 ± 0.008 -0.073 ± 0.009 -0.064 ± 0.003 -0.054 ± 0.010 -0.045 ± 0.004
DSM -0.095 ± 0.010 -0.059 ± 0.008 -0.078 ± 0.009 -0.059 ± 0.003 -0.056 ± 0.011 -0.040 ± 0.003
DeepHit -0.107 ± 0.012 -0.061 ± 0.009 -0.055 ± 0.009 -0.059 ± 0.003 -0.056 ± 0.011 -0.042 ± 0.004
RSF -0.073 ± 0.012 -0.051 ± 0.008 -0.076 ± 0.009 -0.062 ± 0.003 -0.041 ± 0.010 -0.035 ± 0.003
MOTOR-Scratch -0.107 ± 0.012 -0.092 ± 0.010 -0.060 ± 0.010 -0.043 ± 0.003 -0.088 ± 0.012 -0.043 ± 0.003
MOTOR-Probe -0.001 ± 0.005 -0.003 ± 0.002 -0.012 ± 0.004 -0.005 ± 0.002 -0.001 ± 0.002 -0.000 ± 0.002
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MERATIVE

Cox PH -0.224 ± 0.005 -0.048 ± 0.002 -0.088 ± 0.003 -0.062 ± 0.003 -0.207 ± 0.004 -0.100 ± 0.003
DeepSurv -0.042 ± 0.003 -0.017 ± 0.001 -0.029 ± 0.002 -0.033 ± 0.003 -0.033 ± 0.002 -0.041 ± 0.002
DSM -0.036 ± 0.003 -0.017 ± 0.001 -0.026 ± 0.002 -0.029 ± 0.003 -0.030 ± 0.002 -0.036 ± 0.002
DeepHit -0.039 ± 0.003 -0.016 ± 0.001 -0.029 ± 0.002 -0.034 ± 0.003 -0.033 ± 0.002 -0.041 ± 0.002
RSF -0.057 ± 0.003 -0.021 ± 0.001 -0.033 ± 0.002 -0.024 ± 0.002 -0.036 ± 0.002 -0.048 ± 0.002
MOTOR-Scratch -0.025 ± 0.002 -0.010 ± 0.001 -0.012 ± 0.001 -0.012 ± 0.002 -0.013 ± 0.001 -0.019 ± 0.002
MOTOR-Probe -0.007 ± 0.002 -0.003 ± 0.001 -0.005 ± 0.001 -0.005 ± 0.001 -0.009 ± 0.001 -0.005 ± 0.001
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table S22: 95% confidence intervals for the difference in MOTOR’s time-dependent C statistic on the
code-based tasks when the pretraining objective is changed. We evaluate both a “next code” baseline as well
as our proposed time-to-event objective. ∗ indicates statistically significant entries at p = 0.05.

Objective Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

Next Code -0.028 ± 0.009 -0.025 ± 0.006 -0.021 ± 0.006 -0.004 ± 0.002 -0.006 ± 0.008 -0.018 ± 0.003
Time-to-Event 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table S23: Estimate and the standard deviation of the difference in ND calibration between MOTOR-Finetune
and other methods. Lower numbers are better for this metric. ∗ indicates statistically significant entries at p =
0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH 0.075 ± 0.081 0.183 ± 0.082 0.265 ± 0.097 0.077 ± 0.022 0.083 ± 0.093 -0.015 ± 0.023
DeepSurv -0.051 ± 0.070 0.058 ± 0.073 -0.007 ± 0.064 2.868 ± 0.170 0.022 ± 0.092 -0.023 ± 0.020
DSM 0.449 ± 0.491 0.922 ± 1.000 0.046 ± 0.146 -0.031 ± 0.016 1.127 ± 2.364 0.068 ± 0.142
DeepHit 1.905 ± 1.132 0.203 ± 0.228 0.070 ± 0.170 0.007 ± 0.029 0.453 ± 0.388 0.137 ± 0.091
RSF 0.208 ± 0.102 0.194 ± 0.094 -0.014 ± 0.075 0.047 ± 0.024 0.286 ± 0.112 0.066 ± 0.029
MOTOR-Scratch 4.878 ± 2.042 3.959 ± 2.164 23.773 ± 10.433 0.034 ± 0.022 7.046 ± 4.486 0.037 ± 0.040
MOTOR-Probe -0.047 ± 0.063 -0.002 ± 0.059 -0.050 ± 0.054 -0.024 ± 0.014 -0.013 ± 0.047 -0.014 ± 0.021
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MERATIVE

Cox PH -0.074 ± 0.017 0.059 ± 0.010 0.108 ± 0.018 0.190 ± 0.029 0.427 ± 0.044 0.078 ± 0.009
DeepSurv -0.061 ± 0.015 -0.002 ± 0.007 19.987 ± 0.753 0.036 ± 0.016 -0.070 ± 0.017 3.143 ± 0.147
DSM -0.048 ± 0.016 0.031 ± 0.036 0.097 ± 0.025 0.081 ± 0.045 0.032 ± 0.025 0.041 ± 0.031
DeepHit -0.010 ± 0.025 0.088 ± 0.012 0.070 ± 0.013 0.102 ± 0.070 -0.014 ± 0.019 0.051 ± 0.014
RSF -0.044 ± 0.015 0.039 ± 0.012 0.025 ± 0.013 0.365 ± 0.038 0.005 ± 0.019 0.017 ± 0.012
MOTOR-Scratch -0.096 ± 0.020 0.025 ± 0.014 0.001 ± 0.009 0.051 ± 0.018 0.011 ± 0.015 0.043 ± 0.009
MOTOR-Probe -0.094 ± 0.017 -0.002 ± 0.006 0.003 ± 0.010 0.001 ± 0.012 -0.038 ± 0.019 -0.005 ± 0.005
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
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Table S24: Estimate and the standard deviation of the difference in Harrell C-index between MOTOR-
Finetune and the other methods. Higher numbers are considered better for this metric. ∗ indicates statistically
significant entries at p = 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH -0.096 ± 0.014 -0.139 ± 0.011 -0.088 ± 0.010 -0.139 ± 0.005 -0.096 ± 0.012 -0.099 ± 0.006
DeepSurv -0.078 ± 0.011 -0.047 ± 0.006 -0.064 ± 0.007 -0.054 ± 0.003 -0.056 ± 0.009 -0.037 ± 0.004
DSM -0.071 ± 0.010 -0.398 ± 0.007 -0.072 ± 0.008 -0.052 ± 0.003 -0.062 ± 0.009 -0.038 ± 0.004
DeepHit -0.107 ± 0.012 -0.113 ± 0.012 -0.124 ± 0.011 -0.186 ± 0.005 -0.213 ± 0.018 -0.225 ± 0.007
RSF -0.054 ± 0.011 -0.046 ± 0.006 -0.065 ± 0.009 -0.069 ± 0.004 -0.045 ± 0.010 -0.044 ± 0.004
MOTOR-Scratch -0.070 ± 0.010 -0.061 ± 0.008 -0.058 ± 0.009 -0.041 ± 0.002 -0.064 ± 0.011 -0.040 ± 0.003
MOTOR-Probe -0.008 ± 0.004 -0.006 ± 0.002 -0.023 ± 0.003 -0.009 ± 0.001 -0.001 ± 0.001 -0.003 ± 0.002
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MERATIVE

Cox PH -0.286 ± 0.003 -0.060 ± 0.002 -0.104 ± 0.003 -0.083 ± 0.004 -0.212 ± 0.003 -0.118 ± 0.003
DeepSurv -0.048 ± 0.003 -0.019 ± 0.001 -0.033 ± 0.002 -0.036 ± 0.003 -0.035 ± 0.002 -0.044 ± 0.002
DSM -0.286 ± 0.003 -0.339 ± 0.002 -0.350 ± 0.002 -0.388 ± 0.003 -0.346 ± 0.003 -0.305 ± 0.003
DeepHit -0.066 ± 0.003 -0.031 ± 0.002 -0.072 ± 0.003 -0.164 ± 0.006 -0.055 ± 0.002 -0.057 ± 0.003
RSF -0.066 ± 0.003 -0.025 ± 0.001 -0.040 ± 0.002 -0.035 ± 0.002 -0.042 ± 0.002 -0.050 ± 0.002
MOTOR-Scratch -0.021 ± 0.002 -0.009 ± 0.001 -0.008 ± 0.001 -0.010 ± 0.002 -0.014 ± 0.001 -0.014 ± 0.002
MOTOR-Probe -0.015 ± 0.002 -0.007 ± 0.001 -0.011 ± 0.001 -0.006 ± 0.001 -0.016 ± 0.001 -0.011 ± 0.001
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Table S25: Estimate and the standard deviation of the difference in IBS between MOTOR-Finetune and the
other methods. Lower numbers are considered better for this metric. ∗ indicates statistically significant entries
at p = 0.05.

Method Celiac Heart Attack Lupus NAFLD Pancretic Cancer Stroke

STARR-OMOP

Cox PH 0.022 ± 0.004 0.039 ± 0.005 0.033 ± 0.005 0.045 ± 0.001 0.042 ± 0.004 0.032 ± 0.002
DeepSurv 0.017 ± 0.003 0.021 ± 0.004 0.019 ± 0.004 0.028 ± 0.001 0.031 ± 0.004 0.013 ± 0.002
DSM 0.019 ± 0.003 0.022 ± 0.004 0.019 ± 0.004 0.019 ± 0.001 0.036 ± 0.004 0.013 ± 0.002
DeepHit 0.023 ± 0.004 0.018 ± 0.004 0.015 ± 0.004 0.015 ± 0.001 0.036 ± 0.005 0.009 ± 0.002
RSF 0.019 ± 0.003 0.018 ± 0.004 0.015 ± 0.004 0.024 ± 0.001 0.024 ± 0.003 0.015 ± 0.002
MOTOR-Scratch 0.036 ± 0.004 0.042 ± 0.006 0.029 ± 0.005 0.016 ± 0.001 0.053 ± 0.007 0.017 ± 0.002
MOTOR-Probe -0.001 ± 0.002 0.000 ± 0.001 0.009 ± 0.002 0.000 ± 0.001 0.002 ± 0.001 -0.005 ± 0.001
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

MERATIVE

Cox PH 0.029 ± 0.001 0.015 ± 0.001 0.026 ± 0.001 0.034 ± 0.001 0.038 ± 0.001 0.019 ± 0.001
DeepSurv 0.011 ± 0.001 0.007 ± 0.000 0.033 ± 0.001 0.017 ± 0.001 0.009 ± 0.001 0.038 ± 0.001
DSM 0.010 ± 0.001 0.008 ± 0.000 0.009 ± 0.001 0.015 ± 0.001 0.009 ± 0.001 0.010 ± 0.001
DeepHit 0.013 ± 0.001 0.009 ± 0.001 0.011 ± 0.001 0.020 ± 0.001 0.012 ± 0.001 0.009 ± 0.001
RSF 0.014 ± 0.001 0.008 ± 0.001 0.010 ± 0.001 0.016 ± 0.001 0.011 ± 0.001 0.012 ± 0.001
MOTOR-Scratch 0.005 ± 0.000 0.003 ± 0.000 0.002 ± 0.000 0.005 ± 0.001 0.003 ± 0.000 0.005 ± 0.000
MOTOR-Probe 0.005 ± 0.000 0.002 ± 0.000 0.003 ± 0.000 0.003 ± 0.001 0.004 ± 0.001 0.002 ± 0.000
MOTOR-Finetune 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
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APPENDIX N CODE SELECTION FOR PRETRAINING

Due to compute limits, it is difficult to pretrain using every code as a pretraining task. Thus, we have to select
a subset of codes for pretraining (8,192 for our main experiments). In order to perform this selection, we
use a relatively simple heuristic designed to be equivalent to frequency based ranking (i.e. taking the most
frequently used codes in the dataset), but taking into account the ontology relationships between the possible
pretraining tasks.

In the absence of ontology relationships, frequency based ranking is equivalent to ranking by Shannon entropy
(Shannon, 1948). Therefore, to have a ranking criterion that is similar to frequency based selection, but taking
into account the ontological relationship between codes, we use the conditional Shannon entropy formula,
conditioning on the presence or absence of the parents of a particular code.

Let C be a boolean random variable indicating the presence or absence of a particular code in a patient
timeline and let O be a boolean random variable indicating the presence or absence of the parents of that
code.

The conditional entropy formula is then:

H(C|O) = −
∑

c∈C,o∈O
p(o, c) log

p(o, c)

p(o)

C and O are both boolean and can only take the values True (T) or False (F), so we can expand out the above
formula.

H(C|O) =− p(O = F,C = F ) log
p(O = F,C = F )

p(O = F )
+

− p(O = F,C = T ) log
p(O = F,C = T )

p(O = F )
+

− p(O = T,C = F ) log
p(O = T,C = F )

p(O = T )
+

− p(O = T,C = T ) log
p(O = T,C = T )

p(O = T )

(6)

We can simplify this equation by taking advantage of the fact that these are ontologies where a patient must
have higher level codes if they have a lower level code, which implies that p(O = F, pfC = T ) = 0 and
p(O = F,C = F ) = p(O = F ). Thus the formula can be simplified to:

H(C|O) =− p(O = T,C = F ) log
p(O = T,C = F )

p(O = T )
+

− p(O = T,C = T ) log
p(O = T,C = T )

p(O = T )

(7)

This formula can then be evaluated by plugging in p(O = T,C = F ), p(O = T,C = T ), and p(O = T ),
both of which can be estimated by counting the frequency of codes (conditioned on the presence/absence of
their parents) in the training data. Finally, we select a set of 8,192 codes for pretraining by taking the top
8,192 codes that have the highest entropy.
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