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Abstract
We introduce the Self-Exemplar Illumination Equalization Network,
designed specifically for effective portrait shadow removal. The
core idea of our method is that partially shadowed portraits can find
ideal exemplars within their non-shadowed facial regions. Rather
than directly fusing two distinct classes of facial features, our ap-
proach utilizes non-shadowed regions as an illumination indicator
to equalize the shadowed regions, generating deshadowed results
without boundary-merging artifacts. Our network comprises cas-
caded Self-Exemplar Illumination Equalization Blocks (SExmBlock),
each containing two modules: a self-exemplar feature matching
module and a feature-level illumination rectification module. The
former identifies and applies internal illumination exemplars to
shadowed areas, producing illumination-corrected features, while
the latter adjusts shadow illumination by reapplying the illumina-
tion factors from these features to the input face. Applying this
series of SExmBlocks to shadowed portraits incrementally elim-
inates shadows and preserves clear, accurate facial details. The
effectiveness of our method is demonstrated through evaluations
on two public shadow portrait datasets, where it surpasses exist-
ing state-of-the-art methods in both qualitative and quantitative
assessments.
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1 Introduction
Portrait photography, a genre focused on capturing an individual’s
expressions, appearances, and unique characteristics, is both an art
form and commercially valuable. In today’s digital age, where the
internet and social media are integral to daily life, portrait photogra-
phy has become increasingly important. However, the challenging
illumination conditions in real-world settings, influenced by both
natural and artificial light sources, often result in portrait images
with severe shadow occlusions. These shadows not only diminish
the visual quality and artistic value of the photographs but also
present significant obstacles for various facial-related tasks such as
face recognition and expression estimation.

Over the past decades, numerous methods have been proposed
to remove shadows from portrait images. Traditional techniques
primarily rely on histogram manipulation [8, 13, 26], color trans-
fer [20, 36, 43, 49], or illumination modeling/compensation [1, 9, 38].
While effective for simple shadow patterns, their performance sig-
nificantly declines with more complex shadows. Addressing this,
recent research has shifted towards deep learning-based solutions
for higher quality shadow removal [15, 27–29, 51]. For instance,
Hu et al. [15] leverage direction-aware spatial context for shadow
detection and removal. Zhang et al. [51] introduces two models to
address foreign and facial shadows. Liu et al. [29] decompose the
RGB shadow removal problem into grayscale shadow removal and
colorization.

Notwithstanding the demonstrated success, existing shadow
removal methods still struggle with artifacts near shadow/non-
shadow boundaries and facial distortions, presenting significant
challenges. Most current techniques [28, 30, 53] focus on learn-
ing a transformation from the shadow domain to a shadow-free
domain. However, the diverse shadow conditions and facial com-
plexions in portrait images make it difficult for these methods to
learn an accurate and consistent mapping. Consequently, they often
result in non-uniform illumination and obscured facial details in
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Figure 1: We present an innovative approach for portrait
shadow removal, designed to achieve precise shadow elimina-
tionwhilemeticulously preserving facial details. Ourmethod
fully utilizes internal illumination exemplars, progressively
balancing the illumination differences between shadowed
and non-shadowed regions.

their outputs. To avoid the requirement of learning from exten-
sive datasets, He et al. [12] suggest using the generative priors in
a pretrained StyleGAN [19] to restore uniform portrait illumina-
tion. While innovative, this approach is computationally intensive
and time-consuming, as it necessitates optimization for each in-
put separately. Furthermore, it frequently leads to severe facial
distortions due to inadequate latent code optimization. In pursuit of
improved portrait shadow removal, we note that portraits captured
in real-world settings typically exhibit only partial shadow occlu-
sions. Consequently, the non-shadowed facial regions can offer
substantial illumination priors. These priors can act as valuable
guidance, enabling more accurate shadow removal while ensuring
the preservation of facial details.

Motivated by the above observation, we introduce the Self-
Exemplar Illumination Equalization Network (SExmNet). This net-
work employs a series of Self-Exemplar Illumination Equalization
Blocks (SExmBlocks) to progressively eliminate shadow occlusions.
Each block features a bespoke self-exemplar feature matchingmech-
anism, designed to estimate a shadow-oriented matching correspon-
dence map from the input features. Utilizing this map, illumination
information from the non-shadow region is precisely transferred
to shadowed areas, leading to illumination-rectified, rematched
features.

However, these rematched results often display non-smooth fa-
cial patterns due to the warping process. Instead of directly using
these features to generate the output, we distill illumination infor-
mation from the rematched features into two spatial matrices of
illumination factors. Reapplying these factors to the input facial fea-
tures allows for the gradual removal of shadow occlusions, ensuring
the retention of realistic facial details. Our extensive experiments
across two public datasets confirm SExmNet’s superiority over cur-
rent state-of-the-art methods, highlighting its effectiveness in both
shadow removal and detail preservation.

In summary, our main contributions are three-fold:

• We introduce SExmNet, an innovative approach leverag-
ing internal facial illumination cues for portrait shadow re-
moval. To our knowledge, this is the first initiative to address
portrait shadow removal using internal feature matching,
achieving realistic shadow elimination while preserving fa-
cial details.

• We tailor the SExmBlock, specifically for shadow-oriented
correspondence matching and facial illumination rectifica-
tion. This block facilitates precise shadow removal and the
recovery of authentic facial textures.

• Extensive experiments confirm that our method outper-
forms state-of-the-arts, demonstrating its superiority in both
shadow removal and detail preservation.

2 Related Work
Shadow Removal. Early studies in shadow removal primarily
investigated shadows’ physical properties. These methods began by
detecting shadows using illumination discontinuity and color incon-
sistency at shadow edges [2], followed by shadow removal through
histogram manipulation [8, 13, 26], style transfer [20, 36, 43, 49],
or illumination compensation [1, 9, 38]. However, their efficacy
is limited to simple shadows and they falter in complex scenes.
Recently, with the significant advancement of deep learning in im-
age synthesis and restoration [44–46], various deep learning-based
methods have been also introduced to rectify shadow illumination
more convincingly [5, 7, 15, 16, 24, 27, 28, 35, 41]. While these
approaches yield visually superior results compared to classical
ones, they struggle with non-uniform illumination and loss of
facial details, as directly learning a precise and consistent mapping
from a complex illumination and facial pattern distribution is
challenging. Our proposal overcomes these issues by utilizing
internal illumination exemplars for guided shadow removal,
simplifying the learning process and enhancing result quality.

Illumination Compensation. This process aims to improve
object visibility in images by addressing uneven lighting. Tradi-
tional techniques often involve histogram manipulation [8, 25]
and Retinex theory [22, 23], generally manipulating illumination
globally or requiring meticulous parameter tuning, leading to sig-
nificant detail loss and distortions. In recent years, deep learning
methods [3, 4, 11, 14, 25, 39] have been developed for more com-
pelling illumination correction. Despite their advancements, they
often compromise facial details. In contrast, our method accurately
rectifies local illumination while preserving original facial details.

Matching Correspondence refers to the pixel or image patch
correspondence between images. Early works like HOG [6] and
SIFT [31] estimate this correspondence at the image or feature level.
Recently, deep learning has led to more robust correspondence
prediction, facilitating various tasks like image translation [50],
super-resolution [32], and view synthesis [52]. In face synthesis,
researchers have explored matching correspondence to improve
synthesis quality. Xu et al. [47] address large-angle face synthesis
by breaking it down into smaller-angle rotations, combining GAN
with face flow methods, while Wei et al. [42] propose a Flow-based
Feature Warping Model for synthesizing realistic, illumination-
consistent human face images. Unlike these studies, we make the
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Figure 2: Overview of the generator in our method. The Self-Exemplar Illumination Equalization Network (SExmNet) inputs
a shadowed portrait image and incrementally eliminates shadow occlusions. It achieves this by sequentially applying self-
exemplar illumination equalization blocks (SExmBlock) to the facial features in the image. Each block harnesses internal
illumination cues, performing both self-exemplar feature matching and illumination rectification to correct shadowed areas.
The output features from the final block are used to produce the end result, effectively removing shadows from the portrait.

first attempt to explore unsupervised matching correspondence in
portrait shadow removal, significantly elevating removal quality.

3 Method
3.1 Formulation and Overview
Our goal is to fully excavate and exploit internal illumination ex-
emplars as explicit guidance to achieve precise portrait shadow
removal while restoring realistic and faithful facial details. To
this end, we have two domains with paired data, i.e., 𝑋𝑠 ={
𝑥𝑖𝑠 | 𝑥𝑖𝑠 ∈ 𝑋𝑠

}
𝑛=𝑖,...,𝑁

and 𝑋𝑓 =

{
𝑥𝑖
𝑓
| 𝑥𝑖

𝑓
∈ 𝑋𝑓

}
𝑛=𝑖,...,𝑁

, represent-
ing the shadow and the shadow-free portrait domains, respectively.
Here,

(
𝑥𝑖𝑠 , 𝑥

𝑖
𝑓

)
constitutes a pair for training. Given an input 𝑥𝑠 , we

aim to learn a mapping function from the shadow portrait domain
to the shadow-free portrait domain: 𝑥 𝑓 = G(𝑥𝑠 ), where 𝑥 𝑓 is the
shadow removal result of 𝑥𝑠 .

The framework of our model is illustrated in Fig. 2. Taking 𝑥𝑠 as
input, our model first extracts the facial features 𝐹0 from 𝑥𝑠 . Then
𝐹0 is fed into the Self-Exemplar Illumination Equalization Network
(SExmNet) , which contains a cascade of Self-Exemplar Illumination
Equalization Blocks (SExmBlock). Here, each SExmBlock comprises
a self-exemplar illumination feature matching module and a feature-
level illumination rectification module, which are responsible for
explicitly leveraging the internal illumination exemplars for re-
lighting the shadow region, and rectifying the illumination of the

input facial features, respectively. By progressively removing the
shadow occlusions via the cascaded SExmBlocks, the output of the
last SExmBlock is finally fed into a decoder to render a visually
plausible shadow-free portrait image 𝑥 𝑓 . We discuss the details of
each component in the following sections.

3.2 Self-Exemplar Feature Matching
To fully exploit the illumination cues from non-shadow regions
to facilitate precise shadow removal, we propose a Self-Exemplar
Feature Matching module (SExmFM) for identifying and apply-
ing internal illumination exemplars to the shadowed regions. The
SExmFM module is designed to learn a shadow-oriented matching
correspondence map between the shadowed and non-shadowed
regions. This map can be used to guide the illumination propagation
from the non-shadowed regions to the shadowed regions. Specif-
ically, assuming 𝑖 denotes the index of the SExmBlock, given the
facial features 𝐹𝑖 as input, a correspondence estimator is first em-
ployed to estimate the shadow-oriented matching correspondence
map𝑀𝑖 (𝑀𝑖 ∈ R𝐻×𝑊 ×2), which can be formulated as

𝑀𝑖 = 𝐸𝑐 (𝐹𝑖 ), (1)

where 𝐸𝑐 represents the correspondence estimator. The two chan-
nels in each map𝑀𝑖 correspond to offsets in the 𝑥 and 𝑦 directions
for feature matching.
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Figure 3: Visualization of shadow-oriented matching corre-
spondence maps. We showcase six learned shadow-oriented
matching correspondence maps from corresponding six self-
exemplar illumination equalization blocks (from left to right
and top to bottom). The input and output portraits are also
shown for reference. Our model can indeed remove the
shadow occlusions by progressively propagating the illu-
mination information from the non-shadow regions to the
shadow regions. Note that the number of the self-exemplar
illumination equalization blocks is a fixed hyper-parameter.

Then, this correspondence map𝑀𝑖 is used to warp the original
facial feature 𝐹𝑖 to the rematched features 𝐹 𝑖𝑟𝑒𝑚 . This process can
be presented as follows:

𝐹 𝑖𝑟𝑒𝑚 = W(𝐹𝑖 , 𝑀𝑖 ), (2)
where W denotes the differentiable warping operation, which is a
grid-sample operator in this work.

Note that, the correspondence map 𝑀𝑖 can be simply learned
with indirect supervision from the final shadow-removed image.
The rationale behind this is that the shadowed and non-shadowed
regions in the input portrait image are highly correlated, and this
can offer strong guidance for the correspondence map learning.
Fig. 3 depicts the visualization of the learned shadow-oriented
matching correspondence map in each SExmBlock. Here, each pixel
in the correspondence map indicates the matching offset between
the current pixel and its reference pixel. We can observe that the
correspondence map indeed shows accurate matching relationships
between the shadow and non-shadow regions, which serves as
strong guidance for illumination propagation from the non-shadow
regions to the shadowed regions. Particularly, the upper and right
part of the input portrait is occluded by the shadows. As a conse-
quence, we can see that the shadowed pixels in the correspondence
map are mostly matched to the non-shadowed pixels in the lower
and left part of the face. Under this explicit guidance, the illumi-
nation information from the lower and left part can be effectively
propagated to the shadowed region in the upper and right part of
the face, rendering the final illumination-rectified result.

3.3 Feature-Level Illumination Rectification
Although self-exemplar feature matching allows our model to ex-
plicitly leverage the internal illumination priors to compensate the
shadow occlusions, it also introduces undesired facial feature dis-
tortions and artifacts to the rematched features due to the explicit

 Input w/o Illumination 
Rectification

Full model  Ground truth

Figure 4: Visualization of the effects of the feature-level illu-
mination rectification. Omitting illumination rectification
can lead to significant facial distortions and artifacts.

warping operation. Therefore, it is infeasible to directly employ
the rematched features to generate the final result. As presented
in Fig. 4, when we remove the illumination rectification module
and directly use the rematched features to render a shadow-free
portrait image (w/o Illumination Rectification), the generated result
suffers from facial distortions and unnatural illumination effects.

To fully exploit the rectified illumination information from the
rematched features while avoiding introducing unnatural facial
features, we propose a feature-level illumination rectification
module (FLIR) to explicitly distill the illumination information from
the rematched features, and then adapt it to the input facial features.
As shown in the green part of Fig. 2, the illumination rectification
process consists of two steps, i.e., the illumination factors prediction
and the illumination modulation. The former aims to grasp the
illumination information from the rematched features, which can
be subsequently utilized by the latter step for modulating the input
facial features to recover equalized illumination.

Specifically, the rematched features 𝐹 𝑖𝑟𝑒𝑚 are first fed into two
different convolution layes for predicting the illumination factors 𝛾
and 𝛽 , respectively. Here, 𝛾 and 𝛽 are two spatial matrices with the
same size as 𝐹 𝑖𝑟𝑒𝑚 , which can be used as modulation parameters to
adapt the illumination information to the input facial features via
a spatially-adaptive denormalization operation [34]. In this way,
the non-uniform illuminations can be effectively mitigated without
sacrificing the the original structure and details of the face features.
This is the key to producing compelling shadow-removed results
with well-preserved faithful and rich facial details. Formally, let
ℎ𝑖 denote the activations of the current normalization layer for a
batch of 𝑁 samples. 𝐶 , 𝐻 , and𝑊 denote the number of channels,
the height, and the width of the activation maps in the layer. The
illumination modulation process can be calculated as follows:

ℎ
𝑟𝑒𝑐,𝑖
𝑛,𝑐,𝑦,𝑥 = 𝛾𝑐,𝑦,𝑥

ℎ𝑖𝑛,𝑐,𝑦,𝑥 − 𝜇𝑐

𝜎𝑐
+ 𝛽𝑐,𝑦,𝑥 , (3)

where ℎ𝑖𝑛,𝑐,𝑦,𝑥 and ℎ𝑟𝑒𝑐,𝑖𝑛,𝑐,𝑦,𝑥 denote the activation value before and
after modulation, respectively. 𝜇𝑐 and 𝜎𝑐 denote the mean and
standard deviation of the activations in channel 𝑐 .
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Once the illumination modulation is performed, we can get the
illumination-rectified features 𝐹 𝑖𝑟𝑒𝑐 , which is fused with the original
𝐹𝑖 and then sent to the next SExmBlock for further illumination
equalization. The fusion process can be formulated as follows:

𝐹𝑖+1 = 𝐹𝑖 ⊕ 𝐹 𝑖𝑟𝑒𝑐 , (4)

where ⊕ denotes the element-wise addition operation.

3.4 Loss Functions
To produce photo-realistic shadow-free portraits with well-
preserved faithful facial details, we adopt three simple yet effective
losses, including the pixel-wise loss, perceptual loss, and the adver-
sarial loss to govern the training in an end-to-end manner. All the
losses are directly applied on the generated shadow-free portrait
image 𝑥 𝑓 .

Pixel-wise Loss. To maintain the content consistency, we ap-
ply a pixel-wise loss by minimizing the 𝐿1-distance between the
generated shadow-free portrait image 𝑥 𝑓 and the ground truth 𝑥 𝑓 :

L𝑝𝑖𝑥 =∥ 𝑥 𝑓 − 𝑥 𝑓 ∥1 . (5)

Perceptual Loss. We also introduce a perceptual loss [17] to
improve visual quality of the generated results, it computes the
𝐿1-distance between extracted features of the generated shadow
portrait image 𝑥 𝑓 and the ground truth 𝑥 𝑓 :

L𝑝𝑒𝑟 =
∑︁
𝑖

∥ Φ𝑖 (𝑥 𝑓 ) − Φ𝑖 (𝑥 𝑓 ) ∥1, (6)

where Φ(·) denotes the extracted features from certain layers in
the VGG-19 model [40], which is pre-trained on the ImageNet
classification dataset [37] and has a powerful feature extraction
capability. Following [33], we choose the first four layers of VGG-19
for computing the perceptual loss.

Adversarial Loss. We adopt a ResNet-based discriminator 𝐷
to provide adversarial supervision signals, such that the generator
can produce more photo-realistic results. The adversarial loss is
formulated as follows:

L𝑎𝑑𝑣 = E
[
log 𝐷

(
𝑥 𝑓

)
+ log

[
1 − 𝐷

(
𝑥 𝑓

)] ]
. (7)

Total Loss. The total loss for training our model is a combination
of the pixel-wise loss, perceptual loss, and adversarial loss:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑝𝑖𝑥𝑒𝑙 + 𝜆2L𝑝𝑒𝑟 + 𝜆3L𝑎𝑑𝑣, (8)

where 𝜆1, 𝜆2, and 𝜆3 are weighting parameters to balance the cor-
responding loss items.

4 Experiments
4.1 Settings
Implementation Details. Our model is implemented on the Py-
Torch framework on one NVIDIA A100 GPU with 80 GB of memory.
We adopt the Adam optimizer [21] (𝛽1 = 0.5, 𝛽2 = 0.999) with the
initial learning rate set as 0.0002 for our training, which is linearly
decayed as the training proceeds. The training batch size is set
to 16. For both the training and testing, the images are all resize
to 256 × 256. We empirically set 𝜆1, 𝜆2, and 𝜆3 as 5, 5, and 1, re-
spectively. The number of SExmBlock is set as 6. To enable more

Table 1: Quantitative comparison with the state-of-the-art
methods on the UCB [51] dataset. We achieve the best results
among all the competitors.

Method SSIM ↑ PSNR ↑ LPIPS ↓
Guo et al. [10] 0.605 14.205 0.279
He et al. [12] 0.732 20.001 0.110
Hu et al. [15] 0.774 20.532 0.097
Cun et al. [5] 0.784 21.307 0.093
Zhang et al. [51] 0.782 23.816 0.074
Liu et al. [29] 0.851 23.738 0.068
DMTN [27] 0.783 21.574 0.085
TBRNet [28] 0.790 22.299 0.082
Ours 0.883 24.174 0.059

accurate matching correspondence learning, all the backgrounds
of the input face features are masked out by using a facial mask
predicted by a pretrained face parsing model [48]. The feature ex-
tractor consists of a convolutional layer with 128 output channels.
The correspondence estimator comprises three convolutional lay-
ers, each using a 3 × 3 kernel, with a stride of 1 × 1 and padding of
1 × 1. The numbers of output channels are [64, 32, 2], respectively.
Between each convolutional layer, there is a LeakyReLU layer.

Datasets. Since there is no publicly available large-scale paired
shadow/shadow-free dataset, we follow [29] to synthesize our train-
ing data from CelebA-HQ [18], by combining shadow-free portraits
with pre-defined shadows masks.

Specifically, we synthesize 3,000 pairs of shadow/shadow-free
portrait images for our training. To evaluate our method, we follow
the same protocal as [51], which performs both qualitative and
quantitative evaluations on UCB [51], a dataset consisting of a very
limited number of 100 paired shadow/shadow-free face images.
To further verify the generalization capabiltity of our method, we
also conduct evaluations on the Shadow Faces in the Wild dataset
(SFW [29]), which includes 280 videos from 20 subjects.

Metrics. For quantitative evaluations, we choose three widely
used metrics, including structure similarity measure (SSIM), peak
signal-to-noise ratio (PSNR), and Learned Perceptual Image Patch
Similarity (LPIPS). In particular, SSIM and PSNR are used to evaluate
overall quality of portrait shadow removal, while LPIPS measures
the perceptual quality of the shadow-removed and the ground truth
shadow-free portrait images. Moreover, we also involve the video-
based Frechet inception distance (VFID) and flow warping error
(𝐸𝑤𝑎𝑟𝑝 ) to measure the perceptual quality and temporal coherence
of shadow-removed videos, respectively.

4.2 Comparison with State-of-the-arts
For a comprehensive comparison, we compare our framework to
eight state-of-the-art methods, including five general shadow re-
moval methods [5, 10, 15, 27, 28], and three portrait shadow removal
methods [12, 29, 51] both qualitatively and quantitatively.

Qualitative Comparison.We first compare our method with
eight competitors quantitatively on the UCB [51] dataset. Fig. 5
showcases the visualization results of shadow removal from dif-
ferent methods. As can be observed, all the compared methods
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 Input  Guo et al. [10]     Hu et al. [15]       Cun et al. [5]     Zhang et al. [51]     He et al. [12]       Liu et al. [29]  DMTN [27]  TBRNet [28]  Ours  Ground truth

Figure 5: Qualitative comparison with the state-of-the-art methods on the UCB [51] dataset. Our method best preserves facial
details while seamlessly removing facial shadows. Note that the ground truth shadow-free images of some UCB samples are
not perfect as them originally contain slight shadows.

   Input     Guo et al. [10]        Hu et al. [15]           Cun et al. [5]           He et al. [12]         Liu et al. [29]            DMTN [27]           TBRNet [28] (i) Ours

Figure 6: Qualitative comparison with the state-of-the-art methods on the SFW [29] dataset. Note that the ground truth
shadow-free images are not available for this dataset.

struggle to produce visually plausible shadow-removed results. In
particular, the traditional method Guo et al. [10] produces severe
facial pattern artifacts and distortions as it is built upon a simple
parameterized shadow removal model, which is not able to deal
with complex shadows in real-world scenarios. Hu et al. [15] strug-
gles to rectify the shadow illuminations. Although Guo et al. [10]
succeeds in relighting the shadow regions, the resulting illumina-
tions are significantly inconsitent with the non-shadow regions.
He et al. [12] is unable to remove the shadows and tend to incur
undesired changes of facial features, this is because it completely

rely on generative priors for shadow removal by performing la-
tent code optimization, leading to poor generalization capability
on real-world shadows and inevitable contamination on the orig-
inal facial features. Cun et al. [5], DMTN [27], and TBRNet [28]
struggle with non-uniform illuminations. Although Liu et al. [29],
and Zhang et al. [51] can deliver relatively naturally-looking re-
sults, they still undergo noticeable shadow residues. Different from
all the above competitors, our method can create visual-pleasing
shadow removal results with uniform illuminations and faithful
facial details. We mainly attribute this to the delicate exploitation
of internal illumination cues and decent illumination rectification
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Input Cun et al. [5] Liu et al. [29] DMTN [27] TBRNet [28] Ours

Figure 7: Examples of portrait video shadow removal on the
SFW [29] dataset. We show two cases and each case includes
two inconsecutive frames as input and their corresponding
shadow-removed results of different methods. Our method
delivers higher-quality shadow-free results with better tem-
poral consistency than the other approaches. Due to limited
space, only the results of the top four baselines in terms of
quantitative performance are shown here. Please refer to our
supplementary videos for complete video comparison with
all compared methods.

mechanism, which effectively loosen the learning difficulty and
facilitate the shadow removal process. Moreover, it is also worth
noting that our method can perfectly remove both the external
or internal shadows with consistent illuminations and vivid facial
details, which is not achieved by any of the competitors.

To further demonstrate the generalization capability of our
method, we also conduct qualitative evaluations on the SFW [29]
dataset. As shown in Fig. 6, all the compared methods struggle to
create satisfactory shadow removal results given shadow portraits
captured in highly dynamic and complex real-world scenes, while
our method can consistently produce compelling shadow-free re-
sults. This verifies the superior generalization capability of our
model and implies its huge potential for real-world applications.

Quantitative Comparison. We also perform a quantitative
comparison with the existing methods. As shown in Table 1, our
method provides noticeable improvements on all of the three quan-
titative metics. This indicates that our method can indeed effectively
recover the illuminations and facial details, yielding better results
in terms of both image and perceptual quality. This is consistent
with our visualization results.

4.3 Portrait Shadow Removal on Videos
Fig. 7 presents the shadow removal comparison results of different
methods on portrait videos. Benefiting from the effective utiliza-
tion of internal illumination exemplars, our method can produce
visually plausible shadow removal results with consistent illumi-
nations and faithful facial details across video frames, compared
to other competitors. The quantitative performance of different
methods on video shadow removal are also provided in Table 2,

Input      w/o SExmFM    w/o FLIR    w/o SExmBlock        Ours     Ground truth

Figure 8: Qualitative comparison of different variants of our
method on the UCB [51] dataset. Each of our component
contributes to our final model.

which reveals that our model can indeed render visually convincing
shadow-free videos, leading to the best VFID value among all the
compared methods. Please refer to our supplementary video for
better assessment.

4.4 Ablation Study
In this section, we conduct an in-depth ablation study to validate
the efficacy of our main proposals, including self-exemplar feature
matching, feature-level illumination rectification, and self-exemplar
illumination equalization block.

Self-Exemplar Feature Matching. To verify the effectiveness
of Self-Exemplar Feature Matching (SExmFM), we remove the self-
exemplar feature matching module by directly feeding the input
features to the illumination rectification module. As shown in the
second column of Fig. 8, the result suffers from noticeable shadow
residues as this model variant falls short of exploiting the internal
illumination exemplars, and thus struggles to recover equalized
illuminations in the shadowed region. Table 3 also shows that the
model variant without self-exemplar feature matching performs
worse than our full model in terms of all three quantitative metrics.

Feature-Level illumination Rectification. We also investi-
gate the efficacy of feature-level illumination rectification (FLIR)
by omitting the illumination rectification module. As can be seen
in the third column of Fig. 8, severe non-uniform illuminations
artifacts and facial distortions exist in the result. The reason behind
this is that the warping operation applied in self-exemplar feature
matching inevitably introduces notable facial distortions and arti-
facts, and simply integrating the rematched features into the input
facial features can result in unnatural illuminations and contami-
nations on the original facial details. In contrast, our feature-level
illumination rectification module can distill the recovered illumi-
nation information and compensate the shadow illuminations in
the input facial features. This not only allows for precise shadow
removal, but also well retain the original facial details, which is
also demonstrated quantitatively in Table 3.

Self-Exemplar Illumination Equalization Block. To get a
deeper insight into the significance of the Self-Exemplar illumi-
nation Equalization Block (SExmBlock), we replace all the SExm-
Blocks with standard residual blocks in our network. As observed
in the fourth column of Fig. 8, the result undergoes unnatural illu-
minations and facial artifacts. This is because the standard residual
blocks are not able to explicitly leverage the internal illumination
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Table 2: Quantitative comparison with the state-of-the-art
methods on the SFW [29] dataset. We achieve the best results
among all the competitors.

Method VFID ↓ 𝑬𝒘𝒂𝒓𝒑 ↓
Guo et al. [10] 0.930 0.0111
He et al. [12] 0.370 0.0075
Hu et al. [15] 0.398 0.0049
Cun et al. [5] 0.353 0.0043
Liu et al. [29] 0.300 0.0047
DMTN [27] 0.324 0.0045
TBRNet [28] 0.335 0.0047
Ours 0.289 0.0040

Table 3: Quantitative comparison among different variants of
our method on the UCB [51] dataset. Each of our component
contributes to our final model.

Method SSIM ↑ PSNR ↑ LPIPS ↓
w/o SExmFM 0.866 23.383 0.068
w/o FLIR 0.858 23.251 0.079
w/o SExmBlock 0.840 22.708 0.075
Full model (Ours) 0.883 24.174 0.059

priors and therefore prone to learning an unstable and inconsistent
mapping, leading to inferior shadow removal results (Table 3). By
fully exploiting the internal illumination exemplars and accurately
propagate the illuminations to the shadow regions, our SExmBlocks
enables the model to learn a more accurate and consistent map-
ping that delivers visually plausible shadow removal results with
uniform illuminations and faithful facial details.

4.5 Parameters and Inference Time Comparison
The parameters size and inference time are critical to the deploy-
ment of the model in real-world scenarios. Here, we compared
the parameters size and inference time of different methods on an
NVIDIA A100 GPU. To ensure fairness, we set the batch size of
each method to 1 and conducted five evaluations for average. The
corresponding statistics of different methods are reported in Table 4.
As can be observed, our method significantly outperforms the other
methods in both model size and inference time, demonstrating the
effectiveness and efficiency of our approach. This also confirms the
potential of our method for practical real-time applications.

4.6 Limitations and Future Work
Although our framework offers an effective solution to portrait
shadow removal. It may face challenges when processing dark-
skinned or non-uniform illumination faces. For the former, the
network may confuse skin color with shadows. For the latter, the
network may exploit the lighting information from local regions
(e.g., regions with specular illuminations) to assist in rectification
of global illumination, leading to color shift (see Fig. 9). Addressing
this limitation, possibly through training with more dark-skinned

Table 4: Parameter size and inference time comparisons
among different methods.

Method Params. (M) ↓ Infer. Time (ms) ↓
He et al. [12] 61.11 320000.0
Cun et al. [5] 137.18 90.6
Hu et al. [15] 122.49 48.8
Liu et al. [29] 10.25 2310.0
DMTN [27] 27.90 84.4
TBRNet [28] 46.71 83.9
Ours 3.37 28.0

Guo et al. [10] Hu et al. [15] Cun et al. [5] He et al. [12]

Liu et al. [29]   DMTN [27] TBRNet [28]        Ours

Input 

Input 

Guo et al. [10] Hu et al. [15] Cun et al. [5] He et al. [12]

Liu et al. [29]   DMTN [27] TBRNet [28]        Ours

Figure 9: Failure cases of our method with color shift when
processing dark-skinned or non-uniform illumination faces.

samples or involving external uniform illumination references, is a
goal for future work.

5 Conclusions
In our paper, we present the Self-Exemplar Illumination Equaliza-
tion Network for portrait shadow removal. Utilizing Self-Exemplar
Illumination Equalization Blocks, our network rectifies shadow il-
lumination through self-exemplar feature matching. This process
generates illumination-corrected features and spatial matrices, en-
hancing the equalization of facial feature illumination. Our method
demonstrates superior performance in shadow removal and facial
texture recovery on two datasets.
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