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Abstract

Quantum computing is an emerging field recognized for the significant speedup it1

offers over classical computing through quantum algorithms. However, designing2

and implementing quantum algorithms pose challenges due to the complex nature3

of quantum mechanics and the necessity for precise control over quantum states.4

Despite the significant advancements in AI, there has been a lack of datasets5

specifically tailored for this purpose. In this work, we introduce QCircuitBench,6

the first benchmark dataset designed to evaluate AI’s capability in designing and7

implementing quantum algorithms in the form of quantum circuit codes. Unlike8

using AI for writing traditional codes, this task is fundamentally more complicated9

due to highly flexible design space. Our key contributions include:10

1. A general framework which formulates the key features of quantum algorithm11

design task for Large Language Models.12

2. Implementation for quantum algorithms from basic primitives to advanced13

applications, spanning 3 task suites, 23 algorithms, and 128,573 data points.14

3. Automatic validation and verification functions, allowing for iterative and15

interactive evaluation without human inspection.16

4. Promising potential as a training dataset through primitive fine-tuning results.17

We observed several interesting experimental phenomena: fine-tuning does not18

always outperform few-shot learning, and LLMs tend to exhibit consistent error19

patterns. In all, QCircuitBench is a comprehensive benchmark for AI-driven20

quantum algorithm design, while it also reveals limitations of LLMs in this domain.21

1 Introduction22

Quantum computing is an emerging field in recent decades because algorithms on quantum computers23

may solve problems significantly faster than their classical counterparts. From the perspective of24

theoretical computer science, the design of quantum algorithms have been investigated in various25

research directions - see the survey [Dalzell et al., 2023] and the quantum algorithm zoo [Jordan,26

2025]. However, the design of quantum algorithms on quantum computers has been completed27

manually by researchers. This process is notably challenging due to highly flexible design space and28

extreme demands for a comprehensive understanding of mathematical tools and quantum properties.29

For these reasons, quantum computing is often considered to have high professional barriers. As the30

discipline evolves, we aim to explore more possibilities for algorithm design and implementation31

in the quantum setting. This is aligned with recent advances among AI for Science, including32

AlphaFold [Jumper et al., 2021], AlphaGeometry [Trinh et al., 2024], etc. Recently, large language33

models (LLMs) have also become widely applicable among AI for science approaches [Yang et al.,34

2024b, Zhang et al., 2024, Yu et al., 2024]. LLMs represent the best practice of sequential modeling35
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methods at current stage. They have an edge over other models in possessing abundant pre-training36

knowledge and providing human-friendly interfaces which support human-machine collaboration.37

Therefore, we gear LLMs for quantum algorithm design.38

As far as we know, there has not been any dataset for AI in quantum algorithm design. Existing39

work combining quantum computing and AI mostly targets at exploiting quantum computing for40

AI; there are some papers applying AI for quantum computing, but they either consider niche41

problems [Nakayama et al., 2023, Schatzki et al., 2021] or limited functions [Tang et al., 2023,42

Fürrutter et al., 2024], not quantum algorithm datasets of general interest (see Section 2). However,43

unlike classical code generation where abundant data exist, the most challenging aspect for quantum44

algorithm design is the lack of sufficient data, and hence the difficulty of generalization in training AI45

models. Therefore, datasets for quantum algorithm design are solicited.46

Descriptions of quantum algorithms in natural language could be verbose and vague. Mathematical47

formulas, while precise and succinct, are difficult to verify automatically. To accommodate with48

LLMs, we make a change of perspective by formulating quantum algorithms as programming lan-49

guages. This allows for precise representation of a quantum algorithm, enables automatic verification50

procedure, and bridges the gap between theoretical design and circuit implementations. Furthermore,51

meaningful quantum algorithms which can be efficiently implemented have no more than polyno-52

mially many gates [Poulin et al., 2011], and thus such formulations have the theoretical benefits53

allowing for scalable representations.54

Key Contributions. We propose QCircuitBench, the first comprehensive, structured dataset for55

quantum algorithm design. Technically, it has the following key contributions:56

• It formulates the task for Large Language Models (LLMs) with a carefully designed framework57

encompassing the key features of quantum algorithm design, including problem description,58

quantum circuit codes, classical post-processing, and verification functions. It maintains the59

black-box nature of oracles and characterizes query complexity properly.60

• It implements a wide range of quantum algorithms, covering 3 task suites, 23 algorithms, and61

128,573 data points. The dataset spans from basic primitives and textbook-level algorithms to62

advanced applications such as Generalized Simon’s Problem, demonstrating compatibility with63

complex algorithms and easy extensibility.64

• It has automatic validation and verification functions, enabling iterative, human-free evaluation65

and supporting interactive reasoning to enhance performance.66

• It showcases the potential as a training dataset through primitive fine-tuning results. As we67

expand the dataset to include more algorithms and explore novel fine-tuning methods, it will68

hopefully contribute to interactive quantum algorithm design and implementation significantly.69

2 Related Work70

Quantum Machine Learning. To the best of our knowledge, QCircuitBench is the first dataset71

tailored specifically for quantum algorithm design. Previous efforts combining quantum computing72

with AI primarily fall under the category of Quantum Machine Learning (QML), which aims at73

leveraging the unique properties of quantum systems to enhance machine learning algorithms and74

achieve improvements over their classical counterparts [Schuld et al., 2015, Biamonte et al., 2017,75

Ciliberto et al., 2018]. Corresponding datasets often focus on encoding classical data into quantum76

states. For instance, MNISQ [Placidi et al., 2023] is a dataset of quantum circuits representing the77

original MNIST dataset [LeCun et al., 1998] generated by the AQCE algorithm [Shirakawa et al.,78

2021]. Another category of datasets focuses on collecting quantum data to demonstrate quantum79

advantages since classical machine learning methods can fail to characterize particular patterns80

of quantum data. Nakayama et al. [2023] created a VQE-generated quantum circuit dataset for81

classification of variational ansatzes. NTangled [Schatzki et al., 2021] further investigated different82

types of entanglement and composed quantum states with various multipartite entanglement for83

classification. While these datasets successfully demonstrate quantum supremacy, the practical84

applications of the problem addressed are unclear.85

AI for Quantum Computing. This research direction explores the possibility of leveraging AI to86

facilitate the advancement of quantum computing. QDataSet [Perrier et al., 2022] collects data from87
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simulations of one- and two-qubit systems and targets training classical machine learning algorithms88

for quantum control, quantum tomography, and noise mitigation. LLM4QPE [Tang et al., 2023] is89

a large language model style paradigm for predicting quantum system properties with pre-training90

and fine-tuning workflows. While the paradigm is interesting, the empirical experiments are limited91

to two downstream tasks: quantum phase classification and correlation prediction. Fürrutter et al.92

[2024] studied the application of diffusion models [Sohl-Dickstein et al., 2015, Rombach et al., 2022]93

to quantum circuit synthesis [Saeedi and Markov, 2013, J. et al., 2022]. Scalability issues must be94

addressed to achieve practical and meaningful unitary compilation through this methodology.95

Quantum Circuit Benchmarks. The aforementioned works represent meaningful explorations96

at the intersection of AI and quantum computing. However, none of them considers the task97

which interests the quantum computing community (from the theoretical side) the most: quantum98

algorithm design. Our work aims to take the first step in bridging this gap. It is worth noting99

that several quantum algorithm circuit benchmarks already exist, such as QASMBench [Li et al.,100

2023], MQTBench [Quetschlich et al., 2023], and VeriQBench [Chen et al., 2022]. However, these101

benchmarks are designed to evaluate the performance of NISQ (Noisy Intermediate-Scale Quantum)102

[Preskill, 2018] machines or quantum software tools, rather than for training and evaluating AI models.103

For instance, QASMBench includes a diverse variety of quantum circuits based on OpenQASM104

representation [Cross et al., 2022], covering quantum circuits with qubit sizes ranging from 2 to105

127. However, it fails as a dataset for AI in that it includes only a few entries for each algorithm106

and ignores the post-processing procedure and construction of different oracles, which are crucial to107

quantum algorithm design. Similar limitations apply to MQTBench and VeriQBench.108

3 QCircuitBench Dataset109

3.1 Task Suite110

For the general purpose of quantum algorithm design, we consider three categories of tasks: oracle111

construction, algorithm design, and random circuit synthesis. These tasks are crucial for devising112

and implementing quantum algorithms, with oracle construction serving as the premise for algorithm113

design, and random circuits serving as a main demonstration for quantum supremacy. These task114

suites encompass 23 algorithms and a total of 128,573 data points with the following distribution:115

3.1.1 Task I: Oracle Construction116

This task suite contains 32,249 data points in total, focused on two types of oracle constructions.117

To study a Boolean function f : {0, 1}n → {0, 1}m, we need to gain its access. In quantum118

computing, the function f is encoded as an oracle Uf such that for any x ∈ {0, 1}n, z ∈ {0, 1}m,119

Uf |x⟩|z⟩ = |x⟩|z ⊕ f(x)⟩, where ⊕ is the plus modulo 2. The construction of Uf using quantum120

gates is deeply rooted in reversible quantum logic synthesis, which remains a challenge for complex121

Boolean functions. In this dataset, we mainly focus on the construction of textbook-level oracles:122

Bernstein-Vazirani Problem [Bernstein and Vazirani, 1993], Deutsch-Jozsa Problem [Deutsch and123

Jozsa, 1992], Simon’s Problem [Simon, 1997], and Grover’s algorithm for unstructured search [Grover,124

1996] (including constructions of both the oracle and the diffusion operator).125

There is another category of more flexible oracle construction tasks which we refer to as "Problem126

Encoding". For example, one can apply Grover’s oracle to solving constraint problems such as SAT127

and triangle finding [Ambainis, 2004]. Formulating problem encoding tasks for LLMs slightly differs128

from quantum logic synthesis, and we refer the readers to Appendix A.2 for more detailed discussion.129

3.1.2 Task II: Quantum Algorithm Design130

In this category, we cover a wide range of quantum algorithms with varying complexity, from131

fundamental primitives to advanced applications, covering 5,464 data points:132

• Textbook-level algorithms: These range from the Bernstein-Vazirani problem [Bernstein and133

Vazirani, 1993], Deutsch-Jozsa problem [Deutsch and Jozsa, 1992], Simon’s problem [Simon,134

1997], Grover’s algorithm [Grover, 1996], phase estimation [Kitaev, 1995], quantum Fourier135

transform [Coppersmith, 2002], GHZ state preparation [Greenberger et al., 2007], W state136
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preparation [Dür et al., 2000], random number generator [Herrero-Collantes and Garcia-Escartin,137

2017], swap test [Barenco et al., 1997, Buhrman et al., 2001] to Shor’s algorithm [Shor, 1999]138

for factorization, one of the most famous quantum algorithms with superpolynomial speedup.139

• Generalized Simon’s Problem [Ye et al., 2021]: This is a more advanced version of the standard140

Simon’s problem and an active area of research in recent years [Ye et al., 2021, Wu et al., 2022].141

The setting is formally stated as follows: given an (unknown) function f : Zn
p → X where X142

is a finite set and a k is a positive integer satisfying k < n, it is guaranteed that there exists a143

subgroup S ≤ Zn
p of rank k such that for any x, y ∈ Zn

p , f(x) = f(y) iff x− y ∈ S. The goal is144

to find S. Intuitively, the generalized Simon’s problem extends the standard Simon’s problem145

from binary to p-ary bases and from a single secret string to a subgroup of rank k.146

• Variational quantum algorithms (VQAs): Beyond universal quantum algorithms, VQAs including147

VQE [Peruzzo et al., 2014] for finding the ground-state energy of a given Hamiltonian and148

QAOA [Farhi et al., 2014] for solving the maximum cut problem for a given graph are potentially149

implementable on near-term quantum computers. Unlike traditional quantum algorithms with150

fixed quantum circuits, VQAs rely on iterative optimization of parameterized quantum circuits,151

introducing unique challenges as models must generate not only quantum circuits but also suitable152

parameter initialization and optimization methods.153

• Quantum information protocols: Additionally, we also include quantum information protocols154

such as quantum teleportation [Bennett et al., 1993] and quantum key distribution [Bennett155

and Brassard, 2014], which have wide applications in quantum communications, quantum156

cryptography, etc. See Appendix B for further details.157

3.1.3 Task III: Random Circuit Synthesis158

The third task we consider is random circuit synthesis, containing 90,860 data points. On the one hand,159

random circuit sampling is the first algorithm for showing quantum supremacy by Google [Arute160

et al., 2019], and is still widely applied to demonstrate the power of quantum algorithms in recent161

research [Wu et al., 2021, Bluvstein et al., 2024, DeCross et al., 2024]. In this suite, circuits are162

randomly sampled from a Clifford gate set {H, S, CNOT} and a universal set {H, S, T, CNOT}, and163

the task is to generate circuits reproducing the specified quantum state.164

3.2 Dataset Structure165

The overall structure of QCircuitBench is illustrated as follows (more details are given in Appendix A):166

Problem Description
(Natural language + Latex math formulas)

Verification Function
(Unit test)

Generation Code
(Qiskit code)

Algorithm Circuit
(OpenQASM 3.0 files)

Post-Processing Function
 (Python code)

Dataset Creation
(Python code)

Oracle/Gate Definition
(.inc files)

QCircuitBench Dataset

Figure 1: Structure of QCircuitBench. The components of QCircuitBench are presented in the frame
on the top-right. As a showcase, this figure presents the components for Simon’s problem [Simon,
1997], including its problem description in natural language, post-processing function in python code,
circuit in a .qasm file, and oracle definition in a .inc file.
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Design Principles. Different tasks encounter different challenges. Here we highlight the following167

construction principles, which are specially designed to adapt to these tasks:168

• Paradox of Oracle Implementation: Quantum algorithms often treat the oracle Uf as a black-169

box, aiming to deduce properties of function f(x) without directly accessing its implementation.170

However, quantum circuits for real-world platforms need an explicit gate definition to compile and171

run successfully. To address this challenge, which is often overlooked in tutorials and benchmarks,172

we provide the oracle as a black-box gate with its explicit definition in a separate "oracle.inc"173

library. This complies with OpenQASM syntax while ensures the oracle’s functionality is174

accessible to the model without exposing its internal structure.175

• Classical Processing Specification: A quantum algorithm involves not only quantum circuits176

but also the classical processing steps to interpret measurement results. For example, in Simon’s177

algorithm, the model must solve linear equations s · yi = 0 from measured yi. In addition to178

quantum circuits, we require the model to specify the classical processing function and define the179

shot count to characterize query complexity, crucial for the theoretical analysis of the algorithm.180

• Custom Quantum Gates: Some composite gates, not part of the standard QASM library, are181

essential for advanced algorithms. To avoid model distractions, we provide these custom gates,182

such as multi-controlled X gates (45,060 lines for 14 qubits), in a "customgates.inc" file. These183

gates are defined hierarchically, allowing the model to use them without the burden of generating184

complex gate structures.185

• Automated Verification Function: To ensure model outputs are syntactically correct and186

functionally valid, we implement automatic verification tools that check QASM syntax and187

circuit functionality. Instead of performing exhaustive Logic Equivalence Checking (LEC), we188

use extensive test cases to validate the correctness of the generated circuits, enabling efficient189

model evaluation without human intervention.190

Based on theses principles, we proposed the framework of QCircuitBench. Below is a more detailed191

explanation for the 7 components of the dataset:192

1. Problem Description: carefully hand-crafted prompts stating the oracle to be constructed or the193

target problem to be solved in natural language and latex math formulas. If the problem involves194

the usage of a quantum oracle or composite gates beyond the standard gate library, the interfaces195

of the oracle / gate will also be included (input qubits, output qubits, function mechanism).196

2. Generation Code: one general Qiskit [Javadi-Abhari et al., 2024] code to create quantum circuits197

for oracles or algorithms of different settings, such as distinct secret strings or various qubit198

numbers. We choose Qiskit as the main experiment platform because it is a general quantum199

programming software widely used for the complete workflow from creating quantum circuits to200

transpiling, simulation, and execution on real hardware.201

3. Algorithm Circuit: a .qasm file storing the quantum circuit for each specific setting. We choose202

OpenQASM 3.0 [Cross et al., 2022] as the format to store the quantum circuits, because Qiskit,203

as a python library, can only create quantum circuits at runtime instead of explicitly saving the204

circuits at gate level.1205

4. Post-Processing Function: this is for Algorithm Design task only, see Section 3.1.2. The206

function takes a complete quantum circuit as input, uses the Qiskit AerSimulator to execute the207

circuit, and returns the final answer to the original problem according to the simulation results.208

For state preparation problems such as creating a GHZ state of n qubits, this function returns the209

qubit indices of the generated state.210

5. Oracle / Gate Definition: a .inc file to provide definitions of composite gates or oracles. For211

oracle construction tasks, this only includes the definition of composite gates required to build212

the oracle. For algorithm design tasks, we also provide the gate definition of the oracle in this213

file, which successfully delivers the oracle in a black-box way.214

6. Verification Function: a function to evaluate whether the implemented oracle / algorithm215

achieves the desired purpose with grammar validation and test cases verification. If there exist216

1Although currently the Qiskit APIs for importing and dumping OpenQASM 3.0 files are still in experimental
stage, we choose to adopt version 3.0 over 2.0 in that it supports saving parameterized circuits, which allows for
extending the framework to variational quantum algorithms [Cerezo et al., 2021].
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grammar errors, the function returns -1 and provides a detailed error message, which can be used217

as the feedback for LLMs to improve through interactive reasoning. If the program can execute218

successfully, the function returns a score between [0, 1] indicating the success rate on test cases.2219

7. Dataset Creation Script: the script to create the dataset from scratch in the format suitable for220

benchmarking / fine-tuning LLMs. It contains the following functions: 1. generate primitive221

QASM circuits. 2. extract gate definitions and add include instructions to create an algorithm222

circuit as the direct output. 3. validate and verify the correctness of the data points in the dataset.223

4. concatenate the circuit with problem description as a json file for the benchmark pipeline.224

This structure of QCircuitBench provides a general framework to formulate quantum algorithm225

design for large language models, with an easy extension to more advanced quantum algorithms.226

4 Experiments227

4.1 Benchmarking LLMs on QCircuitBench228

We benchmark the quantum algorithm design capabilities of leading closed-source and open-source229

large language models using QCircuitBench. The workflow of our benchmark is illustrated in Figure230

2. The total computation cost is approximately equivalent to two days on an A100 GPU.231

Verification

Algorithm Circuit
(OpenQASM 3.0 files)

Post-Processing 
Function

 (Python code)

Oracle Circuit
(OpenQASM 3.0 files)

Algorithm Design Oracle Construction

Problem 
Description

Algorithm / 
Oracle Circuit 

Few-shot

Post-Processing 
(if necessary)

QCircuitBench    
Dataset

Figure 2: Flowchart of benchmarking QCircuitBench.

Models. Recently, the GPT series models have become the benchmark for generative models due232

to their exceptional performance. Specifically, we include two models from OpenAI, GPT-3.5-turbo233

[Brown et al., 2020] and GPT-4 [OpenAI et al., 2024], in our benchmark. Additionally, the LLAMA234

series models [Touvron et al., 2023a,b] are widely recognized as leading open-source models, and235

we have selected LLAMA-3-8B for our study. For a comprehensive evaluation, we also benchmark236

Qwen 2.5 [Yang et al., 2024a] and DeepSeek-R1 [Guo et al., 2025].237

On these models, we employ a few-shot learning framework, a prompting technique that has shown238

considerable success in generative AI [Xie et al., 2021]. In this approach, we utilize either 1, 3, or 5239

examples, followed by a problem description. To ensure we do not train and test on the same quantum240

algorithm, we implement k-fold validation among all algorithms.241

Evaluation Metrics. We use three evaluation metrics (see Appendix C.1 for more details):242

1. BLEU Score: This metric measures how closely the generated code matches the reference code,243

with a higher BLEU score indicating more similarity. Formally, the BLEU score is defined as:244

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
,

where BP is the acronym for brevity penalty, wn is the weight for the n-gram precision (typically245
1
N for uniform weights), pn is the precision for n-grams. BP is calculated as:246

BP =

{
1 if c > r

e1−
r
c if c ≤ r

,

2The verification function explicitly integrates the oracle / gate definition library with output algorithm circuit
since Qiskit importer for OpenQASM 3.0 does not support non-standard gate libraries currently.
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Table 1: Benchmarking algorithm design in verification function scores.

Model Shot Bernstein
Vazirani

Deutsch
Jozsa Grover Phase

Estimation QFT Simon GHZ
Random
Number

Generator

Swap
Test

W
State

Generalized
Simon

(multi-str)

Generalized
Simon

(ternary)
VQE QAOA Shor Avg

gpt4o 1
0.8461 0.8307 0.7644 0.6638 -1.0000 -0.2015 -1.0000 -1.0000 0.5292 -0.0900 -1.0000 -0.4152 -1.0000 -1.0000 -1.0000

-0.7452(±0.1538) (±0.1533) (±0.1618) (±0.1141) (±0.0000) (±0.1268) (±0.0000) (±0.0000) (±0.1745) (±0.2279) (±0.0000) (±0.1857) (±0.0000) (±0.0000) (±0.0000)

gpt4o few
0.9592 0.9692 0.9165 0.4400 -1.0000 0.0600 -1.0000 -1.0000 0.8090 0.4022 -1.0000 -0.3222 -1.0000 -1.0000 -1.0000

-0.8188(±0.0408) (±0.0208) (±0.0766) (±0.1784) (±0.0000) (±0.0364) (±0.0000) (±0.0000) (±0.0292) (±0.0776) (±0.0000) (±0.1698) (±0.0000) (±0.0000) (±0.0000)

Llama3 1
-0.7538 -0.1077 -0.6154 -0.9231 -1.0000 -0.9231 -1.0000 -1.0000 -1.0000 -0.6933 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-0.8583(±0.1727) (±0.2214) (±0.2130) (±0.0769) (±0.0000) (±0.0769) (±0.0000) (±0.0000) (±0.0000) (±0.2031) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.0000)

Llama3 few
-0.5962 0.3962 -0.4605 -0.6615 -1.0000 -0.5846 -1.0000 -1.0000 -0.4572 -0.6122 -0.8889 -1.0000 -1.0000 -1.0000 -1.0000

-0.7893(±0.2184) (±0.2308) (±0.2155) (±0.1492) (±0.0000) (±0.1543) (±0.0000) (±0.0000) (±0.2143) (±0.2599) (±0.1111) (±0.0000) (±0.0000) (±0.0000) (±0.0000)

gpt3.5 1
0.0769 0.2731 -0.0779 -0.1277 -1.0000 -0.2181 -1.0000 -1.0000 0.1563 -0.6922 -1.0000 -0.2211 -1.0000 -1.0000 -1.0000

-0.6670(±0.2392) (±0.1794) (±0.2099) (±0.2722) (±0.0000) (±0.1238) (±0.0000) (±0.0000) (±0.2399) (±0.2111) (±0.0000) (±0.1472) (±0.0000) (±0.0000) (±0.0000)

gpt3.5 few
0.2292 0.2038 0.0010 -0.5577 -1.0000 -0.1296 -1.0000 -1.0000 -0.3742 -0.8778 -1.0000 -0.3267 -1.0000 -1.0000 -1.0000

-0.7514(±0.1534) (±0.1708) (±0.2508) (±0.2331) (±0.0000) (±0.1078) (±0.0000) (±0.0000) (±0.2332) (±0.1222) (±0.0000) (±0.1684) (±0.0000) (±0.0000) (±0.0000)
Qwen

2.5 1
-0.8923 -0.6285 -0.9231 -0.8462 -1.0000 -1.0000 -1.0000 -1.0000 -0.6270 -0.8444 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-0.9115(±0.1077) (±0.1967) (±0.0769) (±0.1042) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.1982) (±0.1556) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.0000)
Qwen

2.5 few
-0.4123 -0.0746 -0.9230 -0.8307 -1.0000 -0.6838 -1.0000 -1.0000 -0.3552 -1.0000 -0.8888 -1.0000 -1.0000 -1.0000 -1.0000

-0.7978(±0.2268) (±0.2211) (±0.0769) (±0.1151) (±0.0000) (±0.1371) (±0.0000) (±0.0000) (±0.2403) (±0.0000) (±0.1111) (±0.0000) (±0.0000) (±0.0000) (±0.0000)
DeepSeek-

R1 1
-0.8462 -1.0000 -1.0000 -1.0000 -1.0000 -0.8392 -1.0000 -1.0000 -1.0000 -0.6000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-0.9490(±0.1538) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.1090) (±0.0000) (±0.0000) (±0.0000) (±0.2651) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.0000)
DeepSeek-

R1 few
-0.5385 -0.2892 -1.0000 -0.7712 -1.0000 -1.0000 -1.0000 -1.0000 -0.6182 -0.8833 -1.0000 -1.0000 -0.5000 -1.0000 -1.0000

-0.8286(±0.2152) (±0.2607) (±0.0000) (±0.1618) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.2031) (±0.1167) (±0.0000) (±0.4999) (±0.0000) (±0.0000)

where c is the length of the generated text and r is the length of the reference text. Furthermore,247

n-gram precision pn is calculated as:248

pn =

∑
C∈Candidates

∑
ngram∈C min(Count(ngram in candidate),Count(ngram in references))∑

C∈Candidates
∑

ngram∈C Count(ngram in candidate)
.

2. Verification function: This function checks the syntax validation and the result correctness of the249

code produced by the language model. To be specific, we evaluate the result using three criteria:250

(a) QASM Syntax Verification: We first check the syntax of the QASM code provided by251

the model. The syntax verification function VQASM(q) is set to be 1 if the QASM syntax is252

correct, and 0 otherwise.253

(b) Python Syntax Verification: Similarly, the syntax of the post-processing Python code254

(which includes the run_and_analyze function), denoted Vcode(c), is set to be 1 if the Python255

syntax is correct, and 0 otherwise.256

(c) Execution and Evaluation: If at least one syntax check passes, we proceed to evaluating257

the functional correctness. For each test case t, we run the quantum circuit simulation for258

a number of shots M , and compare the result with the ground truth. The success rate is259

calculated as:260

acc =

∑T
t=1

∑M
m=1 I[result = ground-truth]

T ×M
.

The final verification score is a triplet (VQASM(q), Vcode(c), acc). In addition, all the verification261

functions were executed by classical simulations in our experiments, but the APIs we imple-262

mented are compatible with IBM hardware and can be easily adapted to quantum computers.263

3. Byte Perplexity: This metric evaluates the model’s ability to predict the next byte in a sequence.264

Formally, the Perplexity score is defined as:265

PPL(x) = 2−
1
N

∑N
i=1 log2 p(xi|x<i),

where p(xi|x<i) is the probability of the i-th byte xi given the preceding bytes x<i and N is the266

length of the byte sequence. Lower byte perplexity indicates better performance by reflecting the267

model’s predictive accuracy.268

The results for BLEU scores are shown in Figure 3. The verification scores of algorithm design tasks269

are shown in Table 1. We include the results of Byte Perplexity and the verification scores of oracle270

construction tasks in Appendix C.2.271

We observe the following phenomena from the results:272

• Most models achieve better scores in the few-shot setting than the 1-shot setting. This indicates273

their capability to learn effectively from contextual examples. Specifically, the score of tasks such274

as Deutsch-Jozsa were notably increased by 0.7108 after few-shot learning in the DeepSeek-R1275

model. However, all models struggle with more complicated algorithms such as Grover, phase276

estimation, and quantum Fourier transform, with a score increase of 0.2616 by the Llama3 model277

on phase estimation. This highlights the differences in task difficulty.278
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Figure 3: Benchmarking algorithm design and oracle construction tasks in BLEU scores.

• There exist challenges for near-term quantum algorithms. In particular, for the VQE and QAOA279

tasks, the models often fail to construct right parameterized circuits or apply optimization280

strategies correctly, with a score of at most -0.5000 by the DeepSeek-R1 model. This reflects the281

limitation of LLMs in handling hybrid quantum-classical workflows.282

• GPT-4o and GPT-3.5 consistently excel in long-context comprehension, significantly outperform-283

ing other models across tasks, which highlights their superior in-context learning capabilities. In284

contrast, DeepSeek-R1 underperforms due to its long-chain reasoning style, which often exceeds285

the context length before producing a complete and verifiable solution.286

• Although BLEU scores generally align with verification results, some discrepancies arise, such287

as the swap test showing relatively high BLEU scores but incorrect algorithm generation by most288

models. This observation emphasizes the need for complementary evaluation metrics such as our289

verification function.290

Types of Errors Made by LLMs. In Appendix C.3, we include several case studies to illustrate291

and analyze various types of errors made by LLMs. In particular, they can be summarized as follows:292

• Improvision error: GPT-4o tends to use advanced OpenQASM 3.0 features unsupported by293

Qiskit yet and novel namespace which might result in global conflicts in one-shot setting. This294

tendency to improvise by drawing on pre-trained knowledge rather than closely following the295

syntax of the example leads to avoidable "errors" and low verification scores. This issue is296

significantly alleviated in the 5-shot setting, highlighting GPT-4o’s strong in-context learning297

ability. A detailed case study is given in Appendix C.3.1.298

• Counting error: LLMs often fail to correctly identify the positions of ones in a binary string299

when constructing oracles for problems such as Bernstein-Vazirani. For instance, given the secret300

string s = 000101, GPT-4o misplaces the control qubits for CX gates, despite being explicitly301

reminded of the correct rule and asked to list the indices with value 1. This misidentification,302

likely due to tokenization issues, highlights a fundamental limitation of LLMs in performing303

basic indexing tasks. A detailed case study is given in Appendix C.3.2.304

• Data contamination: We observe a performance separation between writing general Qiskit codes305

and explicit gate-level circuits in QASM. Since Qiskit provides detailed tutorial with general306

codes for several algorithms, LLMs may rely on memorization and retrieval rather than genuine307

algorithm design. Our dataset, based on QASM files created from scratch, may help circumvent308

this issue and serve as a stable and fair method for benchmarking AI syntax learning. A detailed309

case study is given in Appendix C.3.3.310
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4.2 Fine-tuning on QCircuitBench311

Although QCircuitBench is targeted as a benchmark dataset at current stage, we consider fine-tuning312

/ training from scratch based on our dataset as an interesting and important research direction. The313

unique nature of quantum data requires novel fine-tuning methods and model architecture designs,314

which could serve as a standalone topic. For a primitive demonstration, we present fine-tuning results315

on data from the oracle construction task here.316

Following Dettmers et al. [2024], we quantize the model to 8-bits and then train it with LoRA [Hu317

et al., 2022]. In our experiments, we use fp16 computational datatype. We set LoRA r = 16, α = 32318

and add LoRA modules on all the query and value layers. We also use AdamW [Loshchilov and319

Hutter, 2019] and LoRA dropout of 0.05. The results are shown as follows:320

Table 2: Fine-tuning oracle construction scores.

Score Model Setting Bernstein-Vazirani Deutsch-Jozsa Grover Simon Clifford Universal Avg

BLEU

gpt4o few-shot(5) 95.6388 91.0564 92.0620 80.3390 39.5469 33.3673
72.0017(±0.3062) (±0.6650) (±0.6288) (±2.0900) (±3.6983) (±3.1007)

Llama3 few-shot(5) 53.5574 69.8996 61.3102 26.3083 13.0729 13.4185
39.5945(±5.2499) (±5.7812) (±5.4671) (±2.0048) (±0.9907) (±1.2299)

Llama3 finetune
76.0480 71.8378 67.7892 43.8469 10.8978 7.1854

46.2675(±7.9255) (±2.4179) (±7.8900) (±3.2998) (±0.6169) (±0.5009)

Verification

gpt4o few-shot(5) 0.0000 0.4300 0.0000 -0.0200 -0.0333 -0.1023
0.0457(±0.0246) (±0.0590) (±0.1005) (±0.0141) (±0.0401) (±0.0443)

Llama3 few-shot(5) -0.2700 0.0900 -0.5200 -0.6600 -0.7303 -0.5056
-0.4327(±0.0468) (±0.0668) (±0.0858) (±0.0476) (±0.0473) (±0.0549)

Llama3 finetune
-0.1300 -0.2000 -0.3300 -0.7400 -0.8741 -0.9342

-0.5347(±0.0485) (±0.0402) (±0.0900) (±0.0441) (±0.0343) (±0.0262)

PPL
Llama3 few-shot(5) 1.1967 1.1174 1.1527 1.1119 1.4486 1.4975

1.2541(±0.0028) (±0.0015) (±0.0021) (±0.0017) (±0.0054) (±0.0051)

Llama3 finetune
1.0004 1.1090 1.0010 1.1072 1.2944 1.3299

1.1403(±0.0002) (±0.0014) (±0.0006) (±0.0011) (±0.0053) (±0.0055)

We observe that the Llama3 model demonstrates the most notable improvement on Grover’s algorithm321

after fine-tuning, with the verification score increased by 0.3077. Case studies on the Bernstein-322

Vazirani oracle reveal that, before fine-tuning, the model would indiscriminately apply CX gates to323

all qubits. After fine-tuning, it begins to selectively apply CX gates to qubits corresponding to ‘1’s in324

the secret string. While some counting errors persist, the model occasionally identifies all correct325

positions, demonstrating a marked improvement. This suggests that fine-tuning enables the model to326

internalize structural patterns in oracle construction, leading to improved performance across tasks.327

Regarding the interesting performance decrease on Clifford and universal random circuits, we328

conducted additional experiments on temperature and refer to Appendix C.2 for more details.329

5 Conclusions and Future Work330

In this paper, we propose QCircuitBench, the first comprehensive, structured universal quantum331

algorithm dataset and quantum circuit generation benchmark for AI models. This framework formu-332

lates quantum algorithm design from the programming language perspective and includes detailed333

descriptions and implementation of most established and important quantum algorithms / primitives,334

allowing for automatic verification methodologies. Benchmarking of QCircuitBench on up-to-date335

LLMs is systematically conducted. Fine-tuning results also showcase the potential of QCircuitBench336

as a training dataset, and implementation of the Generalized Simon’s Problem mentioned in Sec-337

tion 3.1.2 showcases the compatibility of our framework with more complex algorithms. In addition,338

our framework is designed to scale with increasing qubit numbers and support complex quantum339

algorithms as long as they are efficiently implementable with polynomial gates.340

Our work leaves several open questions for future investigation:341

• QCircuitBench is a benchmarking dataset for LLMs. It is of general interest to extend bench-342

marking to training, which will help LLMs better maneuver quantum algorithm design. We have343

implemented advanced algorithms such as the Generalized Simon’s Problem, but this in general344

needs implementations of more advanced algorithms to make it impactful.345

• Since quantum algorithms have fundamental difference from classical algorithms, novel fine-346

tuning methods to attempt quantum algorithm design and quantum circuit implementation, or347

even developments of new quantum algorithms by LLMs are solicited.348
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NeurIPS Paper Checklist603

1. Claims604

Question: Do the main claims made in the abstract and introduction accurately reflect the605

paper’s contributions and scope?606

Answer: [Yes]607

Justification: The main claims accurately reflect the contributions and scope of the QCircuit-608

Bench dataset.609

Guidelines:610

• The answer NA means that the abstract and introduction do not include the claims611

made in the paper.612

• The abstract and/or introduction should clearly state the claims made, including the613

contributions made in the paper and important assumptions and limitations. A No or614

NA answer to this question will not be perceived well by the reviewers.615

• The claims made should match theoretical and experimental results, and reflect how616

much the results can be expected to generalize to other settings.617

• It is fine to include aspirational goals as motivation as long as it is clear that these goals618

are not attained by the paper.619

2. Limitations620

Question: Does the paper discuss the limitations of the work performed by the authors?621

Answer: [Yes]622

Justification: See Section 5623

Guidelines:624

• The answer NA means that the paper has no limitation while the answer No means that625

the paper has limitations, but those are not discussed in the paper.626

• The authors are encouraged to create a separate "Limitations" section in their paper.627

• The paper should point out any strong assumptions and how robust the results are to628

violations of these assumptions (e.g., independence assumptions, noiseless settings,629

model well-specification, asymptotic approximations only holding locally). The authors630

should reflect on how these assumptions might be violated in practice and what the631

implications would be.632

• The authors should reflect on the scope of the claims made, e.g., if the approach was633

only tested on a few datasets or with a few runs. In general, empirical results often634

depend on implicit assumptions, which should be articulated.635

• The authors should reflect on the factors that influence the performance of the approach.636

For example, a facial recognition algorithm may perform poorly when image resolution637

is low or images are taken in low lighting. Or a speech-to-text system might not be638

used reliably to provide closed captions for online lectures because it fails to handle639

technical jargon.640

• The authors should discuss the computational efficiency of the proposed algorithms641

and how they scale with dataset size.642

• If applicable, the authors should discuss possible limitations of their approach to643

address problems of privacy and fairness.644

• While the authors might fear that complete honesty about limitations might be used by645

reviewers as grounds for rejection, a worse outcome might be that reviewers discover646

limitations that aren’t acknowledged in the paper. The authors should use their best647

judgment and recognize that individual actions in favor of transparency play an impor-648

tant role in developing norms that preserve the integrity of the community. Reviewers649

will be specifically instructed to not penalize honesty concerning limitations.650

3. Theory assumptions and proofs651

Question: For each theoretical result, does the paper provide the full set of assumptions and652

a complete (and correct) proof?653

Answer: [NA]654
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Justification: We do not have theoretical results.655

Guidelines:656

• The answer NA means that the paper does not include theoretical results.657

• All the theorems, formulas, and proofs in the paper should be numbered and cross-658

referenced.659

• All assumptions should be clearly stated or referenced in the statement of any theorems.660

• The proofs can either appear in the main paper or the supplemental material, but if661

they appear in the supplemental material, the authors are encouraged to provide a short662

proof sketch to provide intuition.663

• Inversely, any informal proof provided in the core of the paper should be complemented664

by formal proofs provided in appendix or supplemental material.665

• Theorems and Lemmas that the proof relies upon should be properly referenced.666

4. Experimental result reproducibility667

Question: Does the paper fully disclose all the information needed to reproduce the main ex-668

perimental results of the paper to the extent that it affects the main claims and/or conclusions669

of the paper (regardless of whether the code and data are provided or not)?670

Answer: [Yes]671

Justification: See Section 4 and supplemental material.672

Guidelines:673

• The answer NA means that the paper does not include experiments.674

• If the paper includes experiments, a No answer to this question will not be perceived675

well by the reviewers: Making the paper reproducible is important, regardless of676

whether the code and data are provided or not.677

• If the contribution is a dataset and/or model, the authors should describe the steps taken678

to make their results reproducible or verifiable.679

• Depending on the contribution, reproducibility can be accomplished in various ways.680

For example, if the contribution is a novel architecture, describing the architecture fully681

might suffice, or if the contribution is a specific model and empirical evaluation, it may682

be necessary to either make it possible for others to replicate the model with the same683

dataset, or provide access to the model. In general. releasing code and data is often684

one good way to accomplish this, but reproducibility can also be provided via detailed685

instructions for how to replicate the results, access to a hosted model (e.g., in the case686

of a large language model), releasing of a model checkpoint, or other means that are687

appropriate to the research performed.688

• While NeurIPS does not require releasing code, the conference does require all submis-689

sions to provide some reasonable avenue for reproducibility, which may depend on the690

nature of the contribution. For example691

(a) If the contribution is primarily a new algorithm, the paper should make it clear how692

to reproduce that algorithm.693

(b) If the contribution is primarily a new model architecture, the paper should describe694

the architecture clearly and fully.695

(c) If the contribution is a new model (e.g., a large language model), then there should696

either be a way to access this model for reproducing the results or a way to reproduce697

the model (e.g., with an open-source dataset or instructions for how to construct698

the dataset).699

(d) We recognize that reproducibility may be tricky in some cases, in which case700

authors are welcome to describe the particular way they provide for reproducibility.701

In the case of closed-source models, it may be that access to the model is limited in702

some way (e.g., to registered users), but it should be possible for other researchers703

to have some path to reproducing or verifying the results.704

5. Open access to data and code705

Question: Does the paper provide open access to the data and code, with sufficient instruc-706

tions to faithfully reproduce the main experimental results, as described in supplemental707

material?708
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Answer: [Yes]709

Justification: See supplementary material.710

Guidelines:711

• The answer NA means that paper does not include experiments requiring code.712

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/713

public/guides/CodeSubmissionPolicy) for more details.714

• While we encourage the release of code and data, we understand that this might not be715

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not716

including code, unless this is central to the contribution (e.g., for a new open-source717

benchmark).718

• The instructions should contain the exact command and environment needed to run to719

reproduce the results. See the NeurIPS code and data submission guidelines (https:720

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.721

• The authors should provide instructions on data access and preparation, including how722

to access the raw data, preprocessed data, intermediate data, and generated data, etc.723

• The authors should provide scripts to reproduce all experimental results for the new724

proposed method and baselines. If only a subset of experiments are reproducible, they725

should state which ones are omitted from the script and why.726

• At submission time, to preserve anonymity, the authors should release anonymized727

versions (if applicable).728

• Providing as much information as possible in supplemental material (appended to the729

paper) is recommended, but including URLs to data and code is permitted.730

6. Experimental setting/details731

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-732

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the733

results?734

Answer: [Yes]735

Justification: See Section 4.736

Guidelines:737

• The answer NA means that the paper does not include experiments.738

• The experimental setting should be presented in the core of the paper to a level of detail739

that is necessary to appreciate the results and make sense of them.740

• The full details can be provided either with the code, in appendix, or as supplemental741

material.742

7. Experiment statistical significance743

Question: Does the paper report error bars suitably and correctly defined or other appropriate744

information about the statistical significance of the experiments?745

Answer: [Yes]746

Justification: See Section 4.747

Guidelines:748

• The answer NA means that the paper does not include experiments.749

• The authors should answer "Yes" if the results are accompanied by error bars, confi-750

dence intervals, or statistical significance tests, at least for the experiments that support751

the main claims of the paper.752

• The factors of variability that the error bars are capturing should be clearly stated (for753

example, train/test split, initialization, random drawing of some parameter, or overall754

run with given experimental conditions).755

• The method for calculating the error bars should be explained (closed form formula,756

call to a library function, bootstrap, etc.)757

• The assumptions made should be given (e.g., Normally distributed errors).758

• It should be clear whether the error bar is the standard deviation or the standard error759

of the mean.760
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• It is OK to report 1-sigma error bars, but one should state it. The authors should761

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis762

of Normality of errors is not verified.763

• For asymmetric distributions, the authors should be careful not to show in tables or764

figures symmetric error bars that would yield results that are out of range (e.g. negative765

error rates).766

• If error bars are reported in tables or plots, The authors should explain in the text how767

they were calculated and reference the corresponding figures or tables in the text.768

8. Experiments compute resources769

Question: For each experiment, does the paper provide sufficient information on the com-770

puter resources (type of compute workers, memory, time of execution) needed to reproduce771

the experiments?772

Answer: [Yes]773

Justification: See Section 4.774

Guidelines:775

• The answer NA means that the paper does not include experiments.776

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,777

or cloud provider, including relevant memory and storage.778

• The paper should provide the amount of compute required for each of the individual779

experimental runs as well as estimate the total compute.780

• The paper should disclose whether the full research project required more compute781

than the experiments reported in the paper (e.g., preliminary or failed experiments that782

didn’t make it into the paper).783

9. Code of ethics784

Question: Does the research conducted in the paper conform, in every respect, with the785

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?786

Answer: [Yes]787

Justification: The research conforms with the NeurIPS Code of Ethics.788

Guidelines:789

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.790

• If the authors answer No, they should explain the special circumstances that require a791

deviation from the Code of Ethics.792

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-793

eration due to laws or regulations in their jurisdiction).794

10. Broader impacts795

Question: Does the paper discuss both potential positive societal impacts and negative796

societal impacts of the work performed?797

Answer: [NA]798

Justification: Quantum computing is still a nascent technology at the moment. Therefore,799

our work does not have negative societal impacts from our perspective. In the future, we800

welieve that our dataset can be beneficial for quantum algorithm design and the field of801

quantum computing as a whole.802

Guidelines:803

• The answer NA means that there is no societal impact of the work performed.804

• If the authors answer NA or No, they should explain why their work has no societal805

impact or why the paper does not address societal impact.806

• Examples of negative societal impacts include potential malicious or unintended uses807

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations808

(e.g., deployment of technologies that could make decisions that unfairly impact specific809

groups), privacy considerations, and security considerations.810
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• The conference expects that many papers will be foundational research and not tied811

to particular applications, let alone deployments. However, if there is a direct path to812

any negative applications, the authors should point it out. For example, it is legitimate813

to point out that an improvement in the quality of generative models could be used to814

generate deepfakes for disinformation. On the other hand, it is not needed to point out815

that a generic algorithm for optimizing neural networks could enable people to train816

models that generate Deepfakes faster.817

• The authors should consider possible harms that could arise when the technology is818

being used as intended and functioning correctly, harms that could arise when the819

technology is being used as intended but gives incorrect results, and harms following820

from (intentional or unintentional) misuse of the technology.821

• If there are negative societal impacts, the authors could also discuss possible mitigation822

strategies (e.g., gated release of models, providing defenses in addition to attacks,823

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from824

feedback over time, improving the efficiency and accessibility of ML).825

11. Safeguards826

Question: Does the paper describe safeguards that have been put in place for responsible827

release of data or models that have a high risk for misuse (e.g., pretrained language models,828

image generators, or scraped datasets)?829

Answer: [NA]830

Justification: Our dataset contains purely quantum circuits and does not pose such risks.831

Guidelines:832

• The answer NA means that the paper poses no such risks.833

• Released models that have a high risk for misuse or dual-use should be released with834

necessary safeguards to allow for controlled use of the model, for example by requiring835

that users adhere to usage guidelines or restrictions to access the model or implementing836

safety filters.837

• Datasets that have been scraped from the Internet could pose safety risks. The authors838

should describe how they avoided releasing unsafe images.839

• We recognize that providing effective safeguards is challenging, and many papers do840

not require this, but we encourage authors to take this into account and make a best841

faith effort.842

12. Licenses for existing assets843

Question: Are the creators or original owners of assets (e.g., code, data, models), used in844

the paper, properly credited and are the license and terms of use explicitly mentioned and845

properly respected?846

Answer: [Yes]847

Justification: We cited Qiskit [Javadi-Abhari et al., 2024], OpenQASM [Cross et al., 2022],848

and QASMBench [Li et al., 2023] in our paper. The links of the aforementioned assets are849

given in reference.850

Guidelines:851

• The answer NA means that the paper does not use existing assets.852

• The authors should cite the original paper that produced the code package or dataset.853

• The authors should state which version of the asset is used and, if possible, include a854

URL.855

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.856

• For scraped data from a particular source (e.g., website), the copyright and terms of857

service of that source should be provided.858

• If assets are released, the license, copyright information, and terms of use in the859

package should be provided. For popular datasets, paperswithcode.com/datasets860

has curated licenses for some datasets. Their licensing guide can help determine the861

license of a dataset.862
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• For existing datasets that are re-packaged, both the original license and the license of863

the derived asset (if it has changed) should be provided.864

• If this information is not available online, the authors are encouraged to reach out to865

the asset’s creators.866

13. New assets867

Question: Are new assets introduced in the paper well documented and is the documentation868

provided alongside the assets?869

Answer: [Yes]870

Justification: See supplementary material.871

Guidelines:872

• The answer NA means that the paper does not release new assets.873

• Researchers should communicate the details of the dataset/code/model as part of their874

submissions via structured templates. This includes details about training, license,875

limitations, etc.876

• The paper should discuss whether and how consent was obtained from people whose877

asset is used.878

• At submission time, remember to anonymize your assets (if applicable). You can either879

create an anonymized URL or include an anonymized zip file.880

14. Crowdsourcing and research with human subjects881

Question: For crowdsourcing experiments and research with human subjects, does the paper882

include the full text of instructions given to participants and screenshots, if applicable, as883

well as details about compensation (if any)?884

Answer: [NA]885

Justification: Our paper does not involve crowdsourcing nor research with human subjects.886

Guidelines:887

• The answer NA means that the paper does not involve crowdsourcing nor research with888

human subjects.889

• Including this information in the supplemental material is fine, but if the main contribu-890

tion of the paper involves human subjects, then as much detail as possible should be891

included in the main paper.892

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,893

or other labor should be paid at least the minimum wage in the country of the data894

collector.895

15. Institutional review board (IRB) approvals or equivalent for research with human896

subjects897

Question: Does the paper describe potential risks incurred by study participants, whether898

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)899

approvals (or an equivalent approval/review based on the requirements of your country or900

institution) were obtained?901

Answer: [NA]902

Justification: Our paper does not involve crowdsourcing nor research with human subjects.903

Guidelines:904

• The answer NA means that the paper does not involve crowdsourcing nor research with905

human subjects.906

• Depending on the country in which research is conducted, IRB approval (or equivalent)907

may be required for any human subjects research. If you obtained IRB approval, you908

should clearly state this in the paper.909

• We recognize that the procedures for this may vary significantly between institutions910

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the911

guidelines for their institution.912

• For initial submissions, do not include any information that would break anonymity (if913

applicable), such as the institution conducting the review.914
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16. Declaration of LLM usage915

Question: Does the paper describe the usage of LLMs if it is an important, original, or916

non-standard component of the core methods in this research? Note that if the LLM is used917

only for writing, editing, or formatting purposes and does not impact the core methodology,918

scientific rigorousness, or originality of the research, declaration is not required.919

Answer: [Yes]920

Justification: LLMs are used for benchmarking. See Section 4.921

Guidelines:922

• The answer NA means that the core method development in this research does not923

involve LLMs as any important, original, or non-standard components.924

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)925

for what should or should not be described.926
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A Details of QCircuitBench927

The QCircuitBench Dataset, along with its Croissant metadata, is available on Harvard Dataverse at928

the following link: https://doi.org/10.7910/DVN/ZC4PNI929

QCircuitBench has the following directory structure:930

QCircuitBench
Oracle Construction ...................... All data for the oracle construction task

Quantum Logic Synthesis .................Textbook-level and advanced oracles
Problem Encoding .......................Oracles encoding application scenarios

Algorithm Design ....................All data for the quantum algorithm design task
Quantum Computing ....................Universal quantum computing algorithms
Quantum Information ..................Quantum information tasks and protocols

Random Circuits ......................All data for the random circuit synthesis task
Clifford ..............................Random circuits with the Clifford gate set
Universal ............................Random circuits with the universal gate set

In each subdirectory, there is a folder for each specific algorithm. For instance, the folder structure931

for Simon’s algorithm is as follows:932

Algorithm Design
Quantum Computing

simon .........................................All data for the Simon’s Problem
simon-dataset.py ...................................Dataset creation script
simon-generation.py ...............................Qiskit generation code
simon-post-processing.py ........................Post-processing function
simon-utils.py .............................Utility functions for verification
simon-verification.py ...............................Verification function
simon-description.txt ...............................Problem description
simon-verification.txt ............... Verification results of the data points
full circuit .................................Raw data of quantum circuits

simon-n2
simon-n2-s11-k11.qasm ..............Full circuit for a concrete setting

simon-n3
simon-n3-s011-k001.qasm
simon-n3-s011-k101.qasm

...
test oracle ....................................Extracted oracle definitions

n2
trial1

oracle.inc ..........................Oracle definition as a .inc file
oracle-info.txt ...........Oracle information (such as key strings)

n3
trial1

oracle.inc
oracle-info.txt

trial2
oracle.inc
oracle-info.txt

...
simon-n2.qasm ...........................Algorithm circuit for model output
simon-n3.qasm
...

We expect to extend QCircuitBench under this general structure.933

A.1 Format934

In this subsection, we provide concrete examples to illustrate the different components of QCir-935

cuitBench. We use the case of Simon’s Problem throughout the demonstration to achieve better936

consistency. For further details, please check the code repository.937
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1. Problem Description: this is the carefully hand-crafted description of the task in natural language938

and latex math formulas. The description is provided as one template for each algorithm, and the939

concrete settings (such as the qubit number) are replaced when creating the data points in json.940

The file is named as "{algorithm_name}_description.txt".941

Problem Description Template for Simon’s Problem

Given a black box function f : {0, 1}n 7−→ {0, 1}n. The function is guaranteed to be
a two-to-one mapping according to a secret string s ∈ {0, 1}n, s ̸= 0n, where given
x1 ̸= x2, f(x1) = f(x2) ⇐⇒ x1 ⊕ x2 = s. Please design a quantum algorithm
to find s. The function is provided as a black-box oracle gate named "Oracle" in the
"oracle.inc" file which operates as Of |x⟩ |y⟩ = |x⟩ |y ⊕ f(x)⟩. The input qubits |x⟩ are
indexed from 0 to n−1, and the output qubits |f(x)⟩ are indexed from n to 2n−1. Please
provide the following components for the algorithm design with n ={qubit number}:
1. the corresponding quantum circuit implementation with {QASM / Qiskit}. 2. the
post-processing code run_and_analyze(circuit, aer_sim) in python which simulates the
circuit (QuantumCircuit) with aer_sim (AerSimulator) and returns the secret string s
according to the simulation results.

942

2. Generation Code: one general Qiskit code to create quantum circuits of different settings. Note943

that the oracle for the problem is provided as a black-box gate "oracle" here. This code is used to944

generate the raw data, but can also be used as a testing benchmark for writing Qiskit codes. The945

file is named as "{algorithm_name}_generation.py".946

947
from Qiskit import QuantumCircuit948

949

950

def simon_algorithm(n, oracle):951

""" Generates a Simon algorithm circuit.952

953

Parameters:954

- n (int): number of qubits955

- s (str): the secret string of length n956

957

Returns:958

- QuantumCircuit: the Simon algorithm circuit959

"""960

# Create a quantum circuit on 2n qubits961

simon_circuit = QuantumCircuit (2 * n, n)962

963

# Initialize the first register to the |+> state964

simon_circuit.h(range(n))965

966

# Append the Simon’s oracle967

simon_circuit.append(oracle , range (2 * n))968

969

# Apply a H-gate to the first register970

simon_circuit.h(range(n))971

972

# Measure the first register973

simon_circuit.measure(range(n), range(n))974

975

return simon_circuit976977

Listing 1: Qiskit generation code for Simon’s algorithm.

3. Algorithm Circuit: the OpenQASM 3.0 format file storing the quantum circuit in gate level for978

each specific setting. Note that the explicit construction of "Oracle" is provided separately in979

"oracle.inc" file, which guarantees the usage of oracle in a black-box way. This filed is named as980

"{algorithm_name}_n{qubit_number}.qasm".981

982
OPENQASM 3.0;983

include "stdgates.inc";984
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include "oracle.inc";985

bit [3] c;986

qubit [6] q;987

h q[0];988

h q[1];989

h q[2];990

Oracle q[0], q[1], q[2], q[3], q[4], q[5];991

h q[0];992

h q[1];993

h q[2];994

c[0] = measure q[0];995

c[1] = measure q[1];996

c[2] = measure q[2];997998

Listing 2: OpenQASM 3.0 Code for Simon’s algorithm with n = 3.

4. Post-Processing Function: this function simulates the quantum circuit and derives the final999

answer to the problem. The file is named as "{algorithm_name}_post_processing.py".1000

1001
from sympy import Matrix1002

import numpy as np1003

from Qiskit import transpile1004

1005

1006

def mod2(x):1007

return x.as_numer_denom ()[0] % 21008

1009

1010

def solve_equation(string_list):1011

"""1012

A^T | I1013

after the row echelon reduction , we can get the basis of the1014

↪→ nullspace of A in I1015

since we just need the string in binary form , so we can just1016

↪→ use the basis1017

if row == n-1 --> only one1018

if row < n-1 --> get the first one (maybe correct or wrong)1019

"""1020

M = Matrix(string_list).T1021

1022

# Augmented : M | I1023

M_I = Matrix(np.hstack ([M, np.eye(M.shape[0], dtype=int)]))1024

1025

# RREF row echelon form , indices of the pivot columns1026

# If x % 2 = 0, it will not be chosen as pivot (modulo 2)1027

M_I_rref = M_I.rref(iszerofunc=lambda x: x % 2 == 0)1028

1029

# Modulo 21030

M_I_final = M_I_rref [0]. applyfunc(mod2)1031

1032

# Non -Trivial solution1033

if all(value == 0 for value in M_I_final[-1, : M.shape [1]]):1034

result_s = "".join(str(c) for c in M_I_final[-1, M.shape [1]1035

↪→ :])1036

1037

# Trivial solution1038

else:1039

result_s = "0" * M.shape [0]1040

1041

return result_s1042

1043

1044

def run_and_analyze(circuit , aer_sim):1045

n = circuit.num_qubits // 21046

circ = transpile(circuit , aer_sim)1047
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results = aer_sim.run(circ , shots=n).result ()1048

counts = results.get_counts ()1049

equations = []1050

for result , count in counts.items():1051

if result != "0" * n: # We don’t use all 0 string1052

y = [int(bit) for bit in result]1053

equations.append(y)1054

if len(equations) == 0:1055

prediction = "0" * n1056

else:1057

prediction = solve_equation(equations)1058

return prediction10591060

Listing 3: Post-processing code for Simon’s algorithm.

5. Oracle / Gate Definition: this .inc file provides the definitions of composite gates or oracles. The1061

file is named "customgates.inc" for oracle construction tasks and "oracle.inc" for algorithm design1062

tasks.1063

1064
gate Oracle _gate_q_0 , _gate_q_1 , _gate_q_2 , _gate_q_3 , _gate_q_4 ,1065

↪→ _gate_q_5 {1066

cx _gate_q_0 , _gate_q_3;1067

cx _gate_q_1 , _gate_q_4;1068

cx _gate_q_2 , _gate_q_5;1069

cx _gate_q_2 , _gate_q_5;1070

x _gate_q_3;1071

}10721073

Listing 4: One test case oracle for Simon’s algorithm with n = 3.

For algorithm design tasks, this .inc file is accompanied with an "oracle_info.txt" file to describe1074

the encoded information of the oracle. This helps the verification function to check the correctness1075

of the derived answer by the model. The above test case is equipped with the following information1076

text:1077

oracle_info.txt for Simon’s Problem with qubit number 3 and test case 2.

Secret string: 100
Key string: 001

1078

6. Verification Function: the function to evaluate the output with grammar validation and test cases1079

verification. The file is named as "{algorithm_name}_verification.py".1080

1081
from simon_utils import *1082

1083

1084

def check_model(qasm_string , code_string , n):1085

""" Check the Simon model."""1086

# Verify the syntax of the QASM code with the first test case1087

↪→ oracle1088

t = 11089

with open(f"test_oracle/n{n}/trial{t}/ oracle.inc", "r") as file1090

↪→ :1091

oracle_def = file.read()1092

full_qasm = plug_in_oracle(qasm_string , oracle_def)1093

circuit = verify_qasm_syntax(full_qasm)1094

if circuit is None:1095

return -11096

try:1097

exec(code_string , globals ())1098

aer_sim = AerSimulator ()1099

total_success = 01100

total_fail = 01101

t_range = min(10, 4 ** (n - 2))1102
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shots = 101103

for t in range(1, 1 + t_range):1104

print(f" Running Test Case {t}")1105

with open(f"test_oracle/n{n}/trial{t}/ oracle.inc", "r")1106

↪→ as file:1107

oracle_def = file.read()1108

full_qasm = plug_in_oracle(qasm_string , oracle_def)1109

circuit = loads(full_qasm)1110

with open(f"test_oracle/n{n}/trial{t}/ oracle_info.txt",1111

↪→ "r") as file:1112

content = file.read()1113

match = re.search(r"Secret string: ([01]+)", content)1114

if match:1115

secret_string = match.group (1)1116

else:1117

raise ValueError("Secret string not found in the1118

↪→ file.")1119

1120

cnt_success = 01121

cnt_fail = 01122

for shot in range(shots):1123

prediction = run_and_analyze(circuit.copy(),1124

↪→ aer_sim)1125

if not isinstance(prediction , str):1126

raise TypeError("Predicted secret string should1127

↪→ be a string.")1128

if prediction == secret_string:1129

cnt_success += 11130

else:1131

cnt_fail += 11132

print(f" Success: {cnt_success }/{ shots}, Fail: {1133

↪→ cnt_fail }/{ shots}")1134

total_success += cnt_success1135

total_fail += cnt_fail1136

print(f"Total Success: {total_success }; Total Fail: {1137

↪→ total_fail}")1138

return total_success / (total_fail + total_success)1139

1140

except Exception as e:1141

print(f"Error: {e}")1142

return -111431144

Listing 5: Verification function for Simon’s algorithm.

This verification function is accompanied with an "{algorithm_name}_utils.py" file to provide1145

necessary utility functions.1146

1147
from Qiskit.qasm3 import loads1148

from Qiskit_aer import AerSimulator1149

import re1150

1151

1152

def print_and_save(message , text):1153

print(message)1154

text.append(message)1155

1156

1157

def plug_in_oracle(qasm_code , oracle_def):1158

"""Plug -in the oracle definition into the QASM code."""1159

oracle_pos = qasm_code.find(’include "oracle.inc";’)1160

if oracle_pos == -1:1161

raise ValueError("Oracle include statement not found in the1162

↪→ file")1163

full_qasm = (1164

qasm_code [: oracle_pos]1165

26



+ oracle_def1166

+ qasm_code[oracle_pos + len(’include "oracle.inc";’) :]1167

)1168

return full_qasm1169

1170

1171

def verify_qasm_syntax(output):1172

""" Verify the syntax of the output and return the corresponding1173

↪→ QuantumCircuit (if it is valid)."""1174

assert isinstance(output , str)1175

try:1176

# Parse the OpenQASM 3.0 code1177

circuit = loads(output)1178

print(1179

" The OpenQASM 3.0 code is valid and has been1180

↪→ successfully loaded as a QuantumCircuit."1181

)1182

return circuit1183

except Exception as e:1184

print(f" Error: The OpenQASM 3.0 code is not valid.1185

↪→ Details: {e}")1186

return None11871188

Listing 6: Utility functions for verification of Simon’s algorithm.

7. Dataset Creation Script: this script involves all the code necessary to create the data points from1189

scratch. The file is named as "{algorithm_name}_dataset.py". The main function looks like this:1190

1191
def main():1192

parser = argparse.ArgumentParser ()1193

parser.add_argument(1194

"-f",1195

"--func",1196

choices =["qasm", "json", "gate", "check"],1197

help="The function to call: generate qasm circuit , json1198

↪→ dataset or extract gate definition.",1199

)1200

args = parser.parse_args ()1201

if args.func == "qasm":1202

generate_circuit_qasm ()1203

elif args.func == "json":1204

generate_dataset_json ()1205

elif args.func == "gate":1206

extract_gate_definition ()1207

elif args.func == "check":1208

check_dataset ()12091210

Listing 7: Main function of the dataset script for Simon’s algorithm.

Here the "generate_circuit_qasm()" function generates the raw data of quantum circuits in Open-1211

QASM 3.0 format where the algorithm circuit and the oracle definition are blended, then "ex-1212

tract_gate_definition()" function extracts the definition of oracles and formulates the algorithm1213

circuits into the format suitable for model output. The "check_dataset()" function is used to check1214

the correctness of the created data points and "generate_dataset_json()" function to combine the1215

data into json format for easy integration with the benchmarking pipeline.1216

A.2 Discussion of more tasks1217

Problem Encoding. In Section 3.1.1, we mentioned another category of oracle construction tasks1218

referred to as "Problem Encoding", which involves applying quantum algorithms, such as Grover’s1219

algorithm, to solve practical problems such as SAT and triangle finding. The crux of this process1220

is encoding the problem constraints into Grover’s oracle, thereby making this a type of oracle1221

construction task. Unlike quantum logic synthesis, which encodes an explicit function f(x) as a1222

unitary operator Uf , this task involves converting the constraints of a particular problem into the1223
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required oracle form. We provide implementations of several concrete problems in this directory as1224

demonstrations and will include more applications in future work.1225

Quantum Information Protocols. In Section 3.1.2, we have also implemented three important1226

quantum information protocols: Quantum Teleportation, Superdense Coding, and Quantum Key1227

Distribution (BB84). A brief introduction to these protocols can be found in Appendix B. We did1228

not include the experiments for these protocols as they involve communication between two parties,1229

which is challenging to characterize with a single OpenQASM 3.0 file. We recommend revising the1230

post-processing function as a general classical function to schedule the communication and processing1231

between different parties specifically for these protocols. The fundamental quantum circuits and1232

processing codes are provided in the repository.1233

A.3 Datasheet1234

Here we present a datasheet for the documentation of QCircuitBench.1235

Motivation1236

• For what purpose was the dataset created? It was created as a benchmark for the capability of1237

designing and implementing quantum algorithms for LLMs.1238

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,1239

company, institution, organization)? The authors of this paper.1240

• Who funded the creation of the dataset? We will reveal the funding resources in the Acknowledge-1241

ment section of the final version.1242

Composition1243

• What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-1244

tries)? The dataset comprises problem description, generation code, algorithm circuit, post-1245

processing function, oracle / gate definition, verification function, and dataset creation script for1246

various quantum algorithms.1247

• How many instances are there in total (of each type, if appropriate)? The dataset has 3 task suites,1248

23 algorithms, and 128,573 data points. There are additional quantum information protocols and1249

problem encoding tasks not included for experiments.1250

• Does the dataset contain all possible instances or is it a sample (not necessarily random) of1251

instances from a larger set? The dataset contains instances with restricted qubit numbers due to the1252

current scale of real quantum hardware.1253

• What data does each instance consist of? Qiskit codes, OpenQASM 3.0 codes, python scripts, and1254

necessary text information.1255

• Are relationships between individual instances made explicit? Yes, the way to create different1256

instances are clearly described in Appendix A.1.1257

• Are there recommended data splits? Yes, we recommend splitting the data according to different1258

algorithms in algorithm design task.1259

• Are there any errors, sources of noise, or redundancies in the dataset? There might be some small1260

issues due to the dumping process of Qiskit and programming mistakes (if any).1261

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,1262

tweets, other datasets)? The dataset is self-contained.1263

• Does the dataset contain data that might be considered confidential (e.g., data that is protected by1264

legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’1265

non-public communications)? No.1266

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or1267

might otherwise cause anxiety? No.1268
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Collection Process1269

• How was the data associated with each instance acquired? The data is created by first com-1270

posing Qiskit codes for each algorithm and then converting to OpenQASM 3.0 files using1271

Qiskit.qasm3.dump function, with additional processing procedure.1272

• What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or1273

sensors, manual human curation, software programs, software APIs)? Manual human programming1274

and Qiskit APIs.1275

• Who was involved in the data collection process (e.g., students, crowd workers, contractors), and1276

how were they compensated (e.g., how much were crowd workers paid)? Nobody other than the1277

authors of the paper.1278

• Over what timeframe was the data collected? The submitted version of the dataset was created in1279

May 2025.1280

Uses1281

• Has the dataset been used for any tasks already? It has been used in this paper to benchmark1282

LLM’s ability for quantum algorithm design.1283

• Is there a repository that links to any or all papers or systems that use the dataset? The only paper1284

which uses the dataset for now is this paper.1285

Distribution1286

• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,1287

organization) on behalf of which the dataset was created? Yes, the dataset will be made publicly1288

available on the Internet after the review process.1289

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? It will be distributed1290

on the GitHub platform.1291

• Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or1292

under applicable terms of use (ToU)? The dataset is distributed under CC BY 4.0.1293

• Have any third parties imposed IP-based or other restrictions on the data associated with the1294

instances? No.1295

• Do any export controls or other regulatory restrictions apply to the dataset or to individual1296

instances? No.1297

Maintenance1298

• Who will be supporting/hosting/maintaining the dataset? The authors of this paper.1299

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The email1300

for contact will be provided after the review process.1301

• Is there an erratum? Not at this time.1302

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?1303

Yes, it will be continually updated.1304

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them1305

to do so? Yes, they can do so with the GitHub platform.1306

A.4 Copyright and Licensing Terms1307

This work is distributed under a CC BY 4.0 license. The implementation of the code references1308

open-source projects such as Qiskit, QuantumKatas, Cirq, and NWQBench. We bear responsibility1309

in case of violation of rights.1310
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B Preliminaries for Quantum Computing and Quantum Information1311

In this section, we will introduce necessary backgrounds for quantum computing related to this paper.1312

A more detailed introduction to quantum computing can be found in the standard textbook by Nielsen1313

and Chuang [2000].1314

Quantum States. In classical computing, the basic unit is a bit. In quantum computing, the basic1315

unit is a qubit. Mathematically, n (n ∈ N) qubits forms an N -dimensional Hilbert space for N = 2n.1316

An n-qubit quantum state |ϕ⟩ can be written as1317

|ϕ⟩ =
N−1∑
i=0

αi|i⟩, where
N−1∑
i=0

|αi|2 = 1. (1)

Here |·⟩ represents a column vector, also known as a ket state. The tensor product of two quantum1318

states |ϕ1⟩ =
∑N−1

i=0 αi|i⟩ and |ϕ2⟩ =
∑M−1

j=0 βj |j⟩ with M = 2m, m ∈ N is defined as1319

|ϕ1⟩ ⊗ |ϕ2⟩ =
N−1∑
i=0

M−1∑
j=0

αiβj |i, j⟩, (2)

where |i, j⟩ is an (n+m)-qubit state with first n qubits being the state |i⟩ and the last m qubits being1320

the state |j⟩. When there is no ambiguity, |ϕ1⟩ ⊗ |ϕ2⟩ can be abbreviated as |ϕ1⟩|ϕ2⟩.1321

Quantum Oracles. To study a Boolean function f : {0, 1}n → {0, 1}m, we need to gain its access.1322

Classically, a standard setting is to being able to query the function, in the sense that if we input an1323

x ∈ {0, 1}n, we will get the output f(x) ∈ {0, 1}m. In quantum computing, the counterpart is a1324

quantum query, which is instantiated by a quantum oracle. Specifically, the function f is encoded as1325

an oracle Uf such that for any x ∈ {0, 1}n, z ∈ {0, 1}m,1326

Uf |x⟩|z⟩ = |x⟩|z ⊕ f(x)⟩, (3)

where ⊕ is the plus modulo 2. Note that a quantum query to the oracle is stronger than a classical1327

query in the sense that the quantum query can be applied to a state in superposition: For an input1328

state
∑

i ci|xi⟩|zi⟩ with
∑

i |ci|2 = 1, the output state is
∑

i ci|xi⟩|zi ⊕ f(xi)⟩; measuring this state1329

gives xi and zi ⊕ f(xi) with probability |ci|2. A classical query for x can be regarded as the special1330

setting with c1 = 1, x1 = x, z1 = 0m, and ci = 0 for all other i.1331

Quantum Gates. Similar to classical computing that can stem from logic synthesis with AND, OR,1332

and NOT, quantum computing is also composed of basic quantum gates. For instance, the Hadamard1333

H is the matrix 1√
2

[
1 1
1 −1

]
, satisfying H|0⟩ = 1√

2
(|0⟩ + |1⟩) and H|1⟩ = 1√

2
(|0⟩ − |1⟩). In1334

general, an n-qubit quantum gate is a unitary matrix from C2n×2n .1335

Quantum Circuit Diagram. A quantum algorithm is composed of a series of quantum gates. By1336

default, a quantum algorithm starts from the all-0 state |0n⟩. A quantum algorithm can be illustrated1337

by its quantum gate diagram, drawn from left to right. The initial all-0 state is placed at the left side1338

of the diagram. After that, whenever we apply a quantum gate, it is placed on the corresponding1339

qubits, from left to right. At the end of the quantum gates, we need to measure and read the outputs,1340

and these measurements are placed at the right side of the diagram. See Figure 4 for the quantum1341

gate diagram of Simon’s algorithm [Simon, 1997].1342

Superdense Coding. Superdense coding [Bennett and Wiesner, 1992] is a quantum communication1343

protocol that allows Alice to transmit two classical bits of information to Bob by sending only one1344

qubit, given that they share a pair of entangled qubits. The protocol can be divided into five steps:1345

1. Preparation: Charlie prepares a maximally entangled Bell state, such as |β00⟩ = 1√
2
(|00⟩+1346

|11⟩).1347

2. Sharing: Charlie sends the qubit 1 to Alice and the qubit 2 to Bob. Alice and Bob can be1348

separated by an arbitrary distance.1349
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|0⟩

Figure 4: Quantum gate diagram of Simon’s algorithm.

|0⟩ H • ZzXx • H

|0⟩

Figure 5: Quantum circuit diagram for superdense coding.

3. Encoding: Depending on the two classical bits zx ∈ {00, 01, 10, 11} that Alice wants to1350

send, she applies the corresponding quantum gate operation to her qubit, transforming the1351

Bell state |β00⟩ into one of the four Bell states:1352

|β00⟩ =
1√
2
(|00⟩+ |11⟩) if zx = 00

|β01⟩ =
1√
2
(|01⟩+ |10⟩) if zx = 01

|β10⟩ =
1√
2
(|00⟩ − |11⟩) if zx = 10

|β11⟩ =
1√
2
(|01⟩ − |10⟩) if zx = 11

Alice achieves these transformations by applying the operation ZzXx to her qubit, where Z1353

is the phase-flip gate, X is the bit-flip gate. Specifically:1354

• If zx = 00, Alice applies Z0X0 = I (identity gate).1355

• If zx = 01, Alice applies Z0X1 = X (bit-flip gate).1356

• If zx = 10, Alice applies Z1X0 = Z (phase-flip gate).1357

• If zx = 11, Alice applies Z1X1 = ZX = iY gate.1358

4. Sending: Alice sends her qubit to Bob through a quantum channel.1359

5. Decoding: Bob applies a CNOT gate followed by a Hadamard gate to the two qubits,1360

transforming the entangled state into the corresponding computational basis state |zx⟩. By1361

measuring the qubits, Bob obtains the two classical bits zx sent by Alice.1362

Superdense coding exploits the properties of quantum entanglement to transmit two classical bits of1363

information using only one qubit. The quantum circuit diagram for superdense coding is shown in1364

Figure 5.1365

Quantum Teleportation. Quantum teleportation [Bennett et al., 1993] is a technique for transfer-1366

ring quantum information from a sender (Alice) to a receiver (Bob) using shared entanglement and1367

classical communication. The protocol can be described as follows:1368

1. Preparation: Telamon prepares a maximally entangled Bell state, such as |β00⟩ =1369
1√
2
(|00⟩+ |11⟩).1370
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|ψ⟩ • H •

|β00⟩A •

|β00⟩B Xx Zz

Figure 6: Quantum circuit diagram for quantum teleportation.

2. Sharing: Alice has qubit 1 in the state |ψ⟩ = α|0⟩+ β|1⟩, which she wants to teleport to1371

Bob. Telamon shares qubit 2 with Alice and qubit 3 with Bob, creating the shared entangled1372

state |β00⟩23.1373

3. Encoding: Alice wants to teleport an unknown quantum state |ψ⟩ = α|0⟩+ β|1⟩ to Bob.1374

She applies a CNOT gate to qubits 1 and 2, with qubit 1 as the control and qubit 2 as the1375

target. Then, she applies a Hadamard gate to qubit 1. The resulting state of the three-qubit1376

system is:1377

|Ψ⟩ = 1

2
[|β00⟩(α|0⟩+ β|1⟩) + |β01⟩(α|1⟩+ β|0⟩)

+ |β10⟩(α|0⟩ − β|1⟩) + |β11⟩(α|1⟩ − β|0⟩)].

4. Measurement: Alice measures qubits 1 and 2 in the Bell basis and obtains one of four1378

possible outcomes: |β00⟩, |β01⟩, |β10⟩, or |β11⟩. This measurement collapses the three-qubit1379

state into one of the following:1380

|β00⟩ ⊗ (α|0⟩+ β|1⟩)
|β01⟩ ⊗ (α|1⟩+ β|0⟩)
|β10⟩ ⊗ (α|0⟩ − β|1⟩)
|β11⟩ ⊗ (α|1⟩ − β|0⟩)

5. Classical Communication: Alice sends the result of her measurement (two classical bits)1381

to Bob via a classical channel.1382

6. Reconstruction: Depending on the classical information received from Alice, Bob applies1383

the operation ZzXx to qubit 3, where z and x correspond to the two classical bits sent by1384

Alice:1385

• If Alice measured |β00⟩, she sends zx = 00, and Bob applies Z0X0 = I (identity1386

operation).1387

• If Alice measured |β01⟩, she sends zx = 01, and Bob applies Z0X1 = X (bit-flip).1388

• If Alice measured |β10⟩, she sends zx = 10, and Bob applies Z1X0 = Z (phase-flip).1389

• If Alice measured |β11⟩, she sends zx = 11, and Bob applies Z1X1 = ZX = iY1390

(bit-flip and phase-flip).1391

After applying the appropriate operation, Bob’s qubit 3 will be in the state |ψ⟩ = α|0⟩+β|1⟩,1392

which is the original state that Alice wanted to teleport.1393

The quantum circuit diagram for quantum teleportation is shown in Figure 6.1394

Quantum Key Distribution. Quantum key distribution (QKD) [Bennett and Brassard, 1984] is a1395

secure communication protocol that allows two parties, Alice and Bob, to produce a shared random1396

secret key, which can then be used to encrypt and decrypt messages. The security of QKD is based1397

on the fundamental principles of quantum mechanics that measuring a qubit can change its state. One1398

of the most well-known QKD protocols is the BB84 protocol, which works as follows:1399

1. Alice randomly generates a bit string and chooses a random basis (X or Z) for each bit. She1400

then encodes the bits into qubits using the chosen bases and sends them to Bob through a1401

quantum channel.1402

2. Bob measures the received qubits in randomly chosen bases (X or Z) and records the results.1403
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3. Alice and Bob communicate over a public classical channel to compare their basis choices.1404

They keep only the bits for which their basis choices coincide and discard the rest.1405

4. Alice and Bob randomly select a subset of the remaining bits and compare their values. If1406

the error rate is below a certain threshold, they conclude that no eavesdropping has occurred,1407

and the remaining bits can be used as a secret key. If the error rate is too high, they abort the1408

protocol, as it indicates the presence of an eavesdropper (Eve).1409

The security of the BB84 protocol relies on the fact that any attempt by Eve to measure the qubits1410

during transmission will introduce detectable errors, alerting Alice and Bob to the presence of an1411

eavesdropper.1412

C Additional Experiment Results1413

In this section, we include detailed analysis of the experiments and additional experiment results.1414

In Section C.1, we introduce the metrics: BLEU score, verification score, and byte perplexity, and1415

provide a detailed analysis for the experiments on BLEU and verification score. In Section C.2, we1416

include additional experimental results. In Section C.3, we present concrete cases of typical patterns1417

observed in model outputs.1418

C.1 Metrics1419

BLEU Score. Bilingual Evaluation Understudy (BLEU) score is a metric used to evaluate the1420

quality of machine-translated text compared to human-translated text. It measures how close the1421

machine translation is to one or more reference translations. The BLEU score evaluates the quality1422

of text generated by comparing it with one or more reference texts. It does this by calculating the1423

n-gram precision, which means it looks at the overlap of n-grams (contiguous sequences of n words)1424

between the generated text and the reference text. Originally the BLEU score ranges from 0 to 1,1425

where 1 indicates a perfect match with the reference translations. Here rescaling the score makes it1426

ranges from 0 to 100.1427

The BLEU score, originally designed for machine translation, can also be effectively used for1428

evaluating algorithm generation tasks. Just as BLEU measures the similarity between machine-1429

translated text and human reference translations, it can measure the similarity between a generated1430

algorithm and a gold-standard algorithm. This involves comparing sequences of tokens to assess how1431

closely the generated output matches the reference solution. In the context of algorithm generation, n-1432

grams can represent sequences of tokens or operations in the code. BLEU score captures the precision1433

of these n-grams, ensuring that the generated code aligns closely with the expected sequences found1434

in the reference implementation.1435

The formula for BLEU score is given by:1436

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
.

where BP is the acronym for brevity penalty, wn is the weight for the n-gram precision (typically 1
N1437

for uniform weights), pn is the precision for n-grams. BP is calculated as:1438

BP =

{
1 if c > r

e1−
r
c if c ≤ r

.

where c is the length of the generated text and r is the length of the reference text. Furthermore,1439

n-gram precision pn is calculated as:1440

pn =

∑
C∈Candidates

∑
n−gram∈C min(Count(n− gram in candidate),Count(n− gram in references))∑

C∈Candidates
∑

n−gram∈C Count(n− gram in candidate)
.

This formulation ensures that the BLEU score takes into account both the precision of the generated1441

n-grams and the overall length of the translation, providing a balanced evaluation metric.1442
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In our experiments, the BLEU scores for various quantum algorithm design tasks are illustrated1443

in Figure 3(a). This figure not only displays the average performance of each model but also1444

highlights the differences in performance across individual quantum algorithm tasks. The first notable1445

observation is that the figure clearly demonstrates the varying levels of difficulty among quantum1446

algorithms. For example, models achieve higher BLEU scores on tasks such as Bernstein-Vazirani1447

and Deutsch-Jozsa, whereas they perform significantly worse on tasks like Grover, phase estimation,1448

and quantum Fourier transform. This indicates that the former tasks are considerably easier than1449

the latter ones. Another significant observation is that most models score higher in a five-shot1450

prompt compared to a one-shot prompt, which confirms the large language models’ ability to improve1451

performance through contextual learning.1452

Similar patterns are observed in oracle construction tasks, as illustrated in Figure 3(b). The figure1453

highlights that the Diffusion Operator task is notably more challenging than the Grover oracle1454

construction task. Interestingly, we found that adding more in-context examples actually reduced1455

the performance of the Qwen 2.5 and DeepSeek-R1 models. This decline in performance could be1456

attributed to the significant differences between each oracle construction task, which may be too1457

out-of-distribution. Consequently, the additional examples might cause the models to overfit to the1458

specific examples provided in the context, rather than generalizing well across different tasks.1459

Detailed Analysis of Verification Score. In addition to evaluating the BLEU score, we conducted1460

an experiment to measure the correctness of the machine-generated algorithms, and the results are1461

shown in Table 1. By running a verification function, we discovered that phase estimation and the1462

swap test are significantly more challenging than other problems, leading most models to score -11463

(indicating they cannot even generate the correct syntax). Notably, the BLEU score for the swap test1464

is above average compared to other algorithms, yet almost none of the models produced a correct1465

algorithm. This discrepancy highlights a critical limitation of using BLEU as a metric for algorithm1466

evaluation. BLEU measures average similarity, but even a single mistake in an algorithm can render1467

it entirely incorrect, thus failing to capture the true accuracy and functionality of the generated1468

algorithms. Another important finding is that in a five-shot setting, GPT-4 and GPT-3.5 surpass all1469

other models by a large margin. This demonstrates their exceptional capabilities, particularly in1470

long-context comprehension and in-context learning. These models not only excel in understanding1471

and generating text based on minimal examples but also maintain high performance over extended1472

sequences, highlighting their advanced architecture and training methodologies.1473

As variational algorithms with parametric quantum circuits, VQE and QAOA require specifically1474

designed metrics. For VQE, we compare the energy obtained from the machine-generated ansatz1475

with the ground truth and compute a correctness score as follows:1476

1−
|ELLM − Eexpected|

|Eexpected|
(4)

This ratio-based metric is used because VQE optimizes in a continuous space, where solutions are1477

approximations rather than exact values. In contrast, for QAOA, when applied to solving the MaxCut1478

problem in a discrete space, is directly evaluated against the ground truth partition, with 0 or 11479

correctness score.1480

Since quantum algorithms based on parametric quantum circuits often share a common structure in1481

their variational optimization process, a refined verification function is required to evaluate both the1482

quantum ansatz and its associated classical optimization step. Therefore, the final verification score1483

is decomposed into two components: one for the quantum circuit (QASM) generation and another1484

for the optimization code (Python implementation). The evaluation criteria are as follows:1485

• QASM Syntax Check:1486

– If the machine-generated QASM contains syntax errors, the score is −1.1487

• Optimization Code Check:1488

– If the QASM is valid but the Python code has syntax errors, the QASM output is1489

evaluated using a ground truth implementation of the optimization code.1490

– If the result matches the ground truth, the score is 0.5× correctness_score.1491

– If the result is incorrect, the score is 0.1492

– If further syntax errors occur during evaluation, the score remains −1.1493
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We found that GPT-4 outperforms other models in ansatz design. However, most models frequently1494

fail to generate correct optimization code, often encountering syntax errors. A detailed analysis1495

suggests that a major source of these errors is inconsistency in qiskit versions, leading to incorrect1496

function calls and deprecated API usage.1497

The verification results of the oracle construction task, as shown in Table 3, confirm our previous1498

conclusions. In the five-shot setting, GPT-4 and GPT-3.5 consistently outperform all other models.1499

Additionally, this table highlights the inconsistency between BLEU scores and verification scores.1500

For instance, while the Diffusion Operator task achieves the lowest BLEU score, it is the Grover1501

oracle construction that receives the lowest verification score. This discrepancy suggests that BLEU1502

scores may not fully capture the performance of models in certain complex tasks, and it is necessary1503

to include verification score as a comprehensive evaluation.1504

Byte Perplexity. Perplexity is a measure of how well a probability distribution or a probabilistic1505

model predicts a sample. In the context of language models, it quantifies the uncertainty of the model1506

when it comes to predicting the next element in a sequence. Byte perplexity specifically deals with1507

sequences of bytes, which are the raw binary data units used in computer systems. For our purposes,1508

we consider byte perplexity under UTF-8 encoding, a widely used character encoding standard that1509

represents each character as one or more bytes.1510

For a given language model, let p(xi|x<i) be the probability of the i-th byte xi given the preceding1511

bytes x<i. If we have a sequence of bytes x = (x1, x2, . . . , xN ), the perplexity PPL(x) of the model1512

on this sequence is defined as:1513

PPL(x) = 2−
1
N

∑N
i=1 log2 p(xi|x<i).

A notable feature of byte perplexity is that, it does not rely on any specific tokenizer, making it1514

versatile for comparing different models. Therefore, byte perplexity can be used to measure the1515

performance in quantum algorithm generation tasks. In such tasks, a lower byte perplexity indicates a1516

better-performing model, as it means the model is more confident in its predictions of the next byte in1517

the sequence.1518

C.2 Additional Experimental Results1519

Byte perplexity (PPL) scores. The Byte Perplexity results, shown in Figure 7, provide valuable1520

insights into the performance of our model. Evaluated in a zero-shot setting, byte perplexity trends1521

closely mirror those observed with BLEU scores. This alignment suggests that our model’s predictive1522

capabilities are consistent across Perplexity and BLEU evaluation metrics. Specifically, in the context1523

of quantum algorithm design tasks, the results indicate that the Bernstein-Vazirani and Deutsch-Jozsa1524

algorithms are relatively straightforward for the model, whereas the Simon algorithm presents greater1525

difficulty. This differentiation highlights the varying levels of complexity inherent in these quantum1526

algorithms.1527

Oracle construction. The details are presented in Table 3. GPT-4o and GPT-3.5 consistently1528

outperform other models, with both showing substantial improvements under few-shot prompting.1529

GPT-4o achieves the highest overall performance, raising its average score from -0.3912 (1-shot) to1530

-0.1245 (5-shot). GPT-3.5 follows closely, improving from -0.5910 to -0.2474. They are the only1531

models capable of generating partially correct solutions with positive scores for challenging tasks1532

such as the diffusion operator, showcasing strong in-context learning and generalization capabilities1533

of the GPT series. In contrast, Qwen 2.5 struggles to generalize, with only marginal improvement1534

from -0.6216 to -0.5258 and persistent failures on advanced tasks like Grover and Generalized-Simon.1535

DeepSeek-R1 performs the worst overall, with highly negative scores in both settings. Its long-chain1536

reasoning often leads to outputs that exceed the maximum context length, resulting in truncated or1537

invalid circuits, highlighting the inefficiency of reasoning models for oracle construction tasks.1538

Temperature. Regarding the counter-intuitive phenomenon where the performance on Clifford1539

and universal random circuits decreases after fine-tuning, we conducted additional experiments and1540

fine-tuned the model on 4,800 samples specifically for the Clifford task. Upon closer inspection,1541

we observed that the model more frequently generated outputs with infinite loops and increased1542
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Table 3: Benchmarking oracle construction in verification function scores.
Model Shot Bernstein-Vazirani Deutsch-Jozsa Diffusion-Operator Grover Simon Clifford Universal Generalized-Simon (multi-str) Avg

gpt4o 1
0.3600 0.1600 -1.0000 -0.9540 -0.4348 -0.4348 -0.1144 -0.7188

-0.3912(±0.0659) (±0.0801) (±0.0000) (±0.0323) (±0.0542) (±0.0224) (±0.0341) (±0.0808)

gpt4o 5
0.5400 0.3700 0.0769 -0.9770 -0.1739 0.1052 -0.1111 -0.6250

-0.1245(±0.0521) (±0.0677) (±0.2878) (±0.0230) (±0.0453) (±0.0210) (±0.0361) (±0.0870)

Llama3 1
-0.7600 -0.7000 -0.8462 -0.9770 -0.8261 -0.1862 -0.1424 -0.8438

-0.6602(±0.0571) (±0.0595) (±0.1538) (±0.0230) (±0.0397) (±0.0349) (±0.0338) (±0.0652)

Llama3 5
0.0300 -0.3400 -1.0000 -0.9310 -0.3587 -0.1348 -0.1572 -0.0313

-0.3654(±0.0771) (±0.0807) (±0.0000) (±0.0394) (±0.0503) (±0.0325) (±0.0329) (±0.0951)

gpt3.5 1
-0.1000 -0.1100 -1.0000 -0.9540 -0.4130 0.0650 0.0538 -0.9688

-0.5910(±0.0859) (±0.0764) (±0.0000) (±0.0323) (±0.0561) (±0.0178) (±0.0190) (±0.0313)

gpt3.5 5
0.2700 0.1300 0.2308 -0.7701 -0.3043 0.0816 0.0723 -0.5625

-0.2474(±0.0723) (±0.0734) (±0.2809) (±0.0688) (±0.0482) (±0.0163) (±0.0159) (±0.0891)
Qwen

2.5 1
-0.5100 -0.5500 -0.8462 -0.8391 -0.9891 -0.1065 -0.1318 -1.0000

-0.6216(±0.0689) (±0.0687) (±0.1538) (±0.0587) (±0.0109) (±0.0345) (±0.0337) (±0.0000)
Qwen

2.5 5
-0.0900 -0.4000 -0.3846 -0.8391 -0.8913 -0.2895 -0.3434 -0.9688

-0.5258(±0.0889) (±0.0739) (±0.2665) (±0.0587) (±0.0326) (±0.0442) (±0.0415) (±0.0313)
DeepSeek-

R1 1
-0.8900 -0.9800 -1.0000 -1.0000 -1.0000 -0.8885 -0.8644 -1.0000

-0.9529(±0.0424) (±0.0141) (±0.0000) (±0.0000) (±0.0000) (±0.0000) (±0.0232) (±0.02589)
DeepSeek-

R1 5
-0.6700 -0.7900 -0.8462 -0.9310 -0.9565 -0.4355 -0.5496 -0.8125

-0.7489(±0.0697) (±0.0518) (±0.1538) (±0.0394) (±0.0214) (±0.0701) (±0.0375) (±0.0369)
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Figure 7: Benchmarking algorithm design and oracle construction in perplexity scores.

monotony, often producing repetitive gate patterns and repeatedly cycling over the same qubit after1543

fine-tuning. We further conducted experiments with different "temperature" parameters, which1544

control the randomness of predictions. Formally, let T > 0 be the temperature, zi be the raw score1545

for token i, the probability for token i is computed as pi = ezi/T∑
j ezj/T

. Typically, lower temperatures1546

make the model more conservative, while higher temperatures flatten the distribution, increasing the1547

likelihood of generating originally less probable sequences. The results are shown in Table 4:1548

Table 4: Clifford Model Fine-Tuning Results Across Different Temperature Settings.
Model Setting Temperature BLEU Verification

Llama3 few-shots (5)
0 13.3796 (±0.9508) -0.6582 (±0.0360)

0.2 12.5688 (±0.8276) -0.6526 (±0.0372)
1 53.0431 (±3.8422) -0.1914 (±0.0361)

Llama3 finetune
0 7.6261 (±0.3433) -0.8895 (±0.0247)

0.2 13.8714 (±0.6536) -0.7873 (±0.0306)
1 32.5241 (±2.0548) -0.2072 (±0.0358)
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One possible explanation for this counter-intuitive result lies in the challenge of encoding quantum1549

state vectors within a language model. In the problem description, the target quantum state is1550

represented by a complex vector with four decimal places of precision, where the dimension scales1551

as with the number of qubits . It is a well-known fact that LLMs generally struggle with very long1552

floating-point numbers, which might contribute to the observed performance decline.1553

Another potential reason could be overfitting during fine-tuning, particularly for tasks that require high1554

output diversity. The varying degrees of intrinsic difficulty and the amount of relevant pre-training1555

knowledge across different tasks likely played a role. Oracle constructions are relatively simple for1556

the model to learn. For example, in the Bernstein-Vazirani algorithm, the model only needs to apply1557

a CNOT gate at positions corresponding to ’1’ bits. In contrast, the random circuits in the Clifford1558

and Universal tasks involve more general and complex quantum state transformations, making them1559

significantly more challenging. These tasks are also less common during pre-training, which could1560

have hindered the model’s ability to generalize without overfitting. This challenge is one of the1561

reasons we initially considered a few-shot learning approach to be suitable.1562

While these are plausible hypotheses, we acknowledge that further investigation is required to draw1563

definitive conclusions. We consider this an intriguing topic that warrants additional research.1564

C.3 Case Studies1565

After carefully examining the model’s output, we observed several interesting patterns. We present a1566

series of case studies to illustrate these observations and provide possible explanations.1567

C.3.1 Improvision Error1568

Low Score for GPT-4o in One-Shot Setting. At first glance, it is surprising that GPT-4o performs1569

poorly on many quantum algorithms in the algorithm design task in the one-shot setting compared to1570

Llama3-8B. Given that Llama3-8B has a relatively smaller parameter scale, the results should have1571

been the other way around. A closer examination of the model’s output reveals the potential reason:1572

while Llama3-8B closely mimics the input examples, GPT-4o tends to improvise, resulting in outputs1573

that are not well captured by the current syntax support. Here are several concrete examples.1574

This is the OpenQASM 3.0 code output for the W state with n = 7. In this code, GPT-4o uses the1575

advanced "for" loop syntax newly introduced in OpenQASM 3.0 to create the circuit. Although1576

the code fails to produce the W state, it is syntactically correct. However, the Qiskit.qasm3 import1577

module, which converts OpenQASM 3.0 files to QuantumCircuit objects and is used in our verification1578

function to check the correctness of the syntax of output OpenQASM codes, is still in the experimental1579

stage and does not support many of OpenQASM 3.0’s advanced features. As a result, GPT-4o’s use1580

of these features causes the code to fail syntax validation, resulting in a score of -1.1581

1582
OPENQASM 3.0;1583

include "stdgates.inc";1584

qubit [7] q;1585

h q[0];1586

for i in[1:6] {1587

cx q[i-1], q[i];1588

}15891590

Listing 8: OpenQASM 3.0 Code output by GPT-4o for W state with n = 7.

Here is another example where GPT-4o decides to assign novel names to its qubit registers, leading1591

to a conflict in the symbol table in Scope.GLOBAL. If we substitute all the registers x, y, and s with1592

new names, the code can pass syntax validation successfully and is close to the correct solution.1593

1594
OPENQASM 3.0;1595

include "stdgates.inc";1596

include "oracle.inc";1597

bit [9] s;1598

qubit [10] x;1599

qubit [11] y;1600

h x[0];1601

h x[1];1602
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h x[2];1603

h x[3];1604

h x[4];1605

h x[5];1606

h x[6];1607

h x[7];1608

h x[8];1609

Oracle x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], y;1610

h x[0];1611

h x[1];1612

h x[2];1613

h x[3];1614

h x[4];1615

h x[5];1616

h x[6];1617

h x[7];1618

h x[8];1619

measure x[0] -> s[0];1620

measure x[1] -> s[1];1621

measure x[2] -> s[2];1622

measure x[3] -> s[3];1623

measure x[4] -> s[4];1624

measure x[5] -> s[5];1625

measure x[6] -> s[6];1626

measure x[7] -> s[7];1627

measure x[8] -> s[8];16281629

Listing 9: OpenQASM 3.0 Code output by GPT-4o for Bernstein-Vazirani Problem with n = 9.

Since Llama3-8B tends to follow the provided example more closely, it avoids such kind of errors.1630

These factors may help explain why GPT-4o performs poorly in the one-shot setting compared to1631

Llama3-8B.1632

High Score for GPT-4o in Five-Shot Setting. In contrast to its relatively low score in the one-1633

shot setting, GPT-4o achieves the best overall performance in the five-shot setting for both oracle1634

construction and algorithm design tasks.1635

Unlike in the one-shot setting, where GPT-4o frequently uses advanced OpenQASM 3.0 features, it1636

learns from the examples in context and uses simpler syntax in the five-shot setting. For the W state1637

task, here is an output in the five-shot setting:1638

1639
OPENQASM 3.0;1640

include "stdgates.inc";1641

qubit [3] q;1642

h q[0];1643

cx q[0], q[1];1644

h q[1];1645

cx q[1], q[2];1646

h q[2];16471648

Listing 10: OpenQASM 3.0 Code output by GPT-4o for W state with n = 3.

This output avoids the use of "for" loops and successfully passes the syntax validation test, although1649

it still cannot generate the W state correctly.1650

In addition to adapting to plain syntax through in-context learning, GPT-4o achieves outstanding1651

performance on more complicated tasks such as phase estimation. Here is the model output of1652

GPT-4o on the phase estimation task with qubit number n = 2.1653

1654
OPENQASM 3.0;1655

include "stdgates.inc";1656

include "oracle.inc";1657

bit [2] c;1658

qubit [2] q;1659
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Psi q[0];1660

h q[1];1661

CU_0 q[0], q[1];1662

h q[1];1663

c[0] = measure q[1];1664

c[1] = measure q[0];16651666

Listing 11: OpenQASM 3.0 Code output by GPT-4o for Phase Estimation with n = 2.

1667
from Qiskit import transpile1668

1669

1670

def run_and_analyze(circuit , aer_sim):1671

""" Run the circuit and analyze the result."""1672

circ = transpile(circuit , aer_sim)1673

result = aer_sim.run(circ , shots =1).result ()1674

counts = result.get_counts ()1675

phase_str = list(counts.keys())[0]1676

phase = int(phase_str , 2) / 2**21677

return phase16781679

Listing 12: Post-processing code output by GPT-4o for Phase Estimation with n = 2.

This suite of OpenQASM 3.0 circuits and post-processing functions successfully outputs the phase1680

within the required precision for the test case, resulting in an impressive verification score of 1.0.1681

Despite the small number of qubits and differences from the reference implementation, the accuracy1682

achieved is noteworthy.1683

These phenomena reflect that GPT-4o has impressive in-context learning abilities and overall better1684

capabilities in designing and implementing quantum algorithms.1685

C.3.2 Counting Error1686

If we ask the GPT4o model to implement the code of Bernstein-Vazirani Problem for a given secret1687

string, for example s = 000101, the model fails to apply the CX gate on the correct qubits.1688

1689
OPENQASM 3.0;1690

include "stdgates.inc";1691

1692

gate Oracle _gate_q_0 , _gate_q_1 , _gate_q_2 , _gate_q_3 , _gate_q_4 ,1693

↪→ _gate_q_5 , _gate_q_6 {1694

// Apply CX gates according to the secret string "000101"1695

cx _gate_q_2 , _gate_q_6;1696

cx _gate_q_5 , _gate_q_6;1697

}1698

1699

bit [6] c;1700

qubit [7] q;1701

1702

// Apply Hadamard gates to the first 6 qubits1703

h q[0];1704

h q[1];1705

h q[2];1706

h q[3];1707

h q[4];1708

h q[5];1709

1710

// Prepare the ancilla qubit in the |1> state and apply a Hadamard1711

↪→ gate1712

x q[6];1713

h q[6];1714

1715

// Call the oracle1716

Oracle q[0], q[1], q[2], q[3], q[4], q[5], q[6];1717
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1718

// Apply Hadamard gates to the first 6 qubits again1719

h q[0];1720

h q[1];1721

h q[2];1722

h q[3];1723

h q[4];1724

h q[5];1725

1726

// Measure the first 6 qubits1727

c[0] = measure q[0];1728

c[1] = measure q[1];1729

c[2] = measure q[2];1730

c[3] = measure q[3];1731

c[4] = measure q[4];1732

c[5] = measure q[5];17331734

Listing 13: OpenQASM code for Bernstein-Vazirani Problem with s = 000101 in few-shot setting.

We reminded the model of the mechanism with the following prompt:1735

Reminder Prompt

Remember that in the construction of oracles for Bernstein-Vazirani Problem, you should
apply cx gates where the control qubits are where the string bit equals 1, and the target qubit
is the ancillary qubit.

1736

There was no improvement. We further asked the model about the indices of the bits in the string1737

which equal 1. It provided the following answer:1738

GPT4o’s answer for counting indices

In the secret string s="000101", the bits that equal 1 are found at the following indices
(0-based):
Index 2
Index 5
These indices correspond to the positions where the string has a ’1’.

1739

This reveals the incapability for GPT models to count the bit of 1 and apply corresponding gates to1740

construct the oracle.1741

C.3.3 Data Contamination1742

In our experiments, we observed an interesting phenomenon of performance discrepancy between1743

implementing quantum algorithms with Qiskit codes for the general setting and with OpenQASM1744

codes for a concrete case.1745

We provided the following prompt:1746

Prompt for Bernstein-Vazirani Problem with Qiskit

Please write the code with Qiskit implementing Bernstein-Vazirani Algorithm with qubit
number n = 5.

1747

The model answered with the following text and codes:1748
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Text Answer by GPT4o

Here’s a Python code using Qiskit to implement the Bernstein-Vazirani algorithm with n = 5
qubits. The secret string used in this example is s = 10101 (you can change this to any string
of your choice).

1749
1750

from qiskit import QuantumCircuit , Aer , transpile , assemble1751

from qiskit.visualization import plot_histogram1752

1753

# Secret string s for the Bernstein -Vazirani problem1754

s = ’10101 ’1755

1756

# Number of qubits1757

n = len(s)1758

1759

# Create a Quantum Circuit with n+1 qubits (one ancillary qubit)1760

bv_circuit = QuantumCircuit(n+1, n)1761

1762

# Apply Hadamard gates to all qubits except the ancillary qubit1763

bv_circuit.h(range(n))1764

1765

# Apply X and Hadamard gate to the ancillary qubit1766

bv_circuit.x(n)1767

bv_circuit.h(n)1768

1769

# Construct the Oracle1770

for i, bit in enumerate(s):1771

if bit == ’1’:1772

bv_circuit.cx(i, n)1773

1774

# Apply Hadamard gates to the first n qubits1775

bv_circuit.h(range(n))1776

# Measure the first n qubits1777

bv_circuit.measure(range(n), range(n))1778

# Visualize the circuit1779

bv_circuit.draw(’mpl’)1780

1781

# Run the circuit using Qiskit Aer simulator1782

simulator = Aer.get_backend(’qasm_simulator ’)1783

t_qc = transpile(bv_circuit , simulator)1784

qobj = assemble(t_qc)1785

result = simulator.run(qobj).result ()1786

1787

# Get the result counts and plot the histogram1788

counts = result.get_counts ()1789

plot_histogram(counts)17901791

Listing 14: Qiskit code for Bernstein-Vazirani Problem generated by GPT4o in the zero-shot setting.

This code, although adopts an older version of Qiskit syntax, can be compiled and run successfully1792

with the correct answer. Similar performances can be observed with OpenQASM codes:1793

1794
// OpenQASM 2.01795

OPENQASM 2.0;1796

include "qelib1.inc";1797

1798

// Declare 5 qubits for input and 1 ancilla qubit1799

qreg q[6];1800

creg c[5]; // classical register for measuring the result1801

1802

// Step 1: Apply Hadamard gates to the input qubits1803

h q[0];1804

h q[1];1805

h q[2];1806
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h q[3];1807

h q[4];1808

1809

// Apply Hadamard to the ancillary qubit and set it to |1>1810

x q[5];1811

h q[5];1812

1813

// Step 2: Oracle implementation (CNOT gates based on secret string s1814

↪→ = 10110)1815

cx q[0], q[5]; // Secret string bit 11816

// No cx for q[1] because the secret string bit is 01817

cx q[2], q[5]; // Secret string bit 11818

cx q[3], q[5]; // Secret string bit 11819

// No cx for q[4] because the secret string bit is 01820

1821

// Step 3: Apply Hadamard gates to the input qubits again1822

h q[0];1823

h q[1];1824

h q[2];1825

h q[3];1826

h q[4];1827

1828

// Step 4: Measure the qubits to get the result1829

measure q[0] -> c[0];1830

measure q[1] -> c[1];1831

measure q[2] -> c[2];1832

measure q[3] -> c[3];1833

measure q[4] -> c[4];18341835

Listing 15: OpenQASM code for Bernstein-Vazirani Problem generated by GPT4o.

This phenomenon contrasts with the results in Appendix C.3.2. Considering that Qiskit has im-1836

plemented tutorial codes for several representative quantum algorithms, the seemingly outstanding1837

performance of quantum algorithm code generation might be a deceptive result caused by data1838

contamination. Therefore, only a carefully designed quantum algorithm dataset can avoid the effects1839

of data contamination, allowing for an effective evaluation of the model’s genuine capability in1840

quantum algorithm design and implementation. This dataset is also meaningful for testing general AI1841

code generation and syntax learning, where no existing AI dataset could substitute us.1842
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