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Abstract

Quantum computing is an emerging field recognized for the significant speedup it
offers over classical computing through quantum algorithms. However, designing
and implementing quantum algorithms pose challenges due to the complex nature
of quantum mechanics and the necessity for precise control over quantum states.
Despite the significant advancements in Al, there has been a lack of datasets
specifically tailored for this purpose. In this work, we introduce QCircuitBench,
the first benchmark dataset designed to evaluate AI’s capability in designing and
implementing quantum algorithms in the form of quantum circuit codes. Unlike
using Al for writing traditional codes, this task is fundamentally more complicated
due to highly flexible design space. Our key contributions include:

1. A general framework which formulates the key features of quantum algorithm
design task for Large Language Models.

2. Implementation for quantum algorithms from basic primitives to advanced
applications, spanning 3 task suites, 23 algorithms, and 128,573 data points.

3. Automatic validation and verification functions, allowing for iterative and
interactive evaluation without human inspection.

4. Promising potential as a training dataset through primitive fine-tuning results.

We observed several interesting experimental phenomena: fine-tuning does not
always outperform few-shot learning, and LLMs tend to exhibit consistent error
patterns. In all, QCircuitBench is a comprehensive benchmark for Al-driven
quantum algorithm design, while it also reveals limitations of LLMs in this domain.

1 Introduction

Quantum computing is an emerging field in recent decades because algorithms on quantum computers
may solve problems significantly faster than their classical counterparts. From the perspective of
theoretical computer science, the design of quantum algorithms have been investigated in various
research directions - see the survey [Dalzell et al.,|2023]] and the quantum algorithm zoo [Jordan)
2025]]. However, the design of quantum algorithms on quantum computers has been completed
manually by researchers. This process is notably challenging due to highly flexible design space and
extreme demands for a comprehensive understanding of mathematical tools and quantum properties.

For these reasons, quantum computing is often considered to have high professional barriers. As the
discipline evolves, we aim to explore more possibilities for algorithm design and implementation
in the quantum setting. This is aligned with recent advances among Al for Science, including
AlphaFold [Jumper et al., [2021]], AlphaGeometry [Trinh et al.,[2024], etc. Recently, large language
models (LLMs) have also become widely applicable among Al for science approaches [Yang et al.|
2024b, [Zhang et al.l 2024, |Yu et al., [2024]]. LLMs represent the best practice of sequential modeling
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methods at current stage. They have an edge over other models in possessing abundant pre-training
knowledge and providing human-friendly interfaces which support human-machine collaboration.
Therefore, we gear LLMs for quantum algorithm design.

As far as we know, there has not been any dataset for Al in quantum algorithm design. Existing
work combining quantum computing and Al mostly targets at exploiting quantum computing for
Al there are some papers applying Al for quantum computing, but they either consider niche
problems [Nakayama et al., [2023] |Schatzki et al., 2021]] or limited functions [Tang et al., 2023
Firrutter et al.,[2024], not quantum algorithm datasets of general interest (see Section E]) However,
unlike classical code generation where abundant data exist, the most challenging aspect for quantum
algorithm design is the lack of sufficient data, and hence the difficulty of generalization in training Al
models. Therefore, datasets for quantum algorithm design are solicited.

Descriptions of quantum algorithms in natural language could be verbose and vague. Mathematical
formulas, while precise and succinct, are difficult to verify automatically. To accommodate with
LLMs, we make a change of perspective by formulating quantum algorithms as programming lan-
guages. This allows for precise representation of a quantum algorithm, enables automatic verification
procedure, and bridges the gap between theoretical design and circuit implementations. Furthermore,
meaningful quantum algorithms which can be efficiently implemented have no more than polyno-
mially many gates [Poulin et al., |2011]], and thus such formulations have the theoretical benefits
allowing for scalable representations.

Key Contributions. We propose QCircuitBench, the first comprehensive, structured dataset for
quantum algorithm design. Technically, it has the following key contributions:

* It formulates the task for Large Language Models (LLMs) with a carefully designed framework
encompassing the key features of quantum algorithm design, including problem description,
quantum circuit codes, classical post-processing, and verification functions. It maintains the
black-box nature of oracles and characterizes query complexity properly.

* It implements a wide range of quantum algorithms, covering 3 task suites, 23 algorithms, and
128,573 data points. The dataset spans from basic primitives and textbook-level algorithms to
advanced applications such as Generalized Simon’s Problem, demonstrating compatibility with
complex algorithms and easy extensibility.

* It has automatic validation and verification functions, enabling iterative, human-free evaluation
and supporting interactive reasoning to enhance performance.

* It showcases the potential as a training dataset through primitive fine-tuning results. As we
expand the dataset to include more algorithms and explore novel fine-tuning methods, it will
hopefully contribute to interactive quantum algorithm design and implementation significantly.

2 Related Work

Quantum Machine Learning. To the best of our knowledge, QCircuitBench is the first dataset
tailored specifically for quantum algorithm design. Previous efforts combining quantum computing
with Al primarily fall under the category of Quantum Machine Learning (QML), which aims at
leveraging the unique properties of quantum systems to enhance machine learning algorithms and
achieve improvements over their classical counterparts [[Schuld et al., 2015, |Biamonte et al., 2017,
Ciliberto et al.| 2018]]. Corresponding datasets often focus on encoding classical data into quantum
states. For instance, MNISQ [Placidi et al.,2023] is a dataset of quantum circuits representing the
original MNIST dataset [[LeCun et al., [1998|] generated by the AQCE algorithm [Shirakawa et al.,
2021]]. Another category of datasets focuses on collecting quantum data to demonstrate quantum
advantages since classical machine learning methods can fail to characterize particular patterns
of quantum data. Nakayama et al.| [2023]] created a VQE-generated quantum circuit dataset for
classification of variational ansatzes. NTangled [Schatzki et al.,[2021] further investigated different
types of entanglement and composed quantum states with various multipartite entanglement for
classification. While these datasets successfully demonstrate quantum supremacy, the practical
applications of the problem addressed are unclear.

Al for Quantum Computing. This research direction explores the possibility of leveraging Al to
facilitate the advancement of quantum computing. QDataSet [Perrier et al., 2022] collects data from
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simulations of one- and two-qubit systems and targets training classical machine learning algorithms
for quantum control, quantum tomography, and noise mitigation. LLM4QPE [Tang et al., 2023] is
a large language model style paradigm for predicting quantum system properties with pre-training
and fine-tuning workflows. While the paradigm is interesting, the empirical experiments are limited
to two downstream tasks: quantum phase classification and correlation prediction. [Fiirrutter et al.
[2024] studied the application of diffusion models [Sohl-Dickstein et al.| 2015, Rombach et al., 2022]
to quantum circuit synthesis [[Saeedi and Markov,, |2013]/J. et al.| 2022]]. Scalability issues must be
addressed to achieve practical and meaningful unitary compilation through this methodology.

Quantum Circuit Benchmarks. The aforementioned works represent meaningful explorations
at the intersection of Al and quantum computing. However, none of them considers the task
which interests the quantum computing community (from the theoretical side) the most: quantum
algorithm design. Our work aims to take the first step in bridging this gap. It is worth noting
that several quantum algorithm circuit benchmarks already exist, such as QASMBench [L1 et al.|
2023]], MQTBench [Quetschlich et al., [2023]], and VeriQBench [Chen et al., [2022]]. However, these
benchmarks are designed to evaluate the performance of NISQ (Noisy Intermediate-Scale Quantum)
[Preskilll 2018]] machines or quantum software tools, rather than for training and evaluating Al models.
For instance, QASMBench includes a diverse variety of quantum circuits based on OpenQASM
representation [Cross et al., |2022], covering quantum circuits with qubit sizes ranging from 2 to
127. However, it fails as a dataset for Al in that it includes only a few entries for each algorithm
and ignores the post-processing procedure and construction of different oracles, which are crucial to
quantum algorithm design. Similar limitations apply to MQTBench and VeriQBench.

3 QCircuitBench Dataset

3.1 Task Suite

For the general purpose of quantum algorithm design, we consider three categories of tasks: oracle
construction, algorithm design, and random circuit synthesis. These tasks are crucial for devising
and implementing quantum algorithms, with oracle construction serving as the premise for algorithm
design, and random circuits serving as a main demonstration for quantum supremacy. These task
suites encompass 23 algorithms and a total of 128,573 data points with the following distribution:

3.1.1 Task I: Oracle Construction

This task suite contains 32,249 data points in total, focused on two types of oracle constructions.

To study a Boolean function f: {0,1}" — {0,1}"™, we need to gain its access. In quantum
computing, the function f is encoded as an oracle Uy such that for any = € {0,1}", z € {0,1}"™,
Ugl|z)|z) = |x)|z @ f(z)), where @ is the plus modulo 2. The construction of Uy using quantum
gates is deeply rooted in reversible quantum logic synthesis, which remains a challenge for complex
Boolean functions. In this dataset, we mainly focus on the construction of textbook-level oracles:
Bernstein-Vazirani Problem [Bernstein and Vazirani, |1993]], Deutsch-Jozsa Problem [[Deutsch and
Jozsa,|1992]], Simon’s Problem [Simonl|1997]], and Grover’s algorithm for unstructured search [[Grover,
1996 (including constructions of both the oracle and the diffusion operator).

There is another category of more flexible oracle construction tasks which we refer to as "Problem
Encoding". For example, one can apply Grover’s oracle to solving constraint problems such as SAT
and triangle finding [Ambainis| [2004]. Formulating problem encoding tasks for LLMs slightly differs
from quantum logic synthesis, and we refer the readers to Appendix[A.2]for more detailed discussion.

3.1.2 Task II: Quantum Algorithm Design

In this category, we cover a wide range of quantum algorithms with varying complexity, from
fundamental primitives to advanced applications, covering 5,464 data points:

» Textbook-level algorithms: These range from the Bernstein-Vazirani problem [Bernstein and
Vazirani, |1993]], Deutsch-Jozsa problem [Deutsch and Jozsa, |1992], Simon’s problem [Simon,
1997], Grover’s algorithm [Grover, [1996], phase estimation [Kitaev, [1995], quantum Fourier
transform [Coppersmith, |2002], GHZ state preparation [Greenberger et al., 2007], W state
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preparation [Diir et al.|[2000], random number generator [Herrero-Collantes and Garcia-Escartin),
2017]], swap test [Barenco et al.,[1997, [Buhrman et al., 2001] to Shor’s algorithm [Shor, |1999
for factorization, one of the most famous quantum algorithms with superpolynomial speedup.

* Generalized Simon’s Problem [2021]): This is a more advanced version of the standard
Simon’s problem and an active area of research in recent years [Ye et al., 2021, [Wu et al.| 2022].
The setting is formally stated as follows: given an (unknown) function f: Z; — X where X
is a finite set and a k is a positive integer satisfying £ < n, it is guaranteed that there exists a
subgroup S < Zy of rank k such that for any z,y € Zjy, f(z) = f(y) iff v —y € S. The goal is
to find S. Intuitively, the generalized Simon’s problem extends the standard Simon’s problem
from binary to p-ary bases and from a single secret string to a subgroup of rank k.

Variational quantum algorithms (VQAs): Beyond universal quantum algorithms, VQAs including
VQE [Peruzzo et al., 2014] for finding the ground-state energy of a given Hamiltonian and
QAOA [Farhi et al.} for solving the maximum cut problem for a given graph are potentially
implementable on near-term quantum computers. Unlike traditional quantum algorithms with
fixed quantum circuits, VQAs rely on iterative optimization of parameterized quantum circuits,
introducing unique challenges as models must generate not only quantum circuits but also suitable
parameter initialization and optimization methods.

Quantum information protocols: Additionally, we also include quantum information protocols

,  such as quantum teleportgtion |Benr}ett et all.|, 1993| gnd quantum key disFribytion [Bennett
and Brassard| 2014], which have wide applications in quantum communications, quantum

cryptography, etc. See Appendix [B] for further details.

3.1.3 Task III: Random Circuit Synthesis

The third task we consider is random circuit synthesis, containing 90,860 data points. On the one hand,
random circuit sampling is the first algorithm for showing quantum supremacy by Google
2019, and is still widely applied to demonstrate the power of quantum algorithms in recent
research [Wu et al.|, 2027, Bluvstein et al.l [2024] [DeCross et al, 2024]. In this suite, circuits are
randomly sampled from a Clifford gate set {H, S, CNOT} and a universal set {H, S, T, CNOT}, and
the task is to generate circuits reproducing the specified quantum state.

3.2 Dataset Structure

The overall structure of QCircuitBench is illustrated as follows (more details are given in Appendix [A]):

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, / QCircuitBench Dataset \
Given a black box function f : {0,1}" ~— {0,1}". The function is |~

aranteed to be a two-to-one mapping according to a secret string s € |

s # 0", where given zy # x3, f(z1) = f(z2) <= 1@z = . : Problem Description
ign o quantum algorithm to find s. The function is provide (Natural language + Latex math formulas)
le gate named “Oracle” in the .ine” file which

h
Oy | x) |y @ f(x)). The input qu ) are indexed fi H 1

'
'

I L ;

. - ' e 5

=1, and the output qubits |f(x)) are indexed from n to 2n 1. Please | | / Verification Function

1 provide the following components for e algorif desigr vith n 30 .

1 provide the following components for the algorithm design with Bl (Unit test)

1 1. the corresponding quantum cirenit. implementation with QASM. 2. the | |

'

: ; o !
| post-processing code run_and_analy acr_sim) in python which |

Generation Code
(Qiskit code)

Dataset
(Rythoen)

! simulates the circuit (QuantumCircuit) with aer_sim (AerSi and !/

Algorithm Circuit Oracle/Gate Definition
(OpenQASM 3.0 files) (.inc files)

| returns the secret string s according to the simulation results. i

-
def run_and_analyze(circuit, aer_sim):
n = circuit.num_qubits // 2

OPENQASM 3.8;

]
ate Oracle _gate_g_o
include "stdgates.inc”; 18 _gate_q_9,

I 1 !
| i ! 1 i
| ] '
| circ = translate(circuit, aer_sim) ] | include "oracle.inc"; H | _gate_q_1, i
| results = aer_sim.run(cire, shots=n).result() H U bit[3] ¢ ' | _gate_q_2 !
| counts = results.gst_counts() ! | qubit[e] q; ! | _gate a3, '
e L] counte.tens() ! ! narels D eeteas, ;
, count . : ; ]
! or resu it in counts.itens(): o RIS ! | gate a5 { '
' if result I= "e" * n: # We don't use all @ string I " hoal2]s H | —8erea- '
| X e s 5 .
: y = [int(bit) for bit in result] i ! oracle qlel, al1], al2], al3], a[4], alsl;! ' cx _gate_q_@, _gaté_q_S,:
i equations. append(y) ] 'hoalel; H | cx _gate_q_1, _gate_q_4;,
1 N s ’
| if len(equations) == o: i ' h g1l ! | cx _gate g2, _gate q.5;,
icti ngn !
! prediction = "@" * n H 1 hogl2]; ! | cx _gate q.2, _gate q5;|
' else: . . . ' | cle] = measure q[e]; | | x _gate_q_4; !
: prediction = solve_equation(equations) H I c[1] = measure q[1]; 1 1 } !
I return prediction ! | c[2] = measure q[2]; . | '

Figure 1: Structure of QCircuitBench. The components of QCircuitBench are presented in the frame
on the top-right. As a showcase, this figure presents the components for Simon’s problem
[1997],, including its problem description in natural language, post-processing function in python code,
circuit in a .qasm file, and oracle definition in a .inc file.
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Design Principles. Different tasks encounter different challenges. Here we highlight the following
construction principles, which are specially designed to adapt to these tasks:

* Paradox of Oracle Implementation: Quantum algorithms often treat the oracle U} as a black-
box, aiming to deduce properties of function f(x) without directly accessing its implementation.
However, quantum circuits for real-world platforms need an explicit gate definition to compile and
run successfully. To address this challenge, which is often overlooked in tutorials and benchmarks,
we provide the oracle as a black-box gate with its explicit definition in a separate "oracle.inc"
library. This complies with OpenQASM syntax while ensures the oracle’s functionality is
accessible to the model without exposing its internal structure.

* Classical Processing Specification: A quantum algorithm involves not only quantum circuits
but also the classical processing steps to interpret measurement results. For example, in Simon’s
algorithm, the model must solve linear equations s - y; = 0 from measured y;. In addition to
quantum circuits, we require the model to specify the classical processing function and define the
shot count to characterize query complexity, crucial for the theoretical analysis of the algorithm.

¢ Custom Quantum Gates: Some composite gates, not part of the standard QASM library, are
essential for advanced algorithms. To avoid model distractions, we provide these custom gates,
such as multi-controlled X gates (45,060 lines for 14 qubits), in a "customgates.inc" file. These
gates are defined hierarchically, allowing the model to use them without the burden of generating
complex gate structures.

* Automated Verification Function: To ensure model outputs are syntactically correct and
functionally valid, we implement automatic verification tools that check QASM syntax and
circuit functionality. Instead of performing exhaustive Logic Equivalence Checking (LEC), we
use extensive test cases to validate the correctness of the generated circuits, enabling efficient
model evaluation without human intervention.

Based on theses principles, we proposed the framework of QCircuitBench. Below is a more detailed
explanation for the 7 components of the dataset:

1.

Problem Description: carefully hand-crafted prompts stating the oracle to be constructed or the
target problem to be solved in natural language and latex math formulas. If the problem involves
the usage of a quantum oracle or composite gates beyond the standard gate library, the interfaces
of the oracle / gate will also be included (input qubits, output qubits, function mechanism).

2. Generation Code: one general Qiskit [Javadi-Abhari et al.,|2024] code to create quantum circuits

for oracles or algorithms of different settings, such as distinct secret strings or various qubit
numbers. We choose Qiskit as the main experiment platform because it is a general quantum
programming software widely used for the complete workflow from creating quantum circuits to
transpiling, simulation, and execution on real hardware.

3. Algorithm Circuit: a .qasm file storing the quantum circuit for each specific setting. We choose

OpenQASM 3.0 [[Cross et al.,|2022]] as the format to store the quantum circuits, because Qiskit,
as a python library, can only create quantum circuits at runtime instead of explicitly saving the
circuits at gate level[l]

4. Post-Processing Function: this is for Algorithm Design task only, see Section [3.1.2] The

function takes a complete quantum circuit as input, uses the Qiskit AerSimulator to execute the
circuit, and returns the final answer to the original problem according to the simulation results.
For state preparation problems such as creating a GHZ state of n qubits, this function returns the
qubit indices of the generated state.

5. Oracle / Gate Definition: a .inc file to provide definitions of composite gates or oracles. For

oracle construction tasks, this only includes the definition of composite gates required to build
the oracle. For algorithm design tasks, we also provide the gate definition of the oracle in this
file, which successfully delivers the oracle in a black-box way.

6. Verification Function: a function to evaluate whether the implemented oracle / algorithm

achieves the desired purpose with grammar validation and test cases verification. If there exist

! Although currently the Qiskit APIs for importing and dumping OpenQASM 3.0 files are still in experimental

stage, we choose to adopt version 3.0 over 2.0 in that it supports saving parameterized circuits, which allows for

€XI

tending the framework to variational quantum algorithms [Cerezo et al.| [2021].



217
218
219

220
221
222
223
224

225
226

227

228

229
230
231

232
233
234
235
236
237

238
239
240
241

242

243
244

245
246

grammar errors, the function returns -1 and provides a detailed error message, which can be used
as the feedback for LLMs to improve through interactive reasoning. If the program can execute
successfully, the function returns a score between [0, 1] indicating the success rate on test casesE|

7. Dataset Creation Script: the script to create the dataset from scratch in the format suitable for
benchmarking / fine-tuning LLMs. It contains the following functions: 1. generate primitive
QASM circuits. 2. extract gate definitions and add include instructions to create an algorithm
circuit as the direct output. 3. validate and verify the correctness of the data points in the dataset.
4. concatenate the circuit with problem description as a json file for the benchmark pipeline.

This structure of QCircuitBench provides a general framework to formulate quantum algorithm

design for large language models, with an easy extension to more advanced quantum algorithms.

4 Experiments

4.1 Benchmarking LLMs on QCircuitBench

We benchmark the quantum algorithm design capabilities of leading closed-source and open-source
large language models using QCircuitBench. The workflow of our benchmark is illustrated in Figure
[2] The total computation cost is approximately equivalent to two days on an A100 GPU.

4
o 1
1
es) U
)|!
: Oracle Circuit ‘
H (OpenQASM 3.0 files) D4
1 1
1
1
1
1

- Post-Processing
Function
(Python code)

Figure 2: Flowchart of benchmarking QCircuitBench.

Models. Recently, the GPT series models have become the benchmark for generative models due
to their exceptional performance. Specifically, we include two models from OpenAl, GPT-3.5-turbo
[Brown et al.,|2020] and GPT-4 [OpenAl et al., 2024, in our benchmark. Additionally, the LLAMA
series models [Touvron et al.| [2023alb]] are widely recognized as leading open-source models, and
we have selected LLAMA-3-8B for our study. For a comprehensive evaluation, we also benchmark
Qwen 2.5 [Yang et al., [2024a] and DeepSeek-R1 [Guo et al.| 2025].

On these models, we employ a few-shot learning framework, a prompting technique that has shown
considerable success in generative Al [Xie et al.,|2021]]. In this approach, we utilize either 1, 3, or 5
examples, followed by a problem description. To ensure we do not train and test on the same quantum
algorithm, we implement k-fold validation among all algorithms.

Evaluation Metrics. We use three evaluation metrics (see Appendix [C.I|for more details):

1. BLEU Score: This metric measures how closely the generated code matches the reference code,
with a higher BLEU score indicating more similarity. Formally, the BLEU score is defined as:

N
BLEU = BP - exp <Z W logpn> :

n=1

where BP is the acronym for brevity penalty, w,, is the weight for the n-gram precision (typically
% for uniform weights), p,, is the precision for n-grams. BP is calculated as:

1 ifec>r
BP = . ,
{elc ife<r

’The verification function explicitly integrates the oracle / gate definition library with output algorithm circuit
since Qiskit importer for OpenQASM 3.0 does not support non-standard gate libraries currently.
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Table 1: Benchmarking algorithm design in verification function scores.
" Random Generalized | Generalized
Model | Shot ‘:,“,"5‘?“‘5‘ Deutsch | ¢, er Phase QFT Simon GHZ Number | SWap w Simon Simon VQE QAOA Shor Avg
azirani | Jozsa Estimation ! Test State \ ’
Generator (multi-str) | _(ternary)
antd 0.8461 0.8307 0.7644 0.6638 -1.0000 -0.2015 -1.0000 -1.0000 0.5292 -0.0900 -1.0000 -0.4152 -1.0000 -1.0000 -1.0000
gptdo V| 0.1538) | 20.1533) | +0.1618) | (0.1141) | (0.0000) | (x0.1268) | (:0.0000) | (£0.0000) | (20.1745) | 0.2279) || (20.0000) (+0.1857) | (20.0000) | (0.0000) | (x0.0000) | “0-7452
" 09692 | 09165 | 04400 | -L.0000 | 00600 | L0000 | -LOODD | 0. 04022 - 03222 | L0000 | -L.0000 | -T.0000
eptdo | few || (10,0408) | (+0.0208) | (£0.0766) | (£0.1784) | (£0.0000) | (£0.0364) | (0.0000) | (£0.0000) | (£0.0292) | 0.0776) | (x0.0000) | (20.1698) | (0.0000) | (+0.0000) | (z0.0000) | “0-8188
07538 | 0.0077 | 06154 | 09231 | -T0000 | 09231 | -T.0000 | -T.0000 | -T00D0 | -0.6933 || -T.0000 ~T0000 | -T.0000 | -T.0000 | -T.0000
Vlama3 | 1| ¢0.1727) | ¢0.2214) | 02130) | (0.0769) | (+0.0000) | (+0.0769) | (+0.0000) | (+0.0000) | (0.0000) | (02031) | (0.0000) | (0.0000) | (+0.0000) | :0.0000) | 0.0000) || 08583
Loy | fow | 0962 | 03962 | 04605 | -0.6615 | -T.0W0 | 0584 | -T.0W0 | L0000 | 04572 | 0.6122 | 08889 =000 | -T.0000 | -L.0000 | L0000 | -
Jama? (02184) | (£02308) | (20.2155) | (0.1492) | (0.0000) | (£0.1543) | (20.0000) | (£0.0000) | (20.2143) | (0.2599) || (#0.1111) | (20.0000) | (£0.0000) | (20.0000) | (£0.0000)
a5 |y | 007 | 02731 [ 00778 [ 01277 | L0000 | 02181 | T TO000 | 01563 | 06922 || -T.0000 02211 TO000 | -T0000 | -T0000 ||
&P (0.2392) | (£0.1794) | (20.2099) | (£0.2722) | (+0.0000) | (0.1238) | (20.0000) | (20.0000) | (£0.2399) | 02111) || (2000000 | (0.1472) | (20.0000) | (20.0000) | (20.0000) | "
w05 | o | 0292 [ 02038 | 00000 | 05577 | -LOW0 | 0129 | -L0000 | -L.0W0 | 03742 | 08778 T.0000 03267 | L0000 | -T.0000 | L0000 | oo
- 0.1534) | (20.1708) | (£0.2508) | (x0.2331) | (0.0000) | (20.1078) | (20.0000) | (+0.0000) | (:0.2332) | (+0.1222) || (+0.0000) | (£0.1684) | (+0.0000) | (:0.0000) | (+0.0000) | “*-
Quen |, [ 0% | 06285 | 09231 | 08462 | -10000 | -T0000 | -10000 | -L0000 | 06270 | 08444 0000 ~L.0000 | -T.0000 | -T.0000 | -L.0000 ||
25 (20.1077) | (£0.1967) | (20.0769) | (0.1042) | (0.0000) | (£0.0000) | (20.0000) | (£0.0000) | (0.1982) | (+0.1556) || (£0.0000) | (20.0000) | (+0.0000) | (20.0000) | (£0.0000) ;
Quen | ou | 04123 | 00746 | 09230 | 08307 | -T0000 | 06838 | 10000 | 10000 | 03552 | -T0000 08558 0000 TO000 | -T0000 | -T0000 ||~
25 oW | (£02268) | (0.2211) | (0.0769) | (20.1151) | (0.0000) | (0.1371) | (0.0000) | (20.0000) | (£0.2403) | (0.0000) || (z0.1111) (20.0000) | (20.0000) | (20.0000) | (£0.0000) |
DeepSeek]| || 08462 | -T.0000 | -T.0000 | -TO000 | -T0000 | -0&392 | -T0000 | -T0000 | -T0W0 | 06000 [ -T.0000 T.0000 TO000 [ -T0000 | -T0000 | o
RI (20.1538) | (£0.0000) | (£0.0000) | (£0.0000) | (0.0000) | (20.1090) | (20.0000) | (£0.0000) | (£0.0000) | (0.2651) || (£0.0000) | (£0.0000) | (20.0000) | (£0.0000) | (£0.0000) | "
DeepSeck] 05385 | 02892 | -1.0000 | -0.7712 | -1.0000 | -1.0000 | -1.0000 | -1.0000 | -0.6182 | -08833 [ -1.0000 T0000 | 05000 | -T0000 | -T0000 || o
RI e || (202152) | (20.2607) | (0.0000) | (£0.1618) | (+0.0000) | (20.0000) | (:0.0000) | (20.0000) | (0.0000) | (0.2031) || (0.1167) | (20.0000) | (20.4999) | (£0.0000) | (20.0000) | -

where c is the length of the generated text and r is the length of the reference text. Furthermore,
n-gram precision p,, is calculated as:

> CeCandidates 2—ngramec Min(Count(ngram in candidate), Count(ngram in references))

n — . .
2 CeCandidates 2—ngramec Count(ngram in candidate)

2. Verification function: This function checks the syntax validation and the result correctness of the

code produced by the language model. To be specific, we evaluate the result using three criteria:

(a) QASM Syntax Verification: We first check the syntax of the QASM code provided by
the model. The syntax verification function Voasm(gq) is set to be 1 if the QASM syntax is
correct, and O otherwise.

(b) Python Syntax Verification: Similarly, the syntax of the post-processing Python code
(which includes the run_and_analyze function), denoted Voqe(c), is set to be 1 if the Python
syntax is correct, and 0 otherwise.

(c) Execution and Evaluation: If at least one syntax check passes, we proceed to evaluating
the functional correctness. For each test case ¢, we run the quantum circuit simulation for
a number of shots M, and compare the result with the ground truth. The success rate is
calculated as:
T M
D i1 2 me1 I[result = ground-truth]
acc = .

Tx M

The final verification score is a triplet (Voasm(q), Veode (¢), acc). In addition, all the verification
functions were executed by classical simulations in our experiments, but the APIs we imple-
mented are compatible with IBM hardware and can be easily adapted to quantum computers.

3. Byte Perplexity: This metric evaluates the model’s ability to predict the next byte in a sequence.

Formally, the Perplexity score is defined as:
PPL(z) = 9= 2L, logy p(eile<i)
where p(x;|x<;) is the probability of the i-th byte x; given the preceding bytes z:; and N is the

length of the byte sequence. Lower byte perplexity indicates better performance by reflecting the
model’s predictive accuracy.

The results for BLEU scores are shown in Figure[3] The verification scores of algorithm design tasks
are shown in Table|l| We include the results of Byte Perplexity and the verification scores of oracle
construction tasks in Appendix|[C.2]

We observe the following phenomena from the results:

* Most models achieve better scores in the few-shot setting than the 1-shot setting. This indicates
their capability to learn effectively from contextual examples. Specifically, the score of tasks such
as Deutsch-Jozsa were notably increased by 0.7108 after few-shot learning in the DeepSeek-R1
model. However, all models struggle with more complicated algorithms such as Grover, phase
estimation, and quantum Fourier transform, with a score increase of 0.2616 by the Llama3 model
on phase estimation. This highlights the differences in task difficulty.



279
280
281
282

283
284

286

287
288
289
290

291
292

293
294

296
297
298

299
300

302
303
304

305
306
307
308
309
310

Algorithm Design

Oracle Construction

gpt-40-2024-05-13
(1-shot)

gpt-40-2024-05-13

gpt-3.5-turbo-0125
(1-shot)

gpt-3.5-turbo-0125
t)

DeepSeek-R1
(1-shot)

DeepSeek-R1
(few-shot)

Diffusion

Models
gpt-40-2024-05-13
(1-shot)
gpt-40-2024-05-13
(5-shot)
Meta-Llama-3-88
(1-shot)
Meta-Llama-3-88
(5-shot)

- gpt-3.5-turbo-0125
Multi-Str fiirecs

gpt-3.5-turbo-0125
(5-shot)

Quen2.5
(1-shot)

DeepSeek
(5-shot)

W 50 £ 70 0 0 1o

30
BLEU Score

o 10 20

6

70 80

B % E)
BLEU Score

Figure 3: Benchmarking algorithm design and oracle construction tasks in BLEU scores.

* There exist challenges for near-term quantum algorithms. In particular, for the VQE and QAOA
tasks, the models often fail to construct right parameterized circuits or apply optimization
strategies correctly, with a score of at most -0.5000 by the DeepSeek-R1 model. This reflects the
limitation of LLMs in handling hybrid quantum-classical workflows.

* GPT-40 and GPT-3.5 consistently excel in long-context comprehension, significantly outperform-
ing other models across tasks, which highlights their superior in-context learning capabilities. In
contrast, DeepSeek-R1 underperforms due to its long-chain reasoning style, which often exceeds
the context length before producing a complete and verifiable solution.

» Although BLEU scores generally align with verification results, some discrepancies arise, such
as the swap test showing relatively high BLEU scores but incorrect algorithm generation by most
models. This observation emphasizes the need for complementary evaluation metrics such as our
verification function.

Types of Errors Made by LLMs. In Appendix [C.3] we include several case studies to illustrate
and analyze various types of errors made by LLMs. In particular, they can be summarized as follows:

* Improvision error: GPT-40 tends to use advanced OpenQASM 3.0 features unsupported by
Qiskit yet and novel namespace which might result in global conflicts in one-shot setting. This
tendency to improvise by drawing on pre-trained knowledge rather than closely following the
syntax of the example leads to avoidable "errors" and low verification scores. This issue is
significantly alleviated in the 5-shot setting, highlighting GPT-40’s strong in-context learning
ability. A detailed case study is given in Appendix [C.3.1]

» Counting error: LLMs often fail to correctly identify the positions of ones in a binary string
when constructing oracles for problems such as Bernstein-Vazirani. For instance, given the secret
string s = 000101, GPT-40 misplaces the control qubits for CX gates, despite being explicitly
reminded of the correct rule and asked to list the indices with value 1. This misidentification,
likely due to tokenization issues, highlights a fundamental limitation of LLMs in performing
basic indexing tasks. A detailed case study is given in Appendix [C.3.2}

 Data contamination: We observe a performance separation between writing general Qiskit codes
and explicit gate-level circuits in QASM. Since Qiskit provides detailed tutorial with general
codes for several algorithms, LLMs may rely on memorization and retrieval rather than genuine
algorithm design. Our dataset, based on QASM files created from scratch, may help circumvent
this issue and serve as a stable and fair method for benchmarking Al syntax learning. A detailed
case study is given in Appendix[C.3.3}
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4.2 Fine-tuning on QCircuitBench

Although QCircuitBench is targeted as a benchmark dataset at current stage, we consider fine-tuning
/ training from scratch based on our dataset as an interesting and important research direction. The
unique nature of quantum data requires novel fine-tuning methods and model architecture designs,
which could serve as a standalone topic. For a primitive demonstration, we present fine-tuning results
on data from the oracle construction task here.

Following |Dettmers et al.|[2024]], we quantize the model to 8-bits and then train it with LoRA [Hu
et al., [2022]]. In our experiments, we use fp16 computational datatype. We set LoORA r = 16, a = 32
and add LoRA modules on all the query and value layers. We also use AdamW [Loshchilov and
Hutter, 2019]] and LoRA dropout of 0.05. The results are shown as follows:

Table 2: Fine-tuning oracle construction scores.

Score Model Setting Bernstein-Vazirani | Deutsch-Jozsa | Grover Simon Clifford | Universal Avg
o few-shot(5) 95.6388 91.0564 920620 | §0.3390 | 39.5469 | 333673 | oo
ep S (+0.3062) (:0.6650) | (£0.6288) | (£2.0000) | (+3.6983) | (+3.1007) :
- 53.5574 69.8996 613102 | 263083 | 13.0720 | 134185
BLEU Llama3 few-shot(5) (+£5.2499) (#5.7812) | (£5.4671) | (£2.0048) | (£0.9907) | (x1.2299) | 399945
L ; 76.0480 71.8378 677892 | 438460 | 108978 | T84 | oo
ama> netune (+£7.9255) (£2.4179) (£7.8900) | (£3.2998) | (20.6169) | (0.5009) :
: 0.0000 0.4300 0.0000 | 0.0200 | 0.0333 | -0.1023
gptdo few-shot(5) (£0.0246) (£0.0500) | (£0.1005) | (:0.0141) | (£0.0401) | (£0.0443) | 00457
- , 0.2700 0.0900 05200 | -0.6600 | 0.7303 | -0.5056
Verification | Llama3 few-shot(5) (£0.0468) (£0.0668) | (£0.0858) | (:0.0476) | (£0.0473) | (£0.0549) | 04327
Lo " ~0.1300 ~0.2000 03300 | -0.7400 | -0.8741 | -09342 o507
ama netune (£0.0485) (£0.0402) (£0.0900) | (£0.0441) | (£0.0343) | (20.0262) || -7
- 1.1967 11074 11527 | LIII9 | L4486 | 14975
PP Llama3 few-shot(5) (£0.0028) (0.0015) | (£0.0021) | (20.0017) | (£0.0054) | (£0.0051) | 12541
o . 1.0004 1.1090 10010 | L1072 | 12944 | 13299 a0
amas netune (£0.0002) (£0.0014) (£0.0006) | (£0.0011) | (£0.0053) | (£0.0055) :

We observe that the Llama3 model demonstrates the most notable improvement on Grover’s algorithm
after fine-tuning, with the verification score increased by 0.3077. Case studies on the Bernstein-
Vazirani oracle reveal that, before fine-tuning, the model would indiscriminately apply CX gates to
all qubits. After fine-tuning, it begins to selectively apply CX gates to qubits corresponding to ‘1’s in
the secret string. While some counting errors persist, the model occasionally identifies all correct
positions, demonstrating a marked improvement. This suggests that fine-tuning enables the model to
internalize structural patterns in oracle construction, leading to improved performance across tasks.

Regarding the interesting performance decrease on Clifford and universal random circuits, we
conducted additional experiments on temperature and refer to Appendix [C.2]for more details.

5 Conclusions and Future Work

In this paper, we propose QCircuitBench, the first comprehensive, structured universal quantum
algorithm dataset and quantum circuit generation benchmark for AI models. This framework formu-
lates quantum algorithm design from the programming language perspective and includes detailed
descriptions and implementation of most established and important quantum algorithms / primitives,
allowing for automatic verification methodologies. Benchmarking of QCircuitBench on up-to-date
LLMs is systematically conducted. Fine-tuning results also showcase the potential of QCircuitBench
as a training dataset, and implementation of the Generalized Simon’s Problem mentioned in Sec-
tion [3.1.2] showcases the compatibility of our framework with more complex algorithms. In addition,
our framework is designed to scale with increasing qubit numbers and support complex quantum
algorithms as long as they are efficiently implementable with polynomial gates.

Our work leaves several open questions for future investigation:

* QCircuitBench is a benchmarking dataset for LLMs. It is of general interest to extend bench-
marking to training, which will help LLMs better maneuver quantum algorithm design. We have
implemented advanced algorithms such as the Generalized Simon’s Problem, but this in general
needs implementations of more advanced algorithms to make it impactful.

* Since quantum algorithms have fundamental difference from classical algorithms, novel fine-
tuning methods to attempt quantum algorithm design and quantum circuit implementation, or
even developments of new quantum algorithms by LLMs are solicited.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims accurately reflect the contributions and scope of the QCircuit-
Bench dataset.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section[3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not have theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[d]and supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: See supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they

should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section [l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Section [l
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section [l
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Quantum computing is still a nascent technology at the moment. Therefore,
our work does not have negative societal impacts from our perspective. In the future, we
welieve that our dataset can be beneficial for quantum algorithm design and the field of
quantum computing as a whole.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our dataset contains purely quantum circuits and does not pose such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited Qiskit [Javadi-Abhari et al.,2024]], OpenQASM [Cross et al.| [2022],
and QASMBench [Li et al., [2023]] in our paper. The links of the aforementioned assets are
given in reference.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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915 16. Declaration of LLLM usage

916 Question: Does the paper describe the usage of LLMs if it is an important, original, or
917 non-standard component of the core methods in this research? Note that if the LLM is used
918 only for writing, editing, or formatting purposes and does not impact the core methodology,
919 scientific rigorousness, or originality of the research, declaration is not required.

920 Answer: [Yes]

921 Justification: LLMs are used for benchmarking. See Section ]

922 Guidelines:

923 * The answer NA means that the core method development in this research does not
924 involve LLMs as any important, original, or non-standard components.

925 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
926 for what should or should not be described.
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92z A Details of QCircuitBench

928 The QCircuitBench Dataset, along with its Croissant metadata, is available on Harvard Dataverse at
920 the following link: https://doi.org/10.7910/DVN/ZC4PNI

930 QCircuitBench has the following directory structure:

QCircuitBench

| Oracle Construction ...................... All data for the oracle construction task
Quantum Logic Synthesis ................. Textbook-level and advanced oracles
Problem Encoding ....................... Oracles encoding application scenarios

| Algorithm Design .................... All data for the quantum algorithm design task
Quantum Computing .................... Universal quantum computing algorithms
Quantum Information .................. Quantum information tasks and protocols

| Random Circuits ............c...oooenn All data for the random circuit synthesis task
t CLiffOrd .vvvvereieieeaaenaannnn. Random circuits with the Clifford gate set
Universal .......cceeiiiiiiineennnnennn Random circuits with the universal gate set

931 In each subdirectory, there is a folder for each specific algorithm. For instance, the folder structure
932 for Simon’s algorithm is as follows:

Algorithm Design

| Quantum Computing

SIMON ... All data for the Simon’s Problem
| Simon-dataset.Py .ceiiiiiiiiiii e Dataset creation script
| _simon-generation.py .........ciiiiiiiiiiiiiiiiinn.. Qiskit generation code
| simon-post-processing.py ...........coiiiiiiiiann. Post-processing function
| SImOon-utilS.Py .vvviiiiiiiiiiiiiii e Utility functions for verification
| simon-verification.py .........ciiiiiiiiiiiiiiiiia, Verification function
| simon-description.tXt ..........iiiiiiiiiiiiiiiiia... Problem description
| _simon-verification.txt ............... Verification results of the data points
| full circult ...l Raw data of quantum circuits
|  simon-n2
| simon-n2-sii-kil.qasm .............. Full circuit for a concrete setting

|  simon-n3
t simon-n3-s011-k001.qasm
simon-n3-s011-k101.qasm
| test Oracle ...iiiiii i e Extracted oracle definitions
| n2
| trialil
0racle.inC ... Oracle definition as a .inc file
oracle-info.txt ........... Oracle information (such as key strings)
| n3
triall
t:oracle.inc
oracle-info.txt
trial2
oracle.inc
oracle-info.txt

L SImon-n2.qasm ........oiiiiiiiiiiiiiin.. Algorithm circuit for model output
| simon-n3.qgasm

933 We expect to extend QCircuitBench under this general structure.
93¢ A.l Format
935 In this subsection, we provide concrete examples to illustrate the different components of QCir-

936 cuitBench. We use the case of Simon’s Problem throughout the demonstration to achieve better
937 consistency. For further details, please check the code repository.
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93¢ 1. Problem Description: this is the carefully hand-crafted description of the task in natural language

939 and latex math formulas. The description is provided as one template for each algorithm, and the
940 concrete settings (such as the qubit number) are replaced when creating the data points in json.
941 The file is named as "{algorithm_name}_description.txt".

Problem Description Template for Simon’s Problem

Given a black box function f : {0,1}" — {0,1}"™. The function is guaranteed to be
a two-to-one mapping according to a secret string s € {0,1}",s # 0", where given
x1 # xa, f(x1) = f(r2) <= x1 ® x2 = s. Please design a quantum algorithm
to find s. The function is provided as a black-box oracle gate named "Oracle" in the
"oracle.inc" file which operates as Oy |z) |y) = |x) |y @ f(z)). The input qubits |x) are
indexed from 0 to n — 1, and the output qubits | f(z)) are indexed from n to 2n — 1. Please
provide the following components for the algorithm design with n ={qubit number}:
1. the corresponding quantum circuit implementation with {QASM / Qiskit}. 2. the
post-processing code run_and_analyze(circuit, aer_sim) in python which simulates the
circuit (QuantumCircuit) with aer_sim (AerSimulator) and returns the secret string s
according to the simulation results.

943 2. Generation Code: one general Qiskit code to create quantum circuits of different settings. Note

944 that the oracle for the problem is provided as a black-box gate "oracle" here. This code is used to
945 generate the raw data, but can also be used as a testing benchmark for writing Qiskit codes. The
946 file is named as "{algorithm_name}_generation.py".

Qiskit QuantumCircuit
simon_algorithm(n, oracle):
"""Generates a Simon algorithm circuit.
Parameters:

- n (int): number of qubits

- s (str): the secret string of length n

Returns:
- QuantumCircuit: the Simon algorithm circuit

simon_circuit = QuantumCircuit(2 * n, n)

simon_circuit.h( (n))

simon_circuit.append(oracle,

simon_circuit.h( (n))

simon_circuit.measure (

simon_circuit

977

Listing 1: Qiskit generation code for Simon’s algorithm.

978 3. Algorithm Circuit: the OpenQASM 3.0 format file storing the quantum circuit in gate level for

979 each specific setting. Note that the explicit construction of "Oracle" is provided separately in
980 "oracle.inc" file, which guarantees the usage of oracle in a black-box way. This filed is named as
981 "{algorithm_name}_n{qubit_number}.qasm".

3.0;
"stdgates.inc";
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"oracle.inc";
[3] c;
[6] q;
h q[0];
h ql1];
h q[2];
Oracle ql[0], ql1], ql2], ql[3], ql4], ql5];

>

h q[0];

h ql1];

h q[2];

c[0] = measure q[0];

c[1] = measure q[1];
908 c[2] measure ql[2];

Listing 2: OpenQASM 3.0 Code for Simon’s algorithm with n = 3.

999 4. Post-Processing Function: this function simulates the quantum circuit and derives the final
1000 answer to the problem. The file is named as "{algorithm_name}_post_processing.py".

sympy Matrix
numpy as np
Qiskit transpile

mod2 (x) :
x.as_numer_denom () [0] % 2

solve_equation(string_list):

AT | I
after the row echelon reduction, we can get the basis of the
nullspace of A in I

since we just need the string in binary form, so we can just
use the basis
if row == n-1 --> only one

if row < n-1 --> get the first one (maybe correct or wrong)
nnn

Matrix(string_list).T

M_I = Matrix(np.hstack([M, np.eye(M.shape[0],

M_I_rref = M_I.rref(iszerofunc=
M_I_final = M_I_rref [0].applyfunc(mod2)

(value == 0 value M_I_final[-1, : M.shapel[1]]):
result_s = "".join( (c) c M_I_final[-1, M.shape[1]
:1)

result_s = "0" * M.shape[0]

result_s

run_and_analyze (circuit, aer_sim):
n = circuit.num_qubits // 2
circ = transpile(circuit, aer_sim)
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results = aer_sim.run(circ, shots=n).result ()
counts = results.get_counts ()
equations = []
result, count counts.items () :
result != "0" * n:
y = [ (bit) bit result]

equations.append(y)
(equations) == O0:
prediction = "O" * n

prediction = solve_equation(equations)
prediction

1060

Listing 3: Post-processing code for Simon’s algorithm.

1061 5. Oracle / Gate Definition: this .inc file provides the definitions of composite gates or oracles. The
1062 file is named "customgates.inc" for oracle construction tasks and "oracle.inc" for algorithm design
1063 tasks.

Oracle _gate_q_0, _gate_q_1, _gate_q_2, _gate_q_3, _gate_q_4,
_gate_q_5 {
cx _gate_q_0, _gate_q_3;
cx _gate_q_1, _gate_q_4;
cx _gate_q_2, _gate_q_5;
cx _gate_q_2, _gate_q_5;
x _gate_q_3;

1073
Listing 4: One test case oracle for Simon’s algorithm with n = 3.

1074 For algorithm design tasks, this .inc file is accompanied with an "oracle_info.txt" file to describe

1075 the encoded information of the oracle. This helps the verification function to check the correctness

1076 of the derived answer by the model. The above test case is equipped with the following information

1077 text:

oracle_info.txt for Simon’s Problem with qubit number 3 and test case 2.

Secret string: 100

Key string: 001
1078
1079 6. Verification Function: the function to evaluate the output with grammar validation and test cases
1080 verification. The file is named as "{algorithm_name}_verification.py".

simon_utils

check_model (qasm_string, code_string, n):
"""Check the Simon model."""

t =1
wit (f"test_oracle/n{n}/trial{t}/oracle.inc", "r") as

oracle_def = .read ()
full_qgasm = plug_in_oracle(qasm_string, oracle_def)
circuit = verify_qasm_syntax(full_gasm)

circuit None:

-1

(code_string, O)
aer_sim = AerSimulator ()
total_success = 0
total_fail = 0
t_range = (10, 4 *x (n - 2))
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shots = 10
t (1, 1 + t_range):
(f" Running Test Case {tl}")
with (f"test_oracle/n{n}/trial{t}/oracle.inc", "r")
as
oracle_def = .read ()
full_gasm = plug_in_oracle(gasm_string, oracle_def)
circuit = loads(full_qasm)
with (f"test_oracle/n{n}/trial{t}/oracle_info.txt",
"r") as g
content = .read ()
match = re.search(r"Secret string: ([01]+)", content)
match:
secret_string = match.group (1)

ValueError ("Secret string not found in the
file.")

cnt_success = 0
cnt_fail = O

shot (shots):

prediction = run_and_analyze(circuit.copy(),

aer_sim)
(prediction, DR
TypeError ("Predicted secret string should
be a string.")
prediction == secret_string:
cnt_success += 1

cnt_fail += 1
(£" Success: {cnt_success}/{shots}, Fail: {
cnt_fail}/{shots}")
total_success += cnt_success
total_fail += cnt_fail
(f"Total Success: {total_success}; Total Fail: {
total_faill}")
total_success / (total_fail + total_success)

Exception as e:
(f"Error: {el}")

1144 -1

Listing 5: Verification function for Simon’s algorithm.

1145 This verification function is accompanied with an "{algorithm_name}_utils.py" file to provide
1146 necessary utility functions.

Qiskit.qgasm3 loads
Qiskit_aer AerSimulator
re

print_and_save (message, text):
(message)
text.append (message)

plug_in_oracle (gasm_code, oracle_def):
"""Plug-in the oracle definition into the QASM code."""
oracle_pos = gasm_code.find(’include "oracle.inc'";’)

oracle_pos == -1:

ValueError ("Oracle include statement not found in the
file")

full_qgasm = (

gasm_code [: oracle_pos]
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1189
1190

1210

1211
1212
1213
1214
1215
1216

1217

1218
1219
1220
1221
1222
1223

+ oracle_def
+ gasm_code[oracle_pos + (’include "oracle.inc";’) :]

full_qgasm

verify_qasm_syntax (output):

"""Verify the syntax of the output and return the corresponding
QuantumCircuit (if it is wvalid).

assert (output, )

circuit = loads (output)
(
! The OpenQASM 3.0 code is valid and has been
successfully loaded as a QuantumCircuit."

circuit
Exception as e:
(£" Error: The OpenQASM 3.0 code is not valid.
Details: {el}")
None

Listing 6: Utility functions for verification of Simon’s algorithm.

7. Dataset Creation Script: this script involves all the code necessary to create the data points from
scratch. The file is named as "{algorithm_name}_dataset.py". The main function looks like this:

main () :
parser = argparse.ArgumentParser ()
parser.add_argument (
n_fn’
"--func",
choices=["qgasm", "json", "gate", "check"],
="The function to call: generate qgasm circuit, json
dataset or extract gate definitiomn.",
)
args = parser.parse_args ()
args.func == "qgasm":
generate_circuit_qasm()
args.func == "json":
generate_dataset_json ()
args.func == "gate":
extract_gate_definition ()
args.func == "check":
check_dataset ()

Listing 7: Main function of the dataset script for Simon’s algorithm.

Here the "generate_circuit_qasm()" function generates the raw data of quantum circuits in Open-
QASM 3.0 format where the algorithm circuit and the oracle definition are blended, then "ex-
tract_gate_definition()" function extracts the definition of oracles and formulates the algorithm
circuits into the format suitable for model output. The "check_dataset()" function is used to check
the correctness of the created data points and "generate_dataset_json()" function to combine the
data into json format for easy integration with the benchmarking pipeline.

A.2 Discussion of more tasks

Problem Encoding. In Section[3.1.1] we mentioned another category of oracle construction tasks
referred to as "Problem Encoding", which involves applying quantum algorithms, such as Grover’s
algorithm, to solve practical problems such as SAT and triangle finding. The crux of this process
is encoding the problem constraints into Grover’s oracle, thereby making this a type of oracle
construction task. Unlike quantum logic synthesis, which encodes an explicit function f(x) as a
unitary operator Uy, this task involves converting the constraints of a particular problem into the
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required oracle form. We provide implementations of several concrete problems in this directory as
demonstrations and will include more applications in future work.

Quantum Information Protocols. In Section we have also implemented three important
quantum information protocols: Quantum Teleportation, Superdense Coding, and Quantum Key
Distribution (BB84). A brief introduction to these protocols can be found in Appendix [B] We did
not include the experiments for these protocols as they involve communication between two parties,
which is challenging to characterize with a single OpenQASM 3.0 file. We recommend revising the
post-processing function as a general classical function to schedule the communication and processing
between different parties specifically for these protocols. The fundamental quantum circuits and
processing codes are provided in the repository.

A.3 Datasheet

Here we present a datasheet for the documentation of QCircuitBench.

Motivation

» For what purpose was the dataset created? It was created as a benchmark for the capability of
designing and implementing quantum algorithms for LLMs.

* Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The authors of this paper.

» Who funded the creation of the dataset? We will reveal the funding resources in the Acknowledge-
ment section of the final version.

Composition

» What do the instances that comprise the dataset represent (e.g., documents, photos, people, coun-
tries)? The dataset comprises problem description, generation code, algorithm circuit, post-
processing function, oracle / gate definition, verification function, and dataset creation script for
various quantum algorithms.

* How many instances are there in total (of each type, if appropriate)? The dataset has 3 task suites,
23 algorithms, and 128,573 data points. There are additional quantum information protocols and
problem encoding tasks not included for experiments.

* Does the dataset contain all possible instances or is it a sample (not necessarily random) of
instances from a larger set? The dataset contains instances with restricted qubit numbers due to the
current scale of real quantum hardware.

» What data does each instance consist of? Qiskit codes, OpenQASM 3.0 codes, python scripts, and
necessary text information.

* Are relationships between individual instances made explicit? Yes, the way to create different
instances are clearly described in Appendix [A.T]

* Are there recommended data splits? Yes, we recommend splitting the data according to different
algorithms in algorithm design task.

* Are there any errors, sources of noise, or redundancies in the dataset? There might be some small
issues due to the dumping process of Qiskit and programming mistakes (if any).

* [s the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites,
tweets, other datasets)? The dataset is self-contained.

* Does the dataset contain data that might be considered confidential (e.g., data that is protected by
legal privilege or by doctor-patient confidentiality, data that includes the content of individuals’
non-public communications)? No.

* Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening, or
might otherwise cause anxiety? No.
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Collection Process

* How was the data associated with each instance acquired? The data is created by first com-
posing Qiskit codes for each algorithm and then converting to OpenQASM 3.0 files using
Qiskit.qasm3.dump function, with additional processing procedure.

» What mechanisms or procedures were used to collect the data (e.g., hardware apparatuses or
sensors, manual human curation, software programs, software APIs)? Manual human programming
and Qiskit APIs.

* Who was involved in the data collection process (e.g., students, crowd workers, contractors), and
how were they compensated (e.g., how much were crowd workers paid)? Nobody other than the
authors of the paper.

* Over what timeframe was the data collected? The submitted version of the dataset was created in
May 2025.

Uses

* Has the dataset been used for any tasks already? It has been used in this paper to benchmark
LLM’s ability for quantum algorithm design.

o [s there a repository that links to any or all papers or systems that use the dataset? The only paper
which uses the dataset for now is this paper.

Distribution

» Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,
organization) on behalf of which the dataset was created? Yes, the dataset will be made publicly
available on the Internet after the review process.

* How will the dataset be distributed (e.g., tarball on website, API, GitHub)? It will be distributed
on the GitHub platform.

o Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or
under applicable terms of use (ToU)? The dataset is distributed under CC BY 4.0.

* Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

* Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

Maintenance

* Who will be supporting/hosting/maintaining the dataset? The authors of this paper.

* How can the owner/curator/manager of the dataset be contacted (e.g., email address)? The email
for contact will be provided after the review process.

e [s there an erratum? Not at this time.

Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?
Yes, it will be continually updated.

o [f others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them
to do so? Yes, they can do so with the GitHub platform.

A.4 Copyright and Licensing Terms
This work is distributed under a CC BY 4.0 license. The implementation of the code references

open-source projects such as Qiskit, QuantumKatas, Cirq, and NWQBench. We bear responsibility
in case of violation of rights.
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B Preliminaries for Quantum Computing and Quantum Information

In this section, we will introduce necessary backgrounds for quantum computing related to this paper.
A more detailed introduction to quantum computing can be found in the standard textbook by |Nielsen
and Chuang| [2000].

Quantum States. In classical computing, the basic unit is a bit. In quantum computing, the basic
unit is a qubit. Mathematically, n (n € N) qubits forms an N-dimensional Hilbert space for N = 2.
An n-qubit quantum state |¢) can be written as

N-1 N-1
6) = 3 aili), where S Jagl? =1, ()
=0 =0

Here |-) represents a column vector, also known as a ket state. The tensor product of two quantum
states |¢1) = Zij\gl a;|i) and |¢o) = ZjMzgl B;1j) with M = 2™, m € N is defined as

N-1M-1

1) @ [da) = D Y Blis i), ©)

i=0 j=0

where |, ) is an (n + m)-qubit state with first n qubits being the state |¢) and the last m qubits being
the state |7). When there is no ambiguity, |¢1) ® |¢2) can be abbreviated as |¢p1)|d2).

Quantum Oracles. To study a Boolean function f: {0,1}™ — {0,1}™, we need to gain its access.
Classically, a standard setting is to being able to query the function, in the sense that if we input an
x € {0,1}", we will get the output f(x) € {0,1}™. In quantum computing, the counterpart is a
quantum query, which is instantiated by a quantum oracle. Specifically, the function f is encoded as
an oracle Uy such that for any = € {0,1}", z € {0,1}™,

Uslz)|2) = [x)|z @ f(2)), ©)

where & is the plus modulo 2. Note that a quantum query to the oracle is stronger than a classical
query in the sense that the quantum query can be applied to a state in superposition: For an input
state Y, ¢;|z;)]2;) with >-, |e;|? = 1, the output state is Y, ¢;|@;)|z; @ f(z;)); measuring this state
gives z; and z; @ f(x;) with probability |¢;|2. A classical query for x can be regarded as the special
setting with ¢; = 1, z1 = z, 21 = 0™, and ¢; = 0 for all other .

Quantum Gates. Similar to classical computing that can stem from logic synthesis with AND, OR,
and NOT, quantum computing is also composed of basic quantum gates. For instance, the Hadamard

. . 1 1 P
H is the matrix [1 1}, satisfying H]0) = —5(|0) + [1)) and H|1) = —5(/0) —[1)). In

general, an n-qubit quantum gate is a unitary matrix from C2"*2".

Quantum Circuit Diagram. A quantum algorithm is composed of a series of quantum gates. By
default, a quantum algorithm starts from the all-0 state |0™). A quantum algorithm can be illustrated
by its quantum gate diagram, drawn from left to right. The initial all-O state is placed at the left side
of the diagram. After that, whenever we apply a quantum gate, it is placed on the corresponding
qubits, from left to right. At the end of the quantum gates, we need to measure and read the outputs,
and these measurements are placed at the right side of the diagram. See Figure [ for the quantum
gate diagram of Simon’s algorithm [[Simon), |1997]].

Superdense Coding. Superdense coding [Bennett and Wiesner,|1992] is a quantum communication
protocol that allows Alice to transmit two classical bits of information to Bob by sending only one
qubit, given that they share a pair of entangled qubits. The protocol can be divided into five steps:

1. Preparation: Charlie prepares a maximally entangled Bell state, such as |5p) = %(\00) +
[11)).

2. Sharing: Charlie sends the qubit 1 to Alice and the qubit 2 to Bob. Alice and Bob can be
separated by an arbitrary distance.
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Figure 4: Quantum gate diagram of Simon’s algorithm.
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Figure 5: Quantum circuit diagram for superdense coding.
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'

3. Encoding: Depending on the two classical bits zz € {00,01, 10, 11} that Alice wants to
send, she applies the corresponding quantum gate operation to her qubit, transforming the
Bell state |Ggo) into one of the four Bell states:

|Boo) = \%OO()) +[11)) if 2z = 00
1 .

|Bo1) = \ﬁ(|01> + [10)) if zz = 01
1 .

|B10) = \ﬁuom —|11)) if zz = 10

|B11) = i(|01> —[10)) if zz = 11

5

2

Alice achieves these transformations by applying the operation Z? X® to her qubit, where Z
is the phase-flip gate, X is the bit-flip gate. Specifically:
o If zo = 00, Alice applies Z° X% = I (identity gate).
o If zo = 01, Alice applies Z° X' = X (bit-flip gate).
e If zz = 10, Alice applies Z! X" = Z (phase-flip gate).
o If zz = 11, Alice applies Z! X! = ZX = iY gate.
4. Sending: Alice sends her qubit to Bob through a quantum channel.
5. Decoding: Bob applies a CNOT gate followed by a Hadamard gate to the two qubits,

transforming the entangled state into the corresponding computational basis state |zx). By
measuring the qubits, Bob obtains the two classical bits zx sent by Alice.

Superdense coding exploits the properties of quantum entanglement to transmit two classical bits of
information using only one qubit. The quantum circuit diagram for superdense coding is shown in

Figure[5]
Quantum Teleportation. Quantum teleportation [Bennett et al., [1993] is a technique for transfer-
ring quantum information from a sender (Alice) to a receiver (Bob) using shared entanglement and
classical communication. The protocol can be described as follows:

1. Preparation: Telamon prepares a maximally entangled Bell state, such as |Bpo) =

L(00) + [11)).

31



1371
1372
1373

1374
1375
1376
1377

1378
1379
1380

1381
1382

1383
1384
1385

1386
1387
1388
1389
1390
1391

1392
1393

1394

1395
1396
1397
1398
1399

1400
1401
1402

1403

%

) ——
|Boo) 4 —4
|Boo) 5 X"z

Figure 6: Quantum circuit diagram for quantum teleportation.

[L

2. Sharing: Alice has qubit 1 in the state |¢)) = «|0) + §|1), which she wants to teleport to
Bob. Telamon shares qubit 2 with Alice and qubit 3 with Bob, creating the shared entangled
state |500>23.

3. Encoding: Alice wants to teleport an unknown quantum state |¢)) = «|0) 4+ 3|1) to Bob.
She applies a CNOT gate to qubits 1 and 2, with qubit 1 as the control and qubit 2 as the
target. Then, she applies a Hadamard gate to qubit 1. The resulting state of the three-qubit
system is:

%) = 211800 (l0) + BIL) + Bor) (01} + 510))
+ 1B10)(l0) — BIL) + [Bu1) (al1) — Bl0))].

4. Measurement: Alice measures qubits 1 and 2 in the Bell basis and obtains one of four
possible outcomes: |SBoo), |Bo1)s |B10)s or |B11). This measurement collapses the three-qubit
state into one of the following:

5. Classical Communication: Alice sends the result of her measurement (two classical bits)
to Bob via a classical channel.

6. Reconstruction: Depending on the classical information received from Alice, Bob applies
the operation Z* X ™ to qubit 3, where z and z correspond to the two classical bits sent by
Alice:

* If Alice measured |(3g0), she sends zx = 00, and Bob applies Z°X? = I (identity
operation).

e If Alice measured |391), she sends zz = 01, and Bob applies Z° X! = X (bit-flip).

* If Alice measured |31¢), she sends zx = 10, and Bob applies Z* X° = Z (phase-flip).

* If Alice measured |f311), she sends zz = 11, and Bob applies Z' X! = ZX = iV
(bit-flip and phase-flip).

After applying the appropriate operation, Bob’s qubit 3 will be in the state 1)) = «|0)+5|1),
which is the original state that Alice wanted to teleport.

The quantum circuit diagram for quantum teleportation is shown in Figure|[6]

Quantum Key Distribution. Quantum key distribution (QKD) [Bennett and Brassard, [1984] is a
secure communication protocol that allows two parties, Alice and Bob, to produce a shared random
secret key, which can then be used to encrypt and decrypt messages. The security of QKD is based
on the fundamental principles of quantum mechanics that measuring a qubit can change its state. One
of the most well-known QKD protocols is the BB84 protocol, which works as follows:

1. Alice randomly generates a bit string and chooses a random basis (X or Z) for each bit. She
then encodes the bits into qubits using the chosen bases and sends them to Bob through a
quantum channel.

2. Bob measures the received qubits in randomly chosen bases (X or Z) and records the results.
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1404 3. Alice and Bob communicate over a public classical channel to compare their basis choices.

1405 They keep only the bits for which their basis choices coincide and discard the rest.

1406 4. Alice and Bob randomly select a subset of the remaining bits and compare their values. If
1407 the error rate is below a certain threshold, they conclude that no eavesdropping has occurred,
1408 and the remaining bits can be used as a secret key. If the error rate is too high, they abort the
1409 protocol, as it indicates the presence of an eavesdropper (Eve).

1410 The security of the BB84 protocol relies on the fact that any attempt by Eve to measure the qubits
1411 during transmission will introduce detectable errors, alerting Alice and Bob to the presence of an
1412 eavesdropper.

1213 C  Additional Experiment Results

1414 In this section, we include detailed analysis of the experiments and additional experiment results.
1415 In Section [C.1] we introduce the metrics: BLEU score, verification score, and byte perplexity, and
1416 provide a detailed analysis for the experiments on BLEU and verification score. In Section|[C.2] we
1417 include additional experimental results. In Section|[C.3] we present concrete cases of typical patterns
1418 observed in model outputs.

1419 C.1 Metrics

1420 BLEU Score. Bilingual Evaluation Understudy (BLEU) score is a metric used to evaluate the
1421 quality of machine-translated text compared to human-translated text. It measures how close the
1422 machine translation is to one or more reference translations. The BLEU score evaluates the quality
1423 of text generated by comparing it with one or more reference texts. It does this by calculating the
1424 n-gram precision, which means it looks at the overlap of n-grams (contiguous sequences of n words)
1425 between the generated text and the reference text. Originally the BLEU score ranges from O to 1,
1426 where | indicates a perfect match with the reference translations. Here rescaling the score makes it
1427 ranges from O to 100.

1428 The BLEU score, originally designed for machine translation, can also be effectively used for
1429 evaluating algorithm generation tasks. Just as BLEU measures the similarity between machine-
1430 translated text and human reference translations, it can measure the similarity between a generated
1431 algorithm and a gold-standard algorithm. This involves comparing sequences of tokens to assess how
1432 closely the generated output matches the reference solution. In the context of algorithm generation, n-
1433 grams can represent sequences of tokens or operations in the code. BLEU score captures the precision
1434 of these n-grams, ensuring that the generated code aligns closely with the expected sequences found
1435 in the reference implementation.

1436 The formula for BLEU score is given by:

N
BLEU = BP-exp Y wylogp,

n=1

1437 where BP is the acronym for brevity penalty, w,, is the weight for the n-gram precision (typically %
1438 for uniform weights), p,, is the precision for n-grams. BP is calculated as:

BP:{I ifec>r

_r . .
el=c ifc<r

1439 where c is the length of the generated text and r is the length of the reference text. Furthermore,
1440 n-gram precision p,, is calculated as:

2 CeCandidates 2—n—gramec Win(Count(n — gram in candidate), Count(n — gram in references))

n — . .
Y CeCandidates 2n—gramec Count(n — gram in candidate)

1441 This formulation ensures that the BLEU score takes into account both the precision of the generated
1442 n-grams and the overall length of the translation, providing a balanced evaluation metric.
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In our experiments, the BLEU scores for various quantum algorithm design tasks are illustrated
in Figure This figure not only displays the average performance of each model but also
highlights the differences in performance across individual quantum algorithm tasks. The first notable
observation is that the figure clearly demonstrates the varying levels of difficulty among quantum
algorithms. For example, models achieve higher BLEU scores on tasks such as Bernstein-Vazirani
and Deutsch-Jozsa, whereas they perform significantly worse on tasks like Grover, phase estimation,
and quantum Fourier transform. This indicates that the former tasks are considerably easier than
the latter ones. Another significant observation is that most models score higher in a five-shot
prompt compared to a one-shot prompt, which confirms the large language models’ ability to improve
performance through contextual learning.

Similar patterns are observed in oracle construction tasks, as illustrated in Figure The figure
highlights that the Diffusion Operator task is notably more challenging than the Grover oracle
construction task. Interestingly, we found that adding more in-context examples actually reduced
the performance of the Qwen 2.5 and DeepSeek-R1 models. This decline in performance could be
attributed to the significant differences between each oracle construction task, which may be too
out-of-distribution. Consequently, the additional examples might cause the models to overfit to the
specific examples provided in the context, rather than generalizing well across different tasks.

Detailed Analysis of Verification Score. In addition to evaluating the BLEU score, we conducted
an experiment to measure the correctness of the machine-generated algorithms, and the results are
shown in Table[I] By running a verification function, we discovered that phase estimation and the
swap test are significantly more challenging than other problems, leading most models to score -1
(indicating they cannot even generate the correct syntax). Notably, the BLEU score for the swap test
is above average compared to other algorithms, yet almost none of the models produced a correct
algorithm. This discrepancy highlights a critical limitation of using BLEU as a metric for algorithm
evaluation. BLEU measures average similarity, but even a single mistake in an algorithm can render
it entirely incorrect, thus failing to capture the true accuracy and functionality of the generated
algorithms. Another important finding is that in a five-shot setting, GPT-4 and GPT-3.5 surpass all
other models by a large margin. This demonstrates their exceptional capabilities, particularly in
long-context comprehension and in-context learning. These models not only excel in understanding
and generating text based on minimal examples but also maintain high performance over extended
sequences, highlighting their advanced architecture and training methodologies.

As variational algorithms with parametric quantum circuits, VQE and QAOA require specifically
designed metrics. For VQE, we compare the energy obtained from the machine-generated ansatz
with the ground truth and compute a correctness score as follows:

1_ |ELLM - Eexpected|

“

| Eexpected |

This ratio-based metric is used because VQE optimizes in a continuous space, where solutions are
approximations rather than exact values. In contrast, for QAOA, when applied to solving the MaxCut
problem in a discrete space, is directly evaluated against the ground truth partition, with 0 or 1
correctness score.

Since quantum algorithms based on parametric quantum circuits often share a common structure in
their variational optimization process, a refined verification function is required to evaluate both the
quantum ansatz and its associated classical optimization step. Therefore, the final verification score
is decomposed into two components: one for the quantum circuit (QASM) generation and another
for the optimization code (Python implementation). The evaluation criteria are as follows:

* QASM Syntax Check:
— If the machine-generated QASM contains syntax errors, the score is —1.

¢ Optimization Code Check:

— If the QASM is valid but the Python code has syntax errors, the QASM output is
evaluated using a ground truth implementation of the optimization code.

— If the result matches the ground truth, the score is 0.5 X correctness_score.

— If the result is incorrect, the score is 0.

— If further syntax errors occur during evaluation, the score remains —1.
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We found that GPT-4 outperforms other models in ansatz design. However, most models frequently
fail to generate correct optimization code, often encountering syntax errors. A detailed analysis
suggests that a major source of these errors is inconsistency in giskit versions, leading to incorrect
function calls and deprecated API usage.

The verification results of the oracle construction task, as shown in Table [3} confirm our previous
conclusions. In the five-shot setting, GPT-4 and GPT-3.5 consistently outperform all other models.
Additionally, this table highlights the inconsistency between BLEU scores and verification scores.
For instance, while the Diffusion Operator task achieves the lowest BLEU score, it is the Grover
oracle construction that receives the lowest verification score. This discrepancy suggests that BLEU
scores may not fully capture the performance of models in certain complex tasks, and it is necessary
to include verification score as a comprehensive evaluation.

Byte Perplexity. Perplexity is a measure of how well a probability distribution or a probabilistic
model predicts a sample. In the context of language models, it quantifies the uncertainty of the model
when it comes to predicting the next element in a sequence. Byte perplexity specifically deals with
sequences of bytes, which are the raw binary data units used in computer systems. For our purposes,
we consider byte perplexity under UTF-8 encoding, a widely used character encoding standard that
represents each character as one or more bytes.

For a given language model, let p(z;|z ;) be the probability of the i-th byte z; given the preceding
bytes z ;. If we have a sequence of bytes © = (z1, 22, ..., zn ), the perplexity PPL(z) of the model
on this sequence is defined as:

PPL((E) = 2_% zN:1l(’g2P($1‘Td<i)‘

A notable feature of byte perplexity is that, it does not rely on any specific tokenizer, making it
versatile for comparing different models. Therefore, byte perplexity can be used to measure the
performance in quantum algorithm generation tasks. In such tasks, a lower byte perplexity indicates a
better-performing model, as it means the model is more confident in its predictions of the next byte in
the sequence.

C.2 Additional Experimental Results

Byte perplexity (PPL) scores. The Byte Perplexity results, shown in Figure[/] provide valuable
insights into the performance of our model. Evaluated in a zero-shot setting, byte perplexity trends
closely mirror those observed with BLEU scores. This alignment suggests that our model’s predictive
capabilities are consistent across Perplexity and BLEU evaluation metrics. Specifically, in the context
of quantum algorithm design tasks, the results indicate that the Bernstein-Vazirani and Deutsch-Jozsa
algorithms are relatively straightforward for the model, whereas the Simon algorithm presents greater
difficulty. This differentiation highlights the varying levels of complexity inherent in these quantum
algorithms.

Oracle construction. The details are presented in Table 3] GPT-40 and GPT-3.5 consistently
outperform other models, with both showing substantial improvements under few-shot prompting.
GPT-40 achieves the highest overall performance, raising its average score from -0.3912 (1-shot) to
-0.1245 (5-shot). GPT-3.5 follows closely, improving from -0.5910 to -0.2474. They are the only
models capable of generating partially correct solutions with positive scores for challenging tasks
such as the diffusion operator, showcasing strong in-context learning and generalization capabilities
of the GPT series. In contrast, Qwen 2.5 struggles to generalize, with only marginal improvement
from -0.6216 to -0.5258 and persistent failures on advanced tasks like Grover and Generalized-Simon.
DeepSeek-R1 performs the worst overall, with highly negative scores in both settings. Its long-chain
reasoning often leads to outputs that exceed the maximum context length, resulting in truncated or
invalid circuits, highlighting the inefficiency of reasoning models for oracle construction tasks.

Temperature. Regarding the counter-intuitive phenomenon where the performance on Clifford
and universal random circuits decreases after fine-tuning, we conducted additional experiments and
fine-tuned the model on 4,800 samples specifically for the Clifford task. Upon closer inspection,
we observed that the model more frequently generated outputs with infinite loops and increased
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Table 3: Benchmarking oracle construction in verification function scores.

Model Shot || Bernstein-Vazirani | Deutsch-Jozsa | Diffusion-Operator | Grover Simon Clifford | Universal || Generalized-Simon (multi-str) Avg
4o | 0.3600 0.1600 -1.0000 -0.9540 -0.4348 -0.4348 -0.1144 -0.7188 03912
&p (20.0659) (£0.0801) (£0.0000) (£0.0323) | (+0.0542) | (20.0224) | (£0.0341) (+0.0808) -
4o B 0.5400 0.3700 0.0769 -0.9770 -0.1739 0.1052 -0.1T11 -0.6250 0.1245
8P (£0.0521) (20.0677) (£0.2878) (20.0230) | (£0.0453) | (20.0210) | (20.0361) (£0.0870) -
Llama3 1 -0.7600 -0.7000 -0.8462 -0.9770 -0.8261 -0.1862 -0.1424 -0.8438 0.6602
ama (20.0571) (20.0595) (£0.1538) (20.0230) | (£0.0397) | (20.0349) | (£0.0338) (£0.0652) -
Liama3 5 0.0300 -0.3400 -1.0000 -0.9310 | -0.3587 | -0.1348 | -0.1572 -0.0313 0.3654
ama (x0.0771) (£0.0807) (x0.0000) (20.0394) | (£0.0503) | (20.0325) | (£0.0329) (£0.0951) -
G5 \ -0.1000 -0.1100 -1.0000 -0.9540 | -0.4130 0.0630 0.0538 -0.9688 05910
&P (x0.0859) (20.0764) (x0.0000) (20.0323) | (£0.0561) | (20.0178) | (20.0190) (x0.0313) -
G5 p 0.2700 0.1300 0.2308 -0.7701 | -0.3043 0.0816 0.0723 -0.5625 0.2474
&P (x0.0723) (£0.0734) (x0.2809) (£0.0688) | (£0.0482) | (20.0163) | (20.0159) (x0.0891) -
Qwen \ -0.5100 -0.5500 -0.8462 08391 | -0.9891 | -0.1065 | -0.I318 -1.0000 0.6216
2.5 (x0.0689) (+0.0687) (x0.1538) (£0.0587) | (0.0109) | (£0.0345) | (+0.0337) (x0.0000) -
Qwen 5 -0.0900 -0.4000 -0.3846 08391 | -0.89I13 | -0.2895 | -0.3434 -0.9688 05258
2.5 (£0.0889) (£0.0739) (£0.2665) (£0.0587) | (£0.0326) | (20.0442) | (£0.0415) (£0.0313) -
DeepSeek-| 1 -0.8900 -0.9800 -1.0000 -1.0000 -1.0000 -0.8885 -0.8644 -1.0000 0.9529
R1 (20.0424) (£0.0141) (£0.0000) (£0.0000) | (£0.0000) | (0.0000) | (£0.0232) (£0.02589) -
DeepSeek-| 5 -0.6700 -0.7900 -0.8462 -0.9310 -0.9565 -0.4355 -0.5496 -0.8125 07489
R1 (+0.0697) (£0.0518) (+0.1538) (£0.0394) | (+0.0214) | (20.0701) | (+0.0375) (+0.0369) -
Algorithm Design Oracle Construction
BV
BV
D)
Grover
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QFT
Diffusion
Simon
GHZ State
Grover
RNG
Swap Test
Simon
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Shor
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mm Qwen2.5 = Qwen2.5
EEE DeepSeek BEE DeepSeek
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Perplexity Perplexity

Figure 7: Benchmarking algorithm design and oracle construction in perplexity scores.

monotony, often producing repetitive gate patterns and repeatedly cycling over the same qubit after
fine-tuning. We further conducted experiments with different "temperature" parameters, which
control the randomness of predictions. Formally, let 7' > 0 be the temperature, z; be the raw score

zi/ .

Zee—ij/T' Typically, lower temperatures
3J

make the model more conservative, while higher temperatures flatten the distribution, increasing the

likelihood of generating originally less probable sequences. The results are shown in Table i}

for token ¢, the probability for token 7 is computed as p; =

Table 4: Clifford Model Fine-Tuning Results Across Different Temperature Settings.

Model Setting Temperature BLEU Verification
0 13.3796 (£0.9508) | -0.6582 (£0.0360)
Llama3 few-shots (5) 0.2 12.5688 (£0.8276) | -0.6526 (+0.0372)
1 53.0431 (£3.8422) | -0.1914 (+0.0361)
0 7.6261 (£0.3433) | -0.8895 (£0.0247)
Llama3 finetune 0.2 13.8714 (£0.6536) | -0.7873 (£0.0306)
1 32.5241 (£2.0548) | -0.2072 (£0.0358)
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One possible explanation for this counter-intuitive result lies in the challenge of encoding quantum
state vectors within a language model. In the problem description, the target quantum state is
represented by a complex vector with four decimal places of precision, where the dimension scales
as with the number of qubits . It is a well-known fact that LLMs generally struggle with very long
floating-point numbers, which might contribute to the observed performance decline.

Another potential reason could be overfitting during fine-tuning, particularly for tasks that require high
output diversity. The varying degrees of intrinsic difficulty and the amount of relevant pre-training
knowledge across different tasks likely played a role. Oracle constructions are relatively simple for
the model to learn. For example, in the Bernstein-Vazirani algorithm, the model only needs to apply
a CNOT gate at positions corresponding to *1’ bits. In contrast, the random circuits in the Clifford
and Universal tasks involve more general and complex quantum state transformations, making them
significantly more challenging. These tasks are also less common during pre-training, which could
have hindered the model’s ability to generalize without overfitting. This challenge is one of the
reasons we initially considered a few-shot learning approach to be suitable.

While these are plausible hypotheses, we acknowledge that further investigation is required to draw
definitive conclusions. We consider this an intriguing topic that warrants additional research.

C.3 Case Studies

After carefully examining the model’s output, we observed several interesting patterns. We present a
series of case studies to illustrate these observations and provide possible explanations.

C.3.1 Improvision Error

Low Score for GPT-40 in One-Shot Setting. At first glance, it is surprising that GPT-40 performs
poorly on many quantum algorithms in the algorithm design task in the one-shot setting compared to
Llama3-8B. Given that Llama3-8B has a relatively smaller parameter scale, the results should have
been the other way around. A closer examination of the model’s output reveals the potential reason:
while Llama3-8B closely mimics the input examples, GPT-40 tends to improvise, resulting in outputs
that are not well captured by the current syntax support. Here are several concrete examples.

This is the OpenQASM 3.0 code output for the W state with n = 7. In this code, GPT-40 uses the
advanced "for" loop syntax newly introduced in OpenQASM 3.0 to create the circuit. Although
the code fails to produce the W state, it is syntactically correct. However, the Qiskit.qasm3 import
module, which converts OpenQASM 3.0 files to QuantumCircuit objects and is used in our verification
function to check the correctness of the syntax of output OpenQASM codes, is still in the experimental
stage and does not support many of OpenQASM 3.0’s advanced features. As a result, GPT-40’s use
of these features causes the code to fail syntax validation, resulting in a score of -1.

3.0;
"stdgates.inc";
[7]1 q;
h q[0];

i in[1:6] {
cx qli-11, qlil;

Listing 8: OpenQASM 3.0 Code output by GPT-40 for W state with n = 7.

Here is another example where GPT-40 decides to assign novel names to its qubit registers, leading
to a conflict in the symbol table in Scope. GLOBAL. If we substitute all the registers x, y, and s with
new names, the code can pass syntax validation successfully and is close to the correct solution.

3.0;
"stdgates.inc";
"oracle.inc";

[9] s;

[10] x;
[11] y;
h x[0];
h x[1];
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1630
1631
1632

1633
1634
1635

1636
1637
1638

1648

1649
1650

1651
1652
1653

x[2];
x[3]1;
x [4];
x [56]1;
x[6];
x[7]1;
x[8];
racle x[0], x[1], =x[2], x[3], x[4], x[5], x[6], x[7], x[8], y;
x [0];
x[1]1;
x[2];
x[3];
x [4];
x [56];
x[6];
x[7]1;
x[8]1;
measure
measure
measure
measure
measure
measure
measure
measure
measure

h
h
h
h
h
h
h
0
h
h
h
h
h
h
h
h
h

Listing 9: OpenQASM 3.0 Code output by GPT-40 for Bernstein-Vazirani Problem with n = 9.

Since Llama3-8B tends to follow the provided example more closely, it avoids such kind of errors.
These factors may help explain why GPT-40 performs poorly in the one-shot setting compared to
Llama3-8B.

High Score for GPT-40 in Five-Shot Setting. In contrast to its relatively low score in the one-
shot setting, GPT-40 achieves the best overall performance in the five-shot setting for both oracle
construction and algorithm design tasks.

Unlike in the one-shot setting, where GPT-40 frequently uses advanced OpenQASM 3.0 features, it
learns from the examples in context and uses simpler syntax in the five-shot setting. For the W state
task, here is an output in the five-shot setting:

3.0;
"stdgates.inc";
[3] q;

h q[0];

cx q[0], ql1];

h ql1];

cx ql[1]1, ql2];

h ql2];

Listing 10: OpenQASM 3.0 Code output by GPT-40 for W state with n = 3.

This output avoids the use of "for" loops and successfully passes the syntax validation test, although
it still cannot generate the W state correctly.

In addition to adapting to plain syntax through in-context learning, GPT-40 achieves outstanding
performance on more complicated tasks such as phase estimation. Here is the model output of
GPT-40 on the phase estimation task with qubit number n = 2.

3.0;
"stdgates.inc";

"oracle.inc";
[2] c;
[2] q;
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1680
1681
1682
1683

1684
1685

1686

1687
1688

Psi q[0];
h q[1];
CU_0 ql0], ql1];

h ql1];
c[0] = measure ql[1];
c[1] = measure ql[0];

Listing 11: OpenQASM 3.0 Code output by GPT-40 for Phase Estimation with n = 2.

Qiskit transpile

run_and_analyze(circuit, aer_sim):
"""Run the circuit and analyze the result.
circ = transpile(circuit, aer_sim)
result = aer_sim.run(circ, shots=1).result ()
counts = result.get_counts ()
phase_str = (counts.keys ()) [0]
phase = (phase_str, 2) / 2x*x*2
phase

Listing 12: Post-processing code output by GPT-40 for Phase Estimation with n = 2.

This suite of OpenQASM 3.0 circuits and post-processing functions successfully outputs the phase
within the required precision for the test case, resulting in an impressive verification score of 1.0.
Despite the small number of qubits and differences from the reference implementation, the accuracy
achieved is noteworthy.

These phenomena reflect that GPT-40 has impressive in-context learning abilities and overall better
capabilities in designing and implementing quantum algorithms.

C.3.2 Counting Error

If we ask the GPT40 model to implement the code of Bernstein-Vazirani Problem for a given secret
string, for example s = 000101, the model fails to apply the CX gate on the correct qubits.

3.0;
"stdgates. i

Oracle _gate_q_0, _gate_q_1, _gate_q_2, _gate_q_3, _gate_q_4,
_gate_q_5, _gate_q_6 {

_gate_q_2, _gate_q_6;
_gate_q_5, _gate_q_6;

[6] c;
[7] q;

ql0];
ql1];
ql2];
ql[3];
ql4];
ql[5];

ql6];
qlé];

Oracle q[0], ql1], ql2], q[3], ql4], q[5], ql6];
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1736

1737
1738

1739

1740

1741

1742

1743
1744
1745

1746

1747

1748

measure
measure
measure
measure
measure
measure

Listing 13: OpenQASM code for Bernstein-Vazirani Problem with s = 000101 in few-shot setting.

We reminded the model of the mechanism with the following prompt:

Reminder Prompt

Remember that in the construction of oracles for Bernstein-Vazirani Problem, you should
apply cx gates where the control qubits are where the string bit equals 1, and the target qubit
is the ancillary qubit.

There was no improvement. We further asked the model about the indices of the bits in the string
which equal 1. It provided the following answer:

GPT40’s answer for counting indices

In the secret string s="000101", the bits that equal 1 are found at the following indices
(0-based):

Index 2

Index 5

These indices correspond to the positions where the string has a ’1°.

This reveals the incapability for GPT models to count the bit of 1 and apply corresponding gates to
construct the oracle.

C.3.3 Data Contamination

In our experiments, we observed an interesting phenomenon of performance discrepancy between
implementing quantum algorithms with Qiskit codes for the general setting and with OpenQASM
codes for a concrete case.

We provided the following prompt:

Prompt for Bernstein-Vazirani Problem with Qiskit

Please write the code with Qiskit implementing Bernstein-Vazirani Algorithm with qubit
number n = 5.

The model answered with the following text and codes:
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Text Answer by GPT40

Here’s a Python code using Qiskit to implement the Bernstein-Vazirani algorithm with n = 5
qubits. The secret string used in this example is s = 10101 (you can change this to any string
of your choice).

qiskit QuantumCircuit, Aer, transpile, assemble
qiskit.visualization plot_histogram

’10101°

(s)

bv_circuit = QuantumCircuit(n+1, n)

bv_circuit.h( (n))

bv_circuit.x(n)
bv_circuit.h(n)

i, bit (s):
bit == ’1°:
bv_circuit.cx(i, n)

bv_circuit.h( (n))

bv_circuit .measure (

bv_circuit.draw(’mpl’)

simulator = Aer.get_backend(’gasm_simulator’)
t_qc = transpile(bv_circuit, simulator)

qobj = assemble(t_qc)
result = simulator.run(qobj).result ()

counts = result.get_counts ()
plot_histogram(counts)

Listing 14: Qiskit code for Bernstein-Vazirani Problem generated by GPT4o0 in the zero-shot setting.

This code, although adopts an older version of Qiskit syntax, can be compiled and run successfully
with the correct answer. Similar performances can be observed with OpenQASM codes:

2.0;
"qelibl.inc";

qreg q[6];
creg c[5];

h q[0];
h ql1];
h q[2];
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ql[3];
ql[4];

ql[5];
ql5]1;

cx ql0], ql5];

cx ql2], ql5];
cx ql3], ql5];

q[0];
ql1];
ql2];
ql3];
ql[4];

measure
measure
measure
measure
measure

Listing 15: OpenQASM code for Bernstein-Vazirani Problem generated by GPT4o.

This phenomenon contrasts with the results in Appendix [C.3.2] Considering that Qiskit has im-
plemented tutorial codes for several representative quantum algorithms, the seemingly outstanding
performance of quantum algorithm code generation might be a deceptive result caused by data
contamination. Therefore, only a carefully designed quantum algorithm dataset can avoid the effects
of data contamination, allowing for an effective evaluation of the model’s genuine capability in
quantum algorithm design and implementation. This dataset is also meaningful for testing general Al
code generation and syntax learning, where no existing Al dataset could substitute us.
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