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ABSTRACT

We consider a class of conditional forward-backward diffusion models for con-
ditional generative modeling, that is, generating new data given a covariate (or
control variable). To formally study the theoretical properties of these conditional
generative models, we adopt a statistical framework of distribution regression to
characterize the large sample properties of the conditional distribution estimators
induced by these conditional forward-backward diffusion models. Here, the con-
ditional distribution of data is assumed to smoothly change over the covariate. In
particular, our derived convergence rate is minimax-optimal under the total varia-
tion metric within the regimes covered by the existing literature. Additionally, we
extend our theory by allowing both the data and the covariate variable to potentially
admit a low-dimensional manifold structure. In this scenario, we demonstrate
that the conditional forward-backward diffusion model can adapt to both manifold
structures, meaning that the derived estimation error bound (under the Wasserstein
metric) depends only on the intrinsic dimensionalities of the data and the covariate.

1 INTRODUCTION

Conditional distribution estimation aims to estimate the distribution (or its density if exists) of a
response variable Y given some covariate or predictor variable X , which is a fundamental problem in
statistics with wide applicability in finance, economics (Li & Racine, 2007), biology Krishnaswamy
et al. (2014) and social science, to name just a few. The conditional distribution provides a full
characterization of the dependence structure of the response variable on the predictors, which
allows one to gain deeper insights about the data characteristics beyond those from a simple mean
regression model, such as capturing uncertainty and addressing multiple-modality. Conditional density
estimation has received significant attention from both statistics and machine learning community
with proposed estimators ranging from classical nonparametric estimates such as those based on
smoothing techniques (Rosenblatt, 1969; Fan & Yim, 2004; Holmes et al., 2007; Bashtannyk &
Hyndman, 2001), Bayesian nonparametric estimates (Norets & Pati, 2017), to some recent methods
that utilize deep neural networks (Rothfuss et al., 2019).

Although there is a rich literature on conditional distribution estimation, many existing methods, such
as the classical nonparametric estimators based on kernel smoothing (Bashtannyk & Hyndman, 2001;
Izbicki & Lee, 2016; Li et al., 2022), suffer from some limitations. One notable drawback of these
classical methods is the requirement for the existence of a conditional density function, which is often
violated when the response variable Y contains discrete components or itself is a high-dimensional
object with low-dimensional structures. As a result, most classical methods can only deal with data
with small dimensions, and their performance deteriorates quickly when the dimension increases, thus
they suffer from the curse of dimensionality. In addition, these classical estimators generally do not
have the ability to adapt to any potential intrinsic structure, such as the manifold structure of the data,
a characteristic of many modern high-dimensional datasets. For distribution or density estimation
in the unconditional setting, estimators based on deep generative models appear to overcome the
aforementioned challenges. Constructing a distribution estimator implicitly by specifying its data-
generating process naturally allows singular structures in the data. Additionally, an emerging body
of literature on the theoretical understanding of deep generative models, including diffusion-based
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models (Chae et al., 2023; Dahal et al., 2022; Chen et al., 2023a; Tang & Yang, 2024), demonstrates
that such models provide an estimator of the underlying distribution with convergence rates dependent
only on the intrinsic dimension of the data.

Motivated by advancements in deep generative modeling, in this work we explore conditional
diffusion models based on deep neural networks for conditional distribution estimation, accounting
for possible low-dimensional manifold structures on either (or both) the covariate X and response Y .
Unlike other generative model estimation procedures, such as GANs (Goodfellow et al., 2014) and
variational auto-encoders (Kingma & Welling, 2013), which explicitly incorporate low-dimensional
structures by operating in or maintaining a low-dimensional latent space, diffusion models operate
directly in the original ambient data space. Therefore, it is both interesting and important to formally
study whether they can still adapt to any low-dimensional structure, if present. Towards these goals,
we consider conditional distribution estimators implicitly defined through a class of conditional
forward-backward diffusion models with conditional score matching. We investigate theoretical
properties of such estimators through a finite-sample analysis of their statistical error bounds with
respect to various metrics and examine their dependence on the intrinsic dimension and certain
smoothness characteristics of the data. The key findings and contributions of our work can be
summarized in the following:

• Our rates are minimax-optimal under the total variation metric in the classical setting when the
conditional distribution admits a smooth density function that also varies smoothly across different
covariate values.

• Our models encompass unconditional distribution estimation and nonparametric mean regression
as special cases. When restricted to the former, our derived estimation error bounds achieve the
minimax rate under both the total variation and the Wasserstein metrics. For the latter, our rates
recover the classical minimax rate of nonparametric regression under the L2 risk.

• Our results show that conditional diffusion estimators are adaptive to intrinsic manifold structures
when either (or both) the covariate X and response Y are concentrated around some lower-
dimensional manifold; thus, our model can handle high-dimensional distribution regression with
covariates exhibiting low-dimensional structures.

Other related works. There is vast literature on nonparametric conditional distribution estimation. In
addition to smoothing-based methods such as the ones employ kernel smoothing or local polynomial
regression (Fan & Yim, 2004), there are other approached based on mixture model (Bishop, 2006) ,
Gaussian processes (Payne et al., 2019; Dutordoir et al., 2018), and nonparametric Bayes (Chung &
Dunson, 2009; Dunson et al., 2007), among others. There has been a recent line of work that utilizes
deep generative approach for conditional sampling such as Zhou et al. (2022) and Liu et al. (2021).
Zhou et al. (2022) utilizes conditional GAN based approach and derived a consistent conditional
density estimator but no convergence rates or error bounds are provided. There is also a growing
body of theoretical research on diffusion generative models, though most have not considered the
conditional setting as we do, such as Oko et al. (2023); Chen et al. (2023a); Wang et al. (2024);
Li & Yan (2024); De Bortoli et al. (2021); Lee et al. (2022); Chen et al. (2022); Lee et al. (2023);
Chen et al. (2023b); Tang & Yang (2024); Li et al. (2024b) and Li et al. (2024a). Among these, Oko
et al. (2023); Chen et al. (2023a) and Tang & Yang (2024) study the approximation error and
generalization ability of diffusion models for estimating (unconditional) distributions when data
exhibits low-dimensional structures, which are shown to attain the minimax optimality in the 1-
Wasserstein metric for distributions supported on low-dimensional hyperplanes (Oko et al., 2023) and
general submanifolds (Tang & Yang, 2024). Some works, such as Li & Yan (2024) and De Bortoli
(2022), explicitly leverage low-dimensional data structures during the generative sampling phase of
implementing diffusion models. In scenarios where a covariate is available, some recent works (Chen
et al., 2024; Fu et al., 2024) explore the theoretical properties of conditional diffusion models;
however, they do not account for manifold structures when deriving their convergence rates.

2 FORWARD-BACKWARD DIFFUSION MODEL AND ITS CONDITIONAL
VARIANT

In this section, we will begin by reviewing the forward-backward diffusion model for (unconditional)
distribution estimation. After that, we will introduce its adaptations for estimating conditional
distributions under the statistical framework of distribution regression.
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2.1 FORWARD-BACKWARD DIFFUSION MODEL WITH SCORE MATCHING

Forward-backward diffusion models (see, e.g., Ho et al. (2020); Song et al. (2020); Nichol &
Dhariwal (2021); Song & Ermon (2019)) have emerged as a new state-of-the-art class of generative
models for estimating and generating samples from an underlying data distribution µ∗ on a data
space MY ⊂ RDY . In a typical forward-backward diffusion model, two diffusion processes
are utilized collaboratively: one process is designed for the estimation of a time-dependent score
function describing the direction towards a high data probability region, while the other is for
generating samples through a time-inhomogeneous process, based on the estimated score functions.
Consequently, this model overcomes the slow convergence issues (e.g., due to the multimodality of
µ∗) commonly observed in models that rely solely on a single diffusion process, such as Langevin
diffusion. Throughout the remainder of this paper, the term “diffusion model” specifically refers to
the forward-backward diffusion model.

More concretely, the first diffusion process in the diffusion model, often referred to as the forward
diffusion, employs a simple diffusion starting from µ∗ that admits a closed-form solution and
converges exponentially quickly to its limiting distribution. In this paper, we focus on the commonly
used Ornstein–Uhlenbeck (OU) process as the forward process, which gradually injects Gaussian
noise into the data and is described as a stochastic differntial equation (SDE)

d
−→
Y t = −δt

−→
Y t dt+

√
2δt dBt,

−→
Y 0 ∼ µ∗, (1)

where {Bt : t > 0} denotes the standard Brownian motion in RDY and {δt : t ≥ 0} is some
(possibly time-dependent) drift coefficient. Note that the OU process admits the closed form solu-
tion
−→
Y t = mt

−→
Y 0 +

∫ t

0
mt

ms

√
2δs dBs; thus, the conditional distribution of

−→
Y t given

−→
Y 0 = y is

N (mt y, σ
2
t IDY

), where mt = exp
(
−

∫ t

0
δs ds

)
and σ2

t = 1 − m2
t . Therefore, the marginal

distribution of
−→
Y t, denoted as pt, converges exponentially quickly to its limiting distribution

p∞ = N (0, IDY
) under the Kullback–Leibler divergence.

The second diffusion process in the diffusion model, usually called the backward diffusion, reverses
the forward diffusion and can be written as the following SDE,

d
←−
Y t =

[
δT−t

←−
Y t + 2δT−t∇ log pT−t(

←−
Y t)

]
dt+

√
2δT−t dBt,

←−
Y 0 ∼ pT . (2)

Under mild conditions on µ∗ (Song et al., 2020; Haussmann & Pardoux, 1986) (valid for our setting),
the distribution of

←−
Y t is pT−t, so that

←−
Y T ∼ p0 = µ∗. Since pT is close to p∞ = N (0, IDY

),
one can instead initialize the backward diffusion using the easy-to-sample distribution p∞, i.e. set
←−
Y 0 ∼ N (0, IDY

). The drift term of the backward diffusion depends on the time dependent score
function ∇ log pt defined through the forward diffusion; therefore, the forward and the backward
diffusions together constitutes a generative model for sampling from µ∗.

Equations (1) and (2) define the forward-backward diffusion model at the population-level. In a
standard statistical setting, we utilize independent and identically distributed (i.i.d.) samples {Yi}ni=1
from µ∗ to estimate the time-dependent score function ∇ log pt in the backward diffusion. The
estimation is achieved by the so-called score matching (Song & Ermon, 2019; Vincent, 2011).
Specifically, one first numerically simulates for some sufficiently large time horizon T from a sample-
level forward process {yt : t ∈ [0, T ]}, which is SDE (1) initialized at the empirical distribution
of the data, that is, y0 ∼ µ̂n = n−1

∑n
i=1 δYi

, with δy denoting the point mass (Dirac) measure at
a point y. One then uses a score approximating map Sθ(y, t) over space and time, indexed by a
parameter θ, e.g., (deep) neural networks with controlled depth and number of non-zero parameters,
to estimate the true underlying score function ∇ log pt(y), by minimizing the following (L2-)score
matching risk (over θ):∫ T

τ

Eyt∼pt(· | y0), y0∼µ̂n

[
∥Sθ(yt, t)−∇ log pt(yt | y0)∥2

]
λ(t) dt,

where pt(· | y) denotes the distribution of
−→
Y t in forward diffusion (1) initialized at

−→
Y 0 = y for any

y ∈ MY . Here, λ(t) is a weighting function (over time), and τ is an early-stopping threshold for
preventing the explosion (singularity) of the score function as t→ 0 commonly employed in practice
(Song & Ermon, 2020; Oko et al., 2023). Equivalently, this score estimation step can be efficiently
carried out in practice by simulating a trajectory {yt : t ≥ 0} from SDE (1) starting from each data
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point Yi, that is, yt ∼ pt(· |Yi). One then uses Sθ(y, t) to match the ensemble of all sample score
functions ∇ log pt(yt |Yi) over all n simulated trajectories, by minimizing the following empirical
risk function (over θ):

1

n

n∑
i=1

∫ T

τ

Eyt∼pt(· |Yi)

[
∥Sθ(yt, t)−∇ log pt(yt |Yi)∥2

]
λ(t) dt. (3)

We will adopt this statistical formulation of score matching to facilitate our theoretical analysis,
leveraging tools from statistical learning theory.

Finally, let Ŝ(x, t) = Sθ̂(x, t) denote the resulting score estimator. The distribution estimator of µ∗

based on the forward-backward diffusion model is then p̂T−τ , where p̂t represents the distribution of
←−
Y †

t for t ∈ [0, T − τ ], and
←−
Y †

t follows the SDE below with a plugged-in score,

d
←−
Y †

t =
[
δT−t

←−
Y †

t + 2δT−tŜ(
←−
Y †

t , T − t)
]
dt+

√
2δT−t dBt,

←−
Y †

0 ∼ N (0, IDY
). (4)

2.2 CONDITIONAL FORWARD-BACKWARD DIFFUSION MODEL WITH CONDITIONAL SCORE
MATCHING

A notable characteristic of diffusion models is their flexibility in incorporating a covariate or control
variable, denoted as X ∈MX ⊂ RDX , to guide the generation of new data Y ∈MY ⊂ RDY . This
can be equivalently formulated as the statistical problem of generating samples from the conditional
distribution µ∗

Y |x of Y given X = x for any covariate value x ∈MX . To facilitate the borrowing of
information across different covariate values, it is commonly assumed that the conditional distribution
µ∗
Y |x varies smoothly with x ∈MX . This assumption underlies a statistical framework often referred

to as distribution (density) regression in the literature (Bashtannyk & Hyndman, 2001; Izbicki &
Lee, 2016; Li et al., 2022). Distribution regression expands the classical (nonparametric) mean
regression by estimating not only the conditional expectation E[Y |X = x] as a smooth function of x,
but also the entire conditional distribution µ∗

Y |x that varies smoothly with x. Compared to classical
distribution regression methods based on kernel smoothing, which require µ∗

Y |x to admit a density
function (thus termed density regression in the early literature, see Bashtannyk & Hyndman (2001);
Izbicki & Lee (2016)), conditional diffusion model-based methods are more flexible. They can be
more generally applicable to cases where µ∗

Y |x is supported on a low-dimensional manifold and is
therefore singular; see Section 3.2 for details.

A natural way to convert a diffusion model into a conditional diffusion model for sampling from
µ∗
Y |x is to replace the (unconditional) score function ∇ log pt in the backward diffusion with some

conditional score function∇ log pt(· |x) satisfying p0(· |x) = µ∗
Y |x(·) and pT (· |x) = p∞(·). Earlier

literature considers the so-called classifier guidance method for estimating the conditional score using
Bayes’ rule (especially when covariate x is discrete or categorical; see, e.g., Dhariwal & Nichol
(2021); Song et al. (2020)):

∇ log pt(yt |x) = ∇ log pt(yt) +∇ log ct(x | yt),
Here, the first term, ∇ log pt(yt), is the unconditional score function defined in the forward diffu-
sion (1) in the unconditional diffusion model, which can be estimated via score matching. The second
term, ∇ log ct(x | yt), is the likelihood function of an external “classifier” trained to predict x from
yt. In other words, the classifier guidance method incorporates information from the covariate value
x into the unconditional score function through the gradient of an external classifier to guide the
backward diffusion for generating samples from µ∗

Y |x.

In this work, for the sake of theoretical simplicity and to avoid the need to analyze and quantify
the statistical accuracy of an external classifier, we consider a classifier-free method, which at the
population level directly applying a conditional score matching method (Hyvärinen & Dayan, 2005;
Vincent, 2011; Batzolis et al., 2021; Tashiro et al., 2021) based on simulating

−→
Y t from the same

(marginal) forward diffusion

d
−→
Y t = −δt

−→
Y t dt+

√
2δt dBt,

−→
Y 0 ∼ µ∗

Y . (5)

Here, µ∗
Y denotes the marginal distribution of Y . Consider a generic conditional score approximating

map Sθ(y, x, t) over space, covariate value and time, indexed by a parameter θ. In the conditional
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score matching step, we minimize the following (L2-)conditional score matching risk over θ:∫ T

τ

Eyt∼pt(· | y0), (x,y0)∼µ∗
X,Y

[
∥Sθ(yt, x, t)−∇ log pt(yt | y0)∥2

]
λ(t) dt, (6)

where µ∗
X,Y denotes the joint distribution of (X,Y ), and pt(· | y) is the distribution of

−→
Y t in forward

diffusion (5) initialized at
−→
Y 0 = y for any y ∈ MY . Here, the early stopping threshold τ and

the weighting function λ(t) are defined as before. It is straightforward to show (see Lemma C.12
in Appendix C.2) that if Sθ(y, x, t) can range over all possible conditional score functions, then
the global minimizer of the preceding risk function is precisely the true underlying conditional
score function ∇ log pt(yt |x). Here, pt(yt |x) : = Ey0∼µ∗

Y |x
[pt(yt | y0)] denotes the conditional

distribution of
−→
Y t given X = x after marginalizing out

−→
Y 0, where (X,

−→
Y 0) ∼ µ∗

X,Y and
−→
Y t follows

forward diffusion (5) starting from
−→
Y 0.

The corresponding conditional backward diffusion for sampling from µ∗
Y |x is then given by

d
←−
Y t|x =

[
δT−t

←−
Y t|x + 2δT−t∇ log pT−t(

←−
Y t|x |x)

]
dt+

√
2δT−t dBt,

←−
Y 0|x ∼ pT (· |x). (7)

Here, we added a subscript x in the notation
←−
Y t|x to indicate that, unlike the forward process (5), the

backward diffusion process is x-dependent. Similar to the (unconditional) diffusion model, choosing
a sufficiently large T can guarantee pT (· |x) ≈ p∞(·) = N(0, IDY

), which is independent of x.
We will refer to equations (5) and (7) as the conditional (forward-backward) diffusion model for the
remainder of the paper.

To estimate the conditional score∇ log pt(· |x) using i.i.d. observations {(Xi, Yi)}ni=1 sampled from
the joint distribution µ∗

X,Y of (X,Y ) under the statistical framework of distribution regression, one
can again minimize the following empirical version of conditional score matching risk (6),

1

n

n∑
i=1

∫ T

τ

Eyt∼pt(·|Yi)

[
∥Sθ(yt, Xi, t)−∇ log pt(yt |Yi)∥2

]
λ(t) dt. (8)

Finally, let Ŝ(y, x, t) = Sθ̂(y, x, t) denote the corresponding conditional score estimator. For each
x ∈ MX , the conditional distribution estimator of µ∗

Y |x based the conditional forward-backward

diffusion model is then p̂T−τ (· |x), where p̂t(· |x) is the distribution of
←−
Y †

t|x for t ∈ [0, T − τ ], and
←−
Y †

t|x follows the SDE below with a plugged-in conditional score,

d
←−
Y †

t|x =
[
δT−t

←−
Y †

t|x + 2δT−tŜ(
←−
Y †

t|x, x, T − t)
]
dt+

√
2δT−t dBt,

←−
Y †

0|x ∼ N (0, IDY
). (9)

2.3 NEURAL NETWORK CLASS FOR CONDITIONAL SCORE FUNCTION APPROXIMATION

Definition (neural network class): A class of neural networks Φ(H, W, R, B, V ) with height H ,
width vector W = (W1, W2, . . . , WH+1), sparsity R, norm constraint B, and function norm con-
straint V is defined as Φ(H,W,R,B, V ) =

{
f(·) = (A(H) ReLU(·)+b(H))◦· · ·◦(A(2) ReLU(·)+

b(2)) ◦ (A(1)x + b(1)), so that A(i) ∈ RWi×Wi+1 ; b(i) ∈ RWi+1 ;
∑H

i=1(∥A(i)∥0 + ∥b(i)∥0) ≤
R; maxi ∥A(i)∥∞ ∨ ∥b(i)∥∞ ≤ B; ∥f∥∞ ≤ V

}
, where ReLU(x) = max{0, x} is the rectified

linear unit activation function and the max function is applied elementwise to a vector.

According to Oko et al. (2023) and Tang & Yang (2024), the smoothing effect of gradually injecting
Gaussian noise into the data distribution during the forward diffusion (5) suggests that the optimal size
of the neural network for effectively approximating ∇ log pt(·, |, x) should decrease as t increases.
This observation motivates us to consider a neural network class whose size diminishes over time. For
technical convenience, we discretize the time and adopt the following piece-wise constant complexity
neural network class, as utilized in Tang & Yang (2024):

SNN =
{
S(y, x, t) =

∑I
i=1 Si(y, x, t) · 1 (ti−1 ≤ t < ti)

∣∣∣Si ∈ Φ (Hi,Wi, Ri, Bi, Vi) , i ∈ [I]
}
,

where τ = t0 < t1 < · · · < tI = T , ti+1

ti
= 2 for any i ∈ [I], and τ = 2−IT for some I to

be determined later. We have also conducted a simulation study (see Appendix A) to demonstrate
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the effectiveness of this theoretically guided neural network architecture compared to a standard
single ReLU neural network (across both space and time). In this experiments, we consider cases
where, given the covariate X , the response Y is supported on different (tilted) ellipses depending
on the values of the covariate. Consistent with our theoretical findings, the simulations show that
incorporating the piecewise structure into the neural network results in a more accurate estimation of
the conditional distribution. Recall that Ŝ(y, x, t) denotes the conditional score estimator, defined as
the minimizer of the conditional score matching risk (8) over the class SNN with the weight function
λ(t) = t (although any other weights such as λ(t) ≡ 1 would also suffice). We define a (truncated)
estimator µ̂Y |x for µ∗

Y |x as the distribution of
←−
Y †

T−τ |x ·1(∥
←−
Y †

T−τ |x∥∞ ≤ L), where (L, T ) are large
enough constants so thatMY ⊂ BRDY (0, L/2) and pT (·, |, x) ≈ N (0, IDY

). Here, we truncate the
random variable

←−
Y †

T−τ |x to guarantee a bounded support for the induced distribution estimator µ̂Y |x,
which is solely for technical reasons.

3 MAIN THEORETICAL RESULTS

In this section, we present our main theoretical results characterizing the statistical accuracy of the
conditional diffusion model for conditional distribution estimation (or distribution regression) under
two scenarios. In the first scenario, we consider the classical density regression setting where the
conditional distribution µ∗

Y |x admits a density function relative to the Lebesgue measure of the data
spaceMY ⊂ RDY . We derive the convergence rate of the estimator under both the total variation
and the Wasserstein metrics. In particular, our derived convergence rate is minimax-optimal under
the total variation metric within the regime covered by the existing literature Li et al. (2022) (see
Remark 1 for further details), and extends to a broader regime. In the second scenario, we consider a
high-dimensional distribution regression setting where both the response variable Y ∈ RDY and the
covariate variable X ∈ RDX reside in high-dimensional ambient spaces characterized by large DY

and DX . However, the covariate spaceMX of X has an intrinsic (or effective) dimension dX that
is significantly smaller than DX . Furthermore, given any x ∈ MX , the corresponding data space
of Y , denoted asMY |x, can be x-dependent and also has a small intrinsic dimension dY < DY .
We demonstrate that the conditional diffusion model effectively adapts to the underlying manifold
structures of both the data and the covariate variable. Specifically, we show that the convergence
rate of the estimator depends solely on the intrinsic dimensions (dY , dX), rather than the ambient
dimensions (DY , DX).

In the following, we denote dTV(µ, ν) and W1(µ, ν) as the respective total variation distance and the
1-Wasserstein distance between two distributions µ and ν. We denoteM = {(x, y) : x ∈MX , y ∈
MY |x} as the joint space of (X,Y ) andMY =

⋃
x∈MX

MY |x as the (marginal) data space. We
use the notation a∨ b and a∧ b to denote the respectively shorthand of max{a, b} and min{a, b}. For
a sequence {an : n ≥ 1}, we use Θ(an) to indicate the order of an up to a multiplicative constant as
n→∞, and Θ̃(an) to indicate the order of an up to a multiplicative constant and logarithmic terms
of n. Similarly, we use O(an) and Õ(an) to indicate at most of order an.

3.1 CLASSICAL DENSITY REGRESSION IN EUCLIDEAN SPACE

In this subsection, we consider the classical density regression setting where both the covariate
spaceMX ⊂ RDX and the data spaceMY ⊂ RDY are compact subsets (with open interiors) of
the Euclidean spaces, and the conditional distribution µ∗

Y |x admits a density function, denoted as
µ∗(y |x), relative to the Lebesgue measure of RDY . For simplicity, we assumeMY = [−1, 1]DY and
MX = [−1, 1]DX . In order to derive a non-asymptotic bound to the expected total variation distance
and Wasserstein distance between the conditional distribution estimator µ̂Y |X and the target µ∗

Y |X ,
with the expectation taken over X ∼ µ∗

X , we impose certain smoothness condition to the condition
density function µ∗(y |x) relative to (y, x) as in the classical density regression literature (Li et al.,
2022; Bilodeau et al., 2023). Specifically, we assume that µ∗(y, |, x), as a function of (y, x), is
CαY ,αX -smooth, where αY and αX quantify the respective smoothness in the response variable y
and the covariate x. Note that a function f(y, x) being CαY ,αX -smooth implies that, around any
point (y0, x0), there exists a local polynomial approximation of f , with an approximation error of
order O(∥y − y0∥αY + ∥x− x0∥αX ); a rigorous definition can be found in Appendix B. Formally,
we make the following assumptions.

6



Published as a conference paper at ICLR 2025

Assumption A (smoothness and lower boundness of µ∗
Y |x): For each x ∈ MX , the conditional

distribution µ∗
Y |x admits a density function µ∗(y |x) that is CαY ,αX -smooth in (y, x). Moreover,

there exists a positive constant c so that µ∗(y |x) ≥ c holds for any x ∈MX , y ∈MY .

Assumption B (regularity of the drift coefficient): The drift coefficient δt is infinitely differentiable
and there exist positive constants c1, c2 so that c1 ≤ δt ≤ c2 for any t ≥ 0.

Here the lower bound requirement of µ∗(y |x) is a commonly made assumption for distribution
estimation in the classical density regression literature, and is also imposed in Oko et al. (2023); Tang
& Yang (2024) for analyzing (unconditional) diffusion models. In practical applications, the drift
coefficient δt is typically chosen as a positive constant independent of t, thus naturally satisfying
Assumption B.
Theorem 1 (Density regression in Euclidean space). Suppose Assumptions A and B are satisfied.

Let ε1 = n
−1

/(
2αY +DY +

αY
αX

DX

)
. If we take τ = Θ̃

(
ε
2(αY +1)
1

)
, T = Θ(log n), and neural

network sizes satisfying Hi = Θ(log4 n), ∥Wi∥∞ = Θ̃
(
n

DX
2αX+DX t

−αXDY
2αX+DX
i ∧ ε

−DY −αY DX
αX

1

)
, Ri =

Θ̃
(
n

DX
2αX+DX t

−αXDY
2αX+DX
i ∧ ε

−DY −αY DX
αX

1

)
, Bi = exp(Θ(log n4)) and Vi = Θ

(√
logn
ti∧1

)
for i ∈ [I]1

with I = log2(
T
τ ), then it holds with probability at least 1− n−1 that

Ex∼µ∗
X

[
dTV(µ̂Y |x, µ

∗
Y |x)

]
= Õ

(
n
− 1

2+
DX
αX

+
DY
αY

)
, (10)

and Ex∼µ∗
X

[
W1(µ̂Y |x, µ

∗
Y |x)

]
= Õ

(
n
− 1

2+
DX
αX ∨ n

−
1+ 1

αY

2+
DX
αX

+
DY
αY

)
. (11)

Remark 1. In the special case when αX ∈ [0, 1], Li et al. (2022) shows that a well-designed kernel-
based estimator can achieve the same convergence rate (10) in the total variation metric as our
conditional diffusion model-based estimator; furthermore, this rate is shown to be minimax-optimal.
Therefore, our result implies the minimax-optimality of the conditional diffusion model for density
regression in the regime where αX ∈ [0, 1], although our upper bound is also applicable to αX > 1.
Remark 2. When specializing to the unconditional case with no covariate (that is, taking DX = 0
in Theorem 1), our derived estimation error bounds (10) and (11) reduce respectively to the minimax
rate of (unconditional) distribution estimation under the total variation metric and the Wasserstein
metric (Liang, 2021; Tang & Yang, 2023). However, unlike the upper bound proofs in Liang (2021);
Tang & Yang (2023), which rely on generative adversarial network (GAN) type estimators, our
proof demonstrates that the diffusion model is also minimax-optimal for distribution estimation. In
particular, our results recover those from Oko et al. (2023) as a special case (by taking DX = 0).
Remark 3. The derived W1 error bound (11) comprises two terms n−αX/(2αX+DX) and

n
−(αY +1)/(2αY +

DXαY
αX

+DY ). The first term resembles the classical minimax rate of nonparametric
regression under the L2 risk and can be interpreted as mainly capturing the estimation error related
to learning the dependence of the response variable Y on the covariate X , so that it only depends on
the smoothness and intrinsic dimension of X . Technically, this term arises from the approximation
of the conditional score function for large time t, where finer details of the conditional distribution
in Y have been smoothed out and only the global dependence on X matters. The second term
reflects the estimation error of recovering the entire conditional distribution of Y given X , and
depends on characteristics related to the response variable Y , such as the smoothness αY of the
conditional density function and the dimension of Y . Interestingly, the derived rate suggests a phase
transition phenomenon: if the dimension of the response variable DY satisfies DY ≤ 2 + DX

αX
,

then the estimation error under the W1 metric remains of order n−αX/(2αX+DX) regardless of the
smoothness level αY , and the W1 estimation error is dominated by the error of capturing the global
dependence of the response variable Y on the covariate variable X; otherwise, the W1 estimation
error is influenced by both the smoothness αY of conditional density on Y and the smoothness αX ,
which captures the finer details of the conditional distribution of Y given X .
Remark 4. A recent related work Fu et al. (2024) also explores theoretical properties of conditional
diffusion model, and show the minimax optimality of diffusion model under the total variation distance.

1Here we use the notation [I] = {1, 2, · · · , I}.
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In our work, we allow the conditional distribution of Y given X to have difference smoothness levels
αY and αX on the response Y and covariate X; in comparison, Fu et al. (2024) assumes the two
smoothness levels are the same. The varying smoothness levels can allow for the applicability of
the results in more general settings. For instance, when specializing to the mean regression case,
where the conditional distribution is a Gaussian distribution centered at the evaluation of an αX

smooth regression function over RDX , our derived estimation error bound (10) under dTV (that is,
taking αY →∞ in Theorem 1) can recover the classical minimax rate n− αX

2αX+DX of nonparametric
regression under the L2 risk.

3.2 HIGH-DIMENSIONAL DISTRIBUTION REGRESSION WITH LOW-DIMENSIONAL MANIFOLD
STRUCTURES

In this subsection, we consider the case where both the covariate spaceMX and the response space
MY may have low-dimensional structures in their respective ambient spaces RDX and RDY . For
the covariate spaceMX , the low-dimensional structure is imposed in terms of its upper Minkowski
dimension, which is related to the growth of its packing number (see Assumption C). This low-
dimensional structure is notably less stringent than a typical manifold assumption, as it does not
require any smoothness properties ofMX . For the response spaceMY , since we allow the con-
ditional distribution µ∗

Y |x to have different supports, denoted asMY |x, for each x ∈MX , we can
decomposeMY as

⋃
x∈MX

MY |x. In our theory, we require each “section”MY |x to be a smooth
submanifold in RDY ; additionally, we requireMY |x to vary smoothly with x (see Assumption D).
We list the concrete assumptions as follows.

Assumption C (intrinsic dimension ofMX ):MX is compact set in RDX and there exist constants
(C1, C2) so that for any ε > 0, any ε1 ∈ (0, ε), and any x ∈M, we have2 M(BMX

(x, ε), ∥·∥, ε1) :=
max{m : ∃ε1-packing of BMX

(x, ε) of size m} ≤ C2(
ε1
ε )

−dX .

This assumption naturally holds ifMX is a compact subset of a dX -dimensional hyperplane, or
more generally, a compact dX -dimensional submanifold embedded in RDX with its reach3 bounded
away from zero. Therefore, the constant dX in the assumption can be interpreted as the intrinsic
dimension ofMX . Next, we introduce our assumption on the conditional distribution µ∗

Y |X . For
easy understanding, we present an informal assumption here and postpone the more rigorous and
detailed version to Appendix B in the supplement. Recall thatM denotes the joint space of (X,Y ).

Assumption D (smoothness of µ∗
Y |X , informal version): For any x ∈ MX , MY |x is a dY -

dimensional submanifold in RDY , and µ∗
Y |x admits a density with respect to the volume measure of

MY |x, which is uniformly lower bounded away from zero. Moreover, for any ω = (x0, y0) ∈ M
and x ∈ BMX

(x0, r0), there exists an encoder-decoder pair
(
Qω

x (y), G
ω
x (z)

)
, such that Qω

x (·) maps
y ∈ BMY |x(y0, r0) to a low-dimensional latent variable z ∈ RdY , and Gω

x (·) reconstructs the data
y through the latent variable z. Here, the decoder Gω

x (z) is CβY ,βX -smooth in (z, x); and the
induced (local) conditional density function vω(z|x) of the latent variable z, as the pushforward
measure through the encoder Qω

x (y) of the restriction of the measure µ∗
Y |x onto BMY |x(y0, r0), is

CαY ,αX -smooth in (z, x).

Constants (βY , βX) in Assumption D quantify the smoothness of the submanifoldMY |x, which
is the image (range) of the decoder Gω

x (z). Specifically, index βY characterizes the smoothness
level of the manifold MY |x supporting the response variable for any fixed x ∈MX ; and index βX

characterizes the smoothness level of the section manifold MY |x in x, that is, how similarMY |x and
MY |x′ are when x is close to x′ inMX . In contrast, constants (αY , αX) in Assumption D quantify
the smoothness of the conditional distribution µ∗

Y |x, or more precisely, the corresponding conditional
density function on its supporting manifold MY |x. Specifically, the index αY characterizes the
smoothness level of the conditional density function in the response variable Y for any fixed x ∈MX ,
while the index αX captures how smoothly the conditional density function changes with x. The

2A set P ⊆ S is a ε-packing of S if for every x, x′ ∈ P we have ∥x− x′∥ > ε.
3The reach of a closed subset A ⊂ RD is defined as τA = infp∈A dist(p,Med(A)) =

infz∈Med(A) dist(z,A), where dist(z,A) = infp∈A ∥p− z∥ denotes the distance function to A, and Med(A)
is the medial axis of A consisting of the points that have at least two nearest neighbors.
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constant dY in the assumption can be viewed as the intrinsic dimension of the response variable Y .
Similar to Tang & Yang (2024), the requirements on the conditional distribution µ∗

Y |x in Assumption
D are stated in a local manner since a manifold, as a topological space, is only locally defined. In fact,
many common manifolds, such as spheres, do not admit a global parameterization (or encoder-decoder
representation).
Theorem 2 (Distribution regression on manifolds). Suppose Assumptions B, C and D are satis-

fied with βY ≥ αY ∨ 1 + 1 and βX ≥ αX + αX

αY
. Let ε1 = n

−1
/(

2αY +dY +
αY
αX

dX

)
. If we

take τ = Θ̃(ε
2(αY +1)
1 ), T = Θ(log n), and neural network sizes satisfying Hi = Θ(log4 n),

∥Wi∥∞ = Θ̃
(
n

dX
2αX+dX t

−αXdY
2αX+dX
i ∧ ε

−dY −αY dX
αX

1

)
, Ri = Θ̃

(
n

dX
2αX+dX t

−αXdY
2αX+dX
i ∧ ε

−dY −αY dX
αX

1

)
,

Bi = exp(Θ(log n4)) and Vi = Θ
(√

logn
ti∧1

)
for i ∈ [I] with I = log2(

T
τ ), then it holds with

probability at least 1− n−1 that

Ex∼µ∗
X

[
W1(µ̂Y |x, µ

∗
Y |x)

]
= Õ

(
n
− 1

2+
dX
αX ∨ n

−
1+ 1

αY

2+
dX
αX

+
dY
αY

)
.

Remark 5. Since µ̂Y |x and µ∗
Y |x are almost surely mutually singular measures (supporting on differ-

ent submanifolds), the total variation metric is always 1 and, therefore, not suitable for quantifying
their closeness. Consequently, our error bound is stated only in terms of the Wasserstein metric. In
fact, even in the (unconditional) distribution estimation case, Tang & Yang (2023) shows that no
estimator can achieve estimation consistency under the total variation metric.
Remark 6. Theorem 2 demonstrates that the statistical accuracy of the conditional diffusion model
depends solely on the intrinsic dimensions (dX , dY ) rather than the ambient dimensions (DX , DY ),
modulo multiplicative constants and logarithmic terms. This indicates that the conditional diffusion
model can adapt to the low-dimensional manifold structures in both the response and the covariate
variables. In particular, when there is no low-dimensional manifold structures (i.e., DX = dX and
DY = dY ), the W1 error bound in Theorem 2 recovers the W1 error bound in Theorem 1 in the
classical density regression.
Remark 7. The same remarks after Theorem 1 in the previous subsection also apply: when specializ-
ing to the unconditional case with no covariate (that is, taking DX = 0 in Theorem 1), our error
bound reduces to the minimax rate of (unconditional) distribution estimation under the Wasserstein
metric (Tang & Yang, 2023) with a (sufficiently smooth) manifold structure; when specializing to
the mean regression case, our error bound can recover the classical convergence rate n

− αX
2αX+dX

of nonparametric regression when the covariate X is supported on a dX -dimensional submanifold
(Yang & Dunson, 2016; Jiao et al., 2023).
Remark 8. Several works (Chen et al., 2023a; Oko et al., 2023) have also studied the unconditional
diffusion model with a low-dimensional structure, where the data lies in a subspace. However, our
work addresses a more general setting in which the manifold is unknown and can be highly nonlinear.
In particular, for a linear subspace, the (unconditional) diffusion process can be decomposed into
the tangent part and orthogonal part, so that the subspace estimation error and the estimation error
of the distribution on the subspace can be decoupled and analyzed separately. In comparison, for
a nonlinear manifold, such a decomposition does not exist, and the manifold estimation error and
distribution estimation error are coupled in a complicated manner. Furthermore, due to the nonlin-
earity, in our approximation error analysis using neural networks, we have to locally approximate a
class of projection operators of the nonlinear manifold that changes cross the manifold, rather than
approximating a single global projection operator onto a linear subspace.

3.3 PROOF HIGHLIGHTS

Since Theorem 2 extends Theorem 1 by incorporating manifold structures, we will only outline the
proof for the former in this subsection. All missing definitions, formal assumptions, and detailed
proofs are provided in the appendices of the supplementary material for this paper.

Our strategy for bounding the distribution estimation error mainly follows the pipeline of Oko et al.
(2023); Tang & Yang (2024). First, we construct a specific neural network within the class SNN

to approximate the true conditional score function ∇ log pt(·, |, x) with controlled error, which is
summarized in the following lemma.
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Lemma 1 (Score approximation error by neural network class). Under the same neural network
sizes {(Hi,Wi, Ri, Bi, Vi)}Ii=1 and choices of τ , T as in Theorem 2, there exists neural network
ϕi(w, x, t) ∈ Φ(Hi,Wi, Ri, Bi, Vi) for any i ∈ [I] so that

Eµ∗
X

[ ∫ ti

ti−1

∫
RD

∥∥ϕi(w, x, t)−∇ log pt(· |x)(w)
∥∥2pt(· |x)(w) dw dt

]

=


Õ
(
n
− 2αY

2αY +dY +
αY
αX

dX + t−1
i n

−
2·(βY ∧ βXαY

αX
)

2αY +dY +
αY
αX

dX

)
, if τ ≤ ti < n

− 2

2αY +dY +dX
αY
αX ;

Õ
(
n
− 2αX

2αX+dX t
− αXdY

2αX+dX
i

)
, if n

− 2

2αY +dY +dX
αY
αX ≤ ti ≤ T.

The primary technical challenge in proving Lemma 1 arises from the fact that the spaceMY |x is a
general (possibly nonlinear) manifold that depends on x. To address this, we partition the joint space
M of (X,Y ) into small pieces with varying resolution levels in X and Y , tailored to the smoothness
levels (αY , αX), dimensions (dY , dX), and times ti. Within each pieces, we carefully construct local
polynomials to approximate the local charts (i.e., the decoders Gω

x (z) defined in Assumption D) of
MY |x. The actual proof is much more involved and delicate in order to optimally balance between
the approximating neural network size and the approximate error; see Appendix C for details. Based
on Lemma 1, we can now utilize the complexity of SNN to control the generalization error for our
conditional score estimator Ŝ, which minimizes the empirical score matching risk (8). The result is
summarized as follows.
Lemma 2 (Score matching generalization error). It holds with probability at least 1− n−1 that,

Eµ∗
X

[ ∫ ti

ti−1

∫
RDY

∥∥Ŝ(w, x, t)−∇ log pt(· |x)(w)
∥∥2 pt(· |x)(w) dtdw]

≲ min
S∈Si

Eµ∗
X

[ ∫ ti

ti−1

∫
RDY

∥S(w, x, t)−∇ log pt(· |x)(w)∥2 pt(· |x)(w) dtdw
]

+
RiHi log

{
RiHi∥Wi∥∞(Bi ∨ 1)n

}
(log n)2

n
, for each i ∈ [I].

Oko et al. (2023) derived a similar result in the context of (unconditioned) distribution estimation
without x; in addition, their error bound is not a high probability bound but instead takes another
expectation with respect to the randomness of Ŝ. In contrast, our proof for the conditional distribution
estimation requires a high probability bound. We utilize more technical tools in empirical process
theory, such as the localization and peeling techniques Wainwright (2019), to derive such a high
probability bound as in Lemma 2. The rest of the analysis is similar to a standard analysis for
score-based diffusion models Song & Ermon (2019); Chen et al. (2022); Oko et al. (2023), where
we apply Girsanov’s theorem to relate the distribution estimation error with the obtained L2 score
estimation error.

4 CONCLUSION

In this study, we investigate the theoretical properties of conditional forward-backward diffusion
estimators within the statistical framework of distribution regression. Our results identify the primary
sources of error in conditional distribution estimation using conditional diffusion models and include
earlier results on unconditional distribution estimation and nonparametric mean regression as special
cases. Notably, our findings demonstrate that although (conditional) diffusion models operate directly
in the original ambient data space and do not explicitly incorporate low-dimensional structures, the
resulting conditional distribution estimators can still adapt to intrinsic manifold structures when either
(or both) the covariate X and response Y are concentrated around a lower-dimensional manifold.
Our analysis also offers practical guidance for designing the neural network approximation family to
optimally control different types of errors. This includes recommendations for the architecture of
the neural network, as well as how the network’s size (depth, width, sparsity, etc.) should depend on
various problem characteristics, such as sample size, smoothness levels, and intrinsic dimensions.
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