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A Illustration for Background

Ths paper relies on the Hodge decomposition and the spectral simplicial theory. To ease the exposition, we
illustrate them for the edge flow space. We refer to Barbarossa & Sardellitti (2020); Yang et al. (2021; 2022b)
for more details.

(a) uG,1, ⁄G,1(0.80) (b) uG,2, ⁄G,2(1.61) (c) uG,3, ⁄G,3(2.43) (d) uG,4, ⁄G,4(3.96) (e) uG,5, ⁄G,5(5.12)

(f) uG,6, ⁄G,6(6.08) (g) uC,1, ⁄C,1(1.59) (h) uC,2, ⁄C,2(3.00) (i) uC,3, ⁄C,3(4.41) (j) uH, ⁄H(0)

Figure 9: (a)-(f) Six gradient frequencies and the corresponding Fourier basis. We also annotate their
divergences, and we see that these eigenvectors with a small eigenvalue have a small magnitude of total
divergence, i.e., the edge flow variation in terms of the nodes. Gradient frequencies reflect the nodal variations.
(g)-(i) Three curl frequencies and the corresponding Fourier basis. We annotate their curls and we see that
these eigenvectors with a small eigenvalue have a small magnitude of total curl, i.e., the edge flow variation
in terms of the triangles. Curl frequencies reflect the rotational variations. (j) Harmonic basis with a zero
frequency, which has a zero nodal and zero rotational variation.

A.1 Spectral simplicial theory

Here we show how the eigenvalues of Lk carry the notion of simplicial frequency Yang et al. (2022b).
Specifically, we show for k = 1 an eigenvalue measures the total divergence or curl of the eigenvector.

• Gradient Frequency: the nonzero eigenvalues associated with the eigenvectors U1,G of L1,d, which
span the gradient space im(B€

1
), admit L1,du1,G = ⁄1,Gu1,G for any eigenpair u1,G and ⁄1,G. Thus,

we have ⁄1,G = u
€
1,GL1,du1,G = u

€
1,GB

€
1

B1u1,G = ÎB1u1,GÎ
2

2
, which is an Euclidean norm of the

divergence, i.e., the total nodal variation of u1,G. If an eigenvector has a larger eigenvalue, it has
a larger total divergence. For the SFT of an edge flow, if the gradient embedding x̃1,G has a large
weight on such an eigenvector, it contains components with a large divergence, and we say it has a
large gradient frequency. Thus, we call such eigenvalues associated with U1,G gradient frequencies.

• Curl Frequency: the nonzero eigenvalues associated with the eigenvectors U1,C of L1,u, which span
the curl space im(B2), admit L1,uu1,C = ⁄1,Cu1,C for any eigenpair u1,C and ⁄1,C. Thus, we have
⁄1,C = u

€
1,CL1,uu1,C = u

€
1,CB2B

€
2

u1,C = ÎB
€
2

u1,CÎ
2

2
, which is an Euclidean norm of the curl, i.e.,

the total rotational variation of u1,C. If an eigenvector has a larger eigenvalue, it has a larger
total curl. For the SFT of an edge flow, if the curl embedding x̃1,C has a large weight on such an
eigenvector, it contains components with a large curl, and we say it has a large curl frequency. Thus,
we call such eigenvalues associated with U1,C curl frequencies.

• Harmonic Frequency: the zero eigenvalues associated with the eigenvectors U1,H, which span the
harmonic space ker(L1), admit L1u1,H = 0 for any eigenpair u1,H and ⁄1,H = 0. From the definition
of L1, we have B1u1,H = B

€
2

u1,H = 0. That is, the eigenvector u1,H is divergence- and curl-free.
We also say such an eigenvector has zero signal variation in terms of the nodes and triangles. This
resembles the constant graph signal in the node space. We call such zero eigenvalues as harmonic
frequencies.
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Fig. 9 shows the simplicial Fourier basis and the corresponding simplicial frequencies of the SC, from which
we see how the eigenvalues of L1 can be interpreted as the simplicial frequencies.

For k = 0, the eigenvalues of L0 carry the notion of graph frequency, which measures the graph (node) signal
smoothness w.r.t. the upper adjacent simplices, i.e., edges. Thus, the curl frequency of k = 0 coincides with
the graph frequency and a constant graph signal has only harmonic frequency component. For a more general
k, there exist these three types of simplicial frequencies, which measure the k-simplicial signal total variations
in terms of faces and cofaces.

B Simplicial 2-Complex CNNs and Details on Properties

We give two examples where the first is a SCCNN on a SC of order two, and the second is the form of SCCNN
with multi-features.
Example 25. For k = 2, a SCCNN layer reads as

x
l
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= ‡(H l
0
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0
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0,uB1x

l≠1

1
),

x
l
1
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0
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1
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2
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2
).

(16)

Recursively, we see that a SCCNN layer takes as inputs {x
l≠1

0
, x

l≠2

0
, x

l≠2

1
, x

l≠2

2
} to compute x

l
0
. One may

find this familar as some type of skip connections in GNNs Xu et al. (2018b).
Example 26 (Multi-Feature SCCNN). A multi-feature SCCNN at layer l takes {X

l≠1

k≠1
, X

l≠1

k , X
l≠1

k+1
} as inputs,

each of which has Fl≠1 features, and generates an output X
l
k with Fl features as

X
l
k = ‡

A
Tdÿ

t=0

L
t
k,dB

€
k X

l≠1

k≠1
W

Õl
k,d,t +

Tdÿ

t=0

L
t
k,dX

l≠1

k W
l
k,d,t +

Tuÿ

t=0

L
t
k,uX

l≠1

k W
l
k,u,t +

Tuÿ

t=0

L
t
k,uBk+1X

l≠1

k+1
W

Õl
k,u,t

B

(17)
where L

t indicates the matrix t-power of L, while superscript l indicates the layer index.

B.1 Simplicial locality in details

The construction of SCFs has an intra-simplicial locality. Hkxk, which consists of basic operations Lk,dxk

and Lk,uxk. They are given, on simplex s
k
i , by

[Lk,dxk]i =
q

jœN k
i,dfi{i}[Lk,d]ij [xk]j , [Lk,uxk]i =

q
jœN k

i,ufi{i}[Lk,u]ij [xk]j , (18)

where s
k
i aggregates signals from its lower and upper neighbors, N

k
i,d and N

k
i,u. We can compute the t-step

shifting recursively as L
t
k,dxk = Lk,d(Lt≠1

k,d xk), a one-step shifting of the (t ≠ 1)-shift result; likewise for
L

t
k,uxk. A SCF linearly combines such multi-step simplicial shiftings based on lower and upper adjacencies.

Thus, the output Hkxk is localized in Td-hop lower and Tu-hop upper k-simplicial neighborhoods (Yang
et al., 2022b). SCCNNs preserve such intra-simplicial locality as the elementwise nonlinearity does not alter
the information locality, shown in Figs. 2b and 2c.

A SCCNN takes the data on k- and (k ± 1)-simplices at layer l ≠ 1 to compute x
l
k, causing interactions

between k-simplices and their (co)faces when all SCFs are identity. In turn, x
l≠1

k≠1
contains information on

(k ≠ 2)-simplices from layer l ≠ 2. Likewise for x
l≠1

k+1
, thus, x

l
k also contains information up to (k ± 2)-simplices

if L Ø 2, because Bk‡(Bk+1) ”= 0. Accordingly, this inter-simplicial locality extends to the whole SC if L Ø K,
unlike linear filters in a SC where the locality happens up to the adjacent simplices (Schaub et al., 2021;
Isufi & Yang, 2022), which limits its expressive power. This locality is further coupled with the intra-locality
through three SCFs such that a node not only interacts with the edges incident to it and direct triangles
including it, but also edges and triangles further hops away which contribute to the neighboring nodes, as
shown in Fig. 2d.
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B.2 Complexity

In a SCCNN layer for computing x
l
k, there are 2 + Td + Tu filter coe�cients for the SCF H

l
k, and 1 + Td

and 1 + Tu for H
l
k,d and H

l
k,u, respectively, which gives the parameter complexity of order O(Td + Tu).

This complexity will increase by FlFl≠1 fold for the multi-feature case, and likewise for the computational
complexity. Given the inputs {x

l≠1

k≠1
, x

l≠1

k , x
l≠1

k+1
}, we discuss the computation complexity of x

l
k in Eq. (4).

First, consider the SCF operation H
l
kx

l≠1

k . As discussed in the localities, it is a composition of Td-step
lower and Tu-step upper simplicial shiftings. Each simplicial shifting has a computational complexity of
order O(nkmk) dependent on the number of neighbors mk where nk is the number of k-simplices. Thus, this
operation has a complexity of order O(nkmk(Td + Tu)).

Second, consider the lower SCF operation H
l
k,dB

€
k x

l≠1

k≠1
. As incidence matrix Bk is sparse, it has nk(k + 1)

nonzero entries as each k-simplex has k + 1 faces. This leads to a complexity of order O(nkk) for operation
B

€
k x

l≠1

k≠1
. Followed by a lower SCF operation, i.e., a Td-step lower simplicial shifting, thus, a complexity of

order O(knk + nkmkTd) is needed.

Third, consider the upper SCF operation H
l
k,uBk+1x

l≠1

k+1
. Likewise, incidence matrix Bk+1 has nk+1(k + 2)

nonzero entries. This leads to a complexity of order O(nk+1k) for the projection operation Bk+1x
l≠1

k+1
.

Followed by an upper SCF operation, i.e., a Tu-step upper simplicial shifting, thus, a complexity of order
O(knk+1 + nkmkTu) is needed.

Finally, we have a computational complexity of order O(k(nk + nk+1) + NkMk(Td + Tu)) in total.
Remark 27. The lower SCF operation H

l
k,dB

€
k x

l≠1

k≠1
can be further reduced if nk≠1 π nk. Note that we have

H
l
k,dB

€
k x

l≠1

k≠1
=

Tdÿ

t=0

w
Õl
k,d,tL

t
k,dB

€
k x
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k≠1
= B

€
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t=0

w
Õl
k,d,tL

t
k≠1,ux

l≠1

k≠1
, (19)

where the second equality comes from that Lk,dB
€
k = B

€
k BkB

€
k = B

€
k Lk≠1,u, L

2

k,dB
€
k =

(B€
k Bk)(B€

k Bk)B€
k = B

€
k (BkB

€
k )(BkB

€
k ) = B

€
k Lk≠1,u and likewise for general t. Using the RHS of

Eq. (19) where the simplicial shifting is performed in the (k ≠ 1)-simplicial space, we have a complexity of
order O(knk + nk≠1mk≠1Td). Similarly, we have

H
l
k,uBk+1x

l≠1

k+1
=

Tuÿ

t=0

w
Õl
k,u,tL

t
k,uBk+1x

l≠1

k+1
= Bk+1

Tuÿ

t=0

w
Õl
k,u,tL

t
k+1,dx

l≠1

k+1
(20)

where the simplicial shifting is performed in the (k + 1)-simplicial space. If it follows that nk+1 π nk, we
have a smaller complexity of O(knk+1 + nk+1mk+1Tu) by using the RHS of Eq. (20).

B.3 Symmetries of SCs and simplicial data, Equivariance of SCCNNs

Permutation symmetry of SCs. There exists a permutation group Pnk for each set S
k in a SC of order

K. For K = 0, this gives the graph permutation group. We can combine these groups for di�erent simplex
orders by a group product to form a larger permutation group P = ◊k Pnk , which is a symmetry group of
SCs and simplicial data, assuming vertices in each simplex are consistently ordered. That is, we have, for
p = (p0, p1, . . . , pK) œ P , [p · Lk]ij = [Lk]p≠1

k
(i)p≠1

k
(j)

, [p · Bk]ij = [Bk]p≠1
k≠1(i)p≠1

k
(j)

, and [p · xk]i = [xk]p≠1
k

(i).
This permutation symmetry of SCs gives us the freedom to list simplices in any order.

Orientation symmetry of simplicial data. The orientation of a simplex is an equivalence class that two
orientations are equivalent if they di�er by an even permutation Lim (2020); Munkres (2018). Thus, for a
simplex s

k
i = {i0, . . . , ik} with k > 0, we have an orientation symmetry group Ok,i = {o

+

k,i, o
≠
k,i} by a group

homomorphism which maps all the even permutations of {i0, . . . , ik} to the identity element o
+

k,i and all the
odd permutations to the reverse operation o

≠
k,i.

We can further combine the orientation groups of all simplices in a SC as O = ◊i,k Ok,i by using a group
product. This however is not a symmetry group of an oriented SC because o

≠
k,i · Lk changes the signs of
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Lk elements in ith column and row, and o
≠
k,i · Bk changes the ith row, resulting in a di�erent SC topology.

Instead, it is a symmetry group of the data space, due to its alternating nature w.r.t. simplices. For o œ O

we have [o · xk]i = ok,i · fk(sk
i ) = fk(o≠1

k,i · s
k
i ), i.e., [xk]i remains unchanged w.r.t. the changed orientation of

s
k
i . This gives us the freedom to choose reference orientations of simplices when working with simplicial data.

Theorem 28 (Permutation Equivariance). A SCCNN in Eq. (4) is P -equivariant. For all p œ P , we have
p · SCCNNk : {pk≠1 · xk≠1, pk · xk, pk+1 · xk+1} æ pkxk.
Theorem 29 (Orientation Equivariance). A SCCNN in Eq. (4) is O-equivariant if ‡(·) is odd. For all o œ O,
we have o · SCCNNk : {ok≠1 · xk≠1, ok · xk, ok+1 · xk+1} æ ok · xk.

Proof. (informal) Both the permutation group and orientation group have linear matrix representations. By
following the same procedure in (Bodnar et al., 2021b, Appendix D) or Roddenberry et al. (2021), we can
prove the equivariance.

B.4 Di�usion process on SCs

Di�usion process on graphs can be generalized to SCs to characterize the evolution of simplicial data over the
SC, in analogy to data di�usion on nodes Anand et al. (2022); Ziegler et al. (2022); Grady & Polimeni (2010).
Here we provide an informal treatment of how discretizing di�usion equations on SCs can give resemblances
of simplicial shifting layers. Consider di�usion equation and its Euler discretization with a unit time step

ẋk(t) = ≠Lkxk(t), Euler step: xk(t + 1) = xk(t) ≠ Lkxk(t) = (I ≠ Lk)xk(t) (21)

with an initial condition xk(t) = x
0

k. The solution of this di�usion is xk(t) = exp (≠Lkt)x0

k. As the time
increases, the simplicial data reaches to a steady state ẋk(t) = 0, which lies in the harmonic space ker(Lk).
The simplicial shifting layer resembles this Euler step with a weight and nonlinearity when viewing the time
step as layer index. Thus, a NN composed of simplicial shifting layers can su�er from oversmoothing on SCs,
giving outputs with decreasing Dirichlet energies as the number of layers increases.

Now let us consider the case where the two Laplacians have di�erent coe�cients

ẋk(t) = ≠Lk,dxk(t) ≠ “Lk,uxk(t), Euler step: xk(t) = (I ≠ Lk,d ≠ “Lk,u)xk(t). (22)

The steady state of this di�usion equation follows (Lk,d + “Lk,u)xk(t) = 0, where xk(t) would be in the
kernal space of Lk still. However, before reaching this state, when the time increases, xk(t) would primarily
approach to the kernel of B

€
k+1

if “ ∫ 1, in which the lower part of the Dirichlet energy remains, i.e., the
decrease of D(x(t)) slows down.

When accounting for inter-simplicial couplings, consider there are nontrivial xk≠1 and xk+1 and the di�usion
equation becomes

ẋk(t) = ≠Lkxk(t) + B
€
k xk≠1 + Bk+1xk+1, (23)

which has source terms B
€
k xk≠1 +Bk+1xk+1. Consider a steady state ẋk = 0. We have Lkxk(t) = xk,d +xk,u,

where xk is not in the kernel space of Lk. The Euler discretization gives

xk(t + 1) = (I ≠ Lk)xk(t) + xk,d + xk,u. (24)

The layer in Bunch et al. (2020) x
l+1

k = w0(I ≠ Lk)xl
k + w1xk,d + w2xk,u is a weighted variant of above step

when viewing time steps as layers.

C Related works

We first compare SCCNN with other architectures on if they respect the three principles in Section 3 in
Table 5. We then describe how the SCCNN in Eq. (17) generalize other NNs on graphs and SCs in Table 6.
For simplicity, we use Y and X to denote the output and input, respectively, without the index l. Note that
for GNNs, L0,d is not defined.
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Table 5: Comparisons between SCCNN and other architectures on if they respect the three principles.

Methods Scheme P1 P2 P3

MPSN Bodnar et al. (2021b) message-passing yes yes no, only direct neighborhoods

Eq. (11) of MPSN, or Bunch et al. (2020) convolutional no yes no, only direct neighborhoods

Eq. (27) of MPSN convolutional yes yes no, only direct neighborhoods

SNN Ebli et al. (2020) convolutional no no yes

PSNN Roddenberry et al. (2021) convolutional yes no no, only direct neighborhoods

SCNN Yang et al. (2022a) convolutional yes no yes

SCCNN convolutional yes yes yes

Table 6: SCCNNs generalize other convolutional architectures on SCs.

Methods Parameters (n.d. denotes “not defined”)

Ebli et al. (2020) wl
k,d,t = wl

k,u,t, H
l
k,d, H

l
k,u n.d.

Roddenberry et al. (2021) Td = Tu = 1, H
l
k,d, H

l
k,u n.d.

Yang et al. (2022a) H
l
k,d, H

l
k,u n.d.

Bunch et al. (2020) Td = Tu = 1, H
l
k,d = H

l
k,u = I

Bodnar et al. (2021b) Td = Tu = 1, H
l
k,d = H

l
k,u = I

Gama et al. (2020a) proposed to build a GNN layer with the form

Y0 = ‡

A
Tuÿ

t=0

L
t
0
X0W0,u,t

B
(25)

where the convolution step is performed via a graph filter (Sandryhaila & Moura, 2013; 2014; Gama et al., 2019a;
2020b). This GNN can be easily built as a special SCCNN without contributions from edges. Furthermore,
De�errard et al. (2016) considered a fast implementation of this GNN via a Chebyshev polynomial, while Wu
et al. (2019) simplified this by setting W0,t,u as zeros for t < Tu. Kipf & Welling (2017) further simplified
this by setting Tu = 1, namely, GCN.

Yang et al. (2022a) proposed a simplicial convolutional neural network (SCNN) to learn from k-simplicial
signals

Yk = ‡

A
Tdÿ

t=0

L
t
k,dXkWk,d,t +

Tuÿ

t=0

L
t
k,uXkWk,u,t

B
(26)

where the linear operation is also defined as a simplicial convolution filter in Yang et al. (2022b). This is
a special SCCNN with a focus on one simplex level without taking into the lower and upper contributions
consideration. The simplicial neural network (SNN) of Ebli et al. (2020) did not di�erentiate the lower and
the upper convolutions with a form of Yk = ‡(

qT
t=0

L
t
kXkWk,t), which leads to a joint processing in the

gradient and curl subspaces as analyzed in Section 4.

While Roddenberry et al. (2021) proposed an architecture (referred to as PSNN)of a particular form of
Eq. (26) with Td = Tu = 1, performing only a one-step simplicial shifting Eq. (18). Keros et al. (2022) also
performs a one-step simplicial shifting but with an inverted Hodge Laplacian to localize the homology group
in an SC. An attention mechanism was added to both SCNNs and PSNNs by Giusti et al. (2022) and Goh
et al. (2022), respectively. Battiloro et al. (2023) added the attention mechanism to SCCNNs.

To account for the information from adjacent simplices, Bunch et al. (2020) proposed a simplicial 2-complex
CNN (S2CCNN)

Y0 = ‡
!
L0X0W0,u,1 + B1X1W

Õ
0,u,0

"

Y1 = ‡
!
B

€
1

X0W1,d,0 + L1X1W1,1 + B2X2W
Õ
1,u,0

"

Y2 = ‡
!
B

€
2

X1W2,d,0 + L2,uX2W2,u,1

"
(27)
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which is limited to SCs of order two. Note that instead of Hodge Laplacians, simplicial adjacency matrices
with self-loops are used in Bunch et al. (2020), which encode equivalent information as setting all filter orders
in SCCNNs as one. It is a particular form of the SCCNN where the SCF is a one-step simplicial shifting
operation without di�erentiating the lower and upper shifting, and the lower and upper contributions are
simply added, not convolved or shifted by lower and upper SCFs. That is, Bunch et al. (2020) can be obtained
from Eq. (4) by setting lower and upper SCFs as identity, Hk,d = Hk,u = I, and setting wk,d,t = wk,u,t and
Td = Tu = 1 for the SCF Hk. The convolution in Yang et al. (2022c, Eq. 3) is the same as Bunch et al.
(2020) though it was performed in a block matrix fashion.

The combination of graph shifting and edge shifting in Chen et al. (2022b) can be again seen as a special
S2CCNN, where the implementation was performed in a block matrix fashion. Bodnar et al. (2021b) proposed
a message passing scheme which collects information from one-hop simplicial neighbors and direct faces and
cofaces as Bunch et al. (2020) and Yang et al. (2022c), but replacing the one-step shifting and projections from
(co)faces by some learnable functions. The same message passing was applied for simplicial representation
learning by Hajij et al. (2021).

Lastly, there are works on signal processing and NNs on cell complexes. For example, Sardellitti et al. (2021);
Roddenberry et al. (2022) generalized the signal processing techniques from SCs to cell complexes, Bodnar
et al. (2021a); Hajij et al. (2020) performed message passing on cell complexes as in SCs and Hajij et al.
(2022) added the attention mechanism. Cell complexes are a more general model compared to SCs, where
k-cells compared to k-simplices contain any shapes homeomorphic to a k-dimensional closed balls in Euclidean
space, e.g., a filled polygon is a 2-cell while only triangles are 2-simplices. We refer to Hansen & Ghrist
(2019) for a more formal definition of cell complexes. Despite cell complexes are more powerful to model
real-world higher-order structures, SCCNNs can be easily generalized to cell complexes by considering any
k-cells instead of only k-simplices in the algebraic representations, and the theoretical analysis in this paper
can be adapted to cell complexes as well.

D Proofs for Section 3

D.1 Dirichlet energy minimization perspective

Hodge Laplacian smoothing. We can find the gradient of problem Eq. (7) as ˆD
ˆxk

= B
€
k Bkxk +

“Bk+1B
€
k+1

xk, thus, a gradient descent step follows as Eq. (7) with a step size ÷.

Proof of Proposition 5. Consider ÷ = 1.

D(xl+1

k ) = w
2

0
ÎBk(I ≠ Lk,d ≠ “Lk,u)xl

kÎ
2

2
+ w

2

0
ÎB

€
k+1

(I ≠ Lk,d ≠ “Lk,u)xl
kÎ

2

2

= w
2

0
Î(I ≠ Lk≠1,u)Bkx

l
kÎ

2

2
+ w

2

0
Î(I ≠ “Lk+1,d)B€

k+1
x

l
kÎ

2

2

Æ w
2

0
Î(I ≠ Lk≠1,u)Î2

2
ÎBkx

l
kÎ

2

2
+ w

2

0
Î(I ≠ “Lk+1,d)Î2

2
ÎB

€
k+1

x
l
kÎ

2

2

(28)

which follows from triangle inequality. By definition, we have ÎI ≠ Lk≠1,uÎ
2

2
= ÎI ≠ Lk,dÎ

2

2
and ÎI ≠

Lk,uÎ
2

2
= ÎI ≠ Lk+1,dÎ

2

2
. Also, we have ÎI ≠ LkÎ

2

2
= max{ÎI ≠ Lk,dÎ

2

2
, ÎI ≠ Lk,uÎ

2

2
} Thus, we have

D(xl+1

k ) Æ w
2

0
ÎI ≠ LkÎ

2

2
D(xl

k) when “ = 1. When w
2

0
ÎI ≠ LkÎ

2

2
< 1, Dirichlet energy D(xl+1

k ) will
exponentially decrease as l increases.

When “ ”= 1, from Eq. (28), we have D(xl+1

k ) = Dd(xl+1

k ) + Du(xl+1

k ), which follows

Dd(xl+1

k ) Æ w
2

0
Î(I ≠ Lk,d)Î2

2
Dd(xl

k) and Du(xl+1

k ) Æ w
2

0
Î(I ≠ “Lk,u)Î2

2
Du(xl

k) (29)

When “ = 1, the oversmoothing condition is ÎI ≠ LkÎ
2

2
= max{ÎI ≠ Lk,dÎ

2

2
, ÎI ≠ Lk,uÎ

2

2
} <

1

w2
0
. If

ÎI ≠ LkÎ
2

2
= ÎI ≠ Lk,dÎ

2

2
, under the oversmoothing condition, by not restricting “ to be 1, w

2

0
Î(I ≠ “Lk,u)Î2

2

can be larger than 1 depending on the choice, which means Du(xl
k) does not necessarily decrease, so does not

D(xl
k).
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Hodge Laplacian smoothing with sources. The gradient of the objective in Eq. (8) is given by
Lkx

l
k ≠ B

€
k xk≠1 ≠ Bk+1xk+1, which gives the gradient descent update in Eq. (8) with a step size ÷.

Consider the layer in Bunch et al. (2020) x
l+1

k = w0(I ≠ Lk)xl
k + w1xk,d + w2xk,u with some weights. By

triangle inequality, we have D(xl+1

k ) Æ w
2

0
ÎI ≠LkÎ

2

2
D(xl

k) + w
2

1
⁄max(Lk,d)Îxk,dÎ

2

2
+ w

2

2
⁄max(Lk,u)Îxk,uÎ

2

2
. If

the weight w0 is small enough following the condition in Proposition 5, the contribution from the projections,
controled by weights w1 and w2, can compromise the decrease by w0, maintaining the Dirichlet energy.

E Proofs for Section 4

E.1 The SCF is Hodge-invariant in Proposition 12

Proof. We first give the following lemma.

Lemma 30. Any finite set of eigenfunctions of a linear operator spans an invariant subspace.

Then, the proof follows from Lemma 30 and Proposition 10.

E.2 A derivation of the spectral frequency response in Eq. (11)

SFT of xk. First, the SFT of xk is given by x̃k = [x̃€
k,H, x̃

€
k,G, x̃

€
k,C]€ with the harmonic embedding

x̃k,H = U
€
k,Hxk = U

€
k,Hxk,H in the zero frequencies, the gradient embedding x̃k,G = U

€
k,Gxk = U

€
k,Gxk,G in

the gradient frequencies, and the curl embedding x̃k,C = U
€
k,Cxk = U

€
k,Cxk,C in the curl frequencies.

SFT of Hkxk. By diagonalizing an SCF Hk with Uk, we have

Hkxk = Uk
ÊHkU

€
k xk = Uk(h̃k § x̃k) (30)

where ÊHk = diag(h̃k). Here, h̃k = [h̃€
k,H, h̃

€
k,G, h̃

€
k,C]€ is the frequency response, given by

Y
_]

_[

harmonic response : h̃k,H = (wk,d,0 + wk,u,0)1,

gradient response : h̃k,G =
qTd

t=0
wk,d,t⁄

§t
k,G + wk,u,01,

curl response : h̃k,C =
qTu

t=0
wk,u,t⁄

§t
k,C + wk,d,01,

with (·)§t the elementwise t-th power of a vector. Thus, we can express h̃k § x̃k as

[(h̃k,H § x̃k,H)€
, (h̃k,G § x̃k,G)€

, (h̃k,C § x̃k,C)€]€. (31)

SFT of projections. Second, the lower projection xk,d œ im(B€
k ) has only a nonzero gradient embedding

x̃k,d = U
€
k,Gxk,d. Likewise, the upper projection xk,u œ im(Bk+1) contains only a nonzero curl embedding

x̃k,u = U
€
k,Cxk,u. The lower SCF Hk,d has h̃k,d =

qTd
t=0

w
Õ
k,d,t⁄

§t
k,G as the frequency response that modulates

the gradient embedding of xk,d and the upper SCF Hk,u has h̃k,u =
qTu

t=0
w

Õ
k,u,t⁄

§t
k,C as the frequency

response that modulates the curl embedding of xk,u.

SFT of yk. For the output yk = Hk,dxk,d + Hkxk + Hk,uxk,u, we have
Y
_]

_[

ỹk,H = h̃k,H § x̃k,H,

ỹk,G = h̃k,d § x̃k,d + h̃k,G § x̃k,G,

ỹk,C = h̃k,C § x̃k,C + h̃k,u § x̃k,u.

(32)

E.3 Expressive power in Proposition 13

Proof. From the Cayley-Hamilton theorem Horn & Johnson (2012), we know that an analytical function
f(A) of a matrix A can be expressed as a matrix polynomial of degree at most its minimal polynomial degree,
which equals to the number of distinct eigenvalues if A is positive semi-definite.
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Consider an analytical function Gk,d of Lk,d, defined on the spectrum of Lk,d via analytical function gk,G(⁄)
where ⁄ is in the set of zero and the gradient frequencies. Then, Gk,d can be implemented by a matrix
polynomial of Lk,d of order up to nk,G where nk,G is the number of nonzero eigenvalues of Lk,d, i.e., the
number of distinct gradient frequencies. Likewise, any analytical function Gk,u of Lk,u can be implemented
by a matrix polynomial of Lk,u of order up to nk,C, which is the number of nonzero eigenvalues of Lk,u, i.e.,
the number of distinct curl frequencies.

Thus, as of the matrix polynomial definition of SCFs in a SCCNN, the expressive power of Hk,dxk,d +Hkxk +
Hk,uxk,u is at most G

Õ
k,dxk,d + (Gk,d + Gk,u)xk + G

Õ
k,uxk,u, when the matrix polynomial orders (convolution

orders) follow Tk,d = T
Õ
k,d = nk,G and Tk,u = T

Õ
k,u = nk,C.

E.4 Hodge-aware of SCCNN in Theorem 14

Proof. Consider a linear mapping T : V æ V . An invariant subspace W of T has the property that all
vectors v œ W are transformed by T into vectors also contained in W , i.e., v œ W =∆ T (v) œ W. For an
input x œ im(B€

k ), the output Hkx is in im(B€
k ) too, because of

Hkx =
ÿ

t

L
t
k,dx +

ÿ

t

L
t
k,ux =

ÿ

t

L
t
k,dx œ im(B€

k ) (33)

where the second equality comes from the orthogonality between im(B€
k ) and im(Bk+1). Similarly, we can

show that for x œ im(Bk+1), the output Hkx œ im(Bk+1); for x œ ker(Lk), the output Hkx œ ker(Lk).
This essentially says the three subspaces of the Hodge decomposition are invariant with respect to the SCF
Hk. Likewise, the gradient space is invariant with respect to the lower SCF Hk,d, which says any lower
projection remains in the gradient space after passed by Hk,d; and the curl space is invariant with respect to
the upper SCF Hk,u.

Lastly, through the spectral relation in Eq. (11), the learning operator Hk in the gradient space is controlled
by the learnable weights {wk,d,t}, which is independent of the learnable weights {wk,u,t}, associated to the
learning of Hk in the curl space. Likewise, the lower SCF learns in the gradient space as well but with another
set of learnable weights {w

Õ
k,d,t}, and the upper SCF learns in the curl space with learnable weights {w

Õ
k,u,t}.

From the spectral expressive power, we see that above four independent learning in the two subspaces can be
as expressive as any analytical functions of the corresponding frequencies (spectrum). This concludes the
independent and expressive learning in the gradient and curl spaces.

F Proofs for Section 5

We first give the formulation of SCCNNs on weighted SCs, then we proceed the stability proof.

F.1 SCCNN on weighted SCs

A weighted SC can be defined through specifying the weights of simplices. We give the definition of a
commonly used weighted SC with weighted Hodge Laplacians in Grady & Polimeni (2010); Horak & Jost
(2013).
Definition 31 (Weighted SC and Hodge Laplacians). In an oriented and weighted SC, we have diagonal
weighting matrices Mk with [M ]ii measuring the weight of ith k-simplex. A weighted kth Hodge Laplacian
is given by

L̃k = L̃k,d + L̃k,u = MkB
€
k M

≠1

k≠1
Bk + Bk+1Mk+1B

€
k+1

M
≠1

k . (34)
where Lk,d and Lk,u are the weighted lower and upper Laplacians. A symmetric version fol-
lows L

s
k = M

≠1/2

k LkM
1/2

k , and likewise, we have L
s
k,d = M

1/2

k B
€
k M

≠1

k≠1
BkM

1/2

k and L
s
k,u =

M
≠1/2

k Bk+1Mk+1B
€
k+1

M
≠1/2

k , with the weighted incidence matrix is M
≠1/2

k≠1
BkM

1/2

k (Horak & Jost, 2013;
Guglielmi et al., 2023; Schaub et al., 2020).

SCCNNs in weighted SC. The SCCNN layer defined in a weighted SC is of form

x
l
k = ‡(H l

k,dRk,dx
l≠1

k≠1
+ H

l
kx

l≠1

k + H
l
k,uRk,ux

l≠1

k+1
) (35)
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where the three SCFs are defined based on the weighted Laplacians Eq. (34), and the lower and upper
contributions x

l
k,d and x

l
k,u are obtained via projection matrices Rk,d œ Rnk◊nk≠1 and Rk,u œ Rnk◊nk+1 ,

instead of B
€
k and Bk+1. For example, Bunch et al. (2020) considered R1,d = M1B

€
1

M
≠1

0
and R1,u = B2M2.

F.2 Proof of Stability of SCCNNs in Theorem 24

For a SCCNN in Eq. (35) in a weighted SC S, we consider its perturbed version in a perturbed SC ‚S at layer
l, given by

x̂
l
k = ‡(„H l

k,d
‚Rk,dx̂

l≠1

k≠1
+ „H l

kx̂
l≠1

k + „H l
k,u

‚Rk,ux̂
l≠1

k+1
) (36)

which is defined based on perturbed Laplacians with the same set of filter coe�cients, and the perturbed
projection operators following relativ perturbation model.

Given the initial input x
0

k for k = 0, 1, . . . , K, our goal is to upper bound the Euclidean distance between the
outputs x

l
k and x̂

l
k for l = 1, . . . , L,

Îx̂
l
k ≠ x

l
kÎ2 = Î‡(„H l

k,d
‚Rk,dx̂

l≠1

k≠1
≠ H

l
k,dRk,dx

l≠1

k≠1

+ „H l
kx̂

l≠1

k ≠ H
l
kx

l≠1

k + „H l
k,u

‚Rk,ux̂
l≠1

k+1
≠ H

l
k,uRk,ux

l≠1

k+1
)Î2.

(37)

We proceed the proof in two steps: first, we analyze the operator norm Î„H l
k ≠ H

l
kÎ2 of a SCF H

l
k and its

perturbed version „H l
k; then we look for the bound of the output distance for a general L-layer SCCNN.

To ease notations, we omit the subscript such that ÎAÎ = maxÎxÎ2=1ÎAxÎ2 is the operator norm (spectral
radius) of a matrix A, and ÎxÎ is the Euclidean norm of a vector x.

In the first step we omit the indices k and l for simplicity since they hold for general k and l. We first give a
useful lemma.
Lemma 32. Given the ith eigenvector ui of L = U�U

€, for lower and upper perturbations Ed and Eu, we
have

Edui = qdiui + E1ui, Euui = quiui + E2ui (38)
with eigendecompositions Ed = VdQdV

€
d

and Eu = VuQuV
€

u
where Vd, Vu collect the eigenvectors and

Qd, Qu the eigenvalues. It holds that ÎE1ÎÆ ‘d”d and ÎE2ÎÆ ‘u”u, with ”d = (ÎVd ≠ UÎ+1)2
≠ 1 and

”u = (ÎVu ≠ UÎ+1)2
≠ 1 measuring the eigenvector misalignments.

Proof. We first prove that Edui = qdiui + E1ui. The perturbation matrix on the lower Laplacian can be
written as Ed = E

Õ

d
+ E1 with E

Õ
d

= UQdU
€ and E1 = (Vd ≠ U )Qd(Vd ≠ U )€ + UQd(Vd ≠ U )€ + (Vd ≠

U)QdU
€. For the ith eigenvector ui, we have that

Edui = E
Õ

d
ui + E1ui = qdiui + E1ui (39)

where the second equality follows from E
Õ
d
ui = qdiui. Since ÎEdÎÆ ‘d, it follows that ÎQdÎÆ ‘d. Then,

applying the triangle inequality, we have that

ÎE1ÎÆÎ(Vd ≠ U)Qd(Vd ≠ U)€
Î+ÎUQd(Vd ≠ U)€

Î+Î(Vd ≠ U)QdUÎ

ÆÎVd ≠ UÎ
2
ÎQdÎ+2ÎVd ≠ UÎÎQdÎÎUÎÆ ‘dÎVd ≠ UÎ

2+2‘dÎVd ≠ UÎ

=‘d((ÎVd ≠ UÎ+1)2
≠ 1) = ‘d”d,

(40)

which completes the proof for the lower perturbation matrix. Likewise, we can prove for Euui.

F.2.1 Step I: Stability of the SCF

Proof. 1. Low-order approximation of „H ≠ H. Given a SCF H =
qTd

t=0
wd,tL

t
d

+
qTu

t=0
wu,tL

t
u
, we

denote its perturbed version by „H =
qTd

t=0
wd,t

‚Lt
d

+
qTu

t=0
wu,t

‚Lt
u
, where the filter coe�cients are the same.

The di�erence between H and „H can be expressed as

„H ≠ H =
Tdÿ

t=0

wd,t(‚Lt
d

≠ L
t
d
) +

Tuÿ

t=0

wu,t(‚Lt
u

≠ L
t
u
), (41)
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in which we can compute the first-order Taylor expansion of ‚Lt
d

as

‚Lt
d

= (Ld + EdLd + LdEd)t = L
t
d

+ Dd,t + Cd (42)

with Dd,t :=
qt≠1

r=0
(Lr

d
EdL

t≠r
d

+ L
r+1

d
EdL

t≠r≠1

d
) parameterized by t and Cd following ÎCdÎÆqt

r=2

!t
r

"
ÎEdLd + LdEdÎ

r
ÎLdÎ

t≠r. Likewise, we can expand ‚Lt
u

as

‚Lt
u

= (Lu + EuLd + Ldu)t = L
t
u

+ Du,t + Cu (43)

with Du,t :=
qt≠1

r=0
(Lr

u
EuL

t≠r
u

+ L
r+1

u
EuL

t≠r≠1

u
) parameterized by t and Cu following ÎCuÎÆqt

r=2

!t
r

"
ÎEuLu + LuEuÎ

r
ÎLuÎ

t≠r. Then, by substituting Eq. (42) and Eq. (43) into Eq. (41), we have

„H ≠ H =
Tdÿ

t=0

wd,tDd,t +
Tuÿ

t=0

wu,tDu,t + Fd + Fu (44)

with negligible terms ÎFdÎ= O(ÎEdÎ
2) and ÎFuÎ= O(ÎEuÎ

2) because perturbations are small and the
coe�cients of higher-order power terms are the derivatives of analytic functions h̃G(⁄) and h̃C(⁄), which are
bounded [cf. Definition 18].

2. Spectrum of („H ≠ H)x. Consider a simplicial signal x with an SFT x̃ = U
€

x = [x̃1, . . . , x̃n]€, thus,
x =

qn
i=1

x̃iui. Then, we study the e�ect of the di�erence of the SCFs on a simplicial signal from the spectral
perspective via

(„H ≠ H)x =
nÿ

i=1

x̃i

Tdÿ

t=0

wd,tD
t
d,tui +

nÿ

i=1

x̃i

Tdÿ

t=0

wu,tD
t
u,tui + Fdx + Fux (45)

where we have

D
t
d,tui =

t≠1ÿ

r=0

(Lr
d
EdL

t≠r
d

+ L
r+1

d
EdL

t≠r≠1

d
)ui, and D

t
u,tui =

t≠1ÿ

r=0

(Lr
u
EuL

t≠r
u

+ L
r+1

u
EuL

t≠r≠1

u
)ui. (46)

Since the lower and upper Laplacians admit the eigendecompositions for an eigenvector2
ui

Ldui = ⁄diui, Luui = ⁄uiui, (47)

we can express the terms in Eq. (45) as

L
r
d
EdL

t≠r
d

ui = L
r
d
Ed⁄

t≠r
di ui = ⁄

t≠r
di L

r
d
(qdiui + E1ui) = qdi⁄

t
diui + ⁄

t≠r
di L

r
d
E1ui, (48)

where the second equality holds from Lemma 32. Thus, we have

L
r+1

d
EdL

t≠r≠1

d
ui = qdi⁄

t
diui + ⁄

t≠r≠1

di L
r+1

d
E1ui. (49)

With the results in Eq. (48) and Eq. (49), we can write the first term in Eq. (45) as

nÿ

i=1

x̃i

Tdÿ

t=0

wd,tD
t
d,tui =

nÿ

i=1

x̃i

Tdÿ

t=0

wd,t

t≠1ÿ

r=0

2qdi⁄
t
diui

¸ ˚˙ ˝
term 1

+
nÿ

i=1

x̃i

Tdÿ

t=0

wd,t

t≠1ÿ

r=0

(⁄t≠r
di L

r
d
E1ui + ⁄

t≠r≠1

di L
r+1

d
E1ui)

¸ ˚˙ ˝
term 2

.

(50)

2Note that they can be jointly diagonalized.
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Term 1 can be further expanded as

term 1 = 2
nÿ

i=1

x̃iqdi

Tdÿ

t=0

twd,t⁄
t
diui = 2

nÿ

i=1

x̃iqdi⁄dih̃
Õ
G

(⁄di)ui (51)

where we used the fact that
qTd

t=0
twd,t⁄

t
di = ⁄dih̃

Õ
G

(⁄di). Using Ld = U�dU
€ we can write term 2 in

Eq. (50) as

term 2 =
nÿ

i=1

x̃iUdiag(gdi)U€
E1ui (52)

where gdi œ Rn has the jth entry

[gdi]j =
Tdÿ

t=0

wd,t

t≠1ÿ

r=0

3
⁄

t≠r
di [�d]rj + ⁄

t≠r≠1

di [�d]r+1

j

4
=

I
2⁄dih̃

Õ
G

(⁄di) for j = i,

⁄di+⁄dj

⁄di≠⁄dj
(h̃G(⁄di) ≠ h̃G(⁄dj)) for j ”= i.

(53)

Now, substituting Eq. (51) and Eq. (52) into Eq. (50), we have

nÿ

i=1

x̃i

Tdÿ

t=0

wd,tD
t
d,tui = 2

nÿ

i=1

x̃iqdi⁄dih̃
Õ
G

(⁄di)ui +
nÿ

i=1

x̃iUdiag(gdi)U€
E1ui. (54)

By following the same steps as in Eq. (50)-Eq. (53), we can express also the second term in Eq. (45) as

nÿ

i=1

x̃i

Tdÿ

t=0

wu,tD
t
u,tui = 2

nÿ

i=1

x̃iqui⁄uih̃
Õ
C

(⁄ui)ui +
nÿ

i=1

x̃iUdiag(gui)U€
E2ui (55)

where gui œ Rn is defined as

[gui]j =
Tdÿ

t=0

wu,t

t≠1ÿ

r=0

3
⁄

t≠r
ui [�u]rj + ⁄

t≠r≠1

ui [�u]r+1

j

4
=

I
2⁄uih̃

Õ
C

(⁄ui) for j = i,

⁄ui+⁄uj

⁄ui≠⁄uj
(h̃C(⁄ui) ≠ h̃C(⁄uj)) for j ”= i.

(56)

3. Bound of Î(„H ≠ H)xÎ. Now we are ready to bound Î(„H ≠ H)xÎ based on triangle inequality. First,
given the small perturbations ÎEdÎ Æ ‘d and ÎEuÎ Æ ‘u, we have for the last two terms in Eq. (45)

ÎFdxÎ Æ O(‘2

d
)ÎxÎ, and ÎFuxÎ Æ O(‘2

u
)ÎxÎ. (57)

Second, for the first term Î
qn

i=1
x̃i

qTd
t=0

wd,tD
t
d
uiÎ in Eq. (45), we can bound its two terms in Eq. (51) and

Eq. (52) as

....
nÿ

i=1

x̃i

Tdÿ

t=0

wd,tD
t
d,tui

.... Æ

....2
nÿ

i=1

x̃iqdi⁄dih̃
Õ
G

(⁄di)ui

.... +
....

nÿ

i=1

x̃iUdiag(gdi)U€
E1ui

..... (58)

For the first term on the RHS of Eq. (58), we can write
....2

nÿ

i=1

x̃iqdi⁄dih̃
Õ
G

(⁄di)ui

....
2

Æ 4
nÿ

i=1

|x̃i|
2
|qdi|

2
|⁄dih̃

Õ
G

(⁄di)|2 Æ 4‘
2

dc
2

d
ÎxÎ

2
, (59)

which results from, first, |qdi| Æ ‘d = ÎEdÎ since qdi is an eigenvalue of Ed; second, the integral Lipschitz
property of the SCF |⁄h̃

Õ
G

(⁄)| Æ cd; and lastly, the fact that
qn

i=1
|x̃i|

2 = Îx̃Î
2 = ÎxÎ

2 and ÎuiÎ
2 = 1. We

then have ....2
nÿ

i=1

x̃iqdi⁄dih̃
Õ
G

(⁄di)ui

.... Æ 2‘dcdÎxÎ. (60)
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For the second term in RHS of Eq. (58), we have
....

nÿ

i=1

x̃iUdiag(gdi)U€
E1ui

.... Æ

nÿ

i=1

|x̃i|ÎUdiag(gdi)U€
ÎÎE1ÎÎuiÎ, (61)

which stems from the triangle inequality. We further have ÎUdiag(gdi)U€
Î = Îdiag(gdi)Î Æ 2Cd resulting

from ÎUÎ = 1 and the cd-integral Lipschitz of h̃G(⁄) [cf. Definition 18]. Moreover, it follows that ÎE1Î Æ ‘d”d

from Lemma 32, which results in
....

nÿ

i=1

x̃iUdiag(gdi)U€
E1ui

.... Æ 2Cd‘d”d

Ô
nÎxÎ (62)

where we use that
qn

i=1
|x̃i| = Îx̃Î1 Æ

Ô
nÎx̃Î =

Ô
nÎxÎ. By combining Eq. (59) and Eq. (62), we have

....
nÿ

i=1

x̃i

Tdÿ

t=0

wd,tD
t
d,tui

.... Æ 2‘dcdÎxÎ + 2Cd‘d”d

Ô
nÎxÎ. (63)

Analogously, we can show that
....

nÿ

i=1

x̃i

Tdÿ

t=0

wu,tD
t
u,tui

.... Æ 2‘ucuÎxÎ + 2Cu‘u”u

Ô
nÎxÎ. (64)

Now by combining Eq. (57), Eq. (63) and Eq. (64), we can bound Î(„H ≠ H)xÎ as

Î(„H ≠ H)xÎ Æ 2‘dcdÎxÎ + 2Cd‘d”d

Ô
nÎxÎ + O(‘2

d
)ÎxÎ

+ 2‘ucuÎxÎ + 2Cu‘u”u

Ô
nÎxÎ + O(‘2

u
)ÎxÎ.

(65)

By defining �d = 2(1 + ”d

Ô
n) and �u = 2(1 + ”u

Ô
n), we can obtain that

Î„H ≠ HÎ Æ cd�d‘d + cu�u‘u + O(‘2

d
) + O(‘2

u
). (66)

Thus, we have ÎH
l
k ≠ „H l

kÎ Æ ck,d�k,d‘k,d+ck,u�k,u‘k,u with �k,d = 2(1+”k,d
Ô

nk) and �k,u = 2(1+”k,u
Ô

nk)
where we ignore the second and higher order terms on ‘k,d and ‘k,u. Likewise, we have ÎH

l
k,d ≠ „H l

k,dÎ Æ

ck,d�k,d‘k,d for the lower SCF and ÎH
l
k,u ≠ „H l

k,uÎ Æ ck,u�k,u‘k,u for the upper SCF.

F.2.2 Step II: Stability of SCCNNs

Proof. Given the initial input x
0

k, the Euclidean distance between x
l
k and x̂

l
k at layer l can be bounded by

using triangle inequality and the c‡-Lipschitz property of ‡(·) [cf. Assumption 22] as

Îx̂
l
k ≠ x

l
kÎ2 Æ c‡(„l

k,d + „
l
k + „

l
k,u), (67)

with
„

l
k,d :=Î„H l

k,d
‚Rk,dx̂

l≠1

k≠1
≠ H

l
k,dRk,dx

l≠1

k≠1
Î,

„
l
k :=Î„H l

kx̂
l≠1

k ≠ H
l
kx

l≠1

k Î,

„
l
k,u :=Î„H l

k,u
‚Rk,ux̂

l≠1

k+1
≠ H

l
k,uRk,ux

l≠1

k+1
Î.

(68)

We now focus on upper bounding each of the terms.

1. Term „
l
k. By subtracting and adding „H l

kx
l≠1

k within the norm, and using the triangle inequality, we
obtain

„
l
k Æ Î„H l

k(x̂l≠1

k ≠ x
l≠1

k )Î + Î(„H l
k ≠ H

l
k)xl≠1

k Î Æ Îx̂
l≠1

k ≠ x
l≠1

k Î + Î„H l
k ≠ H

l
kÎÎx

l≠1

k Î

Æ Îx̂
l≠1

k ≠ x
l≠1

k Î + (ck,d�k,d‘k,d + ck,u�k,u‘k,u)Îx
l≠1

k Î

(69)
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where we used the SCF stability in Eq. (66) and that all SCFs have a normalized bounded frequency response
in Assumption 20. Note that „H l

k is also characterized by h̃G(⁄) with the same set of filter coe�cients as H
l
k.

2. Term „
l
k,d and „

l
k,u. By subtracting and adding a term „H l

k,d
‚Rk,dx

l≠1

k≠1
within the norm, we have

„
l
k,d Æ Î„H l

k,d
‚Rk,d(x̂l≠1

k≠1
≠ x

l≠1

k≠1
)Î + Î(„H l

k,d
‚Rk,d ≠ H

l
k,dRk,d)xl≠1

k≠1
Î

Æ Î ‚Rk,dÎÎx̂
l≠1

k≠1
≠ x

l≠1

k≠1
Î + Î„H l

k,d
‚Rk,d ≠ H

l
k,dRk,dÎÎx

l≠1

k≠1
Î,

(70)

where we used again triangle inequality and Î„H l
k,dÎ Æ 1 from Assumption 20. For the term Î ‚Rl

k,dÎ, we
have Î ‚Rl

k,dÎ Æ ÎR
l
k,dÎ + ÎJk,dÎÎR

l
k,dÎ Æ rk,d(1 + ‘k,d) where we used ÎR

l
k,dÎ Æ rk,d in Assumption 21 and

ÎJ
l
k,dÎ Æ ‘k,d. For the second term of RHS in Eq. (70), by adding and subtracting „H l

k,dR
l
k,d we have

Î„H l
k,d

‚Rk,d ≠ H
l
k,dRk,dÎ = Î„H l

k,d
‚Rk,d ≠ „H l

k,dR
l
k,d + „H l

k,dR
l
k,d ≠ H

l
k,dRk,dÎ

Æ Î„H l
k,dÎÎ ‚Rk,d ≠ Rk,dÎ + Î„H l

k,d ≠ H
l
k,dÎÎRk,dÎ

Æ rk,d‘k,d + C
Õ
k,d�k,d‘k,drk,d

(71)

where we use the stability result of the lower SCF H
l
k,d in Eq. (66). By substituting Eq. (71) into Eq. (70),

we have
„

l
k,d Æ r̂k,dÎx̂

l≠1

k≠1
≠ x

l≠1

k≠1
Î + (rk,d‘k,d + C

Õ
k,d�k,d‘k,drk,d)Îx

l≠1

k≠1
Î. (72)

By following the same procedure [cf. Eq. (70) and Eq. (71)], we obtain

„
l
k,u Æ r̂k,uÎx̂

l≠1

k+1
≠ x

l≠1

k+1
Î + (rk,u‘k,u + C

Õ
k,u�k,u‘k,urk,u)Îx

l≠1

k+1
Î. (73)

3. Bound of Îx̂
l
k ≠x

l
kÎ. Using the notations tk, tk,d and tk,u in Theorem 24, we then have a set of recursions,

for k = 0, 1, . . . , K

Îx̂
l
k ≠ x

l
kÎ Æc‡(r̂k,dÎx̂

l≠1

k≠1
≠ x

l≠1

k≠1
Î + tk,dÎx

l≠1

k≠1
Î + Îx̂

l≠1

k ≠ x
l≠1

k Î + tkÎx
l≠1

k Î

+ r̂k,uÎx̂
l≠1

k+1
≠ x

l≠1

k+1
Î + tk,uÎx

l≠1

k+1
Î).

(74)

Define vector b
l as [bl]k = Îx̂

l
k ≠ x

l
kÎ with b

0 = 0. Let —
l collect the energy of all outputs at layer l, with

[—l]k := Îx
l≠1

k Î. We can express the Euclidean distances of all k-simplicial signal outputs for k = 0, 1, . . . , K,
as

b
l

∞ c‡
‚Zb

l≠1 + c‡T —
l≠1 (75)

where ∞ indicates elementwise smaller than or equal, and we have

T =

S

WWWWWU

t0 t0,u

t1,d t1 t1,u

. . . . . . . . .
tK≠1,d tK≠1 tK≠1,u

tK,d tK

T

XXXXXV
and ‚Z =

S

WWWWWU

1 r̂0,u

r̂1,d 1 r̂1,u

. . . . . . . . .
r̂K≠1,d 1 r̂K≠1,u

r̂K,d 1

T

XXXXXV
. (76)

We are now interested in building a recursion for Eq. (75) for all layers l. We start with term x
l
k. Based on

its expression in Eq. (35), we bound it as

Îx
l
kÎ Æ c‡(ÎH

l
k,dÎÎRk,dÎÎx

l≠1

k≠1
Î + ÎH

l
kÎÎx

l≠1

x Î + ÎH
l
k,uÎÎRk,uÎÎx

l≠1

k+1
Î)

Æ c‡(rk,dÎx
l≠1

k≠1
Î + Îx

l≠1

x Î + rk,uÎx
l≠1

k+1
Î),

(77)

which holds for k = 0, 1, . . . , K. Thus, it can be expressed in the vector form as —
l

∞ c‡Z—
l≠1, with

Z =

S

WWWWWU

1 r0,u

r1,d 1 r1,u

. . . . . . . . .
rK≠1,d 1 rK≠1,u

rK,d 1

T

XXXXXV
. (78)
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Similarly, we have —
l≠1

∞ c‡Z—
l≠2, leading to —

l
∞ c

l
‡Z

l
—

0 with —
0 = — [cf. Assumption 23]. We can then

express the bound Eq. (75) as
b

l
∞ c‡

‚Zb
l≠1 + c

l
‡T Z

l≠1
—. (79)

Thus, we have

b
0 = 0, b

1
∞ c‡T —, b

2
∞ c

2

‡( ‚ZT — + T Z—), b
3

∞ c
3

‡( ‚Z2
T — + ‚ZT Z— + T Z

2
—), b

4
∞ . . . , (80)

which, inductively, leads to

b
l

∞ c
l
‡

lÿ

i=1

‚Zi≠1
T Z

l≠i
—. (81)

Bt setting l = L, we obtain the bound b
L

∞ d = c
L
‡

qL
l=1

‚Zl≠1
T Z

L≠l
— in Theorem 24.

G Experiment details

G.1 Synthetic experiments on Dirichlet energy evolution

We created a synthetic SC with 100 nodes, 241 edges and 135 triangles with the GUDHI toolbox Rouvreau
(2015), and we set the initial inputs on three levels of simplices to be random sampled from U([≠5, 5]). We
then built a SCCNN composed of simplicial shifting layers with weight w0 and nonlinearities including id, tanh
and relu. When the weight follows the condition in Proposition 5, from Fig. 10 (the dashed lines labled as
“shift”), we see that the Dirichlet energies of all three outputs exponentially decrease as the number of layers
increases. We then uncoupled the lower and upper parts of the Laplacians in the edge space in the shifting
layers by setting “ ”= 1. As shown in Fig. 10 (the dotted lines), the Dirichlet energies of the edge outputs
decrease at a slower rate than before. Lastly, we added the inter-simplicial couplings, which overcome the
oversmoothing problems, as shown by the solid lines.
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Figure 10: Oversmoothing e�ects of simplicial shifting and the mitigation e�ects of uncoupling lower and
upper adjacencies and accounting for inter-simplicial couplings.

G.2 Additional details on Forex experiments

In the forex dataset, there are 25 currencies which can be exchanged pairwise at three timestamps. We first
represented their exchange rates on the edges and took the logrithm, i.e., [x1][i,j] = log

10
r

i/j = ≠[x1][j,i].
Then, the total arbitrage can be computed as the total curl B

€
2

x1.

We considered to recover the exchange rates under three types of settings: 1) random noise following normal
distribution such that the signal-to-noise ration is ≠3dB, which is spread over the whole simplicial spectrum;
2) “curl noise” projected from triangle noise following normal distribution such that the signal-to-noise ration
is ≠3dB, which is distributed only in the curl space; and 3) 50% of the total forex rates are recorded and the
other half is not available, set as zero values.
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Table 7: Forex results (nmse, arbitrage) and the corresponding hyperparameters.

Methods Random noise “Curl noise” Interpolation
Input 0.119 ± 0.004, 25.19 ± 0.874 0.552 ± 0.027, 122.36 ± 5.90 0.717 ± 0.030, 106.40 ± 0.902
¸2-norm 0.036 ± 0.005, 2.29 ± 0.079 0.050 ± 0.002, 11.12 ± 0.537 0.534 ± 0.043 , 9.67 ± 0.082
SNN 0.11 ± 0.005, 23.24 ± 1.03 0.446 ± 0.017, 86.947 ± 2.197 0.702 ± 0.033, 104.738 ± 1.042

L = 5, F = 64, T = 4, tanh L = 6, F = 64, T = 3, tanh L = 2, F = 64, T = 1, tanh
PSNN 0.008 ± 0.001, 0.984 ± 0.17 0.000 ± 0.000, 0.000 ± 0.000 0.009 ± 0.001, 1.128 ± 0.329

L = 6, F = 64, tanh L = 5, F = 1, id L = 6, F = 64, tanh
Bunch 0.981 ± 0.0 , 22.912 ± 1.228 0.981 ± 0.0, 22.912 ± 1.228 0.983 ± 0.005 , 19.887 ± 6.341

— — —
MPSN 0.039 ± 0.004, 7.748 ± 0.943 0.076 ± 0.012, 14.922 ± 2.493 0.117 ± 0.063, 23.147 ± 11.674

L = 2, F = 64, id, sum L = 4, F = 64, tanh, mean L = 2, F = 64, tanh, sum
SCCNN, id 0.027 ± 0.005, 0.000 ± 0.000 0.000 ± 0.000, 0.000 ± 0.000 0.265 ± 0.036 , 0.000 ± 0.000

L = 2, F = 16, Td = 0, Tu = 3 L = 5, F = 1, Td = 1, Tu = 1 L = 2, F = 16, Td = 0, Tu = 3
SCCNN, tanh 0.002 ± 0.000, 0.325 ± 0.082 0.000 ± 0.000, 0.003 ± 0.003 0.003 ± 0.002, 0.279 ± 0.151

L = 6, F = 64, Td = 5, Tu = 2 L = 1, F = 64, Td = 2, Tu = 2 L = 6, F = 64, Td = 5, Tu = 1

First, as a baseline method, we chose ¸2 norm of the curl B2x1 as a regularizer to reduce the total arbitrage,
i.e., x̂1 = (I + wL1,u)≠1

x1 with a regularization weight w œ [0, 10]. For the learning methods, we consider the
following hyperparameter ranges: the number of layers to be L œ {1, 2, . . . , 6}, the number of intermediate
features to be F œ {1, 16, 32, 64}. For the convolutional methods including SNN Ebli et al. (2020), PSNN
Roddenberry et al. (2021), Bunch Bunch et al. (2020) and SCCNN, we considered the intermediate layers with
nonlinearities including id and tanh. The convolution orders of SNN and SCCNN are set to be {1, 2, . . . , 5}.
For the message-passing method, MPSN Bodnar et al. (2021b), we considered the setting from (Bodnar
et al., 2021b, Eq. 35) where the sum and mean aggregations are used and each message update function is a
two-layer MLP. With these noisy or masked rates as inputs and the clean arbitrage-free rates as outputs,
we trained di�erent learning methods at the first timestamp, and validated the hyperparameters at the
second timestamp, and tested their performance at the thrid one. During the training of 1000 epochs, a
normalized MSE loss function and adam optimizer with a fixed learning rate of 0.001 are used. We run the
same experiments for 10 times. Table 7 reports the best results (nmse) and the total arbitrage, together with
the hyperparameters.

G.3 Additional details on Simplex prediction

G.3.1 Method in Detail

The method for simplex prediction is generalized from link prediction based on GNNs by Zhang & Chen
(2018): For k-simplex prediction, we use an SCCNN in an SC of order up to k to first learn the features of
lower-order simplices up to order k ≠ 1. Then, we concatenate these embedded lower-order simplicial features
and input them to a two-layer MLP which predicts if a k-simplex is positive (closed, shall be included in the
SC) or negative (open, not included in the SC).

For example, in 2-simplex prediction, consider an SC of order two, which is built based on nodes, edges and
(existing positive) triangles. Given the initial inputs on nodes x0 and on edges x1 and zero inputs on triangles
x2 = 0 since we assume no prior knowledge on triangles, for an open triangle t = [i, j, k], an SCCNN is used
to learn features on nodes and edges (denoted by y). Then, we input the concatenation of the features on
three nodes or three edges to an MLP, i.e., MLPnode([y0]iÎ[y0]jÎ[y0]k) or MLPedge([y][i,j]Î[y][j,k]Î[y][i,k]), to
predict if triangle t is positive or negative. A MLP taking both node and edge features is possible, but we
keep it on one simplex level for complexity purposes. Similarly, we consider an SCCNN in an SC of order
three for 3-simplex prediction, which is followed by an MLP operating on either nodes, edges or triangles.
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G.3.2 Data Preprocessing

We consider the data from the Semantic Scholar Open Research Corpus Ammar et al. (2018) to construct
a coauthorship complex where nodes are authors and collaborations between k-author are represented by
(k ≠ 1)-simplices. Following the preprocessing in Ebli et al. (2020), we obtain 352 nodes, 1472 edges, 3285
triangles, 5019 tetrahedrons (3-simplices) and a number of other higher-order simplices. The node signal x0,
edge flow x1 and triangle flow x2 are the numbers of citations of single author papers and the collaborations
of two and three authors, respectively.

For the 2-simplex prediction, we use the collaboration impact (the number of citations) to split the total
set of triangles into the positive set TP = {t|[x2]t > 7} containing 1482 closed triangles and the negative set
TN = {t|[x2]t Æ 7} containing 1803 open triangles such that we have balanced positive and negative samples.
We further split the 80% of the positive triangle set for training, 10% for validation and 10% for testing;
likewise for the negative triangle set. Note that in the construction of the SC, i.e., the incidence matrix B2,
Hodge Laplacians L1,u and L2,d, we ought to remove negative triangles in the training set and all triangles
in the test set. That is, for 2-simplex prediction, we only make use of the training set of the positive triangles
since the negative ones are not in the SC.

Similarly, we prepare the dataset for 3-simplex (tetrahedron) prediction, amounting to the tetradic collabora-
tion prediction. We obtain balanced positive and negative tetrahedron sets based on the citation signal x3.
In the construction of B3, L2,u and L3,d, we again only use the tetrahedrons in the positive training set.

G.3.3 Models

For comparison, we first use heuristic methods proposed in Benson et al. (2018) as baselines to determine if a
triangle t = [i, j, k] is closed, namely, 1) Harmonic mean: st = 3/([x1]≠1

[i,j]
+ [x1]≠1

[j,k]
+ [x1]≠1

[i,k]
), 2) Geometric

mean: st = limpæ0[([x1]p
[i,j]

+ [x1]p
[j,k]

+ [x1]p
[i,k]

)]1/p, and 3) Arithmetic mean: st = ([x1][i,j] + [x1][j,k] +
[x1][i,k])/3, which compute the triangle weight based on its three faces. Similarly, we generalized these
mean methods to compute the weight of a 3-simplex [i, j, k, m] based on the four triangle faces in 3-simplex
prediction.

We then consider di�erent learning methods. Specifically, 1) “Bunch” by Bunch et al. (2020) (we also
generalized this model to 3-dimension for 3-simplex prediction); 2) Message passing simplicial network
(“MPSN”) by Bodnar et al. (2021b) which provides a baseline of message passing scheme in comparison to
the convolution scheme; 3) Principled SNN (“PSNN”) by Roddenberry et al. (2021); 4) SNN by Ebli et al.
(2020); 5) SCNN by Yang et al. (2021); 6) GNN by De�errard et al. (2016); 7) MLP: providing as a baseline
for the e�ect of using inductive models.

For MLP, Bunch, MPSN and our SCCNN, we consider the outputs in the node and edge spaces, respectively,
for 2-simplex prediction, which are denoted by a su�x “-Node” or “-Edge”. For 3-simplex prediction, the
output in the triangle space can be used as well, denoted by a su�x “-Tri.”, where we also build SCNNs in
both edge and triangle spaces.

G.3.4 Experimental Setup and Hyperparameters

We consider the normalized Hodge Laplacians and incidence matrices, a particular version of the weighted
ones Horak & Jost (2013); Grady & Polimeni (2010). Specifically, we use the symmetric version of the
normalized random walk Hodge Laplacians in the edge space, proposed by Schaub et al. (2020), which were
used in Bunch et al. (2020); Chen et al. (2022a) as well. We generalized the definitions for triangle predictions.

Hyperparameters 1) the number of layers: L œ {1, 2, 3, 4, 5}; 2) the number of intermediate and output
features to be the same as F œ {16, 32}; 3) the convolution orders for SCCNNs are set to be the same, i.e.,
T

Õ
d

= Td = Tu = T
Õ
u

= T œ {1, 2, 3, 4, 5}. We do so to avoid the exponential growth of the parameter search
space. For GNNs (De�errard et al., 2016) and SNNs (Ebli et al., 2020), we set the convolution orders to be
T œ {1, 2, 3, 4, 5} while for SCNNs (Yang et al., 2022a), we allow the lower and upper convolutions to have
di�erent orders with Td, Tu œ {1, 2, 3, 4, 5}; 4) the nonlinearity in the feature learning phase: LeakyReLU
with a negative slope 0.01; 5) MPSN is set as Bodnar et al. (2022); 6) the MLP in the prediction phase: two
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layers with a sigmoid nonlinearity. For 2-simplex prediction, the number of the input features for the node
features is 3F , and for the edge features is 3F . For 3-simplex prediction, the number of the input features for
the node features is 4F , for the edge features is 6F and for the triangle features is 4F since a 3-simplex has
four nodes, six edges and four triangles. The number of the intermediate features is the same as the input
features, and that of the output features is one; and, 7) the binary cross entropy loss and the adam optimizer
with a learning rate of 0.001 are used; the number of the epochs is 1000 where an early stopping is used. We
compute the AUC to compare the performance and run the same experiments for ten times with random
data splitting.

G.3.5 Results

In Table 8, we report the best results of each method with the corresponding hyperparameters. Di�erent
hyperparameters can lead to similar results, but we report the ones with the least complexity. All experiments
for simplex predictions were run on a single NVIDIA A40 GPU with 48 GB of memory using CUDA 11.5.

Table 8: 2- (Left) and 3-Simplex (Right) prediction AUC (%) results.

Methods AUC Parameters

Harm. Mean 62.8±2.7 —

Arith. Mean 60.8±3.2 —

Geom. Mean 61.7±3.1 —

MLP-Node 68.5±1.6 L = 1, F = 32

GNN 93.9±1.0 L = 5, F = 32, T = 2

SNN-Edge 92.0±1.8 L = 5, F = 32, T = 5

PSNN-Edge 95.6±1.3 L = 5, F = 32

SCNN-Edge 96.5±1.5 L = 5, F = 32, Td = 5, Tu = 2

Bunch-Node 98.3±0.5 K = 1, L = 4, F = 32

MPSN-Node 98.1±0.5 K = 1, L = 3, F = 32

SCCNN-Node 98.7±0.5 K = 1, L = 2, F = 32, T = 2

Methods AUC Parameters

Harm. Mean 63.6±1.6 —

Arith. Mean 62.2±1.4 —

Geom. Mean 63.1±1.4 —

MLP-Tri. 69.0±2.2 L = 3, F = 32

GNN 96.6±0.5 L = 5, F = 32, T = 5

SNN-Tri. 95.1±1.2 L = 5, F = 32, T = 5

PSNN-Tri. 98.1±0.5 L = 5, F = 32

SCNN-Tri. 98.3±0.4 L = 5, F = 32, Td = 2, Tu = 1

Bunch-Edge 98.5±0.5 K = 3, L = 4, F = 16

MPSN-Edge 99.2±0.3 K = 3, L = 3, F = 32

SCCNN-Node 99.4±0.3 K = 3, L = 3, F = 32, T = 3

G.3.6 Complexity

Table 9: (Left) Complexity of the best three methods for 2-simplex prediction. (Right) Running time of
SCCNN with di�erent layers and convolution orders.

Method #params. Running time (seconds per epoch)

SCCNN 24288 0.073

Bunch 21728 0.140

MPSN 84256 0.028

Hyperparams. T = 2 T = 5

L = 2 0.073 0.082

L = 3 0.110 0.130

L = 5 0.192 0.237

Here we report the number of parameters and the running time of SCCNN for 2-simplex prediction on one
NVIDIA Quadro K2200 with 4GB memory, compared with the two best alternatives. MPSN, compared to
convolutional methods, has three times more parameters, analogous to the comparison between message-
passing and graph convolutional NNs. We also report the running time as the layers and convolution orders
increase.

G.3.7 Ablation Study

We perform an ablation study to observe the roles of di�erent components in SCCNNs.

SC Order K We investigate the influence of the SC order K. Table 10 reports the 2-simplex prediction
results for K = {1, 2} and the 3-simplex prediction results for K = {1, 2, 3}. We observe that for k-simplex
prediction, it does not necessarily guarantee a better prediction with a higher-order SC, which further
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indicates that a positive simplex could be well encoded by both its faces and other lower-order subsets. For
example, in 2-simplex prediction, SC of order one gives better results than SC of order two (similar for Bunch),
showing that in this coauthorship complex, triadic collaborations are better encoded by features on nodes
than pairwise collaborations. In 3-simplex prediction, SCs of di�erent orders give similar results, showing
that tetradic collaborations can be encoded by nodes, as well as by pairwise and triadic collaborations.

Table 10: Prediction results of SCCNNs with di�erent SC order K.

Method 2-Simplex Parameters

SCCNN-Node 98.7±0.5 K = 1, L = 2, F = 32, T = 2

SCCNN-Node 98.4±0.5 K = 2, L = 2, F = 32, T = 2

Bunch-Node 98.3±0.4 K = 1, L = 4, F = 32

Bunch-Node 98.0±0.4 K = 2, L = 4, F = 32

MPSN-Node 94.5±1.5 K = 1, L = 3, F = 32

MPSN-Node 98.1±0.5 K = 2, L = 3, F = 32

SCCNN-Edge 97.9±0.9 K = 1, L = 3, F = 32, T = 5

SCCNN-Edge 95.9±1.0 K = 2, L = 5, F = 32, T = 3

Bunch-Edge 97.3±1.1 K = 1, L = 4, F = 32

Bunch-Edge 94.6±1.2 K = 2, L = 4, F = 32

MPSN-Edge 94.1±2.4 K = 1, L = 3, F = 32

MPSN-Edge 97.0±1.2 K = 2, L = 2, F = 16

Method 3-Simplex Parameters

SCCNN-Node 99.3±0.3 K = 1, L = 2, F = 32, T = 1

SCCNN-Node 99.3±0.2 K = 2, L = 2, F = 32, T = 5

SCCNN-Node 99.4±0.3 K = 3, L = 3, F = 32, T = 3

MPSN-Node 96.0±1.2 K = 1, L = 3, F = 32

MPSN-Node 98.2±0.8 K = 2, L = 2, F = 32

SCCNN-Edge 98.9±0.5 K = 1, L = 3, F = 32, T = 5

SCCNN-Edge 99.2±0.4 K = 2, L = 5, F = 32, T = 5

SCCNN-Edge 99.0±1.0 K = 3, L = 5, F = 32, T = 5

MPSN-Edge 96.3±1.1 K = 1, L = 3, F = 32

MPSN-Edge 98.3±0.8 K = 2, L = 3, F = 32

SCCNN-Tri. 97.9±0.7 K = 2, L = 4, F = 32, T = 4

SCCNN-Tri. 97.4±0.9 K = 3, L = 4, F = 32, T = 4

MPSN-Tri. 99.1±0.2 K = 2, L = 3, F = 32

Missing Components in SCCNN With a focus on 2-simplex prediction with SCCNN-Node of order one,
to avoid overcrowded settings, we study how each component of an SCCNN influences the prediction. We
consider the following settings without: 1) “Edge-to-Node”, where the projection x0,u from edge to node is not
included, equivalent to GNN; 2) “Node-to-Node”, where for node output, we have x

l
0

= ‡(H l
0,uR1,ux

l≠1

1
); 3)

“Node-to-Edge”, where the projection x1,d from node to edge is not included, i.e., we have x
l
1

= ‡(H l
1
x

l≠1

1
);

and 4) “Edge-to-Edge”, where for edge output, we have x
l
1

= ‡(H l
1,dR1,dx

l≠1

0
).

Table 11: 2-Simplex prediction (SCCNN-Node without certain components or with limited inputs).

Missing Component AUC Parameters
— 98.7±0.5 L = 2, F = 32, T = 2
Edge-to-Node 93.9±0.8 L = 5, F = 32, T = 2
Node-to-Node 98.7±0.4 L = 4, F = 32, T = 2
Edge-to-Edge 98.5±1.0 L = 3, F = 32, T = 3
Node-to-Edge 98.8±0.3 L = 4, F = 32, T = 3

Missing Input AUC Parameters
— 98.7±0.5 L = 2, F = 32, T = 2
Node input 98.2±0.5 L = 2, F = 32, T = 4
Edge input 98.1±0.4 L = 2, F = 32, T = 3
Node, Edge inputs 50.0±0.0 —

From the results in Table 11 (Left), we see that “No Edge-to-Node”, i.e., GNN, gives much worse results
as it leverages no information on edges with limited expressive power. For cases with other components
missing, a similar performance can be achieved, however, at a cost of the model complexity, with either a
higher convolution order or a larger number of layers L, while the latter in turn degrades the stability of the
SCCNNs, as discussed in Section 5. SCCNNs with certain inter-simplicial couplings pruned/missing can be
powerful as well (this is similarly shown by (Bodnar et al., 2021b, Thm. 6)), but if we did not consider certain
component, it comes with a cost of complexity which might degrade the model stability if more number layers
are required.

Limited Input We study the influence of limited input data for model SCCNN-Node of order two.
Specifically, we consider the input on either nodes or edges is missing. From Table 11, we see that the
prediction performance does not deteriorate at a cost of the model complexity (higher convolution orders)
when a certain part of the input missing except with full zeros as input. This ability of learning from limited
data shows the robustness of SCCNNs.
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G.3.8 Stability Analysis

We then perform a stability analysis of SCCNNs. We artificially add perturbations to the normalization
matrices when defining the Hogde Laplacians, which resemble the weights of simplices. We consider small
perturbations E0 on node weights which is a diagonal matrix following that ÎE0Î Æ ‘0/2. We generate its
diagonal entries from a uniform distribution [≠‘0/2, ‘0/2) with ‘0 œ [0, 1], which represents one degree of
deviation of the node weigths from the true ones. Similarly, perturbations on edge weights and triangle
weights are applied to study the stability. In a SCCNN-Node for 2-simplex prediction of K = 2, we measure
the distance between the simplicial outputs with and without perturbations on nodes, edges, and triangles,
i.e., Îx

L
k ≠ x̂

L
k Î/Îx

L
k Î, for k = 0, 1, 2.

Stability dependence We first show the stability mutual dependence between di�erent simplices in Fig. 11.
We see that under perturbation on node weights, the triangle output is not influenced until the number of
layers becomes two; likewise, the node output is not influenced by perturbations on triangle weights with
a one-layer SCCNN. Also, a one-layer SCCNN under perturbations on edge weights will cause outputs on
nodes, edges, triangles perturbed. Lastly, we observe that the same degree of perturbations added to di�erent
simplices causes di�erent degrees of instability, owing to the number nk of k-simplices in the stability bound.
Since N0 < N1 < N2, the perturbations on node weights cause less instability than those on edge and triangle
weights.
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Figure 11: The stabilities of di�erent simplicial outputs are dependent on each other.

Number of Layers Fig. 12 shows that the stability of SCCNNs degrades as the number of layers increases
as studied in Theorem 24. As the NN deepens, the stability deteriorates, which corresponds to our analysis
of using shallow layers.
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Figure 12: The relative di�erence of SCCNN outputs with and without perturbations in terms of di�erent
numbers of layers. We consider perturbations on edge weights.

G.4 Additional details on Trajectory prediction

G.4.1 Problem Formulation

A trajectory of length m can be modeled as a sequence of nodes [v0, v1, . . . , vm≠1] in an SC. The task is to
predict the next node vm from the neighbors of vm≠1, Nvm≠1 . The algorithm in Roddenberry et al. (2021)
first represents the trajectory equivalently as a sequence of oriented edges [[v0, v1], [v1, v2], . . . , [vm≠2, vm≠1]].
Then, an edge flow x1 is defined, whose value on an edge e is [x1]e = 1 if edge e is traversed by the trajectory
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in a forward direction, [x1]e = ≠1 if edge e is traversed in a backward direction by the trajectory, and
[x1]e = 0, otherwise.

With the trajectory flow x1 as the input, together with zero inputs on the nodes and triangles, an SCCNN of
order two is used to generate a representation x

L
1

of the trajectory, which is the output on edges. This is
followed by a projection step x

L
0,u = B1W x

L
1

, where the output is first passed through a linear transformation
via W , then projected into the node space via B1. Lastly, a distribution over the candidate nodes Nvm≠1

is computed via a softmax operation, nj = softmax([xL
0,u]j), j œ Nvm≠1 . The best candidate is selected as

vm = argmaxjnj . We refer to Roddenberry & Segarra (2019, Alg. S-2) for more details.

Given that an SCCNN of order two generates outputs also on nodes, we can directly apply the node feature
output x

L
0

to compute a distribution over the candidate nodes Nvm≠1 without the projection step. We refer
to this as SCCNN-Node, and the method of using the edge features with the projection step as SCCNN-Edge.

G.4.2 Model

In this experiment, we consider the following methods: 1) PSNN by Roddenberry et al. (2021); 2) SNN by
Ebli et al. (2020); 3) SCNN by Yang et al. (2022a) where we consider di�erent lower and upper convolution
orders Td, Tu; and 4) Bunch by Bunch et al. (2020) where we consider both the node features and edge
features, namely, Bunch-Node and Bunch-Edge.

Synthetic Data Following the procedure in Schaub et al. (2020), we generate 1000 trajectories as follows.
First, we create an SC with two “holes” by uniformly drawing 400 random points in the unit square, and
then a Delaunay triangulation is applied to obtain a mesh, followed by the removal of nodes and edges in two
regions. To generate a trajectory, we consider a starting point at random in the lower-left corner, and then
connect it via a shortest path to a random point in the upper left, center, or lower-right region, which is
connected to another random point in the upper-right corner via a shortest path.

We consider the random walk Hodge Laplacians Schaub et al. (2020). For Bunch method, we set the shifting
matrices as the simplicial adjacency matrices defined in Bunch et al. (2020). We consider di�erent NNs with
three intermediate layers where each layer contains F = 16 intermediate features. The tanh nonlinearity
is used such that the orientation equivariance holds. The final projection n generates a node feature of
dimension one. In the 1000-epoch training, we use the cross-entropy loss function between the output d and
the true candidate and we consider an adam optimizer with a learning rate of 0.001 and a batch size 100. To
avoid overfitting, we apply a weight decay of 5 · 10≠6 and an early stopping.

As done in Roddenberry et al. (2021), besides the standard trajectory prediction task, we also perform a
reverse task where the training set remains the same but the direction of the trajectories in the test set is
reversed and a generalization task where the training set contains trajectories running along the upper left
region and the test set contains trajectories around the other region. We evaluate the correct prediction ratio
by averaging the performance over 10 di�erent data generations.

Real Data We also consider the Global Drifter Program dataset3 localized around Madagascar. It consists
of ocean drifters whose coordinates are logged every 12 hours. An SC can then be created as Schaub et al.
(2020) by treating each mesh as a node, connecting adjacent meshes via an edge and filling the triangles,
where the “hole” is yielded by the island. Following the process in Roddenberry et al. (2021), it results in 200
trajectories and we use 180 of them for training. In the training, a batch size of 10 is used and no weight
decay is used. The rest experiment setup remains the same as the synthetic case.

G.4.3 Results

We report the prediction accuracy of di�erent tasks for both datasets in Table 12. We first investigate the
e�ects of applying higher-order SCFs in the simplicial convolution and accounting for the lower and upper
contributions. From the standard accuracy for both datasets, we observe that increasing the convolution
orders improves the prediction accuracy, e.g., SCNNs become better as the orders Td, Tu increase and perform

3http://www.aoml.noaa.gov/envids/gld/,
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always better than PSNN, and SCCNNs better than Bunch. Also, di�erentiating the lower and upper
convolutions does help improve the performance as SCNN of orders Td = Tu = 3 performs better than SNN
of T = 3.

However, accounting for the node and triangle contributions in SCCNNs does not help the prediction compared
to the SCNNs, likewise for Bunch compared to PSNN. This is due to the zero node and triangle inputs
because there are no available node and triangle features. Similarly, the prediction directly via the node
output features is not accurate compared to projection from edge features.

Moreover, we also observe that the performance of SCCNNs that are trained with the same data does not
deteriorate in the reverse task because the orientation equivariance ensures SCCNNs to be una�ected by
the orientations of the simplicial data. Lastly, we see that, like other NNs on SCs, SCCNNs have good
transferability to the unseen data.

Table 12: Trajectory Prediction Accuracy. (Left): Synthetic trajectory in the standard, reverse and gener-
alization tasks. (Right): Ocean drifter trajectories. For SCCNNs, we set the lower and upper convolution
orders Td, Tu to be the same as T .

Methods Standard Reverse Generalization Parameters

PSNN 63.1±3.1 58.4±3.9 55.3±2.5 —

SCNN 65.6±3.4 56.6±6.0 56.1±3.6 Td = Tu = 2

SCNN 66.5±5.8 57.7±5.4 60.6±4.0 Td = Tu = 3

SCNN 67.3±2.3 56.9±4.8 59.4±4.2 Td = Tu = 4

SCNN 67.7±1.7 55.3±5.3 61.2±3.2 Td = Tu = 5

SNN 65.5±2.4 53.6±6.1 59.5±3.7 T = 3

Bunch-Node 35.4±3.4 38.1±4.6 29.0±3.0 —

Bunch-Edge 62.3±4.0 59.6±6.1 53.9±3.1 —

SCCNN-Node 46.8±7.3 44.5±8.2 31.9±5.0 T = 1

SCCNN-Edge 64.6±3.9 57.2±6.3 54.0±3.0 T = 1

SCCNN-Node 43.5±9.6 44.4±7.6 32.8±2.6 T = 2

SCCNN-Edge 65.2±4.1 58.9±4.1 56.8±2.4 T = 2

Standard Parameters

49.0±8.0 —

52.5±9.8 Td = Tu = 2

52.5±7.2 Td = Tu = 3

52.5±8.7 Td = Tu = 4

53.0±7.8 Td = Tu = 5

52.5±6.0 T = 3

35.0±5.9 —

46.0±6.2 —

40.5±4.7 T = 1

52.5±7.2 T = 1

45.5±4.7 T = 2

54.5±7.9 T = 2

G.4.4 Convolution Order and Integral Lipschitz Property

We investigate the e�ect of the integral Lipschitz property of the SCFs in an NN on SC. To do so, given an
NN on SCs with an SCF Hk for k-simplicial signals, we add the following integral Lipschitz regularizer to
the loss function during training so to promote the integral Lipschitz property

rIL = Î⁄k,Gh̃
Õ
k,G(⁄k,G)Î + Î⁄k,Ch̃

Õ
k,C(⁄k,C)Î =

.....

Tdÿ

t=0

twk,d,t⁄
t
k,G

..... +

.....

Tuÿ

t=0

twk,u,t⁄
t
k,C

.....
(82)

for ⁄k,G œ {⁄k,G,i}
nk,G
i=1

and ⁄k,C œ {⁄k,C,i}
nk,C
i=1

, which are the gradient and curl frequencies. To avoid
computing the eigendecomposition of the Hodge Laplacian, we can approximate the true frequencies by
sampling certain number of points in the frequency band (0, ⁄k,G,m] and (0, ⁄k,C,m] where the maximal
gradient and curl frequencies can be computed by e�cient algorithms, e.g., power iteration (Watkins, 2007;
Sleijpen & Van der Vorst, 2000).

Here, to illustrate that the integral Lipschitz property of the SCFs helps the stability of NNs on SCs, we
consider the e�ect of regularizer rIL against perturbations in PSNNs and SCNNs with di�erent Td and Tu

for the standard synthetic trajectory prediction. The regularization weight on rIL is set as 5 · 10≠4 and the
number of samples to approximate the frequencies is set such that the sampling interval is 0.01.

Fig. 13 shows the prediction accuracy and the relative distance between the edge outputs of the NNs trained
with and without the integral Lipschitz regularizer in terms of di�erent levels of perturbations. We see that
the integral Lipschitz regularizer helps the stability of the NNs, especially for large SCF orders, where the
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edge output is less influenced by the perturbations compared to without the regularizer. Meanwhile, SCNN
with higher-order SCFs, e.g., Td = Tu = 5, achieves better prediction than PSNN (with one-step simplicial
shifting), while maintaining a good stability with its output not influenced by perturbations drastically.

We also measure the lower and upper integral Lipschitz constants of the trained NNs across di�erent layers
and features, given by max⁄k,G |⁄k,Gh̃k,G(⁄k,G)| and max⁄k,C |⁄k,Ch̃k,C(⁄k,C)|, shown in Fig. 14. We see that
the SCNN trained with rIL indeed has smaller integral Lipschitz constants than the one trained without the
regularizer, thus, a better stability, especially for NNs with higher-order SCFs.
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Figure 13: E�ect of the integral Lipschitz regularizer rIL in the task of synthetic trajectory prediction against
di�erent levels ‘ of random perturbations on L1,d and L1,u. We show the accuracy (Top row) and the relative
distance between the edge output (Bottom row) for di�erent NNs on SCs with and without rIL. SCNN13 is
the SCNN with Td = 1 and Tu = 3.
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Figure 14: The integral Lipschitz constants of SCFs at each layer of the trained SCNNs with and without
the integral Lipschitz regularizer rIL. We use symbols c

l
k,d and c

l
k,u to denote the lower and upper integral

Lipschitz constants at layer l. Regularizer rIL promotes the integral Lipschitz property, thus, the stability,
especially for NNs with large SCF orders.
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