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Abstract

We study generalization properties of random features (RF) regression in high
dimensions optimized by stochastic gradient descent (SGD) in under-/over-
parameterized regime. In this work, we derive precise non-asymptotic error bounds
of RF regression under both constant and polynomial-decay step-size SGD setting,
and observe the double descent phenomenon both theoretically and empirically.
Our analysis shows how to cope with multiple randomness sources of initialization,
label noise, and data sampling (as well as stochastic gradients) with no closed-
form solution, and also goes beyond the commonly-used Gaussian/spherical data
assumption. Our theoretical results demonstrate that, with SGD training, RF regres-
sion still generalizes well for interpolation learning, and is able to characterize the
double descent behavior by the unimodality of variance and monotonic decrease of
bias. Besides, we also prove that the constant step-size SGD setting incurs no loss
in convergence rate when compared to the exact minimum-norm interpolator, as a
theoretical justification of using SGD in practice.

1 Introduction

Over-parameterized models, e.g., linear/kernel regression [1, 2, 3, 4] and neural networks [5, 6, 7],
still generalize well even if the labels are pure noise [8]. Such high-capacity models have received
significant attention recently as they go against with classical generalization theory. A paradigm for
understanding this important phenomenon is double descent [9], in which the test error first decreases
with increasing number of model parameters in the under-parameterized regime. They large error is
yielded until interpolating the data, which is called the interpolation threshold. Finally, the test error
decreases again in the over-parameterized regime.

Our work partakes in this research vein and studies the random features (RF) model [10], as a simpli-
fied version of neural networks, in the context of double descent phenomenon. Briefly, RF model
samples random features {ωi}mi=1 from a specific distribution, corresponding to a kernel function. We
then construct an explicit map: x ∈ Rd 7→ σ(Wx) ∈ Rm, where W = [ω1, · · · ,ωm]⊤ ∈ Rm×d is
the random features matrix and σ(·) is the nonlinear (activation) function determined by the kernel.
As a result, the RF model can be viewed as training a two-layer neural network where the weights in
the first layer are chosen randomly and then fixed (a.k.a. the random features) and only the output
layer is optimized, striking a trade-off between practical performance and accessibility to analysis
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[4, 11]. An RF model becomes an over-parameterized model if we take the number of random
features m larger than that of training data n. The literature on RF under the over-parameterized
regime can be split into various camps according to different assumptions on the formulation of
target function, data distribution, and activation functions [4, 12, 11, 13, 14, 15] (see comparisons
in Table 1 in Appendix A). The existing theoretical results demonstrate that the excess risk curve
exhibits double descent.

Nevertheless, the analysis framework of previous work on RF regression mainly relies on the least-
squares closed-form solution, including minimum-norm interpolator and ridge regressor. Besides,
they often assume the data with specific distribution, e.g., to be Gaussian or uniformly spread
on a sphere. Such dependency on the analytic solution and relatively strong data assumption in
fact mismatches practical neural networks optimized by stochastic gradient descent (SGD) based
algorithms. Our work precisely bridges this gap: We provide a new analysis framework for the
generalization properties of RF models trained with SGD and general activation functions, also
accommodating adaptive (i.e., polynomial decay) step-size selection, and provide non-asymptotic
results in under-/over-parameterized regimes. We make the following contributions and findings:

First, we characterize statistical properties of covariance operators/matrices in RF, including Σm :=
1
mEx[σ(Wx/

√
d)σ(Wx/

√
d)⊤] and its expectation version Σ̃m := EW [Σm]. We demonstrate

that, under Gaussian initialization, if the activation function σ(·) : R 7→ R is Lipschitz continuous,
Tr(Σm) is a sub-exponential random variable with O(1) sub-exponential norm; Σ̃m has only two
distinct eigenvalues at O(1) and O(1/m) order, respectively. Such analysis on the spectra of Σm

and Σ̃m (without spectral decay assumption) is helpful to obtain sharp error bounds for excess risk.
This is different from the least squares setting based on effective dimension [2, 16].

Second, based on the bias-variance decomposition in stochastic approximation, we take into account
multiple randomness sources of initialization, label noise, and data sampling as well as stochastic
gradients. We (partly) disentangle these randomness sources and derive non-asymptotic error bounds
under the optimization effect: the error bounds for bias and variance as a function of the radio
m/n are monotonic decreasing and unimodal, respectively. Importantly, our analysis holds for both
constant and polynomial-decay step-size SGD setting, and is valid under sub-Gaussian data and
general activation functions.

Third, our non-asymptotic results show that, RF regression trained with SGD still generalizes well for
interpolation learning, and is able to capture the double descent behavior. In addition, we demonstrate
that the constant step-size SGD setting incurs no loss on the convergence rate of excess risk when
compared to the exact least-squares closed form solution. Our empirical evaluations support our
theoretical results and findings.

Our analysis (technical challenges are discussed in Section 4) sheds light on the effect of SGD on
high dimensional RF models in under-/over-parameterized regimes, and bridges the gap between the
minimum-norm solution and numerical iteration solution in terms of optimization and generalization
on double descent. It would be helpful for understanding large dimensional machine learning and
neural network models more generally.

2 Related work and problem setting

This section reviews relevant works and introduces our problem setting of RF regression with SGD.

Notation: The notation a⊗ a denotes the tensor product of a vector a. For two operators/matrices,
A ≼ B means B −A is positive semi-definite (PSD). For any two positive sequences {at}st=1 and
{bt}st=1, the notation at ≲ bt means that there exists a positive constant C independent of s such that
at ≤ Cbt, and analogously for ∼, ≳, and ≾. For any a, b ∈ R, a∧ b denotes the minimum of a and b.

2.1 Related work

A flurry of research papers are devoted to analysis of over-parameterized models on optimization
[17, 18, 19], generalization (or their combination) under neural tangent kernel [20, 21, 22] and
mean-field analysis regime [23, 24]. We take a unified perspective on optimization and generalization
but work in the high-dimensional setting to fully capture the double descent behavior. By high-
dimensional setting, we mean that m, n, and d increase proportionally, large and comparable
[4, 12, 13, 11].
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Double descent in random features model: Characterizing the double descent of the RF model often
derives from random matrix theory (RMT) in high dimensional statistics [1, 4, 12, 13, 25] and from
the replica method [11, 26, 14]. Under specific assumptions on data distribution, activation functions,
target function, and initialization, these results show that the generalization error/excess risk increase
when m/n < 1, diverge when m/n → 1, and then decrease when m/n > 1. Further, refined
results are developed on the analysis of variance due to multiple randomness sources [11, 27, 15].
We refer to comparisons in Table 1 in Appendix A for further details. Technically speaking, since
RF (least-squares) regression involves with inverse random matrices, these two classes of methods
attempt to achieve a similar target: how to disentangle the nonlinear activation function by the
Gaussian equivalence conjecture. RMT utilizes calculus of deterministic equivalents (or resolvents)
for random matrices and replica methods focus on some specific scalar parameters that allows for
circumventing the expectation computation. In fact, most of the above methods can be asymptotically
equivalent to the Gaussian covariate model [28].

Non-asymptotic stochastic approximation: Many papers on linear least-squares regression [29, 30],
kernel regression [31, 32], random features [33] with SGD often work in the under-parameterized
regime, where d is finite and much smaller than n. In the over-parameterized regime, under GD
setting, the excess risk of least squares is controlled by the smallest positive eigenvalue in [34] via
random matrix theory. Under the averaged constant step-size SGD setting, the excess risk in [35] on
least squares in high dimensions can be independent of d, and the convergence rate is built in [16].
This convergence rate is also demonstrated under the minimal-iterate [36] or last-iterate [37] setting
in step-size SGD for noiseless least squares. We also notice a concurrent work [38] on last-iterate
SGD with decaying step-size on least squares. Besides, the existence of multiple descent [39, 40]
beyond double descent and SGD as implicit regularizer [41, 42] can be traced to the above two lines
of work. Our work shares some similar technical tools with [31] and [16] but differs from them in
several aspects. We detail the differences in Section 4.

2.2 Problem setting

We study the standard problem setting for RF least-squares regression and adopt the relevant ter-
minologies from learning theory: cf., [43, 31, 33, 25] for details. Let X ⊆ Rd be a metric space
and Y ⊆ R. The training data {(xi, yi)}ni=1 are assumed to be independently drawn from a non-
degenerate unknown Borel probability measure ρ on X × Y . The target function of ρ is defined by
fρ(x) =

∫
Y
y dρ(y | x), where ρ(· | x) is the conditional distribution of ρ at x ∈ X .

RF least squares regression: We study the RF regression problem with the squared loss as follows:

min
f∈H

E(f), E(f) :=
∫
(f(x)− y)2dρ(x, y)=∥f − fρ∥2L2

ρX

, with f(x) = ⟨θ, φ(x)⟩ ,

where the optimization vector θ ∈ Rm and the feature mapping φ(x) is defined as

φ(x) :=
1√
m

[
σ(ω⊤

1x/
√
d), · · · , σ(ω⊤

mx/
√
d)
]⊤

=
1√
m
σ(Wx/

√
d) ∈ Rm , (1)

where W = [ω1, · · · ,ωm]⊤ ∈ Rm×d with Wij ∼ N (0, 1) corresponds to such two-layer neural
network initialized with random Gaussian weights. Then, the corresponding hypothesis space H is a
reproducing kernel Hilbert space

H :=

{
f ∈ L2

ρX

∣∣∣ f(x) =
1√
m
⟨θ, σ(Wx/

√
d)⟩
}

, (2)

with ∥f∥2L2
ρX

=
∫
X
|f(x)|2dρX(x) = ⟨f,Σmf⟩H with the covariance operator Σm : Rm → Rm

Σm =

∫
X

φ(x)⊗ φ(x)dρX(x) , (3)

actually defined in H that is isomorphic to Rm. This is the usually (uncentered) covariance matrix
in finite dimensions,2 i.e., Σm = Ex[φ(x)⊗ φ(x)]. Define Jm : Rm → L2

ρX
such that(Jmv)(·) =

⟨v, φ(·)⟩, ∀v ∈ Rm, we have Σm = J∗
mJm, where J∗

m denotes the adjoint operator of Jm.

2In this paper, we do not distinguish the notations Σm and Σm. This is also suitable to other opera-
tors/matrices, e.g., Σ̃m.
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Clearly, Σm is random with respect to W , and thus its deterministic version is defined as Σ̃m =
Ex,W [φ(x)⊗ φ(x)].

SGD with averaging: Regarding the stochastic approximation, we consider the one pass SGD with
iterate averaging and adaptive step-size at each iteration t: after a training sample (xt, yt) ∼ ρ is
observed, we update the decision variable as below (initialized at θ0)

θt = θt−1 + γt[yt − ⟨θt−1, φ(xt)⟩]φ(xt), t = 1, 2, . . . , n , (4)

where we use the polynomial decay step size γt := γ0t
−ζ with ζ ∈ [0, 1), following [31]. This

setting also holds for the constant step-size case by taking ζ = 0. Besides, we employ the bath size
= 1 in an online setting style, which is commonly used in theory [31, 16, 44] for ease of analysis,
which captures the key idea of SGD by combining stochastic gradients and data sampling.

The final output is defined as the average of the iterates: θ̄n := 1
n

∑n−1
t=0 θt. Here we sum up {θt}n−1

t=0
with n terms for notational simplicity. The optimality condition for Eq. (4) implies E(x,y)∼ρ[(y −
⟨θ∗, φ(x)⟩)φ(x)] = 0, which corresponds to f∗ = Jmθ∗ if we assume that f∗ = argminf∈H E(f)
exists (see Assumption 2 in the next section). Likewise, we have ft = Jmθt and f̄n = Jmθ̄n.

In this paper, we study the averaged excess risk E∥f̄n − f∗∥2L2
ρX

instead of E∥f̄n − fρ∥2L2
ρX

, that
follows [31, 45, 33, 25], as f∗ is the best possible solution in H and the mis-specification error
∥f∗ − fρ∥2L2

ρX

pales into insignificance. Note that the expectation used here is considered with

respect to the random features matrix W , and the distribution of the training data {(xt, yt)}nt=1 (note
that ∥f̄n − f∗∥2L2

ρX

is itself a different expectation over ρX ).

3 Main results
In this section, we present our main theoretical results on the generalization properties employing
error bounds for bias and variance of RF regression in high dimensions optimized by averaged SGD.

3.1 Assumptions
Before we present our result, we list the assumptions used in this paper, refer to Appendix B for more
discussions.
Assumption 1. [46, 1, high dimensional setting] We work in the large d, n,m regime with c ⩽
{d/n,m/n} ⩽ C for some constants c, C > 0 such that m,n, d are large and comparable. The
data point x ∈ Rd is assumed to satisfy ∥x∥22 ∼ O(d) and the sample covariance operator
Σd := Ex[x⊗ x] with bounded spectral norm ∥Σd∥2 (finite and independent of d).

Assumption 2. There exists f∗ ∈ H such that f∗ = argminf∈H E(f) with bounded Hilbert norm.

Remark: This bounded Hilbert norm assumption is commonly used in [47, 40, 48] even though n
and d tend to infinity. It holds true for linear functions with ∥f∥H ⩽ 4π [49], see Appendix B for
details.
Assumption 3. The activation function σ(·) is assumed to be Lipschitz continuous.

Remark: This assumption is quite general to cover commonly-used activation functions used in
random features and neural networks, e.g., ReLU, Sigmoid, Logistic, and sine/cosine functions.

Recall Σm := Ex[φ(x) ⊗ φ(x)] in Eq. (3) and its expectation Σ̃m := EW [Σm], we make the
following fourth moment assumption that follows [29, 16, 37] to analyse SGD for least squares.
Assumption 4 (Fourth moment condition). Assume there exists some positive constants r′, r ⩾ 1,
such that for any PSD operator A, it holds that

EW [ΣmAΣm]≼EW

(
Ex

(
[φ(x)⊗ φ(x)]A[φ(x)⊗ φ(x)]

))
≼r′EW [Tr(ΣmA)Σm] ≼ rTr(Σ̃mA)Σ̃m.

Remark: This assumption requires the data are drawn from some not-too-heavy-tailed distribution,
e.g., Σ− 1

2
m x has sub-Gaussian tail, common in high dimensional statistics. This condition is weaker

than most previous work on double descent that requires the data to be Gaussian [1, 11, 27, 12],
or uniformly spread on a sphere [4, 50], see comparisons in Table 1 in Appendix A. Note that the
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assumption for any PSD operator is just for ease of description. In fact some certain PSD operators
satisfying this assumption are enough for our proof. Besides, a special case of this assumption with
A := I is proved by Lemma 3, and thus this assumption can be regarded as a natural extension, with
more discussions in Appendix B.
Assumption 5 (Noise condition). There exists τ > 0 such that Ξ := Ex[ε

2φ(x)⊗ φ(x)] ≼ τ2Σm,
where the noise ε := y − f∗(x).

Remark: This noise assumption is standard in [31, 16] and holds for the standard noise model
y = f∗(x) + ε with E[ε] = 0 and V[ε] < ∞ [1].

3.2 Properties of covariance operators

Before we present the main results, we study statistical properties of Σm and Σ̃m by the following
lemmas (with proof deferred to Appendix C), that will be needed for our main result. This is
different from the least squares setting [2, 16] that introduces the effective dimension to separate
the entire space into a “head” subspace where the error decays more quickly than the complement
“tail” subspace. Instead, the following lemma shows that Σ̃m has only two distinct eigenvalues at
O(1) and O(1/m) order, respectively. Such fast eigenvalue decay can avoid extra data spectrum
assumption for tight bound. For description simplicity, we consider the single-output activation
function: σ(·) : R → R. Our results can be extended to multiple-output activation functions, see
Appendix C.1.2 for details.

Lemma 1. Under Assumption 1 and 3, the expected covariance operator Σ̃m := Ex,W [φ(x) ⊗
φ(x)] ∈ Rm×m has the same diagonal elements and the same non-diagonal element

(Σ̃m)ii =
1

m
ExEz∼N (0,∥x∥2

2/d)
[σ(z)]2∼O(1/m) , (Σ̃m)ij=

1

m
Ex

(
Ez∼N (0,∥x∥2

2/d)
[σ(z)]

)2
∼O(1/m) .

Accordingly, Σ̃m has only two distinct eigenvalues

λ̃1 = (Σ̃m)ii + (m− 1)(Σ̃m)ij ∼ O(1) , λ̃2=(Σ̃m)ii − (Σ̃m)ij=
1

m
ExV[σ(z)] ∼ O(1/m).

Remark: Lemma 1 implies tr(Σ̃m) < ∞. In fact, ExV[σ(z)] > 0 holds almost surely as σ(·) is not
a constant, and thus Σ̃m is positive definite.

Here we take the ReLU activation σ(x) = max{x, 0} as one example, RF actually approximates the
first-order arc-cosine kernel [51] with φ(x) ∈ Rm. We have (Σ̃m)ii =

1
2mdTr(Σd) and (Σ̃m)ij =

1
2mdπTr(Σd) by recalling Σd := Ex[xx

⊤] and Tr(Σd)/d ∼ O(1). More examples can be found in
Appendix C.1.2.

Lemma 2. Under Assumptions 1 and 3, random variables ∥Σm∥2, ∥Σm − Σ̃m∥2, and Tr(Σm) are
sub-exponential, and have sub-exponential norm at O(1) order.

Remark: This lemma characterizes the sub-exponential property of covariance operator Σm, which
is a fundamental result for our proof since the bias and variance involve them.

The following lemma demonstrates that the behavior of the fourth moment can be bounded.
Lemma 3. Under Assumptions 1,and 3, there exists a constant r > 0 such that EW

(
Σ2

m

)
≼

Ex,W [φ(x)⊗ φ(x)⊗ φ(x)⊗ φ(x)] ≼ rTr(Σ̃m)Σ̃m.

Lemma 4. Under Assumptions 1 and 3, we have Tr[Σ̃−1
m EW (Σ2

m)] ∼ O(1).

We remark here that Lemma 3 is a special case of Assumption 4 if we take A := I and r := 1+O
(

1
m

)
;

and Lemma 4 is a direct corollary of Lemma 3.

3.3 Results for error bounds
Recall the definition of the noise ε = [ε1, · · · , εn]⊤ with εt = yt − f∗(xt), t = 1, 2, . . . , n, the
averaged excess risk can be expressed as

E∥f̄n − f∗∥2L2
ρX

:= EX,W ,ε∥f̄n − f∗∥2L2
ρX

= EX,W ,ε⟨f̄n − f∗,Σm(f̄n − f∗)⟩=EX,W ,ε⟨η̄n,Σmη̄n⟩,
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where η̄n := 1
n

∑n−1
t=0 ηt with the centered SGD iterate ηt := ft − f∗. Following the standard

bias-variance decomposition in stochastic approximation [31, 30, 16], it admits

ηt = [I − γtφ(xt)⊗ φ(xt)](ft−1 − f∗) + γtεtφ(xt) ,

where the first term corresponds to the bias

ηbiast = [I − γtφ(xt)⊗ φ(xt)]η
bias
t−1 , ηbias0 = f∗ , (5)

and the second term corresponds to the variance

ηvart = [I − γtφ(xt)⊗ φ(xt)]η
var
t−1 + γtεtφ(xt), ηvar0 = 0 . (6)

Accordingly, we have ft = ηbiast + ηvart + f∗ due to Eεf̄n = η̄biasn + f∗ and ∥f∥2L2
ρX

= ⟨f,Σmf⟩.

Proposition 1. Based on the above setting, the averaged excess risk admits the following bias-
variance decomposition

E∥f̄n − f∗∥2L2
ρX

=EX,W ,ε∥f̄n−Eεf̄n+Eεf̄n−f∗∥2L2
ρX

=EX,W ⟨η̄biasn ,Σmη̄biasn ⟩︸ ︷︷ ︸
:=Bias

+EX,W ,ε⟨η̄varn ,Σmη̄varn ⟩︸ ︷︷ ︸
:=Variance

.

By (partly) decoupling the multiple randomness sources of initialization, label noise, and data
sampling (as well as stochastic gradients), we give precise non-asymptotic error bounds for bias and
variance as below.

Theorem 1. (Error bound for bias) Under Assumptions 1, 2, 3, 4 with r′ ⩾ 1, if the step-size
γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies γ0 ≲ 1

r′Tr(Σ̃m)
∼ O(1), the Bias in Proposition 1 holds by

Bias ≲ γ0r
′nζ−1∥f∗∥2 ∼ O

(
nζ−1

)
.

Remark: The error bound for Bias is monotonically decreasing at O(nζ−1) rate. For the constant
step-size setting, it converges at O(1/n) rate, which is better than O(

√
log n/n) in [25] relying on

closed-form solution under correlated features with polynomial decay on Σd. Besides, our result
on bias matches the exact formulation in [11] under the closed-form solution, i.e., monotonically
decreasing bias. One slight difference is, their result on bias tends to a constant under the over-
parameterized regime while our bias result can converge to zero.

Theorem 2. (Error bound for variance) Under Assumptions 1, 3, 4 with r′ ⩾ 1, and Assumption
5 with τ > 0, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies γ0 ≲ 1

r′Tr(Σ̃m)
∼ O(1), the

Variance defined in Proposition 1 holds

Variance ≲ γ0r
′τ2

{
mnζ−1, if m ⩽ n

1 + nζ−1 +
n

m
, if m > n

Remark: We make the following remarks:
i) The error bound for Variance is demonstrated to be unimodal: increasing with m in the under-
parameterized regime and decreasing with m in the over-parameterized regime, and finally converge
to a constant order (that depends on noise parameter τ2), which matches recent results relying on
closed-form solution for (refined) variance, e.g., [11, 27, 15].
ii) When compared to least squares, our result can degenerate to this setting by choosing m := d.
Our upper bound is able to match the lower bound in [1, Corollary 1] with the same order, which
demonstrates the tightness of our upper bound. Besides, our results can recover the result of [16]
by taking the effective dimension k∗ = min{n, d} (no data spectrum assumption is required here).
More discussion on our derived results refers to Appendix A.

4 Proof outline and discussion

In this section, we first introduce the structure of the proofs with high level ideas, and then discuss
our work with previous literature in terms of the used techniques and the obtained results.
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excess risk EX,W ,ε⟨η̄n,Σmη̄n⟩

Bias EX,W ⟨η̄biasn ,Σmη̄biasn ⟩

B3: η̄bXWn

O(nζ−1)
B2: η̄bXn − η̄bXWn

O(nζ−1)

ηbXt − ηbXWt

in Lem. 6

B1: η̄biasn − η̄bXn
O(nζ−1)

decomposition
in Lem. 7:

∥ηbiast − η̄bXt ∥2 +Ht

∥Ht∥22
in Lem. 9

∥ηbiast − η̄bXt ∥22
in Lem. 8

Variance EX,W ,ε⟨η̄varn ,Σmη̄varn ⟩

V3: η̄vXWn{
O(nζ−1m)

O(nζ−1 + n
m
)

CvXW
t in Lem. 10

V2: η̄vXn − η̄vXWn{
O(nζ−1m)

O(1)

CvX−W
t in Lem. 11

V1: η̄varn − η̄vXn{
O(nζ−1m) if m ⩽ n

O(1) if m > n

Cv−X
t in Lem. 12

Cv−X
t with ζ = 0

in Lem. 5

Figure 1: The roadmap of proofs.

4.1 Proof outline

We (partly) disentangle the multiple randomness sources on the data X , the random features matrix
W , the noise ε, make full use of statistical properties of covariance operators Σm and Σ̃m in
Section 3.2, and provide the respective (bias and variance) upper bounds in terms of multiple
randomness sources, as shown in Figure 1.

Bias: To bound Bias, we need some auxiliary notations. Recall Σm = Ex[φ(x) ⊗ φ(x)] and
Σ̃m = Ex,W [φ(x)⊗ φ(x)], define

ηbXt = (I − γtΣm)ηbXt−1, ηbX0 = f∗ , ηbXWt = (I − γtΣ̃m)ηbXWt−1, ηbXW0 = f∗ , (7)

with the average η̄bXn := 1
n

∑n−1
t=0 η̄bXt and η̄bXWn := 1

n

∑n−1
t=0 η̄bXWt . Accordingly, ηbXt can be regarded

as a “deterministic” version of ηbiast : we omit the randomness on X (data sampling, stochastic
gradients) by replacing [φ(x)φ(x)⊤] with its expectation Σm. Likewise, ηbXWt is a deterministic
version of ηvXt by replacing Σm with its expectation Σ̃m (randomness on initialization).

By Minkowski inequality, the Bias can be decomposed as Bias ≲ B1 + B2 + B3, where B1 :=
EX,W

[
⟨η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )⟩

]
and B2 := EW

[
⟨η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )⟩

]
and B3 :=

⟨η̄bXWn , Σ̃mη̄bXWn ⟩. Here B3 is a deterministic quantity that is closely connected to model (intrinsic) bias
without any randomness; while B1 and B2 evaluate the effect of randomness from X and W on the
bias, respectively. The error bounds for them can be directly found in Figure 1.

To bound B3, we directly focus on its formulation by virtue of spectrum decomposition and integral

estimation. To bound B2, we have B2 = 1
n2EW

∥∥∥Σ 1
2
m
∑n−1

t=0 (η
bX
t − ηbXWt )

∥∥∥2, where the key part

ηbXt − ηbXWt can be estimated by Lemma 6. To bound B1, it can be further decomposed as (here we
use inaccurate expression for description simplicity) B1 ≲

∑
t ∥ηbXt − ηbXWt ∥22 +

∑
t EX∥Ht∥2 in

Lemma 7, where Ht−1 := [Σm − φ(xt) ⊗ φ(xt)]η
bX
t−1. The first term can be upper bounded by∑

t ∥ηbXt − ηbXWt ∥22 ≲ Tr(Σm)nζ∥f∗∥2 in Lemma 8, and the second term admits
∑

t EX∥Ht∥2 ≲
Tr(Σm)∥f∗∥2 in Lemma 9.

Variance: To bound Variance, we need some auxiliary notations.

ηvXt := (I − γtΣm)ηvXt−1 + γtεtφ(xt), ηvX0 = 0 , (8)

ηvXWt := (I − γtΣ̃m)ηvXWt−1 + γtεtφ(xt), ηvXW0 = 0 , (9)

with the averaged quantities η̄vXn := 1
n

∑n−1
t=0 η̄vXt , η̄vXWn := 1

n

∑n−1
t=0 η̄vXWt . Accordingly, ηvXt can be

regarded as a “semi-stochastic” version of ηvart : we keep the randomness due to the noise εt but omit
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the randomness on X (data sampling) by replacing [φ(x)φ(x)⊤] with its expectation Σm. Likewise,
ηvXWt can be regarded as a “semi-stochastic” version of ηvXt by replacing Σm with its expectation Σ̃m

(randomness on initialization).

By virtue of Minkowski inequality, the Variance can be decomposed as Variance ≲ V1+ V2+ V3,
where V1 := EX,W ,ε

[
⟨η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )⟩

]
, V2 := EX,W ,ε

[
⟨η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )⟩

]
,

and V3 := EX,W ,ε⟨η̄vXWn ,Σmη̄vXWn ⟩. Though V1, V2, V3 still interact the multiple randomness, V1
disentangles some randomness on data sampling, V2 discards some randomness on initialization, and
V3 focuses on the “minimal” interaction between data sampling, label noise, and initialization. The
error bounds for them can be found in Figure 1.

To bound V3, we focus on the formulation of the covariance operator CvXW
t := EX,ε[η

vXW
t ⊗ ηvXWt ] in

Lemma 10 and the statistical properties of Σ̃m and Σm. To bound V2, we need study the covariance
operator CvX−W

t := EX,ε[(η
vX
t − ηvXWt ) ⊗ (ηvXt − ηvXWt )] admitting ∥CvX−W

t ∥ ≲ ∥Σ2
m∥2∥Σ̃m∥2 in

Lemma 11. To bound V1, we need study the covariance operator Cv−X
t := EX,ε[(η

var
t − ηvXt ) ⊗

(ηvart − ηvXt )], as a function of ζ ∈ [0, 1), admitting Tr[Cv−X
t (ζ)] ≲ Tr[Cv−X

t (0)] in Lemma 5, and
further Cv−X

t ≾ Tr(Σm)I in Lemma 12.

4.2 Discussion on techniques

Our proof framework follows [31] that focuses on kernel regression with stochastic approximation
in the under-parameterized regimes (d is regarded as finite and much smaller than n). Nevertheless,
even in the under-parameterized regime, their results can not be directly extended to random features
model due to the extra randomness on W . For instance, their results depend on [29, Lemma 1] by
taking conditional expectation to bridge the connection between E[∥αt∥2] and E⟨αt,Σmαt⟩. This is
valid for B1 but expires on other quantities.

Some technical tools used in this paper follow [16] that focuses on linear regression with constant
step-size SGD for benign overfitting. However, our results differ from it in 1) tackling multiple
randomness, e.g., stochastic gradients, random features (Gaussian initialization), by introducing
another type of error decomposition and several deterministic/randomness covariance operators. We
prove nice statistical properties of them for proof, which gets rid of data spectrum assumption in [16].
2) tackling non-constant step-size SGD setting by introducing new integral estimation techniques.
Original techniques on constant step-size in [16] are invalid due to non-homogeneous update rules.
The above two points make our proof relatively more intractable and largely different. Besides, their
results demonstrate that linear regression with SGD generalizes well (converges with n) but has few
findings on double descent. Instead, our result depends on n and m (where d is implicitly included in
m), and is able to explain double descent.

Here we take the estimation for the variance in [16] under the least squares setting as an example to
illustrate this.

Variance ≲
n−1∑
t=0

〈
I − (I − γΣd)

n−t, I − (I − γΣd)
t
〉

[Eq. (4.10) in [16]]

In this setting, the effective dimension to tackle I − (I − γΣd)
n−t; while our result is based on fast

eigenvalue decay of Σ̃m in Lemma 1 can direct to bound this. Besides, the homogeneous markov
chain under the constant step-size setting is employed [16] for (I − γΣd)

n−t, which is naturally
invalid under our decaying step-size setting. Instead, we introduce integral estimation techniques to
tackle adaptive step-size, see Appendix E for details.

5 Numerical Validation
In this section, we provide some numerical experiments in Figure 2 to support our theoretical results
and findings. Note that our results go beyond Gaussian data assumption and can be empirically
validated on real-world datasets. More experiments can be found in Appendix H.

5.1 Behavior of RF for interpolation learning
Here we evaluate the test mean square error (MSE) of RFF regression on the MNIST data set
[52], following the experimental setting of [13, 53], to study the generalization performance of
minimum-norm solution, see Figure 2(a). More results on regression dataset refer to Appendix H.
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(a) SGD vs. min-norm solution (b) Bias (c) Variance

Figure 2: Test MSE (mean±std.) of RF regression as a function of the ratio m/n on MNIST data
set (digit 3 vs. 7) across the Gaussian kernel, for d = 784 and n = 600 in (a). The interpolation
threshold occurs at m/n = 0.5 as the Gaussian kernel outputs the 2m-feature mapping (instead of
m), i.e., σ(Wx) ∈ R2m. Under this setting, the trends of Bias and Variance are empirically given
in (b) and (c).

Experimental settings: We take digit 3 vs. 7 as an example, and randomly select 300 training
data in these two classes, resulting in n = 600 for training. Hence, our setting with n = 600,
d = 784, and tuning m satisfies our realistic high dimensional assumption. The Gaussian kernel
k(x,x′) = exp(−∥x − x′∥22/(2σ2

0)) is used, where the kernel width σ0 is chosen as σ2
0 = d in

high dimensional settings such that ∥x∥22/d ∼ O(1) in Assumption 1. In our experiment, the initial
step-size is set to γ0 = 1 and we take the initial point θ0 near the min-norm solution3 corrupted
with zero-mean, unit-variance Gaussian noise. The experiments are repeated 10 times and the test
MSE (mean±std.) can be regarded as a function of the ratio m/n by tuning m. Results on different
initialization and more epochs of SGD refer to Appendix H.

SGD vs. minimal-norm solution: Figure 2(a) shows the test MSE of RF regression with averaged
SGD (we take ζ = 0.5 as an example; red line) and minimal-norm solution (blue line). First, we
observe the double descent phenomenon: a phase transition on the two sides of the interpolation
threshold at 2m = n when these two algorithms are employed. Second, in terms of test error, RF
with averaged SGD is slightly inferior to that with min-norm solution, but still generalizes well.

5.2 Behavior of our error bounds

We have experimentally validated the phase transition and corresponding double descent in the
previous section, and here we aim to semi-quantitatively assess our derived bounds for Bias and
Variance, see Figure 2(b) and 2(c), respectively. Results of these quantities on different step-size
refer to Appendix H.

Experimental settings: Since the target function f∗, the covariance operators Σd, Σm, and the
noise ε are unknown on the MNIST data set, our experimental evaluation need some assumptions
to calculate Bias and Variance. First, we assume the label noise ε ∼ N (0, 1), which can in turn
obtain f∗(x) on both training and test data due to f∗(x) = y−ε. Second, the covariance matrices Σd

and Σm are estimated by the related sample covariance matrices. When using the Gaussian kernel, the
covariance matrix Σ̃m can be directly computed, see the remark in Lemma 1, where the expectation
on x is approximated by Monte Carlo sampling with n training samples. Accordingly, based on the
above results, we are ready to calculate ηbiast in Eq. (5), ηbXt , and ηbXWt in Eq. (7), respectively, which
is further used to approximately compute B1 := EX,W

[
⟨η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )⟩

]
(red line)

and B2 := EW

[
⟨η̄bXn −η̄bXWn ,Σm(η̄bXn −η̄bXWn )⟩

]
(blue line) and B3 := ⟨η̄bXWn , Σ̃mη̄bXWn ⟩ (green line). The

(approximate) computation for Variance can be similar achieved by this process.

Error bounds for bias: Figure 2(b) shows the trends of (scaled) B1, B2, and B3. Recall our error
bound: B1, B2, B3 ∼ O(nζ−1), we find that, all of them monotonically decreases at a certain
convergence rate when m increases from the under-parameterized regime to the over-parameterized
regime. These experimental results coincide with our error bound on them.

3In our numerical experiments, we only employ single-pass SGD, and thus the initialization is chosen close
to minimum norm solution, with more discussion in Appendix H.
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Error bounds for variance: Figure 2(c) shows the trends of (scaled) V1, V2, and V3. Recall our error
bound: in the under-parameterized regime, V1, V2, and V3 increase with m at a certain O(nζ−1m)
rate; and in the over-parameterized regime, V1 and V2 are in O(1) order while V3 decreases with
m. Figure 2(c) shows that, when 2m < n, V1 and V2 monotonically increases with m and then
remain unchanged when 2m > n. Besides, V3 is observed to be unimodal: firstly increasing when
2m < n, reaching to the peak at 2m = n, and then decreasing when 2m > n, which admits the
phase transition at 2m = n. Accordingly, these findings accord with our theoretical results, and also
matches refined results in [11, 27, 15]: the unimodality of variance is a prevalent phenomenon.

6 Conclusion
We present non-asymptotic results for RF regression under the averaged SGD setting for understanding
double descent under the optimization effect. Our theoretical and empirical results demonstrate that,
the error bounds for variance and bias can be unimodal and monotonically decreasing, respectively,
which is able to recover the double descent phenomenon. Regarding to constant/adaptive step-size
setting, there is no difference between the constant step-size case and the exact minimal-norm solution
on the convergence rate; while the polynomial-decay step-size case will slow down the learning rate,
but does not change the error bound for variance in over-parameterized regime that converges to O(1)
order, that depends on noise parameter(s).

Our work centers around the RF model, which is still a bit far away from practical neural networks.
Theoretical understanding the generalization properties of over-parameterized neural networks is a
fundamental but difficult problem. We believe that a comprehensive and thorough understanding
of shallow neural networks, e.g., the RF model, is a necessary first step. Besides, we consider the
single-pass SGD in our work for simplicity rather than multiple-pass SGD used in practice. This is
also an interesting direction for understanding the optimization effect of SGD in the double descent.

Besides, our results obtain the dimension-free bound under both non-asymptotic and asymptotic
regimes. We also need to mention that, our results are also valid under the fixed d setting (which can
be larger or smaller than n). This is more practical for real-world applications.
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The outline of the appendix is stated as follows.

• Appendix A summarizes representative results on random features regarding to double
descent under various settings and discusses the tightness of our derived upper bounds.

• Appendix B presents more discussion on the used assumptions, especially Assumptions 2
and 4, demonstrating the rationale behind these assumptions.

• Appendix C provides the proofs of lemmas in Section 3.2 on statistical properties of Σm

and Σ̃m.

• Appendix D introduces preliminaries on PSD operators in stochastic approximation.

• Appendix E provides estimation for several typical integrals that are needed for our proof.

• Appendix F gives error bounds for Bias.

• Appendix G provides the error bounds for Variance.

• Appendix H provides more experiments including different initialization, step-size on
various datasets to support our theory.

A Comparisons with previous work

A.1 Problem settings

Here we summarize various representative approaches in Table 1 according to the used data assump-
tion, the type of solution, and the derived results.

Table 1: Comparison of problem settings on analysis of high dimensional random features on
double descent.

data assumption solution result

[1] Gaussian closed-form variance ↗↘
[12] Gaussian GD variance ↗↘
[4] i.i.d on sphere closed-form variance, bias ↗↘

[11] Gaussian closed-form refined 2

[14] Gaussian closed-form ↗↘
[27] Gaussian closed-form refined

[54] Gaussian closed-form ↗↘
[28] Gaussian closed-form ↗↘
[13] general closed-form ↗↘
[15] isotropic features with finite moments closed form refined

[25] correlated features with polynomial decay on Σd closed form interpolation learning

Ours sub-Gaussian data SGD variance ↗↘, bias ↘
1 A refined decomposition on variance is conducted by sources of randomness on data sampling,

initialization, label noise to possess each term [11] or their full decomposition in [27, 15].

Here we discuss the used assumption on data distribution and the discussion on other assumptions
is deferred to Appendix B. It can be found that, most papers assume the data to be Gaussian or
uniformly distributed on the sphere. The following papers admit weaker assumption on data. Given a
correlated features model that is commonly used in high dimensional statistics [1]

x = Σ
1
2

d t , E[ti] = 0,V[ti] = 1, with Σd := Ex[xx
⊤] , (10)

where t ∈ Rd has i.i.d entries ti (i = 1, 2, . . . , d) with zero mean and unit variance. In [25], they
further require that each entry is i.i.d sub-Gaussian and Σd admits polynomial decay on eigenvalues.
In [15], the authors consider isotropic features with finite moment, i.e., taking Σd := I in Eq. (10)
and E[t8+η

i ] < ∞ for any arbitrary positive constant η > 0. Our model holds for sub-Gaussian, and
thus the used data assumption 4 is weaker than them. We also remark that, no assumption on data
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distribution is employed [13] but they require that test data “behave” statistically like the training
data by concentrated random vectors. Indeed, their data assumption is weaker than ours, but their
analysis framework builds on the exact closed-form solution from random matrix theory. Instead, we
focus on the SGD setting and thus take a unified perspective on optimization and generalization.

Here we briefly discuss our result with previous work. Compared to [12] on RF optimized by gradient
descent under the Gaussian data in an asymptotic view, our non-asymptotic result holds for more
general data distribution under the SGD setting. In fact, our data assumption is weaker than most
previous work assuming the data to be Gaussian, uniformly spread on a sphere, or isotropic/correlated
features (with spectral decay assumption), except [13]. Nevertheless, we extend their asymptotic
results relying on the least-squares closed-form solution to non-asymptotic results under the SGD
setting, which takes the effect of optimization into consideration. Besides, our result coincides
several findings with refined variance decomposition in [11, 27, 15], e.g., the interaction effect can
dominate the variance (between samples and initialization); the unimodality of variance is a prevalent
phenomenon.

A.2 Discussion on the tightness of our results

We present the upper bounds of excess risk in this work, and it is natural to ask whether the lower
bound can be derived by our proof framework. Unfortunately, the first step in our proof is based on
Minkowski inequality such that Bias ⩽ 3(B1+ B2+ B3) and Variance ⩽ 3(V1+ V2+ V3). This
could be a limitation of this work, but our derived results are still tight when compared to previous
work in both under- and over-parameterized regimes.

First, we compare our result with classical random features regression with SGD in the under-
parameterized regime [33]. Under the same standard assumptions, e.g., f∗ ∈ H and label noise with
bounded variance, without refined assumptions, e.g., source condition describing the smoothness of
f∗ and capacity condition describing the “size” of the corresponding H [45], by taking one-pass over
the data (the same setting with our result) and the random features m = O(

√
n), the excess risk [33]

achieves at a certain O(1/
√
n) rate. Under the same setting with the constant-step size, i.e., γ = 0,

we have

E∥f̄n − f∗∥2L2
ρX

= Bias︸ ︷︷ ︸
O( 1

n )

+ Variance︸ ︷︷ ︸
O( 1√

n
)

≲
1√
n
,

which achieves the same learning rate with [33], and has been proved to be optimal in a minimax
sense [55] under the standard assumptions. That means, the constant step-size SGD setting incurs no
loss in convergence rate when compared to the exact kernel ridge regression.

Second, in the over-parameterized regime, previous work using random matrix theory and replica
method provide an exact formulation of the excess risk. Nevertheless, it appears difficult to compare
the specific convergence rate due to their complex formulations, and thus we in turn study the
tendency. Here we take [11] as an example for comparison. They use conditional expectations to
split the variance into label noise, initialization, and data sampling, and the first two terms dominates
the variance.
(i) Our result on bias matches their exact formulation, i.e., monotonically decreasing bias. One slight
difference is, their result on bias tends to a constant under the over-parameterized regime while our
bias result can converge to zero.
(ii) Our result on variance admits the same tendency with their result, leading to unimodal variance,
where some part(s) are with phase transition and some part(s) firstly monotonically increase during
the under-parameterized regime and then remain unchanged during the over-parameterized regime.
More importantly, both of the above two results demonstrate that, the variance will finally converge
to a constant order, that depends on the variance of label noise τ2. That means, our (upper bound)
result is tight to describe phase transition and the final convergence state (depending on the noise
level) when compared to the exact formulation results.

Third, though convergence rates of random features for double descent is non-easy to compare,
results on least squares [2, 16] under the over-parameterized regime or interpolation are possible for
comparison. Here we take our result by choosing m := d and the constant step-size for least squares
setting, and compare their lower bound results to demonstrate the tightness of our result. By virtue of
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Lemma 1, we can reformulate our result as

E∥f̄n − f∗∥2L2
ρX

≲ γ0τ
2


1

n
+

d

n
, if d ⩽ n

1 +
1

n
+

n

d
, if d > n

which matches the same order with [1, Corollary 1].

Besides, when compared to [16], if taking the effective dimension k∗ = min{n, d} (no data spectrum
assumption is required here), we can recover their result. In fact, our result is able to match their
lower bound [2, 16]: excess risk ≳ τ2( 1n + n

d ) with only one difference on an extra constant when
d > n.

Based on the above discussion, our upper bound matches previous work with exact formulation
or lower bound under various settings, which demonstrates the tightness of our upper bound, and
accordingly, our result is able to recover the double descent phenomenon.

B Discussion on the used assumptions

Here we give more discussion on the used assumptions, especially Assumptions 2 and 4, which are
fair and attainable.

Discussion on Assumption 2: i) bounded Hilbert norm: In high-dimensional asymptotics, this
bounded Hilbert norm assumption is commonly used in kernel regression [47, 40, 56], and RF model
[48] even though n and d tend to infinity. Here we give an example satisfying this assumption, which
is provided by [49, Proposition 4], i.e., linear functions on the sphere can have bounded Hilbert norm
for all d.

To be specific, assume f : Sd → R such that f(x) = v⊤x for a certain v ∈ Sd, if we consider the
following reproducing kernel

k(x,x′) =

∫
Sd

1{ω⊤x≥0}1{ω⊤x′≥0}dµ(ω) ,

where µ is the probability measure of ω, leading to a zero-order arc-cosine kernel [51] by taking
Gaussian measure. Then we have

∥f∥H =
2dπ

d− 1
⩽ 4π ,

which verifies that our assumption on bounded Hilbert norm is attainable.

We also need to remark that, unbounded Hilbert norm of functions can be achieved [49, 57] when
d → ∞ in some cases. For example, if we consider the above problem setting but employ the
first-order arc-cosine kernel, we have ∥f∥H ≍ C

√
d for some constant C independent of d.

Accordingly, apart from directly regarding it as an assumption, we also give an example such that a
function can have bounded Hilbert norm. In fact, in practice d is fixed (larger or smaller than n), and
accordingly it is reasonable for a fixed ground truth with bounded Hilbert norm.

ii) optimal solution: We assume that E(f) admits a unique global optimum. If multiple solutions
exist, we choose the minimum norm solution of E(f), i.e.,

f∗ = argmin
f∈H

∥f∥H s.t. f ∈ argmin
f∈H

E(f) ,

which follows the setting [16, 38].

Discussion on Assumption 4: This assumption follows the spirit of [16, Assumption 2.2]. According
to [58, Theorem 5.2.15], assume x is a sub-Gaussian random vector with density of the form
p(x) = exp(−U(x)) for the strongly convex function U : Rd → R. Accordingly, Σ− 1

2
m x is

sub-Gaussian, and then for any fixed W and PSD operator A, we have

Ex[φ
⊤(x)Aφ(x)Σm] ≲ Tr(AΣm)Σm .

The proof is similar to [16, Lemma A.1], and thus we omit the proof for simplicity. The sub-Gaussian
assumption is common in high dimensional statistics [2], which is weaker than most previous work
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on double descent that requires the data to be Gaussian [1, 11, 27, 12], or uniformly spread on a
sphere [4, 50], as discussed in Appendix A.

In fact, our proof only requires Assumption 4 valid to some specific PSD operators, e.g., SW,
EX [Σm − φ(xt) ⊗ φ(xt)]

2 defined in Appendix D. For description simplicity, we present the
requirement on all PSD operators in Assumption 4. Besides, one special case of Assumption 4 by
taking A := I is proved by Lemma 3, and accordingly this assumption can be regarded as a natural
extension.

This assumption is also similar to the bounded fourth moment in stochastic approximation, see
[29, 31, 30, 36, 37] for details.

C Results on covariance operators

In this section, we present the proofs of Lemmas 1, 2, 3, 4 on statistical properties of Σm and Σ̃m.

C.1 Proof of Lemma 1 and examples

Here we present the proof of Lemma 1 and then give two examples by taking different activation
functions.

C.1.1 Proof of Lemma 1

Proof. Recall the definition of Σ̃m, we have

Σ̃m := Ex,W [φ(x)⊗ φ(x)] =
1

m
Ex,Wij∼N (0,1)

[
σ

(
Wx√

d

)
σ
(Wx√

d

)⊤]
∈ Rm×m .

We consider the diagonal and non-diagonal elements of Σ̃m separately.

Diagonal element: The diagonal entry (Σ̃m)ii =
1
mEx,ωi

[σ(
ω⊤

i x√
d
)σ(

ω⊤
i x√
d
)] = 1

mExEω[σ(
ω⊤x√

d
)]2

is the same. In fact, Eω

[
σ
(

ω⊤x√
d

)]2
is actually a one-dimensional integration by considering

the basis (e1, e2, · · · , ed) with e1 = x/∥x∥2, and e2, · · · , ed any completion of the basis. This
technique is commonly used in [59, 60]. The random feature ω admits the coordinate representation
ω = ω̄1e1 + ω̄2e2 + · · ·+ ω̄ded, and thus

ω⊤x = (ω̄1e1 + ω̄2e2 + · · ·+ ω̄ded)
⊤(∥x∥e1) = ∥x∥ω̄1 ,

which implies

Eω

[
σ

(
ω⊤x√

d

)]2
= (2π)−

d
2

∫
Rd

[
σ

(
ω⊤x√

d

)]2
exp

(
−1

2
∥ω∥22

)
dω

=
1√
2π

∫
R

[
σ

(
ω̄1∥x∥2√

d

)]2
exp

(
− ω̄2

1

2

)
dω̄1

=
1√
2π

∫
R
[σ(z)]2 exp

(
− z2

2∥x∥2/d

) √
d

∥x∥2
dz

= Ez∼N (0,∥x∥2
2/d)

[σ(z)]2 ,

where we change the integral variable z := ω̄1∥x∥2√
d

. Hence we have (Σ̃m)ii =
1
mExEz∼N (0,∥x∥2

2/d)
[σ(z)]2.

Non-diagonal element: The non-diagonal entry (Σ̃m)ij = 1
mEx,ωi,ωj

[σ(
ω⊤

i x√
d
)σ(

ω⊤
j x√
d
)⊤] =

1
mEx[Eωσ(

ω⊤x√
d
)]2 is the same due to the independence between ωi and ωj . Likewise, it can

be represented as a one-dimensional integration

(Σ̃m)ij =
1

m
Ex

[
Eωσ

(
ω⊤x√

d

)]2
=

1

m
Ex

[
Ez∼N (0,1)σ

(
z∥x∥√

d

)]2
=

1

m
Ex

(
Ez∼N (0,∥x∥2

2/d)
[σ(z)]

)2
.
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Accordingly, by denoting a := (Σ̃m)ii and b := (Σ̃m)ij , the covariance operator Σ̃m can be
represented as

Σ̃m = (a− b)Im + b11⊤ ∈ Rm×m , (11)

with its determinant det(Σ̃m) = (1 + mb
a−b )(a− b)m. Hence, the eigenvalues of Σ̃m can be naturally

obtained by the matrix determinant lemma: λ̃1(Σ̃m) = a− b+ bm and the remaining eigenvalues
are a− b.

According to [61, Theorem 2.26], by virtue of the Lipschitz function σ(·) of Gaussian variables, we
have

P
[∣∣∣∣σ(ω⊤x√

d

)
− Eω∼N (0,Id)σ

(
ω⊤x√

d

) ∣∣∣∣ ⩾ t

]
⩽ c exp(−t2), ∀t ⩾ 0 ,

which implies that σ
(
ω⊤x√

d

)
is a sub-Gaussian random variable due to its expectation in the O(1) order.

Accordingly, for z ∼ N (0, ∥x∥22/d), we have ExV[σ(z)] ∼ O(1) as σ(z) is sub-Gaussian with
O(1) norm and its finite second moment, i.e., V[σ(z)] ∼ O(1), which implies λ̃2 = 1

mExV[σ(z)] ∼
O(1/m). Finally, we conclude the proof.

C.1.2 Examples

In our analysis, we assume σ(·) : R → R with single-output for description simplicity. In fact,
our results can be easily extended to multiple-output cases, e.g., the Gaussian kernel corresponding
to σ(x) = [cos(x), sin(x)]⊤. Here we give two examples, including single- and multiple-output:
arc-cosine kernel that corresponds to the ReLU function σ(x) = max{0, x}; and the Gaussian kernel.

Arc-cosine kernel: We begin with calculation of arc-cosine kernels due to its related single-output
activation function. Denote z̃ := max{0, z} with z ∼ N (0, ∥x∥22/d), it is subject to the Rectified
Gaussian distribution admitting (refer to [25])

E[z̃] =
∥x∥2√
2dπ

, E[z̃]2 =
∥x∥22
2d

, V[z̃] =
∥x∥22
2d

(
1− 1

π

)
.

Accordingly, recall the sample covariance operator Σd := Ex[xx
⊤], the diagonal elements are the

same

(Σ̃m)ii =
1

m
ExEz∼N (0,∥x∥2

2/d)
[σ(z)]2 =

1

2md
Ex∥x∥22 =

1

2md
Tr(Σd) , i = 1, 2, . . . ,m ,

and the non-diagonal elements are the same

(Σ̃m)ij =
1

m
Ex

(
Ez∼N (0,∥x∥2

2/d)
[σ(z)]

)2
=

1

2mdπ
Tr(Σd) , i, j = 1, 2, . . . ,m with i ̸= j .

Gaussian kernels: Briefly, if we choose σ(x) = [cos(x), sin(x)]⊤, a multiple-output version, RF
actually approximates the Gaussian kernel with φ(x) ∈ R2m in Eq. (1), resulting in Σ̃m ∈ R2m×2m.
In this case, Σ̃m = S1 ⊕ S2 is a block diagonal matrix, where ⊕ is the direct sum. By denoting ϑ :=
∥x∥22/d, the matrix S1 ∈ Rm×m has the same diagonal elements [S1]ii =

1
2mEx [1 + exp (−2ϑ)],

and the same non-diagonal elements 1
mEx [exp (−ϑ)]. The matrix S2 is diagonal with [S2]ii =

1
2mEx [1− exp (−2ϑ)]. In this case, Σ̃m admits three distinct eigenvalues: the largest eigenvalue at
O(1) order, and the remaining two eigenvalues at O(1/m) order.

According to Bochner’s theorem [62], we have E[cos(ω⊤z)] = exp(−z2/2) and E[cos2(ω⊤z)] =
1+exp(−2z2)

2 for ω ∼ N (0, Id) and z := ∥z∥2. In fact, this can be computed by two steps: first
transforming the d-dimensional integration to a one-dimensional integral as discussed before; and
then computing the integral by virtue of the Euler’s formula exp(−ix) = cosx+i sinx. For instance,

E[cos(ω⊤z)] = Ex∼N (0,∥z∥2
2)
cosx =

1√
2π∥z∥2

Re

[∫
R
exp(− x2

2∥z∥22
) exp(ix)dx

]
= exp

(
−∥z∥22

2

)
Re

[
1√

2π∥z∥2

∫
R
exp

(
− (x− i∥z∥22)

2∥z∥22

)
dx

]
= exp

(
−∥z∥22

2

)
.
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Similarly, we have E[sin(ω⊤z)] = 0 and E[sin2(ω⊤z)] = 1−exp(−2z2)
2 for ω ∼ N (0, Id) and

z := ∥z∥2.

Based on the above results, for the Gaussian kernel, the expected covariance operator Σ̃m is a block
diagonal matrix

Σ̃m =

[
S1 0
0 S2

]
∈ R2m×2m ,

where S1 ∈ Rm×m has the same diagonal elements and the same non-diagonal elements:

[S1]ii =
1

m
Ex,ω

[
cos

(
ω⊤x√

d

)]2
=

1

2m
Ex

[
1 + exp

(
−2

∥x∥22
d

)]
, i = 1, 2, . . . ,m ,

[S1]ij =
1

m
Ex

[
Eω cos

(
ω⊤x√

d

)]2
=

1

m
Ex

[
exp

(
−∥x∥22

d

)]
, i, j = 1, 2, . . . ,m with i ̸= j .

The matrix S2 ∈ Rm×m is diagonal with

[S2]ii =
1

m
Ex,ω

[
sin

(
ω⊤x√

d

)]2
=

1

2m
Ex

[
1− exp

(
−2

∥x∥22
d

)]
, i = 1, 2, . . . ,m .

Accordingly, Σ̃m has three distinct eigenvalues

λ̃1 = Ex

[
exp

(
−∥x∥22

d

)]
+

1

2m
Ex

[
1− exp

(
−∥x∥22

d

)]2
∼ O(1) ,

λ̃2 =
1

2m
Ex

[
1− exp

(
−2

∥x∥22
d

)]
∼ O

(
1

m

)
,

λ̃3 =
1

2m
Ex

[
1− exp

(
−∥x∥22

d

)]2
∼ O

(
1

m

)
.

In this case, we can also get the similar claim on spectra of Σ̃m with the single-output version: Σ̃m

admits the largest eigenvalue at O(1) order, and the remaining eigenvalues are at O(1/m) order.

C.2 Proof of Lemma 2

Proof. As discussed before, σ
(
ω⊤x√

d

)
is a sub-Gaussian random variable with the O(1) sub-Gaussian

norm order. Hence, ∥Σm − Σ̃m∥2 is a sub-exponential random variable with

∥Σm − Σ̃m∥2 ⩽ ∥Σm∥2 + ∥Σ̃m∥2 =
1

m

∥∥∥∥∥Ex

[
σ

(
Wx√

d

)
σ

(
Wx√

d

)⊤ ]∥∥∥∥∥
2

+O(1) [using Lemma 1]

⩽
1

m
Ex

∥∥∥∥σ(Wx√
d

)∥∥∥∥2
2

+O(1) [Jensen’s inequality]

≲
1

m

(
Ex∥σ(0m)∥22 + Ex

∥∥∥∥Wx√
d

∥∥∥∥2
2

)
+O(1) [σ: Lipschitz continuous]

≲ O(1) +
1

md

m∑
i=1

ω⊤
i Ex[xx

⊤]ωi [using ∥Σd∥2 < ∞]

≲
1

d
∥ω∥22 [here ω ∼ N (0, Id)] ,

where ∥ω∥22 is a χ2(d) random variable, and thus ∥Σm − Σ̃m∥2 has sub-exponential norm at O(1)
order. Accordingly, the high moment E∥Σm∥p2 < ∞ holds for finite p. Following the above
derivation, we can also conclude that Tr(Σm) has the sub-exponential norm O(1), i.e.

Tr(Σm) =
1

m
ExTr

[
σ

(
Wx√

d

)
σ

(
Wx√

d

)⊤]
=

1

m
Ex

∥∥∥∥σ(Wx√
d

)∥∥∥∥2
2

≲
1

d
∥ω∥22 .

Likewise, we can derive Tr(Σ2
m) < ∞ in the similar fashion.
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C.3 Proof of Lemma 3

Proof. The first inequality naturally holds, and so we focus on the second inequality. Denote
Φ := Ex,W [φ(x)⊗ φ(x)⊗ φ(x)⊗ φ(x)], its diagonal elements are the same

Φii =
m− 1

m2
Ex

(
Ez∼N (0,∥x∥2

2/d)
[σ(z)]2

)2
+

1

m2
ExEz∼N (0,∥x∥2

2/d)
[σ(z)]4 ∼ O

(
1

m

)
.

Its non-diagonal elements Φij with i ̸= j are the same

Φij =
m− 3

m2
Ex

[(
Ez∼N (0,∥x∥2

2/d)
[σ(z)]

)2
Ez∼N (0,∥x∥2

2/d)
[σ(z)]2

]
+

2

m2
Ex

[
Ez∼N (0,∥x∥2

2/d)
[σ(z)]3Ez∼N (0,∥x∥2

2/d)
[σ(z)]

]
,

where the first term is in O( 1
m ) order and the second term is in O( 1

m2 ) order. By denoting a :=

(Σ̃m)ii, b := (Σ̃m)ij as given by Lemma 1, A := Φii, and B := Φij , the operator rTr(Σ̃m)Σ̃m − Φ
can be represented as

rTr(Σ̃m)Σm − Φ = [rm(a− b)−A+B] Im + (rmab−B)11⊤ ,

of which the smallest eigenvalue is rma(a − b) − A + B. Accordingly, to ensure the positive

definiteness of rTr(Σ̃m)Σ̃m − Φ, which implies EW

(
Ex

(
[φ(x) ⊗ φ(x)]A[φ(x) ⊗ φ(x)]

))
≼

rTr(Σ̃m)Σ̃m, we require its smallest eigenvalue is non-negative, i.e., rma(a − b) − A + B ⩾ 0.
That means, r should satisfies

r ⩾
A−B

ma(a− b)
=

A−B
1
mExEz∼N (0,∥x∥2

2/d)
[σ(z)]2ExV[σ(z)]

. (12)

Since A−B admits

A−B ⩽
1

m
ExEz[σ(z)]

2ExV[σ(z)] +O
(

1

m2

)
,

then by taking r := 1 + O
(

1
m

)
, the condition in Eq. (12) satisfies, and thus rTr(Σ̃m)Σ̃m − Φ is

positive definite, which concludes the proof.

D Preliminaries on PSD operators

In this section, we first define some stochastic/deterministic PSD operators that follow [63, 16] in
stochastic approximation, and then present Lemma 5 that is based on PSD operators and is needed
to estimate B1 and V1. Note that, the PSD operators will make the notation in our proof simple and
clarity but do not change the proof itself.

Following [63, 16], we define several stochastic PSD operators as below. Given the random features
matrix W and any PSD operator A, define

SW := Ex[φ(x)⊗ φ(x)⊗ φ(x)⊗ φ(x)], S̃W := Σm ⊗ Σm ,

SW ◦A := Ex

[
φ(x)⊤φ(x)Aφ(x)⊗ φ(x)

]
, S̃W ◦A := ΣmAΣm ,

where the superscript W denotes the randomness dependency on the random feature matrix W .
Besides, for any γi (i = 1, 2, . . . , n), define the following operators

(I − γiT
W) ◦A := Ex ([I − γiφ(x)⊗ φ(x)]A[I − γiφ(x)⊗ φ(x)])

(I − γiT̃
W) ◦A := (I − γiΣm)A(I − γiΣm) ,

associated with two corresponding operators (that depend on γi)

T W := Σm ⊗ I + I ⊗ Σm − γiS
W, T̃ W := Σm ⊗ I + I ⊗ Σm − γiS̃

W .
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Clearly, the above operators SW, S̃W, (I − γiT
W), (I − γiT̃

W), T W, and T̃ W are PSD, and SW ≽ S̃W. The
proof is similar to [16, Lemma B.1] and thus we omit it here.

Further, if γ0 < 1/Tr(Σm), the PSD operator I − γiΣm (i = 1, 2, . . . , n) is a contraction map, and
thus for any PSD operator A and step-size γi, the following exists

∞∑
t=0

(I − γiT̃
W)t ◦A =

∞∑
t=0

(I − γiΣm)tA(I − γiΣm)t .

Hence, (T̃ W)−1 := γi
∑∞

t=0(I−γiT̃
W)t exists and is PSD. We need to remark that, though Tr(Σm) is

a random variable, it is with a sub-exponential O(1) norm. That means, this holds with exponentially
high probability.

Based on the above stochastic operators, we define several deterministic PSD ones by taking the
expectation over W as below. For any given γi (i = 1, 2, . . . , n), we have the following PSD
operators

S := EW [Σm ⊗ Σm], S̃ := Σ̃m ⊗ Σ̃m ,

T := Σ̃m ⊗ I + I ⊗ Σ̃m − γiS, T̃ := Σ̃m ⊗ I + I ⊗ Σ̃m − γiS̃ ,

S ◦A := EW [ΣmAΣm], S̃ ◦A := Σ̃mAΣ̃m ,

(I − γiT ) ◦A := EW [(I − γiΣm)A(I − γiΣm)], (I − γiT̃ ) ◦A := (I − γiΣ̃m)A(I − γiΣ̃m) ,

which implies T̃ − T = γi(S − S̃).

Based on the above PSD operators, we present a lemma here that is used to estimate B1 and V1.4

Lemma 5. Under Assumptions 1, 2, 3, 4 with r′ ⩾ 1, denote

Dv−X
t :=

t∑
s=1

t∏
i=s+1

(I − γiT
W) ◦ γ2

sBΣm , (13)

with a scalar B independent of k, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

c′Tr(Σm)

}
,

where the constant c′ is defined as

c′ :=

{
1, if ζ = 0 ,

1

1− 2−ζ
, if ζ ∈ (0, 1) .

(14)

Then Dv−X
t can be upper bounded by

Dv−X
t ≼

γ0B

1− γ0r′Tr(Σm)
I .

Remark: The PSD operator I − γiT
W cannot be guaranteed as a contraction map since we cannot

directly choose γ0 < 1
Tr[φ(x)φ(x)⊤]

for general data x. However, its summation in Eq. (13) can
be still bounded by our lemma. In our work, we set B := r′Tr(Σm) for estimate B1, and B :=
τ2r′γ0[Tr(Σm) + γ0Tr(Σ

2
m)] to bound V1, respectively.

Proof. Our proof can be divided into two parts: one is to prove Tr[Dv−X
t (ζ)] ⩽ Tr[Dv−X

t (0)] for any
ζ ∈ [0, 1); the other is to provide the upper bound of Dv−X

t (0). We focus on the first part and the
proof in the second part follows [63, Lemmas 3 and 5] and [16, Lemma B.4].

4Our proofs on the remaining quantities including V2, V3, B2, B3 do not use PSD operators.
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The quantity Tr[Dv−X
t (ζ)] admits the following representation by the definition of I − γiT

W

Tr[Dv−X
t (ζ)] =

t∑
s=1

t∏
i=s+1

Tr
[
(I − γiT

W) ◦ γ2
sBΣm

]
=

t∑
s=1

Bγ2
s

t∏
i=s+1

Tr

(
Ex[I − γiφ(x)⊗ φ(x)]Σm[I − γiφ(x)⊗ φ(x)]

)

= B

t∑
s=1

γ2
s

t∏
i=s+1

Tr

(
Σm − 2γiΣ

2
m + γ2

i ΣmEx [φ(x)⊗ φ(x)⊗ φ(x)⊗ φ(x)]

)
.

Based on the above results, we have

Tr[Dv−X
t (0)]− Tr[Dv−X

t (ζ)] = B

t∑
s=1

t∏
i=s+1

Tr

(
Σm

[
(γ2

0 − γ2
s )I − 2(γ3

0 − γ2
sγi)Σm

+ (γ4
0 − γ2

i γ
2
s )Ex [φ(x)⊗ φ(x)⊗ φ(x)⊗ φ(x)]

])
⩾ B

t∑
s=1

t∏
i=s+1

Tr

(
Σm

[
(γ2

0 − γ2
s )I − 2(γ3

0 − γ2
sγi)Σm + (γ4

0 − γ2
i γ

2
s )Σ

2
m

])

= B

t∑
s=1

t∏
i=s+1

m∑
j=1

(
λj

[
(γ2

0 − γ2
s )− 2(γ3

0 − γ2
sγi)λj + (γ4

0 − γ2
i γ

2
s )λ

2
j

])

= B

t∑
s=1

t∏
i=s+1

m∑
j=1

(
λj

[
(γ4

0 − γ2
i γ

2
s )

(
λj −

γ3
0 − γ2

sγi
γ4
0 − γ2

i γ
2
s

)2

− γ2
0γ

2
s (γ0 − γi)

2

γ4
0 − γ2

i γ
2
s

])
.

Accordingly, Tr[Dv−X
t (0)] − Tr[Dv−X

t (ζ)] ⩾ 0 naturally holds when ζ = 0. When ζ ∈ (0, 1), it
holds if λj ⩽

γ3
0−γ2

sγi−γ2
0γs+γ0γsγi

γ4
0−γ2

sγ
2
i

with j = 1, 2, . . . ,m. This condition can be satisfied by

Case 1 (if s = 1). In this case, γ1 = γ0 and we have

λj ⩽ Tr(Σm) ⩽
1

2γ0
⩽

1

γ0 + γi
=

γ3
0 − γ2

sγi − γ2
0γs + γ0γ

2
s

γ4
0 − γ2

sγ
2
i

, when s = 1 .

Case 2 (if s = 2, 3, . . . ). In this case, notice

γ4
0 − γ2

sγ
2
i

γ3
0 − γ2

sγi − γ2
0γs + γ0γ2

s

⩽
γ4
0

γ0(γ0 − γs)(γ2
0 + γsγi)

⩽
γ3
0

(γ0 − γ2)(γ2
0 + γ2γ3)

=
1

1− 2−ζ
,

Accordingly, we have

λj ⩽ Tr(Σm) ⩽
1− 2−ζ

γ0
⩽

γ3
0 − γ2

sγi − γ2
0γs + γ0γ

2
s

γ4
0 − γ2

sγ
2
i

,

where the second inequality holds by Eq. (14). Accordingly, combining the above two cases, if we
choose

γ0 ⩽
1

1
1−2−ζ Tr(Σm)

, for ζ ∈ (0, 1) ,

we have Tr[Dv−X
t (0)]− Tr[Dv−X

t (ζ)] ⩾ 0.

In the next, we give the upper bound for Dv−X
t (0). The proof follows [63, Lemmas 3 and 5] and

[16, Lemma B.4]. We just present it here for completeness. We firstly demonstrate that Dv−X
t (0) is

increasing and bounded, which implies that the limit Dv−X
∞ (0) exists, and then we seek for the upper

bound of this limit. To be specific, Dv−X
t (0) admits the following expression

Dv−X
t (0) :=

t∑
k=1

(I − γ0T
W)k−1 ◦ γ2

0BΣm = Dv−X
t−1 (0) + (I − γ0T

W)t−1 ◦ γ2
0BΣm ≽ Dv−X

t−1 (0) ,
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which implies that Dv−X
t (0) is increasing.

Let At := (I − γ0T
W)t−1 ◦BΣm, and then At = (I − γ0T

W) ◦At−1. We have

Tr(At) = Tr[(I − γ0T
W) ◦At−1] = Tr(At−1)− 2γ0Tr(ΣmAt−1) + γ2

0Tr(S
W ◦At−1)

⩽ Tr(At−1)− 2γ0Tr(ΣmAt−1) + γ2
0r

′Tr(ΣmAt−1)Tr(Σm) [using Assumption 4]

⩽ Tr[(I − γ0Σm)At−1] ⩽ (1− γ0λm)Tr(At−1) , [using γ0 ⩽ 1
r′Tr(Σm) ]

which implies

Tr[Dv−X
t (0)] ⩽ γ2

0

∞∑
t=0

Tr
(
(I − γ0T

W)t ◦BΣm

)
⩽ Tr(BΣm)

∞∑
t=0

(1−γ0λm)t ⩽
γ0Tr(BΣm)

λm
< ∞ .

Accordingly, the monotonicity and boundedness of {Dv−X
t (0)}∞t=0 implies that the limit exists,

denoted as Dv−X
∞ (0) with

Dv−X
∞ (0) = (I − γ0T

W) ◦Dv−X
∞ (0) + γ2

0BΣm ,

which implies Dv−X
∞ (0) = γ0(T

W)−1 ◦BΣm Further, we have

T̃ W ◦Dv−X
∞ (0) = T W ◦Dv−X

∞ (0) + γ0S
W ◦Dv−X

∞ (0)− γ0S̃
W ◦Dv−X

∞ (0) [definition of T̃ W]

= γ0BΣm + γ0S
W ◦Dv−X

∞ (0)− γ0S̃
W ◦Dv−X

∞ (0)

≼ γ0BΣm + γ0S
W ◦Dv−X

∞ (0) . [using SW ≽ S̃W]

(15)

Besides, (T̃ W)−1 ◦ Σm can be bounded by

(T̃ W)−1 ◦ Σm = γ0

∞∑
t=0

(I − γ0T̃
W) ◦ Σm = γ0

∞∑
t=0

(I − γ0Σm)tΣm(I − γ0Σm)t

≼ γ0

∞∑
t=0

(I − γ0Σm)tΣm = I . [using γ0 ⩽ 1/Tr(Σm)]

(16)

Therefore, Dv−X
∞ (0) can be further upper bounded by

Dv−X
∞ (0) ≼ γ0(T̃

W)−1 ◦BΣm + γ0(T̃
W)−1 ◦ SW ◦Dv−X

∞ (0) [using Eq. (15)]

≼ γ0B + γ0(T̃
W)−1 ◦ SW ◦Dv−X

∞ (0) [using Eq. (16)]

= γ0B

∞∑
t=0

[γ0(T̃
W)−1 ◦ SW]t ◦ I [solving the recursion]

≼ γ0B

∞∑
t=0

(
γ0(T̃

W)−1 ◦ SW
)t−1

◦ γ0(T̃ W)−1 ◦ SW ◦ I

≼ γ0B

∞∑
t=0

(
γ0(T̃

W)−1 ◦ SW
)t−1

◦ γ0(T̃ W)−1 ◦ Tr(Σm)Σm [using Assumption 4]

≼ γ0B

∞∑
t=0

[γ0r
′Tr(Σm)]

t ◦ I [using Eq. (16)]

≼
γ0B

1− γ0r′Tr(Σm)
I . [using γ0 < 1

r′tr(Σm) ]

(17)
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Hence, based on the above results, Dv−X
t (0) can be further upper bounded by

Dv−X
t (0) = (I − γ0T

W) ◦Dv−X
t−1 (0) + γ2

0BΣm

= (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0(S

W − S̃W) ◦Dv−X
t−1 + γ2

0BΣm

≼ (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0S

W ◦Dv−X
∞ (0) + γ2

0BΣm

≼ (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0r

′Tr[Dv−X
∞ (0)]Tr(Σm)Σm + γ2

0BΣm [using Assumption 4]

≼ (I − γ0T̃
W) ◦Dv−X

t−1 (0) + γ2
0BΣm

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

)
[using Eq. (17)]

≼ γ2
0B

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

) ∞∑
k=0

(I − γ0Σm)kΣm

≼ γ0B

(
Tr(Σm)r′γ0

1− γ0r′Tr(Σm)
+ 1

)
I ,

(18)

which concludes the proof.

E Some useful integrals estimation

In this section, we present the estimation for the following integrals that will be needed in our proof
by denoting κ := 1− ζ ∈ (0, 1].

Integral 1: We consider the following integral admitting an exact estimation

∫ t

1

u−ζ exp

(
− c

u1−ζ − 1

1− ζ

)
du ⩽ t . (19)

Besides, we also calculate this integral as below: by changing the integral variable vκ := cu
1−ζ−1
1−ζ

and

dv

du
= u1−κ

(κ
c

) 1
κ

(uκ − 1)
κ−1
κ =

1

c
u1−κκvκ−1 ,

and then we have

∫ t

1

u−ζ exp

(
− c

u1−ζ − 1

1− ζ

)
du =

1

c

∫ [ cκ (tκ−1)]
1
κ

0

u−ζu1−κκvκ−1 exp(−vκ)dv

⩽
1

c

∫ ∞

0

exp(−x)dx =

(
1

c
∧ t

)
,

(20)

where the last equality uses Eq. (19) and takes the smaller one via the notation ∧. Accordingly, if we
take ζ = 0 in Eq. (20), we have

∫ t

1

exp

(
− c

u1−ζ − 1

1− ζ

)
du ⩽

(
1

c
tζ ∧ t

)
. (21)

Similar to Eq. (21), we have∫ n

t

exp

(
− λ̃iγ0

u1−ζ − t1−ζ

1− ζ

)
du ⩽ (n− t) ∧ nζ

λ̃iγ0
. (22)
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Integral 2: we consider the following integral∫ t

1

u−ζ exp

(
− c

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du

=
(t+ 1)1−κ

c

∫ C

0

[(t+ 1)(1− x)
1
κ − 1]κ−1(1− x)

1−κ
κ κvκ−1 exp(−vκ)dv with x := (

v

t+ 1
)κ

κ

c

⩽
2ζ

c

∫ ∞

0

κvκ−1 exp(−vκ)dv

=

(
2ζ

c
∧ t

)
,

(23)

where we change the integral variable vκ := c (t+1)1−ζ−(u+1)1−ζ

1−ζ with κ := 1− ζ such that

du = −κ1/κ

c1/κ
(u+ 1

t+ 1

)1−κ
[
1−

(u+ 1

t+ 1

)κ]1− 1
κ

dv = −κ

c

[
1−

( v

t+ 1

)κκ
c

] 1−κ
κ
(

v

t+ 1

)κ−1

dv ,

with (u+1
t+1 )

κ = 1−(v/(t+1))κκ/c and the upper limit of integral is C := c1/κ[(t+1)κ−(u+1)κ]1/κ.
Due to u = (t+ 1)(1− x)

1
κ − 1 ∈ [1, t], we have (1− x)

1
κ ∈ [2/(t+ 1), 1] and accordingly

g(x) := [(t+1)(1− x)
1
κ − 1]κ−1(1− x)

1−κ
κ ⩽ 21−κ(t+1)κ−1 with x ∈

[
0, 1−

(
2

t+ 1

)κ]
,

as an increasing function of x.

Similar to Eq. (23), we have the following estimation∫ t

1

γ2
0u

−2ζ exp

(
− 2λ̃iγ0

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du ≲

(
γ0

λ̃i

∧ γ2
0t

)
. (24)

F Proofs for Bias

In this section, we present the error bound for Bias. By virtue of Minkowski inequality, we have(
EX,W

[
⟨η̄biasn ,Σmη̄biasn ⟩

]) 1
2

⩽
(
EX,W

[
⟨η̄biasn − η̄bXn ,Σm(η̄biasn − η̄bXn )⟩

]︸ ︷︷ ︸
≜B1

) 1
2

+
(
EW

[
⟨η̄bXn ,Σmη̄bXn ⟩

]) 1
2

⩽(B1)
1
2 +
(
EW

[
⟨η̄bXn −η̄bXWn ,Σm(η̄bXn −η̄bXWn )⟩

]︸ ︷︷ ︸
≜B2

) 1
2

+[⟨η̄bXWn , Σ̃mη̄bXWn ⟩︸ ︷︷ ︸
≜B3

]
1
2 .

(25)

In the next, we give the error bounds for B3, B2, and B1, respectively.

F.1 Bound for B3

In this section, we aim to bound B3 := ⟨η̄bXWn , Σ̃mη̄bXWn ⟩.
Proposition 2. Under Assumption 1, 2, 3, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies
γ0 ⩽ 1

Tr(Σ̃m)
, then B3 can be bounded by

B3 ≲
nζ−1

γ0
∥f∗∥2 .

Proof. Due to γ0 ⩽ 1

Tr(Σ̃m)
, the operator I − γtΣ̃m is a contraction map for t = 1, 2, . . . , n. Take

spectral decomposition Σ̃m = Ũ Λ̃Ũ⊤ where Ũ is an orthogonal matrix and Λ̃ is a diagonal matrix
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with (Λ̃)11 = λ̃1 and (Λ̃)ii = λ̃2 (i = 2, 3, . . . ,m) as Σ̃m has only two distinct eigenvalues in
Lemma 1. Accordingly, we have

⟨η̄bXWn , Σ̃mη̄bXWn ⟩ = 1

n2

〈
n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)f∗, Σ̃m

n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)f∗

〉

=
1

n2

∥∥∥∥∥
n−1∑
t=0

t∏
i=1

(I − γiΣ̃m)Σ̃
1
2
mf∗

∥∥∥∥∥
2

⩽
1

n2

∥∥∥∥∥
n−1∑
t=0

t∏
i=1

(I − γiΛ̃)Λ̃
1
2

∥∥∥∥∥
2

2

∥f∗∥2 [using Σ̃m = Ũ Λ̃Ũ⊤]

⩽
1

n
max
k=1,2

n−1∑
t=0

t∏
i=1

(1− γiλ̃k)
2λ̃k∥f∗∥2

⩽
1

n

n−1∑
t=0

t∏
i=1

(1− γiλ̃1)
2λ̃1∥f∗∥2 + 1

n

n−1∑
t=0

t∏
i=1

(1− γiλ̃2)
2λ̃2∥f∗∥2 .

(26)

Note that
n−1∑
t=0

t∏
i=1

(1− γiλ̃j)
2 ⩽

n−1∑
t=0

exp

(
−2γ0λ̃j

t∑
i=1

i−ζ

)
⩽

n−1∑
t=0

exp

(
−2γ0λ̃j

∫ t+1

1

1

xζ
dx

)

=

n−1∑
t=0

exp

(
−2γ0λ̃j

(t+ 1)1−ζ − 1

1− ζ

)
⩽ 1 +

∫ n

0

exp

(
−2γ0λ̃j

(t+ 1)1−ζ − 1

1− ζ

)
dx

⩽ 1 +

(
nζ

2γ0λ̃j

∧ n

)
, [using Eq. (21)]

(27)

here according to Lemma 1, for λ̃1, the upper bound nζ

2γ0λ̃1
is tighter than n due to λ̃1 ∼ O(1); while

this conclusion might not hold for λ̃2 due to λ̃2 ∼ O(1/m). Then, taking Eq. (27) back to Eq. (26),
we have

⟨η̄bXWn , Σ̃mη̄bXWn ⟩ ≲ nζ−1

γ0
∥f∗∥2 + λ̃2

n

(
nζ

γ0λ̃2

∧ n

)
∥f∗∥2

≲
nζ−1

γ0
∥f∗∥2 ∼ O(nζ−1) ,

(28)

which concludes the proof.

F.2 Bound for B2

Here we aim to bound B2 := EW

[
⟨η̄bXn − η̄bXWn ,Σm(η̄bXn − η̄bXWn )⟩

]
= EW

[
⟨ᾱW

n, Σ̃mᾱW
n⟩
]
+

EW

[
⟨ᾱW

n, (Σm − Σ̃m)ᾱW
n⟩
]
, where

αW
t := ηbXt − ηbXWt = (I − γtΣm)(ηbXt−1 − ηbXWt−1) + γt(Σ̃m − Σm)ηbXWt−1 , (29)

with αW
0 = 0. Here αW

t can be further formulated as

αW
t =

t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)(Σ̃m − Σm)

k−1∏
s=1

(I − γsΣ̃m)f∗ , (30)

where we use the recursion

At := (I − γtΣm)At−1 +Bt =

t∑
s=1

t∏
i=s+1

(I − γiΣm)Bs .
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Accordingly, B2 admits

B2 = EW

[
⟨ᾱW

n,ΣmᾱW
n⟩
]
=

1

n2
EW

〈
n−1∑
t=0

αW
t ,Σm

n−1∑
t=0

αW
t

〉
=

1

n2
EW

∥∥∥∥∥Σ 1
2
m

n−1∑
t=0

αW
t

∥∥∥∥∥
2

, (31)

and we have the following error bound for B2.
Proposition 3. Under Assumption 1, 2, 3, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 ⩽ min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
,

then B2 can be bounded by

B2 ≲
∥f∗∥2

γ0
nζ−1 .

Remark: In our paper, we require I − γtΣm (t = 1, 2, . . .m) to be a contraction map. Though
Tr(Σm) is a random variable, it is with a sub-exponential O(1) norm, that means, the condition
γ0 < 1/Tr(Σm) can be equivalently substituted by γ0 < 1/[cTr(Σ̃m)] for some large c (independent
of n, m, d) with exponentially high probability. This is also used for estimating other quantities.

Before we present the error bounds for B2, we need the following lemma.
Lemma 6. Under Assumption 1, 2, 3, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 ⩽ min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
,

denote Υi :=
∑n−1

t=0

∑t
k=1 γk(λ̃i − λi)λ

1
2
i

∏t
j=k+1(1− γjλi)

∏k−1
s=1 (1− γsλ̃i), ∀i ∈ [m], we have

Υi ≲ λ
1
2
i

(
nζ

γ0λi
∧ n

)
, if λi ̸= 0 ; and Υi = 0 , if λi = 0 .

Proof. Following the derivation in Appendix E, we consider the index i with λi ̸= 0 such that

Υi :=

n−1∑
t=0

t∑
k=1

γk(λ̃i − λi)λ
1
2
i

t∏
j=k+1

(1− γjλi)

k−1∏
s=1

(1− γsλ̃i)

⩽
n−1∑
t=0

(λ̃i − λi)λ
1
2
i

t∑
k=1

γk exp
(
−

t∑
j=k+1

γjλi

)
exp

(
−

k−1∑
s=1

γsλ̃i

)
⩽

n−1∑
t=0

(λ̃i − λi)λ
1
2
i

t∑
k=1

γk exp

(
− λi

∫ t+1

k+1

γ0
xζ

dx

)
exp

(
− λ̃i

∫ k

1

γ0
xζ

dx

)

=

n−1∑
t=0

(λ̃i − λi)λ
1
2
i

t∑
k=1

γ0k
−ζ exp

(
− λiγ0

(t+ 1)1−ζ − (k + 1)1−ζ

1− ζ

)
exp

(
− λ̃iγ0

k1−ζ − 1

1− ζ

)

≲
n−1∑
t=0

γ0(λ̃i − λi)λ
1
2
i

[∫ t

1

u−ζ exp

(
− γ0

λi(t+ 1)1−ζ − λiu
1−ζ + λ̃iu

1−ζ − λ̃i

1− ζ

)
du

+ t−ζ exp

(
− λ̃iγ0

t1−ζ − 1

1− ζ

)]
,

(32)

Denote κ := 1− ζ and

vκ := γ0
λi(t+ 1)1−ζ − λiu

1−ζ + λ̃iu
1−ζ − λ̃i

1− ζ
,
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by changing the integral variable u to v, we have
du

dv
=

u1−κ

λ̃i − λi

(γ0
κ

)−1/κ

[(λ̃i − λi)u
κ + λi(t+ 1)κ − λ̃i] =

u1−κ

λ̃i − λi

κ

γ0
vκ−1 ,

Accordingly, Eq. (32) can be upper bounded by

Υi ≲
n−1∑
t=0

γ0(λ̃i − λi)λ
1
2
i

[ ∫ t

1

u−ζ exp

(
− γ0

λi(t+ 1)1−ζ − λiu
1−ζ + λ̃iu

1−ζ − λ̃i

1− ζ

)
du

+ t−ζ exp

(
− λ̃iγ0

t1−ζ − 1

1− ζ

)]

⩽
n−1∑
t=0

γ0(λ̃i − λi)λ
1
2
i

∫ c
1
κ
2

c
1
κ
1

u−ζ exp(−vκ)
1

λ̃i − λi

u1−κ κ

γ0
vκ−1dv + t−ζ exp

(
− λ̃iγ0

t1−ζ − 1

1− ζ

)
=

n−1∑
t=0

[
λ

1
2
i

∫ c2

c1

exp(−x)dx+ γ0(λ̃i − λi)λ
1
2
i t

−ζ exp

(
− λ̃iγ0

t1−ζ − 1

1− ζ

)]
≲ λ

1
2
i

∫ n

0

exp

(
− λiγ0

(u+ 1)1−ζ − 1

1− ζ

)
du

⩽ λ
1
2
i

(
nζ

γ0λi
∧ n

)
, [using Eq. (22)]

where c1 := γ0

κ λi[(t+ 1)κ − 1] and c2 := γ0

κ λ̃i[t
κ − 1]. Finally, we conclude the proof.

In the next, we are ready to present the error bounds for B2.

Proof of Proposition 3. According to Eq. (31), we need estimation for
∥∥∥Σ 1

2
m
∑n−1

t=0 αW
t

∥∥∥
2

for estimat-

ing B2. By spectrum decomposition, we have
∏t

j=k+1(I − γjΣm) = U
(∏t

j=k+1(I − γjΛ)
)
U⊤

and
∏k−1

s=1 (I − γsΣ̃m) = Ũ
∏k−1

s=1 (I − γsΛ̃)Ũ
⊤. Then we have∥∥∥∥∥Σ1/2

m

n−1∑
t=0

αW
t

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n−1∑
t=0

t∑
k=1

γk

t∏
j=k+1

(I − γjΣm)(Σ̃m − Σm)

k−1∏
s=1

(I − γsΣ̃m)Σ
1
2
mf∗

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n−1∑
t=0

t∑
k=1

γk

t∏
j=k+1

(I − γjΛm)(Λ̃m − Λm)

k−1∏
s=1

(I − γsΛ̃m)Λ
1
2
mf∗

∥∥∥∥∥∥
2

⩽ max
i∈{1,2,...,m}

n−1∑
t=0

t∑
k=1

γk(λ̃i − λi)λ
1
2
i

t∏
j=k+1

(1− γjλi)

k−1∏
s=1

(1− γsλ̃i)∥f∗∥ ,

(33)

where the second equality holds by ∥AB∥2 = ∥BA∥2 for any two PSD matrices.

By Lemma 6, we have

B2 =
1

n2
EW

∥∥∥∥∥Σ 1
2
m

n−1∑
t=0

αW
t

∥∥∥∥∥
2

=
1

n2
EW

∥∥∥∥ max
i∈{1,2,...,m}

Υi

∥∥∥∥2 ≲
1

n2
EW

[
λ

1
2
i

(
nζ

γ0λi
∧ n

)]2
∥f∗∥2

:= ∥f∗∥2EW

[
n2(1−ζ)

γ2
0λi∗

∧ λi∗

]
= ∥f∗∥2

 EW

[
n2(1−ζ)

γ2
0λi∗

]
, if λi∗ ⩾ nζ−1

γ0

EW [λi∗ ], if λi∗ ⩽ nζ−1

γ0
.

≲
∥f∗∥2

γ0
nζ−1 .

(34)
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F.3 Bound for B1

Here we aim to bound B1 := EX,W

[
⟨η̄biasn −η̄bXn ,Σm(η̄biasn −η̄bXn )⟩

]
. Define αX

t := ηbiast − ηbXt , we
have

αX
t = [I − γtφ(xt)⊗ φ(xt)]α

X
t−1 + γt[Σm − φ(xt)⊗ φ(xt)]η

bX
t−1 , (35)

with αX
0 = 0 and ηbXt−1 =

∏t−1
j=1(I − γjΣm)f∗. Accordingly, we have

B1 := EX,W

[
⟨η̄biasn −η̄bXn ,Σm(η̄biasn −η̄bXn )⟩

]
= EW

(
EX [⟨ᾱX

n,ΣmᾱX
n⟩]
)
.

Proposition 4. Under Assumption 1, 2, 3, 4 with r′ ⩾ 1, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1)

satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

c′Tr(Σm)

}
,

where the constant c′ is defined in Eq. (14). Then B1 can be bounded by

B1 ≲ γ0r
′nζ−1∥f∗∥2 ∼ O

(
nζ−1

)
.

To prove Proposition 4, we need a lemma on stochastic recursions based on E[αX
t |αX

t−1] = (I −
γtΣm)αX

t−1, that shares the similar proof fashion with [29, Lemma 1] and [31, Lemma 11].

Lemma 7. Under Assumption 1, 2, 3, 4 with r′ ⩾ 1, denoting Ht−1 := [Σm − φ(xt)⊗ φ(xt)]η
bX
t−1,

if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 <
1

r′Tr(Σm)
,

we have

EX [⟨ᾱX
n,ΣmᾱX

n⟩] ⩽
1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

E∥αX
k∥2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX∥Ht∥2
)

.

Remark: We require ∥Σm∥2 ̸= 1
r′γ0

to avoid the denominator to be zero, which naturally holds as
the probability measure of the continuous random variable ∥Σm∥2 at a point is zero.

Proof. According to the definition of αX
t in Eq. (35), define Ht−1 := [Σm − φ(xt) ⊗ φ(xt)]η

bX
t−1,

we have

∥αX
t∥2 = ∥αX

t−1 − γt([φ(xt)⊗ φ(xt)]α
W
t−1 −Ht−1)∥2

= ∥αX
t−1∥2 + γ2

t ∥Ht−1 − [φ(xt)⊗ φ(xt)]α
X
t−1∥2 + 2γt⟨αW

t−1, Ht−1 − [φ(xt)⊗ φ(xt)]α
X
t−1⟩

⩽ ∥αX
t−1∥2 + 2γ2

t

(
∥Ht−1∥2 + ∥[φ(xt)⊗ φ(xt)]α

X
t−1∥2

)
+ 2γt⟨αX

t−1, Ht−1 − [φ(xt)⊗ φ(xt)]α
X
t−1⟩ ,

which implies (by taking the conditional expectation)

EX [∥αW
t∥2|αW

t−1] ⩽ ∥αX
t−1∥2 + 2γ2

t ∥Ht−1∥2 + 2γ2
t ⟨αX

t−1,EX [φ(xt)⊗ φ(xt)⊗ φ(xt)⊗ φ(xt)]α
X
t−1⟩

− 2γt⟨αX
t−1,ΣmαX

t−1⟩
⩽ ∥αX

t−1∥2 + 2γ2
t ∥Ht−1∥2 + 2γ2

t r
′Tr(Σm)⟨αX

t−1,ΣmαX
t−1⟩ − 2γt⟨αX

t−1,ΣmαX
t−1⟩

= ∥αX
t−1∥2 + 2γ2

t ∥Ht−1∥2 − 2γt[1− γtr
′Tr(Σm)]⟨αX

t−1,ΣmαX
t−1⟩ .

(36)

where the first inequality holds by EX [Ht−1] = 0, and the second inequality satisfies by Assump-
tion 4.

By taking the expectation of Eq. (36), we have

EX [∥αX
t∥2] ⩽ EX [∥αX

t−1∥2] + 2γ2
t EX [∥Ht−1∥2]− 2γt[1− γtr

′Tr(Σm)]EX⟨αX
t−1,ΣmαX

t−1⟩ ,
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which indicates that

EX

[
⟨ᾱX

n,ΣmᾱX
n⟩
]
⟩ ⩽ 1

n

n−1∑
t=0

EX⟨αW
t ,ΣmαW

t ⟩ ⩽
1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

EX∥αX
k∥2(

1

γk+1
− 1

γk
)

+
1

2γ1
EX∥αX

0∥2 −
1

2γt
EX∥αX

t∥2 +
n−1∑
t=0

γt+1EX∥Ht∥2
)

⩽
1

2n[1− γ0r′Tr(Σm)]

(
n−1∑
k=1

EX∥αX
k∥2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX∥Ht∥2
)

,

due to αW
0 = 0.

In the next, we present the error bounds for two respective terms in Lemma 7.
Lemma 8. Based on the definition of αX

t in Eq. (37), under Assumption 1, 2, 3, 4 with r′ ⩾ 1, if the
step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

c′Tr(Σm)

}
,

where the constant c′ is defined in Eq. (14). Then, we have
n−1∑
k=1

E∥αX
k∥2(

1

γk+1
− 1

γk
) ≲

γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
(nζ − 1)∥f∗∥2 .

Proof. Based on the definition of αX
t in Eq. (35), it can be reformulated as

αX
t = [I − γtφ(xt)⊗ φ(xt)]α

X
t−1 + γt[Σm − φ(xt)⊗ φ(xt)]

k−1∏
j=1

(I − γjΣm)f∗

=

t∑
s=1

γs

t∏
i=s+1

[I − γiφ(xi)⊗ φ(xi)][Σm − φ(xs)⊗ φ(xs)]

s−1∏
j=1

(I − γjΣm)f∗ .

(37)

and accordingly

Cb−X
t := EX [αX

t ⊗ αX
t ] = (I − γtT

W) ◦ Cb−X
t−1 + γ2

t (S
W − S̃W) ◦ [ηbXt−1 ⊗ ηbXt−1]

≼ (I − γtT
W) ◦ Cb−X

t−1 + γ2
t S

W ◦ [ηbXt−1 ⊗ ηbXt−1]

≼ (I − γtT
W) ◦ Cb−X

t−1 + γ2
t r

′Tr

[
t−1∏
s=1

(I − γsΣm)2Σm

]
Σm(f∗ ⊗ f∗) [using Assumption 4]

≼ (I − γtT
W) ◦ Cb−X

t−1 + γ2
t r

′Tr(Σm)Σm(f∗ ⊗ f∗) [using exp(−2λiγ0
t1−ζ−1
1−ζ ) ⩽ 1]

= r′Tr(Σm)

t∑
s=1

t∏
i=s+1

(
I − γiT

W
)
◦ γ2

sΣm(f∗ ⊗ f∗)

≼
γ0r

′Tr(Σm)

1− γ0r′Tr(Σm)
(f∗ ⊗ f∗) . [using Lemma 5]

(38)
Accordingly, we have

n−1∑
t=1

EX∥αX
t∥2(

1

γt+1
− 1

γt
) =

n−1∑
t=1

∥Cb−X
t ∥2

(
1

γt+1
− 1

γt

)
[using Eq. (38)]

⩽
n−1∑
t=1

γ0r
′Tr(Σm)

1− γ0r′Tr(Σm)
[(t+ 1)ζ − tζ ]∥f∗∥2

≲
γ0r

′Tr(Σm)

1− γ0r′Tr(Σm)
(nζ − 1)∥f∗∥2 ,

which concludes the proof.
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Lemma 9. Denote Ht−1 := [Σm − φ(xt)⊗ φ(xt)]η
bX
t−1, Assumption 1, 2, 3, 4 with r′ ⩾ 1, if the

step-size γt := γ0t
−ζ with ζ ∈ [0, 1) satisfies

γ0 ⩽
1

Tr(Σm)
,

we have
n−1∑
t=0

γt+1EX∥Ht∥2 ⩽
1

2
∥f∗∥2r′Tr(Σm) .

Proof.
n−1∑
t=0

γt+1EX∥Ht∥2 =

n−1∑
t=0

γt+1

〈
f∗,

t−1∏
j=1

(I − γjΣm)EX [Σm − φ(xt)⊗ φ(xt)]
2
t−1∏
j=1

(I − γjΣm)f∗

〉

⩽
n−1∑
t=0

γt+1

〈
f∗, r′Tr(Σm)

[ t−1∏
j=1

(I − γjΣm)
]2
Σmf∗

〉
[using Assumption 4]

⩽ ∥f∗∥2r′Tr(Σm)

∥∥∥∥∥∥
n−1∑
t=0

γt+1

[ t−1∏
j=1

(I − γjΣm)
]2
Σm

∥∥∥∥∥∥
2

= ∥f∗∥2r′Tr(Σm) max
i∈{1,2,...,m}

n−1∑
t=0

γt+1

t−1∏
j=1

(1− γjλi)
2λi

⩽ ∥f∗∥2r′Tr(Σm) max
i∈{1,2,...,m}

γ0λi

∫ n

0

u−ζ exp

(
−2γ0λi

u1−ζ − 1

1− ζ

)
du

⩽
1

2
∥f∗∥2r′Tr(Σm) , [using Eq. (20)]

which concludes the proof.

Based on the above results, we are ready to prove Proposition 4.

Proof. According to Lemma 8, we have

EW

∑n−1
k=1 E∥αX

k∥2( 1
γk+1

− 1
γk
)

2n[1− γ0r′Tr(Σm)]
≲ EW

γ0r
′Tr(Σm)

2n[1− γ0r′Tr(Σm)]2
(nζ − 1)∥f∗∥2

≲ γ0r
′nζ−1∥f∗∥2

∼ O(nζ−1) ,

where we use the condition on the step-size regarding γ0.

According to Lemma 9, we have

EW
2
∑n−1

t=0 γt+1EX∥Ht∥2

2n[1− γ0r′Tr(Σm)]
⩽ EW

r′Tr(Σm)

2n[1− γ0r′Tr(Σm)]
∥f∗∥2

≲
r′

n
∥f∗∥2

∼ O
(
1

n

)
.

Accordingly, combining the above two equations, we have

B1 := EWEX [⟨ᾱX
n,ΣmᾱX

n⟩] ⩽
1

2n[1− γ0r′Tr(Σm)]
EW

(
n−1∑
k=1

E∥αX
k∥2(

1

γk+1
− 1

γk
) + 2

n−1∑
t=0

γt+1EX∥Ht∥2
)

≲ γ0r
′nζ−1∥f∗∥2 ,

which concludes the proof.
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F.4 Proof of Theorem 1

Proof. Combining the above results for three terms B1, B2, B3, if

γ0 < min

{
1

Tr(Σ̃m)
,

1

r′Tr(Σm)
,

1

c′Tr(Σm)

}
∼ O(1) , (39)

where the constant c is defined in Eq. (14). Then the Bias can be upper bounded by

Bias ⩽
(√

B1+
√
B2+

√
B3
)2

⩽ 3(B1+ B2+ B3)

≲ γ0r
′nζ−1∥f∗∥2 .

G Proof for Variance

In this section, we present the error bound for Variance. Recall the definition of ηvXt in Eq. (8) and
ηvXWt in Eq. (9), and

η̄vXn :=
1

n

n−1∑
t=0

η̄vXt , η̄vXWn :=
1

n

n−1∑
t=0

η̄vXWt ,

by virtue of Minkowski inequality, Variance can be further decomposed as(
EX,W ,ε

[
⟨η̄varn ,Σmη̄varn ⟩

]) 1
2

⩽
(
EX,W ,ε

[
⟨η̄varn − η̄vXn ,Σm(η̄varn − η̄vXn )⟩

]︸ ︷︷ ︸
≜V1

) 1
2

+
(
EX,W ,ε

[
⟨η̄vXn ,Σmη̄vXn ⟩

]) 1
2

⩽(V1)
1
2 +
(
EX,W ,ε

[
⟨η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )⟩

]︸ ︷︷ ︸
≜V2

) 1
2

+[EX,W ,ε⟨η̄vXWn ,Σmη̄vXWn ⟩︸ ︷︷ ︸
≜V3

]
1
2 .

(40)

Accordingly, the Variance can be decomposed as Variance ≲ V1+ V2+ V3, and in the next we
give the error bounds for them, respectively.

G.1 Bound for V3

In this section, we aim to bound V3 := EX,W ,ε⟨η̄vXWn ,Σmη̄vXWn ⟩. Note that EX,ε[η
vXW
t |ηvXWt−1] =

(I − γtΣ̃m)ηvXWt−1, similar to Appendix F.2 for B2, we have the following expression for V3

V3 := EX,W ,ε⟨η̄vXWn ,Σmη̄vXWn ⟩ = EW [EX,ε⟨Σm, η̄vXWn ⊗ η̄vXWn ⟩]

=
1

n2
EW

〈Σm,
∑

0⩽k⩽t⩽n−1

EX,ε[η
vXW
t ⊗ ηvXWk ] +

∑
0⩽k<t⩽n−1

EX,ε[η
vXW
t ⊗ ηvXWk ]

〉
⩽

1

n2
EW

〈Σm,
∑

0⩽k⩽t⩽n−1

EX,ε[η
vXW
t ⊗ ηvXWk ] +

∑
0⩽k⩽t⩽n−1

EX,ε[η
vXW
t ⊗ ηvXWk ]

〉
=

2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,EX,ε[η
vXW
t ⊗ ηvXWt ]︸ ︷︷ ︸

:=CvXW
t

〉
,

(41)

and thus we have the following error bound for V3.
Proposition 5. Under Assumption 1, 3, 5 with τ > 0, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1)
satisfies γ0 ⩽ 1

Tr(Σ̃m)
, then V3 can be bounded by

V3 ≲

 γ0τ
2 m

n1−ζ
, if m ⩽ n

γ0τ
2
(
nζ−1 +

n

m

)
, if m > n .
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To prove Proposition 5, we need the following lemma.

Lemma 10. Denote CvXW
t := EX,ε[η

vXW
t ⊗ ηvXWt ], under Assumptions 1, 3, 5 with τ > 0, if γ0 ⩽

1/Tr(Σ̃m), we have

CvXW
t ≼ τ2

t∑
k=1

γ2
k

t∏
j=k+1

(I − γjΣ̃m)2Σm .

Proof. Recall the definition of ηvXWt in Eq. (9), it can be further represented as

ηvXWt = (I − γtΣ̃m)ηvXWt−1 + γtεkφ(xk) =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)γkεkφ(xk) with ηvXW0 = 0 .

Accordingly, CvXW
t admits (with CvXW

0 = 0)

CvXW
t =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ ≼ τ2

t∑
k=1

γ2
k

t∏
j=k+1

(I − γjΣ̃m)2Σm [using Assumption 5]

where we use E[εiεj ] = 0 for i ̸= j.

In the next, we are ready to bound V3 in Proposition 5.

Proof of Proposition 5. Note that λ̃1 ∼ O(1) and λ̃2 ∼ O(1/m) in Lemma 2, we take the upper
bound of the integral in Eq. (22) to nζ

λ̃1γ0
for λ̃1. However, according to the order of λ̃2, if λ̃2 ≲ 1/n,

the exact upper bound is tight. Based on this, we first consider that m ⩽ n case such that λ̃2 ≳ 1/n,
and then focus on the m ⩾ n case. Taking nζ

λ̃iγ0
in Eq. (22) and γ0

λ̃i
in Eq. (24), we have

V3 := EX,W ,ε⟨η̄vXWn ,Σmη̄vXWn ⟩ = EX,W ,ε⟨Σm, η̄vXWn ⊗ η̄vXWn ⟩

⩽
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,EX,ε[η̄
vXW
t ⊗ η̄vXWt ]︸ ︷︷ ︸

:=CvXW
t

〉
[using Eq. (41)]

⩽
2τ2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣ̃m)Σm,

t∑
s=1

γ2
s

t∏
j=s+1

(I − γjΣ̃m)2Σm

〉
[using Lemma 10]

⩽
2τ2

n2

n−1∑
t=0

n−1∑
k=t

∥∥∥∥∥∥
k−1∏
j=t

(I − γjΣ̃m)Σ̃m

t∑
s=1

γ2
s

t∏
j=s+1

(I − γjΣ̃m)2

∥∥∥∥∥∥
2

Tr
(
EW [Σ2

mΣ̃−1
m ]
)

≲
2τ2

n2

n−1∑
t=0

n−1∑
k=t

max
i∈{1,2,...,m}

∥∥∥∥∥∥
k−1∏
j=t

(1− γj λ̃i)λ̃i

t∑
s=1

γ2
s

t∏
j=s+1

(1− γj λ̃i)
2

∥∥∥∥∥∥
2

[using Lemma 4]

⩽
2τ2

n2

n−1∑
t=0

n−1∑
k=t

max
i∈{1,2,...,m}

∥∥∥∥∥λ̃i exp

(
−λ̃iγ0

k1−ζ − t1−ζ

1− ζ

) t∑
s=1

γ2
s exp

(
−2λ̃iγ0

(t+ 1)1−ζ − (s+ 1)1−ζ

1− ζ

)∥∥∥∥∥
2

≲
τ2

n2

n−1∑
t=0

max
i∈{1,2,...,m}

[
λ̃i

nζ

λ̃iγ0

(
γ0

λ̃i

+ γ2
t

)]
[using Eqs. (22), (24)]

⩽
τ2

n2

[
n1+ζm+ nζTr(Σ̃m)γ0

∫ n

0

t−2ζdt

]
≲ γ0τ

2 m

n1−ζ
, [using Lemma 2]

(42)

where the last equality holds that
∫ n

0
t−2ζdt ⩽ n for any ζ ∈ [0, 1).
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If λ̃2 ≲ 1/n, that means, m > n in the over-parameterized regime, we have

V3 ≲
2τ2

n2

n−1∑
t=0

[
λ̃1

nζ

λ̃1γ0

(
γ0

λ̃1

+ γ2
t

)
+ λ̃2(n− t)t

]
≲

γ0τ
2

n2

(
n1+ζ + λ̃2

n(n− 1)(n+ 1)

6

)
[since λ1 ∼ O(1)]

≲ γ0τ
2
(
nζ−1 +

n

m

)
,

which concludes the proof.

G.2 Bound for V2

Here we aim to bound V2

V2 := EX,W ,ε

[
⟨η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )⟩

]
.

Recall the definition of ηvXt and ηvXWt in Eqs. (8) and (9), we have

ηvXWt = (I − γtΣ̃m)ηvXWt−1 + γtεkφ(xk) =

t∑
k=1

t∏
j=k+1

(I − γjΣ̃m)γkεkφ(xk) with ηvXW0 = 0 ,

and accordingly, we define

αvX−W
t := ηvXt − ηvXWt = (I − γtΣm)αvX−W

t−1 + γt(Σ̃m − Σm)ηvXWt−1 , with αvX−W
0 = 0

=

t∑
s=1

t∏
i=s+1

(I − γiΣm)γs(Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)γkεkφ(xk) .

Proposition 6. Under Assumptions 1, 3, 5 with τ > 0, if the step-size γt := γ0t
−ζ with ζ ∈ [0, 1)

satisfies

γ0 ⩽
1

Tr(Σm)
, (43)

then V2 can be bounded by

V2 ≲

{
γ0τ

2 m

n1−ζ
, if m ⩽ n

γ0τ
2, if m > n .

To prove Proposition 6, we need the following lemma.
Lemma 11. Denote CvX−W

t := EX,ε[α
vX−W
t ⊗ αvX−W

t ], under Assumptions 1, 3, 5 with τ > 0, if the
step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 ⩽ min

{
1

Tr(Σm)
,

1

Tr(Σ̃m)

}
,

we have
∥CvX−W

t ∥2 ≲ τ2γ2
0 (γ0∥Σm∥2 + 1)

(
γ0∥Σ̃m∥2 + 1

)
.

Proof. According to the definition of CvX−W
t , it admits the following expression

CvX−W
t =

t∑
s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ(Σ̃m − Σm)(I − γiΣm)

≼
t∑

s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΞ(Σ̃m − Σm)(I − γiΣm)

≼ τ2
t∑

s=1

t∏
i=s+1

(I − γiΣm)γ2
s (Σ̃m − Σm)

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣ̃m)2γ2
kΣm(Σ̃m − Σm)(I − γiΣm) ,
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where the first equality holds by E[εiεj ] = 0 for i ̸= j and the second inequality holds by Assump-
tion 5.

Accordingly, ∥CvX−W
t ∥2 can be upper bounded by

∥CvX−W
t ∥2 ⩽ τ2

t∑
s=1

γ2
s

∥∥∥∥∥∥
t∏

i=s+1

(I − γiΣm)2Σm(Σ̃m − Σm)2
s−1∑
k=1

γ2
k

s−1∏
j=k+1

(I − γjΣ̃m)2

∥∥∥∥∥∥
2

⩽ τ2
t∑

s=1

γ2
s

∥∥∥∥∥
t∏

i=s+1

(I − γiΣm)2Σm

∥∥∥∥∥
2

∥∥∥∥∥∥
s−1∑
k=1

γ2
k

s−1∏
j=k+1

(I − γjΣ̃m)2Σ̃m

∥∥∥∥∥∥
2

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2

≲ τ2
t∑

s=1

max
q∈{1,2,...,m}

γ2
s exp

(
−2λq

t∑
i=s+1

γi

)
λq

s−1∑
k=1

γ2
k max
p∈{1,2}

exp

−2λ̃p

s−1∑
j=k+1

γj

 λ̃p∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2
.

Similar to Eq. (23), we have the following estimation

s−1∑
k=1

γ2
k

s−1∏
j=k+1

(1− γj λ̃p)
2 ⩽

s−1∑
k=1

γ2
k exp

−2λ̃p

s−1∑
j=k+1

γj


⩽ γ2

s−1 + γ2
0

∫ s−1

1

u−2ζ exp

(
− 2λ̃pγ0

s1−ζ − (u+ 1)1−ζ

1− ζ

)
du

⩽ γ2
0 +

(
γ0

λ̃p

∧ γ2
0s

)
,

which implies

max
p=1,2

λ̃p

s−1∑
k=1

γ2
k

s−1∏
j=k+1

(1− γj λ̃p)
2 ⩽ γ2

0 λ̃1 + γ0 ⩽ γ2
0Σ̃m + γ0 . (44)

Similar to Eq. (23), we have the following estimation

t∑
s=1

γ2
s exp

(
−2λq

t∑
i=s+1

γi

)
⩽

t∑
s=1

γ2
s exp

(
− 2λqγ0

(t+ 1)1−ζ − (s+ 1)1−ζ

1− ζ

)

⩽ γ2
t + γ2

0

∫ t

1

u−2ζ exp

(
− 2λqγ0

(t+ 1)1−ζ − (u+ 1)1−ζ

1− ζ

)
du

⩽ γ2
0 +

(
γ0
λq

∧ γ2
0t

)
,

which implies

max
q∈{1,2,...,m}

t∑
s=1

γ2
sλq exp

(
−2λq

t∑
i=s+1

γi

)
= γ2

0∥Σm∥2 + γ0 . (45)

Combining the above two equations (44) and (45), we have

∥CvX−W
t ∥2 ≲ τ2γ2

0 (γ0∥Σm∥2 + 1)
(
γ0∥Σ̃m∥2 + 1

)
.
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Proof of Proposition 6. By virtue of EX,ε[α
vX−W
t |αvX−W

t−1 ] = (I − γtΣm)αvX−W
t−1 and Lemma 11, V2

can be bounded by

V2 = EX,W ,ε

[
⟨η̄vXn −η̄vXWn ,Σm(η̄vXn −η̄vXWn )⟩

]
= EW ⟨Σm,EX,ε[ᾱ

vX−W
n ⊗ ᾱvX−W

n ]⟩

⩽
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣm)Σm,EX,ε[η
vX−W
t ⊗ ηvX−W

t ]︸ ︷︷ ︸
:=CvX−W

t

〉

≲
τ2γ2

0

n2
∥Σ̃m∥2EW

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2
[∥Σm∥2γ0 + 1]Tr

n−1∑
t=0

n−1∑
k=t

k−1∏
j=t

(I − γjΣm)Σm


≲

τ2γ2
0

n2
∥Σ̃m∥2EW

[
∥Σm∥2

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2

m∑
i=1

n−1∑
t=0

λi

(
nζ

λiγ0
∧ (n− t)

)]
. [using Eq. (22)]

In the m ⩽ n case, we choose nζ/(λiγ0), and thus

V2 ≲
τ2mγ2

0

n2
∥Σ̃m∥2EW

[
∥Σm∥2

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2

] n1+ζ

γ0

⩽ τ2γ0
m∥Σ̃m∥2
n1−ζ

√
EW ∥Σm∥22

√
EW

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥2
2

[using Cauchy–Schwarz inequality]

≲ τ2γ0
m

n1−ζ
. [using Lemma 2 and 4]

If m > n, we have

V2 ≲
2τ2γ2

0

n2
∥Σ̃m∥2EW

(
[Tr(Σm)]2

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥
2

) n−1∑
t=0

t

⩽ τ2γ0∥Σ̃m∥2
√
EW [Tr(Σm)]2

√
EW

∥∥∥Σ̃m − 2Σm + Σ̃−1
m Σ2

m

∥∥∥2
2

≲ τ2γ0 , [using Lemmas 2 and 4]
which concludes the proof.

G.3 Bound for V1

Here we aim to bound V1

V1 := EX,W ,ε

[
⟨η̄varn −η̄vXn ,Σm(η̄varn −η̄vXn )⟩

]
.

Recall the definition of ηvart in Eq. (6) and ηvXt in Eq. (8), we define

αv−X
t := ηvart − ηvXt = [I − γtφ(xt)⊗ φ(xt)]α

v−X
t−1 + γt[Σm − φ(xt)⊗ φ(xt)]η

vX
t−1 , with αv−X

0 = 0 .

= [I − γtφ(xt)⊗ φ(xt)]α
v−X
t−1 + γt[Σm − φ(xt)⊗ φ(xt)]

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)γkεkφ(xk)

=

t∑
s=1

t∏
i=s+1

γs[I − γiφ(xi)⊗ φ(xi)][Σm − φ(xt)⊗ φ(xt)]

s−1∑
k=1

s−1∏
j=k+1

(I − γjΣm)γkεkφ(xk) ,

and thus the error bound for V1 is given by the following proposition.
Proposition 7. Under Assumption 1, 2, 3, 4 with r′ ⩾ 1, and Assumption 5 with τ > 0, if the
step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

2Tr(Σm)

}
,

then V1 can be bounded by

V1 ≲ τ2r′γ2
0

{ m

n1−ζ
, if m ⩽ n

1, if m > n .
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To prove Proposition 7, we need the following lemma. Define Cv−X
t := EX,ε[α

v−X
t ⊗ αv−X

t ], we
have the following lemma that is useful to bound Cv−X

t .

Lemma 12. Denote Cv−X
t := EX,ε[α

v−X
t ⊗ αv−X

t ], under Assumptions 1, 2, 3, 4 with r′ ⩾ 1, and
Assumption 5 with τ > 0, if the step-size γt := γ0t

−ζ with ζ ∈ [0, 1) satisfies

γ0 < min

{
1

r′Tr(Σm)
,

1

c′Tr(Σm)

}
,

where c′ is defined in Eq. (14). Then, we have

Cv−X
t ≼

γ2
0r

′τ2[Tr(Σm) + γ0Tr(Σ
2
m)]

1− γ0r′Tr(Σm)
I .

Proof. According to the definition of Cv−X
t , it admits the following expression

Cv−X
t =

t∑
s=1

t∏
i=s+1

γ2
sEx[I − γiφ(xi)⊗ φ(xi)]

2Ex[Σm − φ(xt)⊗ φ(xt)]
2
s−1∑
k=1

s−1∏
j=k+1

(I − γjΣm)2γ2
kΞ

= (I − γtT
W) ◦ Cv−X

t−1 + γ2
t (S

W − S̃W) ◦
t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΞ [using PSD operators]

≼ (I − γtT
W) ◦ Cv−X

t−1 + γ2
t S

W ◦
t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΞ [using SW ≽ S̃W]

≼ (I − γtT
W) ◦ Cv−X

t−1 + τ2γ2
t S

W ◦
t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΣm [using Assumption 5]

≼ (I − γtT
W) ◦ Cv−X

t−1 + τ2γ2
t r

′Tr

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2γ2
kΣ

2
m

Σm . [using Assumption 4]

(46)

Similar to Eq. (23), we have the following estimation

Tr

t−1∑
k=1

t−1∏
j=k+1

(I − γjΣm)2Σ2
mγ2

k

 =

m∑
i=1

λ2
i

t−1∑
k=1

γ2
k

t−1∏
j=k+1

(1− γjλi)
2 ⩽

m∑
i=1

λ2
i

t−1∑
k=1

γ2
k exp

−2λi

s−1∑
j=k+1

γj


⩽ γ2

0

m∑
i=1

λ2
i

[
1 +

∫ t−1

1

u−2ζ exp

(
− 2λiγ0

t1−ζ − (u+ 1)1−ζ

1− ζ

)
du

]

⩽ γ2
0Tr(Σ

2
m) +

m∑
i=1

λ2
i

(
γ0
λi

∧ γ2
0t

)
[using Eq. (24)]

⩽ γ2
0Tr(Σ

2
m) + γ0Tr(Σm) ,

where we use the error bound γ0

λi
instead of the exact one γ2

0t for tight estimation.

Taking the above equation back to Eq. (46), we have

Cv−X
t ≼ (I − γtT

W) ◦ Cv−X
t−1 + γ2

t τ
2r′γ0[Tr(Σm) + γ0Tr(Σ

2
m)]Σm

≼ τ2r′γ0[Tr(Σm) + γ0Tr(Σ
2
m)]

t∑
s=1

t∏
i=s+1

(I − γiT
W) ◦ γ2

sΣm

≼
γ2
0r

′τ2[Tr(Σm) + γ0Tr(Σ
2
m)]

1− γ0r′Tr(Σm)
I , [using Lemma 5]

which concludes the proof.
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Proof of Proposition 7. Accordingly, by virtue of EX,ε[α
v−X
t |αv−X

t−1 ] = (I − γtΣm)αv−X
t−1 and

Lemma 12, V1 can be bounded by

V1 = EX,W ,ε

[
⟨η̄varn −η̄v−X

n ,Σm(η̄varn −η̄v−X
n )⟩

]
= EW ⟨Σm,EX,ε[ᾱ

v−X
n ⊗ ᾱv−X

n ]⟩

⩽
2

n2

n−1∑
t=0

n−1∑
k=t

EW

〈
k−1∏
j=t

(I − γjΣm)Σm,EX,ε[η
v−X
t ⊗ ηv−X

t ]︸ ︷︷ ︸
:=Cv−X

t

〉

≲
τ2γ2

0r
′

n2
EW

[
[Tr(Σm) + γ0Tr(Σ

2
m)]

1− γ0r′Tr(Σm)

m∑
i=1

n−1∑
t=0

λi

(
nζ

λiγ0
∧ (n− t)

)]
, [using Lemma 12]

where the last inequality follows the integral estimation in Eq. (22).

For m ⩽ n, we use nζ

λiγ0
, and thus

V1 ≲
τ2γ0r

′m

n1−ζ
EW

[
[Tr(Σm) + γ0Tr(Σ

2
m)]

1− γ0r′Tr(Σm)

]
≲ τ2r′γ0

m

n1−ζ
,

where we use Tr(Σm) as a nonnegative sub-exponential random variable with the sub-exponential
norm O(1) in Lemma 2.

For m > n, take n− t, we have

V1 ≲ τ2γ2
0r

′EW

[
[Tr(Σm) + γ0Tr(Σ

2
m)]

1− γ0r′Tr(Σm)

]
≲ τ2r′γ2

0 ∼ O(1) .

G.4 Proof of Theorem 2

Proof. Combining the above results for three terms V1, V2, V3, we can directly obtain the result for
Variance.

Variance ⩽
(√

V1+
√
V2+

√
V3
)2

⩽ 3(V1+ V2+ V3)

≲ γ0r
′τ2

{
mnζ−1, if m ⩽ n

1 + nζ−1 +
n

m
, if m > n

∼

{
O
(
mnζ−1

)
, if m ⩽ n

O
(
1 + nζ−1 +

n

m

)
, if m > n

which concludes the proof.

H More experiments

In this section, we provide additional experimental results to support our theory.

H.1 Results on a regression dataset

We conduct the RF regression via averaged SGD and minimum solution under different initialization
schemes and different epochs on a synthetic regression dataset across the Gaussian kernel.

data generation: Apart from the commonly used MNIST in the double descent topic [13, 53], we
also add a synthetic regression dataset via normalized MSE in Figure 3(a) for fully supporting our
work. The data are generated from a normal Gaussian distribution with the training data ranging from
n = 10 to n = 400, the test data being 200, and the feature dimension d = 50. The label is generated
by y = fρ(x) + ϵ, where the ϵ is a Gaussian noise with the variance 0.01. The target function f∗ is

generated by a Laplace kernel k(x,x′) = exp
(
−∥x−x′∥2

d

)
, to ensure f∗ ∈ H. To be specific, for

any a data point x ∈ Rd, its target function is f∗(x) = [k(x,x1), k(x,x2), · · · , k(x,xn)]w, where
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(a) a synthetic regression dataset (b) Bias (c) Variance

Figure 3: Normalized MSE (mean±std.) of RF regression with different epochs on a synthetic
regression dataset across the Gaussian kernel in (a); trends of Bias and Variance under different
step-size are empirically given in (b) and (c), respectively.

w ∈ Rn is a standard random Gaussian vector as a sign. We remark that the reason why we do not
choose the Gaussian kernel as the target function is to avoid the data and model induced by a same
(type) kernel.

experimental settings: We follow Figure 2(a) with the same experiment settings, i.e., conducting
RF regression via averaged SGD and minimum-norm solution under the Gaussian kernel. In our
experiment, the initial step-size is set to γ0 = 1 with ζ = 0.5. Nevertheless, we take constant
initialization (i.e., set the initialization point as a constant vector) and different epochs (i.e., 50 and
100) for broad comparison.

Fig. 3(a) shows that, first, under this regression dataset with constant initialization, we still observe
a phase transition between the two sides of the interpolation threshold at 2m = n when min-norm
solution and averaged SGD are employed, which leads to the double descent phenomenon. Second,
averaged SGD with more epochs result in a better generalization performance, but is still slightly
inferior to that with min-norm solution. We need remark that, when employing gradient descent,
under mild conditions, the solution converges to the minimum norm solution, as suggested by [4].
Nevertheless, whether this result holds for SGD is unclear, depending on the choice of the ground
truth, step-size, etc [64, 65]. Studying the property of converged solution is indeed beyond the scope
of this paper.

H.2 Different step-size on Bias and Variance

Following Section 5.2, we also evaluate our error bounds for Bias and Variance under different
step-sizes on the MNIST dataset. Figure 3(b) on bias and 3(c) on variance coincides with the results
of Section 5.2: monotonically decreasing bias and unimodal variance (phase transition of V3 and
non-decreasing V1 and V2) under different step-size. We remark that, the estimated error bounds
are normalized for better illustration, and accordingly we cannot directly compare the value of these
components under different step-size.
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