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Abstract

To achieve the highest perceptual quality, state-of-the-art diffusion models are
optimized with objectives that typically look very different from the maximum
likelihood and the Evidence Lower Bound (ELBO) objectives. In this work, we
reveal that diffusion model objectives are actually closely related to the ELBO.
Specifically, we show that all commonly used diffusion model objectives equate
to a weighted integral of ELBOs over different noise levels, where the weighting
depends on the specific objective used. Under the condition of monotonic weight-
ing, the connection is even closer: the diffusion objective then equals the ELBO,
combined with simple data augmentation, namely Gaussian noise perturbation. We
show that this condition holds for a number of state-of-the-art diffusion models.
In experiments, we explore new monotonic weightings and demonstrate their
effectiveness, achieving state-of-the-art FID scores on the high-resolution ImageNet
benchmark.

1 Introduction

Diffusion-based generative models, or diffusion models in short, were first introduced by Sohl-
Dickstein et al. [2015]. After years of relative obscurity, this class of models suddenly rose to
prominence with the work of Song and Ermon [2019] and Ho et al. [2020] who demonstrated that,
with further refinements in model architectures and objective functions, diffusion models can perform
state-of-the-art image generation.
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Figure 1: Samples generated from our VDM++ diffusion models trained on the ImageNet dataset;
see Section 5 for details and Appendix M for more samples.



The diffusion model framework has since been successfully applied to text-to-image generation
[Rombach et al., 2022b, Nichol et al., 2021, Ramesh et al., 2022, Saharia et al., 2022b, Yu et al.,
2022, Nichol and Dhariwal, 2021, Ho et al., 2022, Dhariwal and Nichol, 2022, Ding et al., 2021],
image-to-image generation [Saharia et al., 2022c,a, Whang et al., 2022], 3D synthesis [Poole et al.,
2022, Watson et al., 2022], text-to-speech [Chen et al., 2021a, Kong et al., 2021, Chen et al., 2021b],
and density estimation [Kingma et al., 2021, Song et al., 2021a].

Diffusion models can be interpreted as a special case of deep variational autoencoders (VAEs)
[Kingma and Welling, 2013, Rezende et al., 2014] with a particular choice of inference model and
generative model. Just like VAEs, the original diffusion models [Sohl-Dickstein et al., 2015] were
optimized by maximizing the variational lower bound of the log-likelihood of the data, also called
the evidence lower bound, or ELBO for short. It was shown by Variational Diffusion Models (VDM)
[Kingma et al., 2021] and [Song et al., 2021a] how to optimize continuous-time diffusion models with
the ELBO objective, achieving state-of-the-art likelihoods on image density estimation benchmarks.

However, the best results in terms of sample quality metrics such as FID scores were achieved with
other objectives, for example a denoising score matching objective [Song and Ermon, 2019] or a
simple noise-prediction objective [Ho et al., 2020]. These now-popular objective functions look, on
the face of it, very different from the traditionally popular maximum likelihood and ELBO objectives.
Through the analysis in this paper, we reveal that all training objectives used in state-of-the-art
diffusion models are actually closely related to the ELBO objective.

This paper is structured as follows:

* In Section 2 we introduce the broad diffusion model family under consideration.

* In Section 3, we show how the various diffusion model objectives in the literature can be
understood as special cases of a weighted loss [Kingma et al., 2021, Song et al., 2021a],
with different choices of weighting. The weighting function specifies the weight per noise
level. In Section 3.2 we show that during training, the noise schedule acts as a importance
sampling distribution for estimating the loss, and is thus important for efficient optimization.
Based on this insight we propose a simple adaptive noise schedule.

* In Section 4, we present our main result: that if the weighting function is a monotonic
function of time, then the weighted loss corresponds to maximizing the ELBO with data
augmentation, namely Gaussian noise perturbation. This holds for, for example, the v-
prediction loss of [Salimans and Ho, 2022] and flow matching with the optimal transport
path [Lipman et al., 2022].

* In Section 5 we perform experiments with various new monotonic weights on the ImageNet
dataset, and find that our proposed monotonic weighting produces models with sample
quality that are competitive with the best published results, achieving state-of-art FID and
IS scores on high resolution ImageNet generation.

1.1 Related work

The main sections reference much of the related work. Earlier work [Kingma et al., 2021, Song et al.,
2021a, Huang et al., 2021, Vahdat et al., 2021], including Variational Diffusion Models [Kingma
et al., 2021], showed how to optimize continous-time diffusion models towards the ELBO objective.
We generalize these earlier results by showing that any diffusion objective that corresponds with
monotonic weighting corresponds to the ELBO, combined with a form of DistAug [Child et al.,
2019]. DistAug is a method of training data distribution augmentation for generative models where
the model is conditioned on the data augmentation parameter at training time, and conditioned on ’no
augmentation’ at inference time. The type of data augmentation under consideration in this paper,
namely additive Gaussian noise, is also a form of data distribution smoothing, which has been shown
to improve sample quality in autoregressive models by Meng et al. [2021].

Kingma et al. [2021] showed how the ELBO is invariant to the choice of noise schedule, except
for the endpoints. We generalize this result by showing that the invariance holds for any weighting
function.
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Figure 2: Left: Noise schedules used in our experiments: cosine [Nichol and Dhariwal, 2021] and
EDM [Karras et al., 2022] training and sampling schedules. Right: The same noise schedules,
expressed as probability densities p(A) = —dt/d\. See Section 2.1 and Appendix E.3 for details.

2 Model

Suppose we have a dataset of datapoints drawn from g(x). We wish to learn a generative model
pe(x) that approximates ¢(x). We’ll use shorthand notation p := pg.

The observed variable x might be the output of a pre-trained encoder, as in latent diffusion models
[Vahdat et al., 2021, Rombach et al., 2022a], on which the popular Stable Diffusion model is based.
Our theoretical analysis also applies to this type of model.

In addition to the observed variable x, we have a series of latent variables z; for timesteps ¢ € [0, 1]:
Z,....1 ‘= Zo, ..., Z1. The model consists of two parts: a forward process forming a conditional joint
distribution ¢(zo,...1|x), and a generative model forming a joint distribution p(zo,...1).

2.1 Forward process and noise schedule

The forward process is a Gaussian diffusion process, giving rise to a conditional distribution
q(2o,....1|x); see Appendix E.1 for details. For every ¢ € [0, 1], the marginal distribution ¢(z:|x) is
given by:

z; = ayX + oxe where € ~ N(0,1). (1)

In case of the often-used variance preserving (VP) forward process, a3 = sigmoid(\;) and 03 =
sigmoid(—A;), but other choices are possible; our results are agnostic to this choice. The log
signal-to-noise ratio (log-SNR) for timestep ¢ is given by A = log(a3 /o3).

The noise schedule is a strictly monotonically decreasing function f that maps from the time variable
t € [0,1] to the corresponding log-SNR A: A = fi(¢). We sometimes denote the log-SNR as \; to
emphasize that it is a function of ¢. The endpoints of the noise schedule are given by Apax := f5(0)
and Aymin = fa(1). See Figure 2 for a visualization of commonly used noise schedules in the
literature, and Appendix E.3 for more details.

Due to its monotonicity, fy is invertible: ¢ = f~ L()). Given this bijection, we can do a change of
variables: a function of the value ¢ can be equivalently written as a function of the corresponding
value )\, and vice versa, which we’ll make use of in this work.

During model training, we sample time ¢ uniformly: ¢ ~ ¢/(0, 1), then compute A = f\(¢). This
results in a distribution over noise levels p(A\) = —dt/dX = —1/ f}(¢) (see Section E.3), which we
also plot in Figure 2.

Sometimes it is best to use a different noise schedule for sampling from the model than for training.
During sampling, the density p(A) gives the relative amount of time the sampler spends at different
noise levels.



2.2 Generative model

The data x ~ D, with density ¢(x), plus the forward model defines a joint distribution ¢(z, ...,z1) =
[ a(zo, ..., z1|x)q(x)dx, with marginals ¢;(z) := ¢(z,). The generative model defines a correspond-
ing joint distribution over latent variables: p(zo, ..., z1).

For large enough An.x, Zo is almost identical to x, so learning a model p(z) is practically equivalent
to learning a model p(x). For small enough Ayin, 21 holds almost no information about x, such
that there exists a distribution p(z) satisfying Dgr.(q(z1]x)||p(2z1)) =~ 0. Usually we can use

p(Zl) = N(OvI)

Let sg(z; ) denote a score model, which is a neural network that we let approximate V, log ¢:(z)
through methods introduced in the next sections. If sg(z; \) = V, log ¢+(z), then the forward process
can be exactly reversed; see Appendix E.4.

If Dir(q(z1)||p(z1)) =~ 0 and sg(z; \) =~ V, log ¢:(z), then we have a good generative model in
the sense that D 1,(¢(2o,...1)||p(20,...1)) ~ 0, which implies that Dy ,(q(zo)||p(2z0)) ~ 0 which
achieves our goal. So, our generative modeling task is reduced to learning a score network sg(z; \)
that approximates V, log ¢;(z).

Sampling from the generative model can be performed by sampling z; ~ p(z), then (approximately)
solving the reverse SDE using the estimated sg(z; A). Recent diffusion models have used increasingly
sophisticated procedures for approximating the reverse SDE; see Appendix E.4. In experiments we
use the DDPM sampler from Ho et al. [2020] and the stochastic sampler with Heun’s second order
method proposed by Karras et al. [2022].

3 Diffusion Model Objectives

Denoising score matching. Above, we saw that we need to learn a score network sg(z; \;) that
approximates V, log ¢:(z), for all noise levels A;. It was shown by [Vincent, 2011, Song and Ermon,
2019] that this can be achieved by minimizing a denoising score matching objective over all noise
scales and all datapoints x ~ D:

Losm(x) = E¢ri(0,1),e~n0,1) [0(1) - [I86(2e3 A) — V, log q(z¢|%)][3] (2)

where z; = a)\x + o)€.

The e-prediction objective. Most contemporary diffusion models are optimized towards a noise-
prediction loss introduced by [Ho et al., 2020]. In this case, the score network is typically parame-
terized through a noise-prediction (e-prediction) model: sg(z; A) = —ég(z; A)/o. (Other options,
such as x-prediction, v-prediction, and EDM parameterizations, are explained in Appendix E.2.) The
noise-prediction loss is:

1
Le(x) = iEtNZ/{(O,l),ENN(O,I) [ll€o(ze; \) — €][3] 3)
Since ||sg(z¢; M) — Vi, log q(z:|x)||3 = o5 ||€a(ze; \e) — €]|3, this is simply a version of the
denoising score matching objective in Equation 2, but where @ (t) = o7. Ho et al. [2020] showed
that this noise-prediction objective can result in high-quality samples. Dhariwal and Nichol [2022]
later improved upon these results by switching from a ‘linear’ to a ‘cosine’ noise schedule \; (see
Figure 2). This noise-prediction loss with the cosine schedule is currently broadly used.

The ELBO objective. It was shown by [Kingma et al., 2021, Song et al., 2021a] that the evidence
lower bound (ELBO) of continuous-time diffusion models simplifies to:

1 x| .
—ELBO(x) = SEeu©.e~NOD [~ |léa(zi; M) — €ll3| +¢ “)

where c is constant w.r.t. the score network parameters.



Loss function Implied weighting w(\) Monotonic?

ELBO [Kingma et al., 2021, Song et al., 2021a] 1 v
IDDPM (e-prediction with “cosine’ schedule) [Nichol and Dhariwal, 2021] sech(\/2)

EDM [Karras et al., 2022] (Appendix D.1) N(X;2.4,2.42) . (e7> +0.5%)
v-prediction with ‘cosine’ schedule [Salimans and Ho, 2022] (Appendix D.2) e M2 v
Flow Matching with OT path (FM-OT) [Lipman et al., 2022] (Appendix D.3) e M2 v
InDI [Delbracio and Milanfar, 2023] (Appendix D.4) e~ *sech? (A/4) v
P2 weighting with ‘cosine’ schedule [Choi et al., 2022] (Appendix D.5) sech(A/2)/(1 4 )7,y =0.50r1
Min-SNR-~ [Hang et al., 2023] (Appendix D.6) sech(A/2) - min(1, ye ™)

Table 1: Diffusion model objectives in the literature are special cases of the weighted loss with a
weighting function w(\) given in this table. See Section 3.1 and Appendix D for more details and
derivations. Most existing weighting functions are non-monotonic, except for the ELBO objective
and the v-prediction objective with ‘cosine’ schedule.
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Figure 3: Diffusion model objectives in the literature are special cases of the weighted loss with
non-monotonic (left) or monotonic (right) weighting functions. Each weighting function is scaled
such that the maximum is 1 over the plotted range. See Table 1 and Appendix D.

3.1 The weighted loss
The different objective functions used in practice, including the ones above, can be viewed as special

cases of the weighted loss introduced by Kingma et al. [2021]'with a different choices of weighting
function w(A;):

dA

1 .
Ly(x) = §]Et~u(071),e~/\/(071) w(At) - 7 |léo(ze; Ae) — €l[3 &)

See Appendix D for a derivation of the implied weighting functions for all popular diffusion losses.
Results are compiled in Table 1, and visualized in Figure 3.

The ELBO objective (Equation 4) corresponds to uniform weighting, i.e. w(\;) = 1.

The popular noise-prediction objective (Equation 3) corresponds to w(A;) = —1/(dA/dt). This is
more compactly expressed as w(\;) = p(A\;), i.e., the PDF of the implied distribution over noise
levels A during training. Typically, the noise-prediction objective is used with the cosine schedule A,
which implies w(\;) o< sech(A:/2). See Section E.3 for the expression of p(\;) for various noise
schedules.

3.2 Invariance of the weighted loss to the noise schedule )\,

In Kingma et al. [2021], it was shown that the ELBO objective (Equation 4) is invariant to the choice
of noise schedule, except for its endpoints Ay, and Apax. This result can be extended to the much

"More specifically, Kingma et al. [2021] expressed the weighted diffusion loss in terms of x-prediction,
which is equivalent to the expression above due to the relationship [ ||e — €g(z:;\)|[3dN = [||x —
%o(ze; N)||3eMd\ = [ ||x — %Xo(ze; M)||3 de*, where e equals the signal-to-noise ratio (SNR).



more general weighted diffusion loss of Equation 5, since with a change of variables from ¢ to A, it
can be rewritten to:

1 )
Loy(x) = g/A WA\ Eeano) [|l€0(zx; N) — €ll3] dX (6)

min

Note that this integral does not depend on the noise schedule f (the mapping between ¢ and ),
except for its endpoints Ap,x and Api,. The shape of the function fy between Ay, and Ay does not
affect the loss; only the weighting function w(\) does. Given a chosen weighting function w(\), the
loss is invariant to the noise schedule A\; between ¢ = 0 and ¢ = 1. This is important, since it means
that the only real difference between diffusion objectives is their difference in weighting w(\).

This invariance does not hold for the Monte Carlo estimator of the loss that we use in training,
based on random samples ¢ ~ ¢/(0, 1), e ~ N (0,I). The noise schedule still affects the variance of
this Monte Carlo estimator and its gradients; therefore, the noise schedule affects the efficiency of
optimization. More specifically, we’ll show that the noise schedule acts as an importance sampling
distribution for estimating the loss integral of Equation 6. Note that p(\) = —1/(d\/dt). We can
therefore rewrite the weighted loss as the following, which clarifies the role of p(\) as an importance
sampling distribution:

1 w\)
L) = 5Eennonany | xlléa(zri) — el @

Using this insight, we implemented an adaptive noise schedule, detailed in Appendix F. We find that
by lowering the variance of the loss estimator, this often significantly speeds op optimization.

4 The weighted loss as the ELBO with data augmentation

We prove the following main result:

Theorem 1. If the weighting w(\;) is monotonic, then the weighted diffusion objective of
Equation 5 is equivalent to the ELBO with data augmentation (additive noise).

With monotonic w(\;) we mean that w is a monotonically increasing function of ¢, and therefore a
monotonically decreasing function of A.

We’ll use shorthand notation £(t;x) for the KL divergence between the joint distributions of the
forward process ¢(z.,...1|x) and the reverse model p(z; 1), for the subset of timesteps from ¢ to 1:

[ L(t;x) := Drr(q(z,..11x)|[p(24,....1)) 3

In Appendix A.1, we prove that’:
d _1a

. P 2 (2
3 Lx) =5 Beunon [lle — €a(zx; N3] ©)
As shown in Appendix A.1, this allows us to rewrite the weighted loss of Equation 5 as simply:
Ld
L,(x) = 7/ —L(t;x) w(A) dt (10)
In Appendix A.2, we prove that using integration by parts, the weighted loss can then be rewritten as:
1
1
L,(x) :/ %u'()\t) L(t;x) dt + w(Amax) £(0;x) + constant (11)
o at

YInterestingly, this reveals a new relationship between the KL and Fisher divergences:
4 Dikr(q(ze,..1|x)||p(2t,...1)) = 203Dr(q(z:|x)||p(z:)). See Appendix G for a derivation, a
discussion, and a comparison with a similar result by Lyu [2012].



Now, assume that w(A;) is a monotonically increasing function of ¢ € [0, 1]. Also, without loss of
generality, assume that w(\¢) is normalized such that w(A;) = 1. We can then further simplify the
weighted loss to an expected KL divergence:

L(x)=E, ) [L(t;x)] + constant (12)

where p,,(t) is a probability distribution determined by the weighting function, namely p,,(t) :=
(d/dt w(A;)), with support on ¢t € [0, 1]. The probability distribution p,,(¢) has Dirac delta peak of
typically very small mass w(Amax) at t = 0.

Note that:

L(t;x) = Drr(q(2e,...1|x)||p(2¢,...1)) (13)
> Dgr(q(2ze]x)||p(2¢)) = —Eq(a,x) [log p(2¢)] + constant. (14)

More specifically, £(t; x) equals the expected negative ELBO of noise-perturbed data, plus a constant;
see Section C for a detailed derivation.

This concludes our proof of Theorem 1. ]

This result provides us the new insight that any of the objectives with (implied) monotonic weighting,
as listed in Table 1, can be understood as equivalent to the ELBO with simple data augmentation,
namely additive noise. Specifically, this is a form of Distribution Augmentation (DistAug), where
the model is conditioned on the augmentation indicator during training, and conditioned on 'no
augmentation’ during sampling.

Monotonicity of w(A) holds for a number of models with state-of-the-art perceptual quality, including
VoiceBox for speech generation [Le et al., 2023], and Simple Diffusion for image generation [Hooge-
boom et al., 2023].

4.1 Understanding the effect of weighting functions on perceptual quality

In this subsection, we propose possible explanations of the reason that the weighted objective, or
equivalently the ELBO with data augmentation assuming monotonic weightings, can effectively
improve perceptual quality.

Connection to low-bit training. Earlier work [Kingma and Dhariwal, 2018] found that training
on 5-bit data, removing the three least significant bits from the original 8-bit data, can lead to higher
fidelity models. A likely reason is the more significant bits are also more important to human
perception, and removing the three least significant bits from the data allows the model to spend more
capacity on modeling the more significant bits. In [Kingma and Dhariwal, 2018], training on 5-bit
data was performed by adding uniform noise (with the appropriate scale) to the data before feeding it
to the model, but it was found that adding Gaussian noise had a similar effect. Adding Gaussian noise
with a single noise level is a special case of the weighted objective where the weighting function is a
step function. The effect of uniform noise can be approximated with a sigmoidal weighting function;
in Appendix I we dive into more details.

Fourier analysis. To better understand why additive Gaussian noise can improve perceptual quality,
consider the Fourier transform (FT) of a clean natural image perturbed witjh additive Gaussian noise.
Since the FT is a linear transformation, the FT of a the sum of a natural image and Gaussian noise,
equals the sum of the FT of the clean image and the FT of the Gaussian noise. For natural images,
it is known that the power spectrum, i.e. the average magnitude of the FT as a function of spatial
frequency, decreases fast as the frequency increases [Burton and Moorhead, 1987], which means that
the lowest frequencies have by far the highest magnitudes. On the other hand, the power spectrum
of a Gaussian white noise is roughly constant. When adding noise to a clean natural image, the
signal-to-noise ratio (i.e. the ratio of the power spectra of the clean and Gaussian noise images) in high
frequency regions is lower. As a result, additive Gaussian noise effectively destroys high-frequency
information in the data more quickly than the low-frequency information, pushing the model to focus
more on the low frequency components of the data, which often correspond to high-level content and
global structure that is more crucial to perception. See Appendix J for a more detailed discussion.



DDPM sampler EDM sampler
Model parameterization Training noise schedule Weighting function Monotonic? FID | IST FID | IST

e-parametrization Cosine sech(\/2) (Baseline) 1.85 5414079 1.55 59.2+0.78
" Cosine sigmoid(— X + 1) v 1.75 553 +£1.23
Cosine sigmoid(— A\ + 2) v 1.68 56.8+0.85 146 604+ 0.86
Cosine sigmoid(— A + 3) v 1.73  56.1 +1.36
Cosine sigmoid(— A + 4) v 1.80 55.1+1.65
Cosine sigmoid(—A + 5) v 1.94 535+1.12
Adaptive sigmoid(—X\ + 2) v 1.70 548 £120 1.44 60.6+£ 144
Adaptive EDM-monotonic ' 1.67 568 +090 1.44 61.1+1.80
EDM [Karras et al., 2022] EDM (training) EDM (Baseline) 1.36
EDM (our reproduction)  EDM (training) EDM (Baseline) 145 60.7 +1.19
" Adaptive EDM 143 632+ 1.76
Adaptive sigmoid(—X\ + 2) v 1.55 637+ 1.14
Adaptive EDM-monotonic v 143 63.7 +1.48
v-parametrization Adaptive exp(—A/2) (Baseline) v 1.62  58.0 +1.56
" Adaptive sigmoid(— A\ + 2) ' 1.51 644 +128
Adaptive EDM-monotonic v 145 64.6 +1.35

Table 2: ImageNet 64x64 results. See Section 5.2.

5 Experiments

Inspired by the theoretical results in Section 4, in this section we propose several monotonic weighting
functions, and present experiments that test the effectiveness of the monotonic weighting functions
compared to baseline (non-monotonic) weighting functions. In addition, we test the adaptive noise
schedule (Section 3.2). For brevity we had to pick a name for our models. Since we build on earlier
results on Variational Diffusion Models (VDM) [Kingma et al., 2021], and our objective is equivalent
to the VDM objective combined with data augmentation, we name our models VDM ++.

5.1 Weighting functions

We experimented with several new monotonic weighting functions. First, a sigmoidal weighting of
the form sigmoid(—\ + k), inspired by the sigmoidal weighting corresponding to low-bit training
(see Section 4.1 and Appendix I for details), where £ is a hyper-parameter. In addition, inspired by
the EDM weighting function from Karras et al. [2022] (non-monotonic, Table 1), we test a weighting
function indicated with ‘EDM-monotonic’, which is identical to the EDM weighting, except that it is
made monotonic by letting w(\) = maxy w(A) for A < arg max, w(A), where w(\) indicates the
original EDM weighting function. Put simply, ‘EDM-monotonic’ equals the EDM weighting, except
that it is constant to the left of its peak; see Figure 3.

5.2 ImageNet 64x64

All experiments on ImageNet 64x64 were done with the U-Net diffusion model architecture from
[Nichol and Dhariwal, 2021]. We carried out extensive ablation studies over several design choices
of diffusion models, namely model parametrization, training noise schedules, weighting functions
and samplers. For e-parametrization model, we took iDDPM [Nichol and Dhariwal, 2021] as the
baseline, which utilized cosine noise schedule and a non-monotonic sech(\/2) weighting. For EDM
parmetrization, we recruited the setting in Karras et al. [2022] as the baseline, with EDM training
noise schedule (Figure 2) and non-monotonic EDM weighting (Figure 3). For v-parametrization
model, we followed Salimans and Ho [2022] taking the v-prediction loss as the baseline, which
leads to a monotonic exp(—A\/2) weighting. We always use adaptive noise schedule under this
setting. We started by searching the optimal hyperparameter for the sigmoidal weighting under
the e-parametrization model, and then applied the best sigmoidal weighting and EDM-monotonic
weighting under other settings. We evaluated models with two samplers, DDPM and EDM samplers,
with their corresponding sampling noise schedules. Table 2 summarizes the FID [Heusel et al., 2017]
and Inception scores [Salimans et al., 2016] across different settings. From the table we made several
observations as follows.



First, our adaptive noise schedule (Appendix F) works equally well as the hand-tuned fixed noise
schedules. We verified this under e-parametrization with sigmoid(—\ + 2) weighting and EDM
parametrization with EDM weighting. Under both settings, the adaptive noise schedule results in
slightly better FID and Inception scores with the EDM sampler, and slightly worse scores with the
DDPM sampler for the former setting. Although the adaptive noise schedule did not significantly
affect the end result, it allows us to experiment with new weighting functions while avoiding hand-
tuning of the noise schedule. In addition, it sometimes leads to faster training; see Appendix F.

Second, it is possible to modify an existing non-monotonic weighting function to a monotonic one with
the minimal change, and results in on-par sample quality. Specifically, under EDM parameterization
and adaptive noise schedule, we change EDM weighting to EDM-monotonic weighting with the very
straightforward approach stated in Section 5.1. It results in nearly the same FID score and slightly
better Inception score.

Third, our proposed new weighting functions, sigmoid(—\ + 2) and EDM monotonic weightings,
work better than the baseline settings across different model parameterization and samplers in most
cases. Larger performance gain has been observed under e-parameterization and v-parameterization
settings. Our-reimplementation of the EDM parameterization baseline setting could not exactly
reproduce their reported FID number (1.36), but comes close (1.45). We observed less significant
improvement under this setting, possibly because their already exhaustive search of the design space.

Finally, the above observations remain consistent across different model parameterization and sam-
plers, indicating the generalizability of our proposed weighting functions and noise schedules.

5.3 High resolution ImageNet

In our final experiments, we tested whether the weighting functions that resulted in the best scores on
ImageNet 64 x 64, namely sigmoid(—\+ 2) and ‘EDM-monotonic’, also results in competitive scores
on high-resolution generation. As baseline we use the Simple Diffusion model from Hoogeboom et al.
[2023], which reported the best FID scores to date on high-resolution ImageNet without sampling
modifications (e.g. guidance).

We recruited the large U-ViT model from Simple Diffusion [Hoogeboom et al., 2023], and changed
the training noise schedule and weighting function to our proposed ones. Note that for higher-
resolution models, Hoogeboom et al. [2023] proposed a shifted version of the cosine noise schedule
(Table 4), that leads to a shifted version of the weighting function w(\). Similarly, we extended our
proposed sigmoidal and ‘EDM-monotonic’ weightings to their shifted versions (see Appendix D.2.1
for details). For fair comparison, we adopted the same vanilla DDPM sampler as Simple Diffusion,
without other advanced sampling techniques such as second-order sampling or rejection sampling.
As shown in Table 3, with our adaptive noise schedule for training, the two weighting functions we
proposed led to either better or comparable FID and IS scores on ImageNet 128 x 128, compared to
the baseline Simple Diffusion approach.

Next, we test our approach on ImageNet generation of multiple high resolutions (i.e., resolutions 128,
256 and 512), and compare with existing methods in the literature. See Table 3 for the summary of
quantitative evaluations and Figure 1 for some generated samples by our approach. With the shifted
version of ‘EDM-monotonic’ weighting, we achieved state-of-the-art FID and IS scores on all three
resolutions of ImageNet generation among all approaches without guidance. With classifier-free
guidance (CFG) [Ho and Salimans, 2022], our method outperforms all diffusion-based approaches
on resolutions 128 and 512. On resolution 256, our method only falls a bit behind Gao et al. [2023]
and Hang et al. [2023], both of which were build upon the latent space of a pretrained auto-encoder
from latent diffusion models [Rombach et al., 2022a] that was trained on much larger image datasets
than ImageNet, while our model was trained on the ImageNet dataset only. It is worth noting that we
achieve significant improvements compared to Simple Diffusion which serves as the backbone of our
method, on all resolutions, with and without guidance. It is possible to apply our proposed weighting
functions and adaptive noise schedules to other diffusion-based approaches such as Gao et al. [2023]
to further improve their performance, which we shall leave to the future work.



Without guidance With guidance

FID | FID |
Method train eval IST train eval IST
128 x 128 resolution
ADM [Dhariwal and Nichol, 2022] 591 2.97
CDM [Ho et al., 2022] 352 376 1288 +25
RIN [Jabri et al., 2022] 2.75 144.1
Simple Diffusion (U-Net) [Hoogeboom et al., 2023] 226 288 137.3+20
Simple Diffusion (U-ViT, L) [Hoogeboom et al., 2023] 191 323 17194+25 205 357 1899435
VDM++ (Ours), w(A) = sigmoid(—\ + 2) 191 341 1831+22
VDM++ (Ours), EDM-monotonic weighting 1.75 2.88 171.1+£27 178 3.16 190.5+23
256 x 256 resolution
BigGAN-deep (no truncation) [Brock et al., 2018] 6.9 1714 £2.0
MaskGIT [Chang et al., 2022] 6.18 182.1
ADM [Dhariwal and Nichol, 2022] 10.94 3.94 2159
CDM [Ho et al., 2022] 4.88 463 1587+23
RIN [Jabri et al., 2022] 342 182.0
Simple Diffusion (U-Net) [Hoogeboom et al., 2023] 376 371 171.6 £3.1
Simple Diffusion (U-ViT, L) [Hoogeboom et al., 2023] 277 375 211.8+29 244 4.08 2563+5.0
VDM++ (Ours), EDM-monotonic weighting 240 336 2253+32 212 3.69 267.7+49
Latent diffusion with pretrained VAE:
DiT-XL/2 [Peebles and Xie, 2022] 9.62 121.5 227 278.2
U-ViT [Bao et al., 2023] 3.40
Min-SNR-~v [Hang et al., 2023] 2.06
MDT [Gao et al., 2023] 6.23 143.0 1.79 283.0
512 x 512 resolution
MaskGIT [Chang et al., 2022] 7.32 156.0
ADM [Dhariwal and Nichol, 2022] 23.24 3.85 221.7
RIN [Jabri et al., 2022] 3.95 216.0
Simple Diffusion (U-Net) [Hoogeboom et al., 2023] 430 428 171.0+£3.0
Simple Diffusion (U-ViT, L) [Hoogeboom et al., 2023] 354 453 2053427 3.02 4.60 2487+ 3.4
VDM++ (Ours), EDM-monotonic weighting 299 409 2322+42 265 443 2781+55
Latent diffusion with pretrained VAE:
DiT-XL/2 [Peebles and Xie, 2022] 12.03 105.3 3.04 240.8
LDM-4 [Rombach et al., 2022a] 10.56 1035+ 1.2 3.60 2477+ 5.6

Table 3: Comparison to approaches in the literature for high-resolution ImageNet generation. “With
guidance’ indicates that the method was combined with classifier-free guidance [Ho and Salimans,
2022]. T Models under ‘Latent diffusion with pretrained VAE’ use the pre-trained VAE from Stable
Diffusion [Rombach et al., 2022a], which used a much larger training corpus than the other models
in this table.

6 Conclusion and Discussion

In summary, we have shown that the weighted diffusion loss, which generalizes diffusion objectives
in the literature, has an interpretation as a weighted integral of ELBO objectives, with one ELBO
per noise level. If the weighting function is monotonic, then we show that the objective has an
interpretation as the ELBO objective with data augmentation, where the augmentation is additive
Gaussian noise, with a distribution of noise levels.

Our results open up exciting new directions for future work. The newfound equivalence between
monotonically weighted diffusion objectives and the ELBO with data augmentation allows for a
direct apples-to-apples comparison of diffusion models with other likelihood-based models. For
example, it allows one to optimize other likelihood-based models, such as autoregressive models,
towards the same objective as monotonically weighted diffusion models. This would shine light on
whether diffusion models are better or worse than other model types, as measured in terms of their
held-out objectives as opposed to FID scores. We leave such interesting experiments to future work.

10



Acknowledgments

We’d like to thank Alex Alemi and Ben Poole for fruitful discussions and feedback on early drafts.
We thank Emiel Hoogeboom for advice and help on the implementation of Simple Diffusion.

References

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their
Applications, 12(3):313-326, 1982.

Fan Bao, Shen Nie, Kaiwen Xue, Yue Cao, Chongxuan Li, Hang Su, and Jun Zhu. All are worth
words: A vit backbone for diffusion models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 22669-22679, 2023.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Geoffrey J Burton and Ian R Moorhead. Color and spatial structure in natural scenes. Applied optics,
26(1):157-170, 1987.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11315-11325, 2022.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, and William Chan. WaveG-
rad: Estimating Gradients for Waveform Generation. In ICLR, 2021a.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J. Weiss, Mohammad Norouzi, Najim Dehak, and William
Chan. WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis . In INTERSPEECH,
2021b.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Jooyoung Choi, Jungbeom Lee, Chaehun Shin, Sungwon Kim, Hyunwoo Kim, and Sungroh Yoon.
Perception prioritized training of diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11472-11481, 2022.

Mauricio Delbracio and Peyman Milanfar. Inversion by direct iteration: An alternative to denoising
diffusion for image restoration. arXiv preprint arXiv:2303.11435, 2023.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2022.

Sander Dieleman, Laurent Sartran, Arman Roshannai, Nikolay Savinov, Yaroslav Ganin, Pierre H
Richemond, Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan, et al. Continuous diffusion
for categorical data. arXiv preprint arXiv:2211.15089, 2022.

Ming Ding, Zhuoyi Yang, Wenyi Hong, Wendi Zheng, Chang Zhou, Da Yin, Junyang Lin, Xu Zou,
Zhou Shao, Hongxia Yang, and Jie Tang. Cogview: Mastering text-to-image generation via
transformers, 2021. URL https://arxiv.org/abs/2105.13290.

Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion transformer is a
strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

Tiankai Hang, Shuyang Gu, Chen Li, Jianmin Bao, Dong Chen, Han Hu, Xin Geng, and Baining Guo.
Efficient diffusion training via min-snr weighting strategy. arXiv preprint arXiv:2303.09556, 2023.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. arXiv preprint
arXiv:1706.08500, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

11


https://arxiv.org/abs/2105.13290

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239, 2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. JMLR, 2022.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. arXiv preprint arXiv:2301.11093, 2023.

Chin-Wei Huang, Jae Hyun Lim, and Aaron Courville. A variational perspective on diffusion-based
generative models and score matching. arXiv preprint arXiv:2106.02808, 2021.

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696-21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Prafulla Dhariwal. Glow: Generative flow with invertible 1x1 convolutions.
arXiv preprint arXiv:1807.03039, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. International Conference
on Learning Representations, 2013.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A Versatile
Diffusion Model for Audio Synthesis. In /CLR, 2021.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal
speech generation at scale. arXiv preprint arXiv:2306.15687, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Siwei Lyu. Interpretation and generalization of score matching. arXiv preprint arXiv:1205.2629,
2012.

Chenlin Meng, Jiaming Song, Yang Song, Shengjia Zhao, and Stefano Ermon. Improved autoregres-
sive modeling with distribution smoothing. arXiv preprint arXiv:2103.15089, 2021.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. arXiv
preprint arXiv:2102.09672, 2021.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Bob McGrew Pamela Mishkin, Ilya
Sutskever, and Mark Chen. GLIDE: Towards Photorealistic Image Generation and Editing with
Text-Guided Diffusion Models. In arXiv:2112.10741, 2021.

William Peebles and Saining Xie. Scalable diffusion models with transformers. arXiv preprint
arXiv:2212.09748, 2022.

Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. DreamFusion: Text-to-3D using 2D
Diffusion. arXiv, 2022.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical Text-
Conditional Image Generation with CLIP Latents. In arXiv, 2022.

Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate
inference in deep generative models. In International Conference on Machine Learning, pages
1278-1286, 2014.

12



Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 10684—10695, 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
Resolution Image Synthesis with Latent Diffusion Models. In CVPR, 2022b.

Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan Ho, Tim Salimans, David J.
Fleet, and Mohammad Norouzi. Palette: Image-to-Image Diffusion Models. In SIGGRAPH,
2022a.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic Text-to-Image
Diffusion Models with Deep Language Understanding. In NeurIPS, 2022b.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2022c.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training gans. Advances in neural information processing systems, 29,

2016.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pages 22562265, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In Advances in Neural Information Processing Systems, pages 11895-11907, 2019.

Yang Song, Conor Durkan, Tain Murray, and Stefano Ermon. Maximum likelihood training of
score-based diffusion models. arXiv e-prints, pages arXiv—2101, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-Based Generative Modeling Through Stochastic Differential Equations. In
International Conference on Learning Representations, 2021b.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space. arXiv
preprint arXiv:2106.05931, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661-1674, 2011.

Daniel Watson, Ricardo Chan, William Martin-Brualla, Jonathan Ho, Andrea Tagliasacchi, and
Mohammad Norouzi. Novel View Synthesis with Diffusion Models. arXiv, 2022.

Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan Saharia, Alexandros G. Dimakis, and
Peyman Milanfar. Deblurring via Stochastic Refinement. In CVPR, 2022.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, Ben Hutchinson, Wei Han, Zarana Parekh, Xin
Li, Han Zhang, and Yonghui Wu Jason Baldridge. Scaling Autoregressive Models for Content-Rich
Text-to-Image Generation. In arXiv:2206.10789, 2022.

Kaiwen Zheng, Cheng Lu, Jianfei Chen, and Jun Zhu. Improved techniques for maximum likelihood
estimation for diffusion odes. arXiv preprint arXiv:2305.03935, 2023.

13



A Main proof

Here we’ll provide a proof of Equation 11.

Note that like in the main text, we use shorthand notation:
L(t;x) := Drr(q(z,...1/x)||p(2e,...,1)) (15)
A.1 Time derivative of Dy (q(z¢,.. 1]%)||p(2,...1))

Let dt denote an infinitesimal change in time. Note that £(¢ — dt; x) can be decomposed as the sum
of a KL divergence and an expected KL divergence:

L(t —dt;x) = L(t;X) + Eqz, 1) [PrL(0(Zi—at|2¢, X) | |P(2¢—at| 2¢)] (16)
Due to this identity, the time derivative d/dt L£(t;x) can be expressed as:
d 1
9 £(t:3) = T (£(0:%) — £{t ;) a7
1
= _%Eq(zﬂx) [(Drr(q(zt—at|z, %) ||p(2¢—at|21)] (18)

In Appendix E of [Kingma et al., 2021], it is shown that in our model, this equals:

d 1 SNR(t — dt) — SNR(t )
et = 3 SO 2 SN o nl (19
1 -
= SSNR/(1)|Jx — Xo(ze: M) I3 (20)

where z; = a)x + o€, and SNR(t) := exp()\) in our model, and SNR'(t) = d/dt SNR(t) =
et dA /dt, so in terms of our definition of ), this is:

d 1 ,dA . 9

S L(x) = 5By [lIx = Xo(ze M) 2] @h)

In terms of e-prediction (see Section E.2), because || — ég||3 = e*||x — %X||3 this simplifies to:

d 1d\ R
ﬁﬁ(ﬁx) = §EEE~N(0J) [[le — €a(ze; Ae)|[3] (22)

where z) = a)\X + o€. This can be easily translated to other parameterizations; see E.2.

This allows us to rewrite the weighted loss of Equation 5 as:

1 ax .
Ly(x) = §Etwu(0,1),ENN(O,I) [U’()\t) Tat [l€o(zi; A) — €|§} (23)
1dA .
= Et~u(0,1) {w(/\t) . *iaEENN(O,I) [HEQ(Zt; )\) — 6|§}:| (24)
d
= E¢ 0,1 {_dtﬁ(t;x) w(/\t)} (25)
tod
. / ~ LX) wn) di (26)
o dt

A.2 Integration by parts

Integration by parts is a basic identity, which tells us that:

b b
- / F(t)g (1)t = / F(0)g(t)dt + F(a)gla) — F(B)g(b)
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This allows us to further rewrite the expression of the weighted loss in Equation 26 as:

Lu(x) = /0 8 L win) dr @7)
_ /1 %w()\t) L(#:%) dt + () £(0: %) — w(Amin) £(1: %) 28)
0
where
—w(Amin) £(1;%) = —w(Amin) Dx1.(q(21[x)||p(21)) (29)

is constant w.r.t. 0, since it does not involve the score function, and typically very small, since
Dk1.(q(z1]x)||p(z1)) is typically small by design.

The term w(Amax) D1 (q(2Zo,... 1]%)||p(20,...,1)) is typically small, since w(Amax) is typically very
small (see Figure 3).

This concludes our proof of Equation 11. |

B Visualization

We tried to create a helpful visualization of the result from Section A.2. Note that we can rewrite:

1 t=0
d
/ —w(A) L(t;x) dt = / w(Ae) dL(t;x) (30)
o dt t=1
The relationship in Equation 28 can be rewritten as:
t=0 t=1
w(Amin) £(1) + / w(A) dL(t;x) = w(Amax) £(0) + / L(t;x) dw(Ay) 31
t=1 t=0

The first LHS term equals a weighted prior loss term, and the second LHS term equals the weighted
diffusion loss. From a geometric perspective, the two LHS terms together define an area that equals
the area given by the right term, as illustrated in the figure below.

~ a

t=1 t=1
o = L(t;x) dw(\)
w(Ae) : (E)Ell) . i t=0 w(Ag) | /=0 r=0
[, wodcied w(ha) £(05%)
0 L(t;x) 0 L(t;x)

On the left, we have a rectangular area that equals a weighted prior loss w(Amin)£(1), plus a curved

area equal to the weighted diffusion loss ff:lo w(A¢) dL(t;x). This integral can be intuitively
understood as a Riemann sum over many tiny rectangles going from left (f = 1) to right (t = 0),
each with height w(\;) and width d£(¢; x). On the right, we have the same total area, but divided up
into two different subareas: a rectangular area w(Amax)£(0) and a curved area that equals the integral

::01 L(t;x) dw(A¢) going upwards from ¢ = 0 to t = 1, which can also be intuitively understood as
another Riemann sum, with each tiny rectangle having width £(¢; x) and height dw(\;). The area of
each of those tiny rectangles on the right can be understood as the ELBO at each noise level, £(¢; x),

times the weight of the ELBO at each noise level, dw(\).

C Relationship between Dy (q(z:. 1

x)||p(z...1)) and the ELBO

First, note that:
L(t;x) = Drr(q(zt,..1

x)[p(z,...1)) = Dicr(q(z[x)p(21)) (32)
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More precisely, the joint KL divergence D1, (q(z¢.... 11%)||p(2¢.....1)) is the expected negative ELBO
of noise-perturbed data, plus a constant entropy term:

L(t;x) = Drcr(q(zt,..11%)||p(Zt,...,1)) = —Eq(z,1x) [ELBO(2¢)] — H(q(z:[x)) (33)

constant

where the ELBO of noise-perturbed data is:
ELBO:(2¢) == Eqyz, |z,)[log p(2¢, 2:) — log q(Z:|2:)] (34)
< logp(z¢) (35)
where z; 1=z g, 1.
So, L(t; x) is the expected negative ELBO of noise-perturbed data z;:
L(t;x) = —Eq(z,)x)[ELBO;(2¢)] 4 constant > —E 5, ) [log p(z;)] 4 constant (36)

Therefore, the expression of the weighted loss in Equation 12 can be rewritten as:
Ly(x) =E,, ) [£(t;x)] 4 constant 37
= —E,, (¢).q(z|x) ELBO¢(z;)] + constant (38)

ELBO of noise-perturbed data
> — E,,(t).q(zx) logp(2:)]  + constant 39)

Log-likelihood of noise-perturbed data

where w(Apin) is constant w.r.t. the diffusion model parameters. Therefore, minimizing £,,(x) is
equivalent to maximizing this expected ELBO of noise-perturbed data.

D Derivation of weighting functions for previous works

The loss function used in previous works are equivalent to the weighted loss with a certain choice of
noise schedule and weighting function w(\). In this section, we derive these weighting functions
w(A).

D.1 ‘Elucidating Diffusion Models’ (EDM) [Karras et al., 2022]

Karras et al. [2022] proposes the following training objective:

Leam(¥) = Esp(a).emn01) [0(5)[x — %0(25;5)]3] , (40)
where p(6) and w (&) are defined as:
p(log &) = N(1og &; Prmean, P2q), 41)
’J)(&) = (62 + &gata>/(6_2 : &gata>7 (42)
where & is equivalent to the standard deviation of noise added to the clean sample x in the VP SDE
case, so 62 = e~*. Karras et al. [2022] used hyperparameters Ppean = —1.2, Pstq = 1.2 and
Odata = 0.5.
This can be rewritten in terms of A = —2log & as:
Leam(x) = Epn),e~n(01) [ﬁ’()‘)”X — Xo(2x; )‘)”%] ) (43)
where p(\) and w(\) are defined as
p(\) = N(\;2.4,2.4%), (44)
W(N) = (e7 +0.5%) /(e - 0.5%), (45)

Comparing Equation 45 with the weighted loss expressed in terms of x-prediction parameterization
(Section E.2), we see that (ignoring the constant scaling factor 1/2) the EDM objective is a special
case of the weighted loss with weighting function:

w(A) = p(A)e* - w(A) (46)
=p(\) (e 4 0.5%)/0.5%. (47)

where the divison by 532, can be ignored since it’s constant. This leads to:
w(\) = N(\;2.4,2.4%) (e 4 0.5%) (48)
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D.2 The v-prediction loss / ‘SNR+1’-weighting [Salimans and Ho, 2022]

Salimans and Ho [2022] introduced the v-parameterization, with a v-prediction model v, where:
V i= Q)€ — 0)\X 49)
Vi= )€ — 0)\X (50)

They propose to minimize a v-prediction loss, E[||v — ¥||3]. Note that € = (z\ — axX) /0. For our
general family, this implies:

v = VI3 = o3(e* + 1) Jx — xI[3 (51)
=ol(e M+ 1) le— €3 (52)
In the special case of the variance preserving (VP) SDE, this simplifies to:
v =[5 = (* + D)l[x — I3 (53)
= (e +1)lle —€ll5. (54)

Since the e-prediction loss corresponds to minimizing the weighted loss with w(A) = p(A), the
v-prediction loss corresponds to minimizing the weighted loss with w()\) = (e~ 4 1)p(\).

Note that Salimans and Ho [2022] view the loss from the x-prediction viewpoint, instead of our
ELBO viewpoint; so in their view, minimizing simply ||x — %X||, means no weighting. Note that e* is
the signal-to-noise ratio (SNR). Since ||€ — €||2 = e||x — x||2, they call the e-prediction loss *’SNR
weighting’, and since ||v — ¥||3 = (e} + 1)||x — %||3, they call this 'SNR+1’-weighting.

Salimans and Ho [2022] propose to use optimize a VP SDE with a cosine schedule p(\) =
sech(\/2)/(27) = 1/(2m cosh(—\/2)) and the v-prediction loss: E[||v — ¥||3]. This corresponds
to minimizing the weighted loss with:

w(A) = (e +1)p(A) (55)
= (e +1)/(2m cosh(—\/2)) (56)
= e 2 (57)

The factor 7 can be ignored since it’s constant, so we can equivalently use:

w(\) = e M2 (58)

D.2.1 With shifted cosine schedule

[Hoogeboom et al., 2023] extended the cosine schedule to a shifted version: p(A\) = sech(A\/2 —
s)/(2m), where s = log(64/d), where 64 is the base resolution and d is the model resolution (e.g.
128, 256, 512, etc.). In this case the weighting is:

w(A) = (e + D)p(A) (59)
= (2/m)e *e™? (60)

Since (2/m)e™* is constant w.r.t A, the weighting is equivalent to the weighting for the unshifted
cosine schedule.

D.3 Flow Matching with the Optimal Transport flow path (FM-OT) [Lipman et al., 2022]

Flow Matching [Lipman et al., 2022] with the Optimal Transport flow path can be seen as a special
case of Gaussian diffusion with the weighted loss.

D.3.1 Noise schedule

Note that in [Lipman et al., 2022], time goes from 1 to 0 as we go forward in time. Here, we’ll let
time go from 0 to 1 as we go forward in time, consistent with the rest of this paper. We’ll also assume
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oo = 0, for which we can later correct by truncation (see Section E.3.1). In this model, the forward
process ¢(z;|x) is defined by:

Z; = X + o€ (61)
=(1—-t)x+te (62)
This implies that the log-SNR is given by:
A = fa(t) = log(af/o7) (63)
=2log((1 —1t)/t) (64)
Its inverse is given by:
t=f10) =1/ +eM?) (65)
= sigmoid(—\/2) (66)
The derivative, as a function of ¢, is:
% = %ﬁ(t) =2/(=t+1°) (67)
This derivative of its inverse, as a function of ), is:
% = %f;l()\) = %sigmoid(—)\ﬂ) = —sech?(\/4)/8 (68)
The corresponding density is
PO =~ 7 (3) = sech® (\/4)/8 (69)

which is a Logistic distribution; see also Table 4.

D.3.2 Score function parameterization and loss function
Lipman et al. [2022] then propose the following generative model ODE:
dz = —0(zy, t)dt (70)
The model is then optimized with the Conditional flow matching (CFM) loss:
Lerm(x) = Eits(0,1),e~n 0.1 |0 — 0]]3] (71)
where they use the parameterization:

0O =X—¢€ (72)

D.3.3 Weighting function

What is the weighting function w(\) corresponding to this loss? Note that this parameterization
means that:

z; = (1 —t)x + te (73)
=(1-to+e (74)
o=(z;—€)/(1—-1) (75)

Since t = 1/(1 + e*/?), we have that 1/(1 — t) = 1 + e~*/2, so parameterized as a function of \,
we have:

o=(zx—€e)(1+e?) (76)

Likewise, we can parameterize o-prediction in terms of e-prediction:

(23, A) = (2 — €(zx, \) (1 +e7?) (77)

We can translate the o-prediction loss to a e-prediction loss:

llo =6z, MIE = (1 + /)2 - e(za, M]3 78)
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Therefore, combining the derivations above, the CFM loss, formulated in terms of the A parame-
terization instead of ¢, and in terms of the e-prediction parameterization instead of the o-prediction
parameterization, is:

Lerm(x) = Eini(0,1),e~n(0,n |0 — 0(z¢, )]3] (79)
1
~ [ Bexonllo - otz 0)B] 80
0
A g A )
= _aEewN(O,I)[HO_O(Z)\v)\)l‘Q] d)\ (81)
Amin
Al’ni\)(
:i/ (sech®(A/4)/8)Ecrron[llo — 6(zx, A)|[2] dA (82)
Amin
Amax
:i/ (sech®(A/4)/8)(1 + e Eenonllle — éan NIE dA  (83)
Amin
1 Amax R 9
=3 w()\)EENN(O,I)[He — €(zx, N)||5] dA (84)
Amin
1 w(\) R
— FPenonanson | S lle— & B 55)
where p is any distribution with full support on [Amin, Amax], and where:
w(\) = 2(sech?(A/4)/8)(1 + e~*/?)? (86)
=e 2 (87)

Therefore, this weighting is equivalent to the weighting for the v-prediction loss with cosine schedule
(Section D.2): the CFM loss is equivalent to the v-prediction loss with cosine schedule.

D.4 Inversion by Direct Iteration (InDI) [Delbracio and Milanfar, 2023]

Delbracio and Milanfar [2023] propose Inversion by Direct Iteration (InDI). Their forward process is
identical to the forward process of FM-OT [Lipman et al., 2022] introduced in Section D.3:

ze = (1 —t)x+te (88)
As derived in Section D.3 above, this means that the distribution over log-SNR A is the Logistic
distribution: p(\) = sech?(\/4)/8. The proposed loss function is the x-prediction loss:

Linp1(x) = Etr0(0,1),e~n0.0 1% — X(21, 1) []3] (89)

= e *||e — €||2, and the e-prediction loss corresponds to minimizing the weighted

Since ||x — x||5 =
= p()), the x-prediction loss above corresponds to minimizing the weighted loss

|
loss with w(A)
with:

w(A) = e *p(N) (90)
= e *sech?(\/4)/8 1)

Which is a slightly different weighting then the FM-OT weighting, giving a bit more weighting to
lower noise levels.

D.5 Perception prioritized weighting (P2 weighting) [Choi et al., 2022]

Choi et al. [2022] proposed a new weighting function:

—dt/dA p(A)

Y= Ty T e 2)
where empirically they set £ = 1 and + as either 0.5 or 1. Compared to the e-prediction objective,
where w(\) = dt/d\ = p()), this objective put more emphasis on the middle regime of the
whole noise schedule, which Choi et al. [2022] hypothesized to be the most important regime for
creating content that is sensitive to visual perception. When combined with the most commonly
used cosine noise schedule [Nichol and Dhariwal, 2021], the weighting function becomes w(\) =

sech(A/2)/(1 + e*)7.
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D.6 Min-SNR-vy weighting [Hang et al., 2023]

Hang et al. [2023] proposed the following training objective:

LninsNR (%) = Eig(0,1),e~n(0.1) [min{e, v}|x — %(z¢; A)|I3] 93)
= Eri(0,1),e~N(0,1) [min{1, ve } e — é(zs; N)|I3] 94
dt dA
_>\ o _ 2
= Ei14(0,1),e~N(0,1) {mln{lﬁe b= T lle — é(ze; )||2} (95)
. _a dA . 9
= Ei11(0,1),e~N(0,1) |min{1,ve” " }p(A) - —EHG — €z N)l2] - (96)

Therefore, it corresponds to w(\) = min{1,ye~*}p()). The motivation of the work is to avoid the
model focusing too much on small noise levels, since it shares similar hypothesis to [Choi et al.,
2022] that small noise levels are responsible for cleaning up details that may not be perceptible. A
cosine noise schedule is then combined with the proposed weighting function, leading to w(\) =
sech(\/2) - min{1,ve~*}. v is set as 5 empirically.

E Useful Equations

E.1 SDEs

The forward process is a Gaussian diffusion process, whose time evolution is described by a stochastic
differential equation (SDE):

dz =f(z,t)dt + g¢(t) dw 97)
—— ~—~
drift diffusion

For derivations of diffusion SDEs, see Appendix B of [Song et al., 2021b]. Their 3(¢) equals

% log(1 4 e~¢) in our formulation, and their fo s5)ds equals log(1 4+ e~**), where they assume
that A\ = oo att = 0.

E.1.1 Variance-preserving (VP) SDE

A common choice is the variance-preserving (VP) SDE, which generalizes denoising diffusion
models [Ho et al., 2020] to continuous time [Song et al., 2021b, Kingma et al., 2021]. In the VP case:

1/d
f(z,t) = —- <dt log(1+ e~ )) z (98)
g(t)? = ;t log(1 + e ) 99)
a3 = sigmoid(\) (100)
0% = sigmoid(—\) (101)
p(z1) = N(0,1) (102)

E.1.2 Variance-exploding (VE) SDE

Another common choice of the variance-exploding (VE) SDE. In the VE case:

f(z,t) = 0 (103)
d

g(t)? = 7 log(1 4 e~ ) (104)

2-1 (105)

o3 =e (106)

p(z1) = N(0, e 1) (107)
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E.2 Possible parameterizations of the score network

There are various ways of parameterizing the score network:

se(z;\) = —V,Fg(z,\) (With the gradient of an energy-based model)  (108)
= —¢€g(z;\) /0 (With a noise prediction model)  (109)
= —0,%(z — axXe(z;)\)) (With a data prediction model)  (110)

We can let a neural network output any of sg(zy; \), € or Xg, and we can convert the variables to
each other using the equalities above.

The chosen relationship between zy, X, € and sg(z; \) above, are due to the following relationships
between z, x and €:

Z) = Q)\X + O)\€ (111)
x = a) ' (z\ — ox€) (112)
6:(7;1(Z,\—Oé)\x) (113)
And:
Vi log (zalx) = Vi, — |22 — anx|3/(203) (114)
:—UXQ(Z/\—a,\X) (115)
= -0 (X + 0re — ArX) (116)
= —€/ox 117)

In addition, there’s the v-prediction parameterization (v := a)€ — 0,X) explained in D.2, and the
o-prediction parameterization (o := x — €) explained in D.3.

Karras et al. [2022] proposed a specific F-parametrization, with an F-prediction model Fy. In the
special case of variance explosion (VE) SDE, it is formulated as:

~2 —A/2~
oy, € Odat
x = data Zy\ + - ~aQaL F
V € + O data

T e A1 g2
€ + O data
where gata = 0.5. Generalizing this to our more general family with arbitrary drift, this corresponds
to:

(118)

~2 —A\/2x
53 a0 e M2 gata

X = Zy + = F
V 6_)‘ + Ucziata

119
6_)‘ + 6(21ata ( )

So that we have:

\/m OdataCix
S e e ah "
data
= A2(p=A 1 52 52 a2
_ _me_’_ e/ (6 1 Odata — Jdataaz\)z)\ (121)

= = ——
Odata Vet + O JataOdata®)

In summary, given these different parameterizations, the e-prediction loss can be written in terms of
other parameterizations as follows:

e — éql|% = e||x — %o||? (e-prediction and x-prediction error)  (122)
= 03|V, log q(z|x) — sel3 (score prediction)  (123)
=a (e +1)72||v — Vo|3 (v-prediction, general)  (124)
= (e +1)7Y|v —Voll? (v-prediction with VP SDE)  (125)
= (e /62a+ 1) |F — Fg|2 (F-prediction)  (126)

Interestingly, if we set 63,,, = 1, the training objectives of F-prediction and v-prediction are the

same.
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Noise schedule name

A= fia(t) = ...

t=f')=..

PN = =5 ) =

Cosine —2log(tan(7t/2)) (2/7) arctan(e”>/2) sech(\/2)/(27)
Shifted cosine —2log(tan(wt/2)) +2s  (2/m)arctan(e”*/27%)  sech(A/2 — s)/(27)
EDM (training) —Ft(;2.4,2.4%) Far(—X;2.4,2.4%) N(X;2.4,2.4%)
1/p _ 1
. —2p log(oniax A _'jm/a;;( e =M (2p)
EDM (sampling) B R I A ) R VN V3 (ol 170y
Flow Matching with OT (see D.3) ~ 2log((1 —t)/t) 1/(1 4 e*?) sech?(\/4)/8

Table 4: Noise schedules used in our experiments: cosine [Nichol and Dhariwal, 2021], shifted cosine
[Hoogeboom et al., 2023], and EDM [Karras et al., 2022] training and sampling schedules. Note that
these are the noise schedules before truncation (Section E.3.1).

E.3 Noise schedules

During model training, we sample time ¢ uniformly: ¢ ~ ¢/(0, 1), then compute A = f\(¢). This
results in a distribution over noise levels p()\), whose cumulative density function (CDF) is given by
1—fy 1 (A). For A € [Amin, Amax] the probability density function (PDF) is the derivative of the CDF,
which is p(A¢) = —(d/d\) f5 ' (\) = —dt/d\ = —1/ f}(t). Outside of [Amin, Amax] the probability
density is 0.

In table 4 we provide some popular noise schedules: cosine [Nichol and Dhariwal, 2021], shifted
cosine [Hoogeboom et al., 2023], and EDM [Karras et al., 2022]. We do not list the ’linear’ schedule
by [Ho et al., 2020], fr(t) = — log(et2 — 1) which has fallen out of use. Note that:

* In the shifted cosine schedule, s = log(64/d), where 64 is the base resolution and d is the
used resolution (e.g. 128, 256, 512, etc.).

* In the EDM training schedule, the function Fpr(\; i, 02) is the Normal distribution CDF,
and N (\; 1, 02) is its PDF.

* In the EDM sampling schedule, p = 7, omin = 0.002, omax = 80. The density function

p(A) in the table has support A € [—log o2 ., —log o2, ]. Outside this range, p(\) = 0.
Note that the table gives the noise schedules before truncation, resulting in [ fx(0), f(1)] = [0, —o0].

The truncation procedure is given in E.3.1.

E.3.1 Truncation

The noise schedules above are truncated, resulting in a noise schedule f,\(()) whose endpoints have
desired values [f1(0), fx(1)] = [Amax, Amin]:

Fat) = falto + (t1 — to)t) (127)
where: tg := f;l()\max) (128)
t1:= 5 ' (Amin) (129)
Its inverse is:
) = (1) = to)/(tr — to) (130)

And the corresponding probability density:

PO = T ) = T ) (1 ) =)/ (11 — ) (131)
p(A) =0 (132)

if Amin <A < Apax ¢

else:

E.4 Sampling

Anderson [1982] showed that if sg(z; \) = V, log ¢;(z), then the forward SDE is exactly reversed
by the following SDE:
dz = [f(z,t) — g(t)*se(z; \)]dt + g(t)dw (133)
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Fixed vs adaptive schedules Fixed vs adaptive schedules
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Figure 4: Our proposed adaptive noise schedule allows us to freely change the weighting function
without needing to handtune a corresponding noise schedule. For some models it leads to slightly
worse convergence speed (left) compared to a static noise schedule, probably because the noise
schedule was already well-tuned for the weighting function, while in other cases it led to faster
convergence (right). The adaptive noise schedule did not significantly affect the end result, but it did
allow us to more freely experiment with weighting functions.

Recent diffusion models have used increasingly sophisticated samplers. As an alternative to solving
the SDE, [Song et al., 2021b] showed that sampling from the model can alternatively be done by
solving the following probability flow ODE:

ds = [£(2,1) — 50(0)*so(z: Nt (134)

which, under the assumption that sg is a conservative vector field, will result in the same marginals
p(z¢) as the SDE of Equation 133 for every ¢ € [0, 1], and therefore also the same marginal p(x).

Note that due to the continuous-time nature of the model, any sampling method is necessarily
approximate, with the discretization error depending on various factors including the choice of noise
schedule. For sampling we can therefore typically use a different noise schedule f) for sampling
than for training, and we can change the SDE drift term; as long as we appropriately rescale the input
to the score network, this would still result in correct samples.

F Adaptive noise schedule

The invariance shown in Section 3.2 holds for the loss £,,(x), but not for the Monte Carlo estimator
of the loss that we use in training, based on random samples ¢ ~ U/ (0,1), e ~ N(0,I). The noise
schedule still affects the variance of this Monte Carlo estimator and its gradients; therefore, the noise
schedule affects the efficiency of optimization.

In fact, the noise schedule acts as an importance sampling distribution for estimating the loss integral
of Equation 6. Specifically, note that p(\) = —1/(d\/dt). We can therefore rewrite the weighted
loss as the following, which clarifies the role of p()\) as an importance sampling distribution:

w(\)

1 .
Loy(x) = QEENN(O,I),ANp(A) WHGB(ZA; A) — €ll3 (135)

In order to avoid having to hand-tune the noise schedule for different weighting functions, we
implemented an adaptive noise schedule. The noise schedule )\, is updated online, where we let
P(A) X Exup emn(o,n[w(N)||€6(2zx; A) — €][3]. This noise schedule ensures that the loss is spread

evenly over time, i.e. that the magnitude of the 1oss Ex..p enr(o.1) [(w(N)/p(N))]|€0(22; A) — €][3]
is approximately invariant to A or t. We find that this often significantly speeds op optimization.

We implemented an adaptive noise schedule p(\), where:

p(A) ]Ewa,GNN(O,I) [w(N)||e — €g(zx; /\)Hg] (136)
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In practice we approximate this by dividing the range [Amin, Amax] into 100 evenly spaced bins, and
during training keep an exponential moving average (EMA) of w(\)||€e — €g(zx; \)||3 within each
bin. From these EMAs we construct a piecewise linear function fy(¢) such that Equation 136 is
approximately satisfied. The EMAs and corresponding noise schedule p()\) are updated at each
training iteration. Similar noise schedules have been proposed in Zheng et al. [2023], Nichol and
Dhariwal [2021], Dieleman et al. [2022].

In experiments we measure the effect of changing the fixed noise schedule of existing modules with
an adaptive schedule. We found that this lead to approximately equal FID scores. In half of the
experiments, optimization was approximately as fast as with the original noise schedule, while in the
other half the adaptive noise schedule lead to faster optimization (see Figure 4). The end results were
not significantly altered.

G Relationship between the KL divergence and Fisher divergence

We’ll use the following definition of the Fisher divergence [Lyu, 2012]:
Dr(a(x)|lp(x)) := Eq(x)[||Vx log q(x) — Vx log p(x)|[3] (137)

Theorem 2. Assume a model in the family specified in Section 2, and assume the score network
encodes a conservative vector field: sg(z, A\t) = Vy, log p(z:) (not assumed by the other theorems).
Then:

d

aDKL(Q(Zt,...,l

x)|[p(zt,...,1)) = %UiDF(Q(ZtIX)Ilp(Zt)) (138)

Proof of Theorem 2. Note that (see Equation 117):

Va2, log q(z:|x) = —€/oy (139)
And assume the score network encodes a conservative vector field:
Vi, logp(z:) = se(zi, \i) = —€a(z¢5t) /0N (140)

So the time derivative of Equation 22 can be expressed as:

d 1
T Prea(ze 1 ®)llp(ze,..1) = 50XEq@,x) [[[Va log g(zfx) = Vo, logp(z)|l3] - (14D)

Equation 138 follows from the definition of the Fisher divergence. ]

G.1 Comparison with Theorem 1 by Lyu [2012]

Lyu [2012] prove a similar result in their Theorem 1. We’ll translate their result into our notation.
In particular, let the forward process be as in our family, such that ¢(z:|x) = N(z¢; axx, o21). The
marginal (data) distribution is ¢(x), such that ¢(z;) = [ ¢(2z;|x)g(x)dx. Similarly, let the generative
model have a marginal p(x), and p(z:) = [ p(z¢|x)p(x)dx. So far the assumptions are the same in
our family.

They assume that q(z:|x) = N (z4, x, t), which corresponds to a variance exploding (VE) diffusion
process, with t = 0%, so A = —log(t). Importantly, they make the assumption that p(z;|x) =
q(z¢|x), i.e. that the forward process for p equals the forward process for ¢. Given these assumptions,
Lyu [2012] show that:

d 1
g Pre(a(z)llp(z)) = =5 Dr(a(z0)|lp(z:)) (142)
Which, given the noise schedule A = — log(t), can be rewritten as:
d 1
T Prrla(z)llp(z:)) = 5o3XDr(a(z)||p(z:) (143)

which looks a lot like our Equation 138. One difference are that in Equation 138, the left-hand-
side distributions are joint distributions, and ¢ conditions on x, while Equation 143 is about the
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unconditional g. Another key difference is that for Equation 138 we need fewer assumptions: most
importantly, we do not make the assumption that p(z;|x) = ¢(z:|x), since this assumption does
not hold for the family of diffusion models we consider. Before or during optimization, p(z;|x)
might be very far from ¢(z;|x). After optimization, p(z;|x) might be close to ¢(z;|x), but we still
can’t assume they’re equal. In addition, we’re mostly interested in the properties of the loss function
during optimization, since that’s when we’re using our loss for optimization. We for this reason, our
Theorem 2 is a lot more relevant for optimization.

H Implementation details

Instead of uniformly sampling ¢, we applied the low-discrepency sampler of time that was proposed
by Kingma et al. [2021], which has been shown to effectively reduce the variance of diffusion loss
estimator and lead to faster optimization. The model is optimized by Adam [Kingma and Ba, 2014]
with the default hyperparameter settings. We clipped the learning gradient with a global norm of 1.

For the adaptive noise schedules, we divided the range of [Amin, Amax] into 100 evenly spaced bins.
During training, we maintaiedn an exponential moving average of w(\)||e — €g(zx; \)||3 with a
decay rate 0.999, and a constant initialization value of 1 for each bin.

Below we elaborate the implementation details specific for each task.

ImageNet 64x64. For class-conditional generation on ImageNet 64x64, we applied the ADM
U-Net architecture from Dhariwal and Nichol [2022], with dropout rate 0.1. We didn’t use any
data augmentation. The model was trained with learning rate le — 4, exponential moving average
of 50 million images and learning rate warmup of 10 million images, which mainly follows the
configuration of Karras et al. [2022]. We employed 128 TPU-v4 chips with a batch size of 4096 (32
per chip). We trained the model for 700k iterations and reported the performance of the checkpoint
giving the best FID score (checkpoints were saved and evaluated on every 20k iterations). It took
around 3 days for a single training run. For training noise schedule and sampling noise schedule of
DDPM sampler, we set Apyin = —20 and Ay ax = 20. We fixed the noise schedule used in sampling to
the cosine schedule for the DDPM sampler, and the EDM (sampling) schedule for the EDM sampler
(see Table 4 for the formulations). We adopted the same hyperparameters of EDM sampler from
Karras et al. [2022] with no changes (i.e., Table 5 in their work, column ‘ImageNet-Our model’).
Both DDPM and EDM samplers took 256 sampling steps.

ImageNet 128x128. For class-conditional generation on ImageNet 128x128, we heavily followed
the setting of simple diffusion [Hoogeboom et al., 2023]. Specifically, we used their ‘U-ViT, I’
architecture, and followed their learning rate and EMA schedules. The data was augmented with
random horizontal flip. The model is trained using 128 TPU-v4 chips with a batch size of 2048 (16
per chip). We trained the model for 700 iterations and evaluated the FID and inception scores every
100k iterations. The results were reported with the checkpoint giving the best FID score. It took
around 7 days for a single run. We set Apin = —15 4 s and Apax = 15 + s, where s = log(64/d) is
the shift of the weighting function, with 64 being the base resolution and d being the model resolution
(d = 128 for this task). The DDPM sampler used for evaluation used ‘shifted-cosine’ noise schedule
(Table 4) and took 512 sampling steps.

I Relationship with low-bit training

Various earlier work, such as [Kingma and Dhariwal, 2018], found that maximum likelihood training
on 5-bit data can lead to perceptually higher visual quality than training on 8-bit data (at the cost of
a decrease in color fidelity). This leads to improved visual quality, probably because it allows the
model to spend more capacity on modeling the bits that are most relevant for human perception.

In [Kingma and Dhariwal, 2018], training on 5-bit data was performed by adding uniform noise to the
data, before feeding it to the model. It was found that adding Gaussian noise had a similar effect as
uniform noise. As we have seen, in the case of diffusion models, adding Gaussian noise is equivalent
to using a weighted objective with a monotonic weighting function.
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Therefore, training on 5-bit data is similar to training using a monotonic weighting function in case of
diffusion models. We can wonder: which weighting function emulates training on 5-bit data? Here,
we’ll attempt to answer this question.

L1 The shape of -4 £(); x) for low-bit data

Note that the results of Appendix A.1 can also be written as:

d 1 R
LA x) = SEenon [lle — éa(zxi V]3] (144)
dA 2
This allows us to rewrite the weighted loss as simply:
Amin d
Lon(x) :/ s w(N) da (145)
Ao dA

To understand the effect of A, we can plot the %E(A; x) as a function of A.

We’d like to plot %E(A; x) dof different choices of bit precision. This will tell us where the different
bits ’live’ as a function of \. Since training different diffusion models on different bit precisions is
very expensive, we instead use an approximation. In particular, we assume that the data x is univariate,
with a uniform distribution ¢(x) over the 2™ possible pixel values, where n is the bit precision. The
data is x is, as usual, normalized to [ 1,1]. We then let the model p(z) ), for each choice of A, be
the optimal model: p(zy) := [ ¢(x)q(z ,\\X )dz, which is a univariate mixture-of-Gaussians, where
each mixture component isa Gauss1an centered one of the 2™ possible pixel values. In this case,

L(A;x) := D r(q(zx[x)||p(2x))-
We start by plotting the function ) [£(A; x)], for differences choices of n = 1,..., 8, as shown in
Figure 5a. Next, we plot E ) [d%\ﬁ()\; x)], for each n, in Figure 5b. The more bits included in the

data, the more information contained by E, ) [%L()\; x)] (measured by the area under each curve).
We can further visualize the contribution of each additional added bit to the loss, by subtracting the
curve for n — 1 bits from the curve for n bits, as displayed in Figure Sc. The area under each of these
curves is exactly 1 bit. Interestingly, as more bits being added, the contribution to the loss gradually
shifts from low-SNR regions to high-SNR regions.

Now the connection between low-bit training (e.g., 5-bit) and the weighted training objective becomes
clear: If we want to “shut down” the last three curves in Figure 5c, a way is to have a sigmoidal
weighting function that goes down sharply between A = 7.5 and A = 10. In fact, the 5-bit unweighted
loss curve is very similar to the 8-bit loss curve, when using the following weighting function:

w(A) = Fx((—2(A — 8.4))) (146)

where F)y is the CDF of a standard Gaussian. See Figure 5e for the comparison of the 5-bit unweighted
loss and the 8-bit weighted loss, and Figure 5d for the visualization of the above weighting function
(°5-bit-like weighting’). Interestingly, this weighting function gives much more weight to low noise
levels than the weighting functions used in this paper (i.e. the other curves shown in Figure 5d).

J Fourier analysis of Gaussian noise perturbation

Recall Theorem 1 showed that assuming monotonic weightings, the weighted training objective is
equivalent to the ELBO with data augmentation, namely Gaussian noise perturbation. One may
wonder, why Gaussian noise perturbation can help improve perceptual quality. In this section, we try
to answer this question by lifting Gaussian noise perturbation to the frequency domain.

Given a clean natural image x and a Gaussian white noise image €, the Gaussian-noise-perturbed
data is given by z) = a\x + o€. Denote the Fourier transform operation as F(+). Since F(-) is a
linear operation, we have

F(zy) = arF(x) + oaF(€). (147)

To understand how noise affects the data, we can compare the power spectra of ay F(x) and o F (€),
which is defined as the square amplitude of the Fourier transform: S(-) = |F(+)|?. More specifically,
given the power spectrum S of an image, we can take the circular average of S for the Fourier

26



EqmlL(A, X)] (Expected nats as a function of A) Equld/dA £(A, x)]

— n_bits=1
54 n_bits = 2
— n_bits=3
— n_bits=4
1 — n_bits =5 g
| — nbits=6 <
< 34 n_bits = 7 s
33 —— n_bits =8 %
W 2 S
w
14
04
-10 s 0 5 10 15
A
(@) Eq(x) [£(A;x)] as a function of A. (b) Eqx0) [25 £(A;x)] as a function of A.
Contribution of each bit to Eq([d/dA £(A, x)] Weighting functions
X 0401 bt 104 — ELBO
< , X —
2 0.354 b!t 2 —— v-prediction ar.1d FM-OT
3 — bit3 —— EDM-monotonic (Ours)
S 0304 — bit4 508{ sigmoid(—A + 2) (Ours)
S —— bit5 Q 5-bit-like weighting
40259 — bit6 =
b bit 7 £ 0.6
502071 __ i £
: E
$ 0.15 1 =
b S 041
< 0.10 2
s
3 0.05 1 0.2
& 0.00
b . . : . 0.0 11— : - - " . 7 -
-10 -5 0 5 10 15 -75 -50 -25 00 25 50 75 100
A A (log SNR)
(c) Subtraction of the curve for n — 1 bits from the (d) Weighting functions, with a weighting resembling
curve for n bits in Fig.5b. 5-bit training.
Unweighted 5-bit versus weighted 8-bit
0.5
0.4
0.3 /
—— Equld/dA £(A, )], n_bits = 5
Equld/dA LA, x) - wA)], n_bits = 8 \
0.2 \
0.1
/
P
0.0 1 ——
-10 -5 0 5 10 15

(e) Unweighted 5-bit loss versus weighted 8-bit loss.

Figure 5: Low-bit training analysis. See Section I.1 for description.

components of the same spatial frequency, such that it becomes a function of the spatial frequency.
Figure 6 displays the average power spectra of a\F(x) and o) F(€) as functions of the spatial
frequency, for different X\. As A goes from high to low, i.e., gradually perturbing the data with more
noise, the average power spectrum of o F (€) (orange curve) first exceeds the one of .y F(x) (blue
curve) in the high frequency region, and then followed by the low frequency region. That is, the high
frequency components of the data are destroyed more quickly than the low frequency components.
When the data is perturbed with small amounts of noise, only high frequency details are significantly
removed, and most low frequency content remains. Therefore, given that the model capacity is
limited, learning data with Gaussian noise perturbation help the model focus more on low frequency
components of the data, which often correspond to high level content and global structure that are
more crucial to human perception. This analysis can also be applied to understand the forward
process of diffusion models.
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Figure 6: The circular average power spectrum as a function of spatial frequency, for the scaled clean
image and scaled Gaussian noise image. From the rightmost to the leftmost subfigure, more noise is
gradually added.

To make the claim even clearer, we can compute the log signal-to-noise-ratio (log SNR) A between
the power spectra of ay F(x) and o, F(€), as a function of A\. Figure 7 shows the average value
of that log ratio around different frequency regions. Given a fixed A, A is higher for low frequency
regions, so that the data are less destroyed by the noise.
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Figure 7: Log-SNR (\) of the power spectra of the scaled clean image and scaled Gaussian noise

image, as a function of log-SNR () in the data space. Given a fixed A, A is higher around low
frequency regions.

K Limitations

It is important to emphasize that our empirical results, like other deep learning approaches, depend
on the choice of hyper-parameters. A change in, for example, the dataset or spatial resolution will
generally require re-tuning of optimization hyperparameters, architectural choices and/or weighting
functions. Such re-tuning can be time consuming and costly.

L. Broader impact

While our work primarily focuses on theoretical developments in the understanding and optimization
of diffusion models, the advancements could have broader implications, some of which could
potentially be negative. The development of more efficient and effective generative models could, on
one hand, propel numerous beneficial applications, such as art and entertainment. However, it is also
worth acknowledging the potential misuse of these technologies.

One notable concern is the generation of synthetic media content, for example to mislead. These
fraudulent yet realistic-looking images and videos could be used for spreading disinformation or for
other malicious purposes, such as identity theft or blackmail.

Regarding fairness considerations, generative models are typically trained on large datasets and could
therefore inherit and reproduce any biases present in the training data. This could potentially result
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in unfair outcomes or perpetuate harmful stereotypes if these models are used in decision-making
processes or content generation.

Mitigation strategies to address these concerns could include the gated release of models, where
access to the model or its outputs is regulated to prevent misuse. Additionally, the provision of
defenses, such as methods to detect Al generated media, could be included alongside the development
of the generative models. Monitoring mechanisms could also be implemented to observe how a
system is being used and to ensure that it learns from feedback over time in an ethical manner.

These issues should be considered when applying the techniques we propose. The community should
strive for an open and ongoing discussion about the ethics of Al and the development of strategies to
mitigate potential misuse of these powerful technologies.

M Samples from our model trained on 512 x 512 ImageNet

Below we provide random samples from our highest-resolution (512x512) model trained on ImageNet.
We did not cherry-pick, except that we removed depictions of humans due to ethical guidelines.
Samples in Figures 8 and 9 are generated without guidance, while samples in Figures 10 and 11 are
generated with guidance strength 4.
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Figure 8: Random samples from our 512x512 ImageNet model, without guidance.
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Figure 9: More random samples from our 512x512 ImageNet model, without guidance.
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Figure 10: Random samples from our 512x512 ImageNet model, with guidance strength 4.
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Figure 11: More random samples from our 512x512 ImageNet model, with guidance strength 4.
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