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1 EXPERIMENT DETAILS
1.1 Dataset and Settings
We validate the performance of the proposed method using publicly
available datasets that are frequently used in TBPR tasks, includ-
ing CUHK-PEDES [10], ICFG-PEDES [5], RSPTReid [26] and ATR
Dataset [13, 14].

CUHK-PEDES[10] is a classical TBPR dataset with 40, 206 im-
ages and 80, 412 textual descriptions for 13, 003 identities. The pedes-
trian image of CUHK-PEDES comes from five existing person re-
identification datasets, CUHK03 [12], Market-1501 [25], SSM [22],
VIPER [6], and CUHK01 [11]. The training and testing sets comprise
11, 003/1, 000 persons with 34, 054/3, 074 images and 68, 108/6, 156
sentence descriptions, respectively.

ICFG-PEDES [5] contains 54, 522 pedestrian images of 4, 102
different identities with more fine-grained text descriptions. The
images in ICFG-PEDES are collected from the MSMT17 database
[21]. The training set contains 34, 674 image-text pairs from 3, 102
pedestrians, while the test set contains 19, 848 image-text pairs for
the remaining 1, 000 pedestrians.

RSPTReid[26] is a real scenario text-based person re-identification
dataset based on MSMT17 [21]. It contains 20, 505 images of 4, 101
persons from 15 cameras in total. The training set consists of 3, 701
people, 18, 505 images, and 37, 010 sentence descriptions. The test
set includes 1, 000 images and 2, 000 textual descriptions of 200
pedestrians.

ATR Dataset[13, 14] is a human parsing dataset with 17, 706
images and 18 semantic categories. The images in ATR come from
diverse sources. Each image is assigned several semantic categories
and labeled with fine pixel-level annotations. We randomly split
the ATR dataset into the train, valid, and test sets with the ratio of
8 : 1 : 1.

1.2 Implementation Details
We loaded the pre-trained CLIP-B/16 for text and image encoders
and randomly initiated the rest of the modules. During training
and testing, all images are uniformly scaled to 384 × 128, and the
maximum length of the text is set to 77.We train themodel using the
Adam optimizer and set the learning rate of the pre-training module
to 1𝑒-5 with the cosine decay strategy. For the other modules, we
set the learning rate 5𝑒-5. The mask probability 𝑝′ is set to 0.35. The
size of the image patch is 16. For the training of the segmentation
model, we use SAM-Base and BERT-base-uncased for the text model.
We freeze the base encoder and train only the decoder and other
parameters. We set the learning rate to 1𝑒-4, and train 20 epochs.
The image input size of the model is 1024× 1024, and the maximum
length of each phrase is 16.

Table 1: The list of semantic merges performed, with the orig-
inal semantic categories shown on the left and the right side
showing which of the other ones we merged these semantic
categories with.

Origin Merged

hair hair, face
sun-glass sun-glass, face
left-shoe left-shoe, right-shoe, left-leg, right-leg

2 DETAILS OF PERSON-SAM TUNING
2.1 Semantic Merging in Person-SAM
We performed a semantic merging on the ATR dataset when train-
ing Person-SAM in the main text, and here we explain in detail why
we conducted this operation. First, the original ATR data consists
of 18 categories (including the background). At the same time, it
contains, for example, categories with positional information such
as “left-shoe" and “right-shoe," as shown in Fig. 1. These categories
usually appear as another entirely different shape due to the mask-
ing of the parts. As shown in the left three columns of Figure 1,
we demonstrate some masked semantic classes unfavorable for
training text-driven semantic segmentation. Therefore, we need to
merge these similar semantics to mitigate some of the effects due to
masking. In addition to this, for example, as shown in the right two
columns of Figure 1, smaller regions like glasses are challenging to
achieve detailed linguistic description generation when used alone,
whereas the generative model can work well when merged with
the face. Finally, as shown in Table 1, we will merge the semantic
classes. Instead of merging, we generate the phrases corresponding
to these regions separately for the rest of the semantic classes.

In addition to this, inspired by some recent research on visual
prompts[4, 19, 23], we still tried to utilize some visual prompts to di-
rectly generate descriptions of the corresponding regions, as shown
in Fig. 2. We tried to utilize visual prompts for points, regions, and
boxes, respectively and asked for the content of the correspond-
ing regions via text. However, this result was not satisfactory, and
these attempts invariably produced very noisy results while still
generating many errors when confronted with those fine semantic
classes. Therefore, we directly filtered as much irrelevant interfer-
ence as possible during the actual generation process and targeted
the prompts for each semantic class.

2.2 Text Prompt for Phrase Generation
After merging the semantic classes and processing the image re-
gions, we next need to design the textual prompts tomake themodel
output fine-grained phrases as correctly as possible. Some existing
research also suggests that textual prompts[2, 3, 8, 15, 16, 18], even
some punctuation marks that seem small to humans, may contain
very unique semantic information to the model. Therefore, we need
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Image

Text 

Phrase

SunglassesLeft-ShoeRight-Shoe SunglassesRight-ShoeSemantic

ice cream knife a slide
A piece of 

chocolate.
toys

Figure 1: When the object is occluded or very small, the generated model can easily misclassify it. The three columns on the
left show some examples where BLIP-2 produced an error after the object was occluded. And the two columns on the right
show examples where the generated results are erroneous when the objects are very small.

Visual 

Prompt

Text 

Prompt

Phrase

Mask Region Bounding Box Edge Point Filter (Our)

What kind of 

clothes is this?

What style of 

clothing is the 

covered area in the 

picture?

What is the style of 

the framed dress in 

the picture?

Origin Image

What kind of 

clothes is this 

woman wearing?

The picture is of a 

woman wearing 

black shoes and a 

white shirt

It's a woman.

It's a woman 

wearing a black 

skirt and a white 

blouse

What kind of 

clothes is this 

woman wearing?

It's a woman 

standing there.

It is a shirt with a 

belt

Crop

Figure 2: From left to right, visual region processing includes the original image (prompted by text only), mask enhancement,
localization box enhancement, keypoint enhancement, and irrelevant region filtering. In several other methods, more or less
irrelevant or erroneous bits of content are produced.

to design these linguistic prompts very carefully. We take a natural
language perspective, keeping sentences as fluent as possible, and
ask questions about the current semantic class. This operation aims
to narrow down the model’s choices of what to output so that the
model outputs more accurate results than without containing the
current semantic class word. Taking hair as an example, we show
the design of some semantic classes, as shown in Table 2. Finally,
we manually evaluate the generation quality of each text prompt on
several samples and select the most accurate one for the template.
We perform this operation for each semantic class, and finally, we
get the specific text prompt templates for all semantic classes as
shown in Table 3.

3 ABLATIONS ON IMAGE MASK
Section 4.3 of the main text ablates the attentive cross-modal de-
coding module. We include an L𝑑𝑒𝑐-𝑖 that needs to be mentioned
in the main text. The L𝑑𝑒𝑐-𝑖 stands for masking the image features
and then, in a similar way to the text, improving the model’s under-
standing of the fine-grained features by introducing cross-modal
reconstruction. Unlike text, however, current research is still ununi-
fied on how to model masked images, so we have tried two main
types of approaches, discrete (as used by BeiT [1], for example) and
linear (as used by MAE [7], for example).

(1) For discrete, we follow BeiT and quantize the image using
a pre-trained VQ-VAE[20] (we chose the DALLE[17] pre-trained
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Table 2: Ablation studies on Text Prompt for BLIP-2.

Prompt Response

None A black shell.

What object is in this picture? Answer: This picture has a piece of dark chocolate.

What’s in this picture? Answer: There’s a headset in the picture

Question: What’s her hair style? Answer: short

Question: What kind of hair she has? Answer: She has short, curly hair.

Question: What kind of hair is this? Answer: The kind of hair she has is short.

Question: What kind of hair is she? Answer: She has short, curly hair

Table 3: Prompts corresponding to all semantic classes used
for BLIP-2.

Semantic Prompt

hat Question: What kind of hat is this? Answer: It is

hair Question: What kind of hair is she? Answer: She has

glasses Question: What kind of glasses is this? Answer: It is

clothes Question: What kind of clothes is this? Answer: It is

skirt Question: What kind of skirt is this? Answer: It is

pants Question: What kind of pants is this? Answer: It is

dress Question: What kind of dress is this? Answer: It is

shoes Question: What shoes is she wearing? Answer: She is wearing

bag Question: What kind of bag is this? Answer: It is

one), i.e., ids = VQ-VAE(I). Then, similarly to text, we mask the im-
age patches to obtain the masked features 𝑓 ′𝑣 . Next, we decode these
masked tokens using the textual features 𝑓𝑡 , i.e., 𝑓 ′𝑣 = MCA(𝑓 ′𝑣 , 𝑓𝑡 , 𝑓𝑡 ).
Finally, similarly to text, we find these masked parts and then
predict the ids that these features initially corresponded to, i.e.,
L𝑑𝑒𝑐-𝑖 = ℓ𝐶𝐸 (MLP(𝑓 ′𝑣 ), ids).

(2) During the experiment, we find that amore significant portion
of the vectors acquired by VQ-VAE belong to the background (about
31%, i.e., ids𝑖 = 0). To avoid the category imbalance problem, we
ignore these backgrounds and reconstruct only the other tokens
ids′ = {𝑥 ≠ 0|𝑥 ∈ ids}, i.e., L𝑑𝑒𝑐-𝑖 = ℓ𝐶𝐸 (MLP(𝑓 ′𝑣 ), ids′).

We also have two strategies for linear features: (3) First, the
image I is masked immediately after Patch Embedding and the
masked tokens are fed to the subsequent attention layer in ViT.

(4) The other is to mask the image features 𝑓𝑣 acquired by ViT.
Unlike the discrete strategy, both strategies use MSE loss ℓ𝑀𝑆𝐸 to
compute the decoding loss L𝑑𝑒𝑐-𝑖 . Other than that, the rest of the
masking and decoding strategies remain unchanged.

The results of these strategies are shown in Table 4, with strategy
(3) achieving the best results. Although image cross-modal decoding
alone is effective, performance impairment occurs when combining
text cross-modal decoding with image cross-modal decoding, as
shown in the main text. How to solve this problem is also part of
our subsequent research.

Table 4: Ablations on Image Decoding.

No. Method R-1 R-5 R-10
1) discrete 69.54 85.21 92.65
2) discrete w/o background 69.77 85.63 92.74
3) linear & after PE 72.69 86.23 93.67
4) linear & after ViT 71.56 85.97 93.01

Table 5: Results of Different Person-SAM Text Prompt
Methos.

No. Prompt Feature mIoU
1) 𝑓

[CLS]
𝐴𝑖

56.31
2) 𝑓𝐴𝑖

59.27
3) 𝑓

[CLS]
𝐴𝑖

· 𝑓I 58.01
4) 𝜃MCA

(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
61.55

4 DISCUSSION OF PERSON-SAM STRUCTURE
In the design of Person-SAM, we introduced a text encoder to ac-
commodate text-driven prompts to generate exactly corresponding
fine-grained regions. We explored a few ways to use the text fea-
tures, and the segmentation result on the ATR dataset is shown in
Table 5, and we used mAP as the evaluation criterion.

We then briefly describe these methods. Method 𝑓
[CLS]
𝐴𝑖

means
using the [CLS] token feature of the text𝐴𝑖 as text prompt.Method
𝑓𝐴𝑖

meas using dense text features (i.e., features of all 𝐴𝑖 tokens.
Method 𝑓

[CLS]
𝐴𝑖

· 𝑓I means using dot products between dense textual
prompts with image features as prompts for the decoder. Method
𝜃MCA

(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
, which we used, means using Multi-head Cross-

Attention(MCA) to obtain the fused textual features between some
learnable tokens 𝑓𝑝 and the dense textual features as input to the
decoder’s prompts.

As shown in Table 5, method 𝜃MCA
(
𝑓𝑝 , 𝑓𝐴𝑖

, 𝑓𝐴𝑖

)
is better than the

other methods, so we use this method in the Person-SAM structure.
The reason for this phenomenon is that the fine-grained features
require an exact representation, so methods with dense features 𝑓𝐴𝑖
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Table 6: Results of Different Alignment Strategy.

No. Method R-1 R-5 R-10
w/o matching 70.42 86.73 92.04

1) avgPool 32.96(↓) 55.10 65.53
2) Conv1D 53.87(↓) 76.49 83.35
3) MHSA 68.99(↓) 87.33 92.07
4) ELCA (Our) 73.59 89.51 93.55

are better than methods using 𝑓
[CLS]
𝐴𝑖

. At the same time, the learn-
able parameters provide domain adaptation, which helps Person-
SAM focus more easily on details related to pedestrians.

5 DISCUSSION ON ALIGNMENT STRATEGY.
In addition to the alignment strategies described in Section ??, in-
spired by previous work, like GLIP[9], X-VLM[24], we still explored
some other alignment strategies.Method ‘avgPool’ means using av-
erage pooling to aggregate each local feature, i.e., 𝑓 𝑖𝑣 = avgPool

(
𝑓 𝑖𝑣

)
and 𝑓 𝑖𝑡 = avgPool

(
𝑓 𝑖𝑡

)
, and then employing the InfoNCE loss to

constrain the cosine similarity between image and text local fea-
tures. Method ‘Conv1D’ means using 1-𝑑 convolution network
instead of average pooling in method ‘avgPool’ with the rest re-
maining unchanged.Method ‘MHSA’ means utilizing a multi-head
self-attention (MHSA) module to aggregate text and image features,
i.e., 𝑓 𝑖𝑣 = MHSA

( [
𝑣, 𝑓 𝑖𝑣

] )
and 𝑓 𝑖𝑡 = MHSA

( [
𝑡, 𝑓 𝑖𝑡

] )
, then using the

InfoNCE loss to constrain the cosine similarity between the [CLS]
feature of 𝑓 𝑖𝑣 and 𝑓 𝑖𝑡 , where 𝑣 and 𝑡 are learnable parameter token,
[·] is concatenated operation. Method ‘ELCA’ is our explicit local
concept alignment method described in Section ??.

Table 6 shows the influence of different matching approachs. The
benefit of retaining features for all tokens compared to aggregated
features, such as ‘avgPool’, suggests that the aggregated features
lose some fine-grained information that is trivial in traditional
tasks but critical in TBPR. Our ELCA can push the model more
strongly to discriminate semantic differences between localizations
by interacting with fine-grained features. This result demonstrates
the specificity of the TBPR task, i.e., it is a fine-grained task, and
the importance of aligning fine-grained semantic features.

6 SCALING ON LARGER MODEL

Table 7: Main result of our SAP-SAM using larger backbone
on CUHK-PEDES.

Method Backbone R@1 R@5 R@10

Baseline CLIP (ViT/B-16) 70.42 86.73 92.04
SAP-SAM (Our) CLIP (ViT/B-16). 75.05 89.93 93.73

Baseline CLIP (ViT/L-14) 72.13 87.15 92.71
SAP-SAM (Our) CLIP (ViT/L-14). 76.28 90.87 94.75

We still trained SAP-SAM on a larger backbone network, such as
CLIP(ViT/L-14), and the results are shown in Table 7. Our SAP-SAM
achieved better results, but we did not use this result in the text for
fair comparison.

7 LIMITATIONS
We mainly propose a fine-grained local feature alignment method
for images and text to improve the quality of the model’s rep-
resentation of cross-modal features through fine-grained feature
identification and understanding, thus improving the model’s per-
formance in downstream tasks. We focus on some problems in
the TBPR task from a fine-grained perspective. However, due to
resource constraints, our approach still has some problems:

• In the Person-SAM transfer, due to the limited computational
resources, the model we chose is small, which may limit
some of the model’s capabilities and lead to less fine-grained
results obtained.

• Since there are still some domain differences between the
ATR and TBPR datasets in the transfer process, this problem
still exists even though we have performed some data style
transformations.

• Since we retained all the feature blocks, the computation
process took up more time during the learning process of
fine-grained features.

In the future, we will also investigate how to learn this relationship
faster.
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