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A PROOFS

A.1 Proof of Lemma 1

Lemma 1. If lm is µm-strongly convex on zm and module
m is (ϵm−1, cm)-robust in lm, we have
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Proof. With the strong convexity and the (ϵm−1, cm)-
robustness of lm, we have
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A.2 Proof of Lemma 2

Lemma 2. If the early exit loss lm has βm-smoothness
and (ϵm, cm)-robustness on zm, the joint loss l has β′

m-
smoothness and (ϵm, cM )-robustness on zm, we have
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Proof. We define hm(zm) = l(zm) − lm(zm), which has
(βm + β′

m)-smoothness and (ϵm, cm + cM )-robustness on
zm. Thus ∀δm with ∥δm∥ ≤ ϵm, we have

(∇zm
hm(zm))

T
δm −

βm + β′
m

2
∥δm∥22

≤ hm(zm + δm)− hm(zm) ≤ cm + cM .

We take the maximum of the left hand side with δ∗m =
∇zmhm(zm)

βm+β′
m

, and we can get

∥∇zm
hm(zm)∥22

2(βm + β′
m)

≤ cm + cM

⇒∥∇zm
hm(zm)∥2 ≤

√
2(cm + cM )(βm + β′

m).

Table 5. Performance, memory, and storage I/O Bandwidth of the
devices for training on CIFAR-10.

Device Performance Memory I/O Bandwidth
GTX 1650m 3.1 TFLOPS 4 GB 16 GB/s

TX2 1.3 TFLOPS 4 GB 1.5 GB/s
KCU1500 0.2 TFLOPS 2 GB 2 GB/s

VC709 0.1 TFLOPS 2 GB 1.5 GB/s
Radeon HD 6870 2.7 TFLOPS 1 GB 16 GB/s
Quadro M2200 2.1 TFLOPS 4 GB 1.5 GB/s

A12 GPU 0.5 TFLOPS 4 GB 1.5 GB/s
Geforce 750 1.1 TFLOPS 1 GB 16 GB/s
Grid K240q 2.3 TFLOPS 1 GB 16 GB/s

Radeon RX 6300m 3.7 TFLOPS 2 GB 16 GB/s

Table 6. Performance, memory, and storage I/O Bandwidth of the
devices for training on Caltech-256.

Device Performance Memory I/O Bandwidth
Radeon RX 7600 21.8 TFLOPS 8 GB 16 GB/s
Radeon RX 6800 16.2 TFLOPS 16 GB 16 GB/s

Arc A770 19.7 TFLOPS 16 GB 16 GB/s
Quadro P5000 5.3 TFLOPS 16 GB 1.5 GB/s
RTX 3080m 19.0 TFLOPS 8 GB 16 GB/s
RTX 4090m 33.0 TFLOPS 16 GB 16 GB/s
A17 GPU 2.1 TFLOPS 8 GB 1.5 GB/s

GTX 1650m 3.1 TFLOPS 4 GB 16 GB/s
TX2 1.3 TFLOPS 4 GB 1.5 GB/s

P104 101 8.6 TFLOPS 4 GB 16 GB/s
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B EXPERIMENT DETAILS

B.1 Device Details

Considering the different memory and performance re-
quirements for training on CIFAR-10 (small images) and
Caltech-256 (large images), we collect two device pools
for CIFAR-10 (Table 5) and Caltech-256 (Table 6) respec-
tively. Meanwhile, we multiply degrading factors to the
peak memory and performance to simulate the real-time
available memory and performance of each client with dif-
ferent co-running runtime applications, such as 4k-video
playing and object detection (Tian et al., 2022). Specifi-
cally, the degrading factor for memory is uniformly sam-
pled from [0, 0.2], and the factor for performance is uni-
formly sampled from [0, 1.0].

B.2 Baselines

We compare FedProphet with joint federated adversarial
learning (jFAT) (Zizzo et al., 2020), knowledge-distillation
federated adversarial training (FedDF-AT (Lin et al., 2020),
FedET-AT (Cho et al., 2022)), partial-training federated
adversarial training (HeteroFL-AT (Diao et al., 2020),
FedDrop-AT (Wen et al., 2022), FedRolex-AT (Alam et al.,
2022)), and Federated Robustness Propagation (FedRBN)
(Hong et al., 2023).
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Table 7. The model partition of VGG16 with Rmin = 60 MB.
We show the memory requirement for training with SGD and the
FLOPs of one forward propagation.

Module Layer Mem. Req. FLOPs

1 Conv 1 55.8 MB 2.6 GConv 2

2
Conv 3

46.1 MB 4.9 GConv 4
Conv 5

3
Conv 6

50.4 MB 6.0 GConv 7
Conv 8

4 Conv 9 34.7 MB 2.4 G
5 Conv 10 33.1 MB 2.4 G

6 Conv 11 59.3 MB 1.2 GConv 12

7

Conv 13

36.1 MB 0.6 GLinear 1
Linear 2
Linear 3

(1) jFAT trains the whole model end-to-end, with memory
swapping if a client does not have sufficient memory.

(2) In knowledge-distillation FL, each client selects the
largest model that can be trained with the available mem-
ory from a group of models ({CNN3, VGG11, VGG13,
VGG16} in CIFAR-10, {CNN4, ResNet10, ResNet18,
ResNet34} in Caltech-256). The heterogeneous locally
trained models are aggregated into the large global model
by knowledge distillation with a small public dataset.

(3) In partial-training FL, each client trains a sub-model of
the whole model by dropping out a certain percentage of
neurons or filters in each layer. The percentage is set as
1− R

(t)
k /Rmax where Rmax is the memory requirement for

training the whole model.

(4) FedRBN allows clients with insufficient memory to
conduct standard training only. The robustness is trans-
ferred from the batch normalization statistics of the
memory-sufficient clients who conduct adversarial training
to those who conduct standard training.

B.3 Model Partition in FedProphet

According to Algorithm 1 and the minimal reserved mem-
ory in each setting, the VGG16 and ResNet34 are both par-
titioned into 7 modules as shown in Table 7 and Table 8.

B.4 Training Hyperparameters

Common Hyperparameters We conduct FL with N =
100 clients, and we randomly select C = 10 clients to
participate in training at each communication round. To

Table 8. The model partition of ResNet34 with Rmin = 224 MB.
We show the memory requirement for training with SGD and the
FLOPs of one forward propagation.

Module Layer/Block Mem. Req. FLOPs
1 Conv 148.6 MB 3.9 G
2 BasicBlock 1 130.2 MB 7.5 G
3 BasicBlock 2 130.2 MB 7.5 G

4 BasicBlock 3 197.9 MB 13.3 GBasicBlock 4

5

BasicBlock 5

221.6 MB 28.1 GBasicBlock 6
BasicBlock 7
BasicBlock 8

6

BasicBlock 9

206.5 MB 37.1 G
BasicBlock 10
BasicBlock 11
BasicBlock 12
BasicBlock 13

7

BasicBlock 14

204.0 MB 20.6 GBasicBlock 15
BasicBlock 16

Linear

guarantee that each algorithm in Table 2 and Figure 7
can converge, the total numbers of communication rounds
are set to 500 for jFAT and 1000 for other baselines. In
each communication round, each selected client conducts
E = 30 iterations of local SGD. The batch size is set to
B = 64 on CIFAR-10 and B = 32 on Caltech-256, and
the learning rates are η0 = 0.005 and 0.001 for VGG16
and ResNet34 respectively. We apply a learning rate decay
factor γ = 0.994 such that ηt = γtη0 at communication
round t. The momentum is set to be 0.9, and the weight
decay is set to be 10−4 in all our settings.

Hyperparameters for Knowledge-distillation FL We
partition around 10% of each dataset as the public dataset
for knowledge distillation, namely, 5000 samples in
CIFAR-10 and 2500 samples in Caltech-256. Following
Cho et al. (2022), we set the iterations of distillation to be
128, with the same learning rate and batch size in the com-
mon hyperparameters.

Hyperparameters for FedProphet We use µ = 10−5

in Table 2, which is shown to be the optimal in Figure 8.
We set γ = 0.05 and ∆α = 0.1 in all our experiments. We
set the maximal number of communication rounds for each
module to be 500, while we allow FedProphet to end the
training of the current module early when the accuracy is
not improved in the last 50 rounds.


