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A Experimental Settings

A.1 CIFAR

In this section, we share the training settings of IPMix on CIFAR. We experiment with various
backbone architectures on CIFAR-10 and CIFAR-100, including 40-4 Wide ResNet, 28-10 Wide
ResNet [1]], ResNeXt-29 [2], and Resnet-18 [3]]. We train ResNet and RexNeXt for 200 epochs, and
all Wide ResNets for 100 epochs. We employ the SGD optimizer with a weight decay of 0.0001 and a
momentum of 0.9. We randomly crop training images to 32 x32 resolution with zero padding and flip
them horizontally. We compare IPMix with various data augmentation methods, including CutOut,
MixUp, CutMix, AugMix, and PixMix. We select a CutOut size of 16x 16 pixels on CIAFR-10, and
88 on CIFAR-100. For CutMix, we set CutMix probability as 0.5 and a = 1.0. We set k =3 in
AugMix, and k = 3, 8 = 4 in PixMix for the best results. For IPMix, we set k = 3, ¢t = 3, and randomly
select patch sizes from 4, 8, 16, and 32 (pixel-level). All experiments are conducted on a server with
two NVIDIA GeForce RTX 3090 GPUs.

A.2 ImageNet-1K

For ImageNet experiments, we compare different data augmentation methods, including MixUp,
CutOut, CutMix, AugMix, AugMax [4], and PixMix. Since regularization methods may require a
greater number of training epochs to converge, we fine-tune a pre-trained ResNet-50 for 180 epochs.
We utilize SGD optimizer with an initial learning rate of 0.01 following a cosine decay schedule, with
a batch size of 256. For all approaches, we randomly crop training images to 224 x224 resolution
with zero padding and flip them horizontally. We adopt o = 0.2 for MixUp and CutMix and select a
CutOut size of 56 x 56 pixels. For IPMix, we use k = 3, ¢ = 3, and randomly select patch sizes from 4,
8, 16, 32, 64, and 256 (pixel-level). We set A = 12 and n = 5 for AugMax-DuBIN, the same as the

paper.



B Additional Experiments of IPMix

B.1 Ablation Exmperiments

IPMix hyperparameters. In this paragraph, we evaluate the hyperparameters sensitivity of IPMix.
We examine two hyperparameters: the number of augmented chains k£ and the maximum image
augmentation times ¢ with clean accuracy and robustness. The results in Table [I|demonstrate that
IPMix is not sensitive to hyperparameters, showing the performance of [IPMix is stable under change.

Mixing operations ablation. In this paragraph, we test IPMix’s mixing operation sensitivity. IPMix
utilizes four different operations to improve model performance, including addition, multiplication,
random pixels mixing, and random elements mixing. The results show in Table[2]

Patch mixing ablation. In this paragraph, we verify IPMix’s patch variants, which can be divided
into two categories, IPMix-Scar and IPMix-Square. The results in Table|3|show that PachtMix-Scar
can improve model robustness.

Table 1: We evaluate clean accuracy on CIFAR-100 and Mean Corruption Error (mCE) on CIFAR-
100-C with WRN40-4. The performance of IPMix is not strongly associated with hyperparmeters.

| k=2 | k=3 | k=4

iy | 195193193
=21 29 | 289 | 29
iy | 197 | 194 | 197

=7 | 285 | 286 | 286

Table 2: Ablation results of IPMix on CIFAR-100 with WRN40-4. While the addition + multiplication
achieves the highest accuracy, it compromises corruption and calibration. In contrast, random mixing
operations bolster robustness and calibration. Experiment results demonstrate that combining all
mixing operations achieves the most balanced performance.

.. . Classification Robustness Calibration
Mixing operations

Error(]) mCE(]) RMS()
Addition + Multiplication 19.2 31 4.1
Random pixels mixing 19.6 28.7 3.7
Random elements mixing 19.9 28.8 2.7
IPMix 19.4 28.6 2.8

Table 3: The results of patch variants ablation on CIFAR-100 with ResNeXt-29.

Classification Robustness Calibration

Variants Error(}) mCE(})  RMS())
IPMix-Square 18.3 28.5 39
IPMix-Scar 18.6 28.0 4.1
IPMix 18.3 28.1 3.8

B.2 Additional Robustness Experiments

Recent works propose that some data augmentation techniques are tailored to particular datasets when
testing model robustness. To evaluate the generality of IPMix, we experiment with other types of
distribution shifts beyond common corruptions. We examine IPMix on CIFAR-10-C, CIAFR-100-C,
and ImageNet-C [5]. CIFAR-10-C, CIFAR-100-C, and ImageNet-C are similar to CIFAR-C and
ImageNet-C but utilize a different set of corruptions.Results in Table [4] demonstrate that IPMix
achieves SOTA or comparison results by comparing with other methods.



Table 4: Results of robustness resist other distribution shifts. Bold is best.

Methods CIFAR-10-C  CIFAR-100-C  ImageNet-C

Vanilla 26.4 52 60.2
MixUp [6] 22.4 50 54.1
CutOut [7] 24.2 50.1 58.4
CutMix [8] 25.1 49.9 57.8
AugMix [9] 19.3 41 54.3
PixMix [10] 13.6 36.7 47.1

IPMix 13 36 479

To better assess the performance of IPMix against natural distribution shifts, we extended our
evaluation to various ImageNet benchmarks. We test IPMix on ObjectNet [[L1], ImageNet-E [12]],
ImageNet-Sketch [[13]], ImageNet-V2 [14]], and Stylized-ImageNet [[15]. The results presented in
Table [5] indicate that IPMix consistently outperforms under diverse data shifts, underscoring its
capability to enhance model robustness.

Table 5: Results of IPMix against natural distribution shifts. Higher is better.

ObjectNet ImageNet-E  ImageNet-Sketch ImageNet-V2  Stylized-ImageNet

Vanilla 17.3 76.7 24.2 63.3 7.4
MixUp [6] 18.4 77.1 244 63.6 73
CutOut [7] 17.3 24.1 584 63.7 7.6
CutMix [8] 18.9 76.7 23.8 65.4 53
AugMix [9] 17.6 78.6 28.5 65.2 11.2
PixMix [10] 18.5 80 29.2 65.8 11.8

IPMix 19.3 80.9 311 65.6 12.2

C Evaluation Metrics

We evaluate various safety measures on CIFAR and ImageNet, including corruption robustness,
calibration, adversarial robustness, consistency, and anomaly detection. Task evaluation metrics are
shown below.

Corruption robustness. Following AugMix, we utilize the Mean Corruption Error (mCE) to test
a model’s resistance to corrupted data on CIFAR-10-C, CIFAR-100-C, and ImageNet-C. Mean
Corruption Error is the mean error rate normalized by the corruption errors of a baseline model over
15 corruption types and 5 corruption severity. We train AlexNet [[16] as the baseline for ImageNet
experiments.

Calibration. The calibration task is to verify whether the predicted probability estimates are
representative of the true correctness likelihood. We use RMS Calibration Error [[17] as the metric,

which can be computed as \/Ec[(IP’(Y =Y |C = ¢) — ¢)2], where C is the classifier’s confidence

that its prediction Y is correct. Lower is better.

Adversarial robustness. We utilize PGD to verify the adversarial robustness of image classifiers. We
use 20 steps of optimization and an ¢, budget of 2/255 on CIFAR-10 and CIFAR-100. The metric is
the classifier error rate. Lower is better.

Consistency. Following AugMix, we verify perturbation consistency on CIFAR-10-P, CIFAR-100-P,
and ImageNet-P. The metric is the mean flip rate (mFR), which can be tested through video frame
predictions normalized by a baseline model matched by 10 different perturbation types. We choose
AlexNet as the baseline model.

Anomaly detection. We utilize two challenging datasets, ImageNet-A and ImageNet-O to evaluate
model robustness under out-of-distribution shifts. The main metric on ImageNet-A is accuracy, and
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on ImageNet-O is the area under the precision-recall curve (AUPR). Higher is better. The anomaly
score is the negative of the maximum softmax probabilities [[18]].

D The Algorithm of IPMix

The algorithm to generate IPMix images is summarized in Algorithm[I] The fractals we use are
selected at random from the IPMix fractal set (for further details, please see Appendix [E)). On CIFAR,
the patch sizes we employ are randomly chosen from a set including 4, 8, 16, and 32, whereas for
ImageNet-1K, we opt for patch sizes from 4, 8, 16, 32, 64, and 256. We randomly mix the augmented
original image to increase diversity. Across all our experiments, we consistently use £k = 3 and ¢t = 3.

Algorithm 1: Generate IPMix Images

input :Origin image x, fractal 1, augmentation methods M ={image-level, P-level}, patch
sizes Py, , P operations P = {random pixels mixing,...,add}, image operations I =
{invert,...,mirror} , width k£, max depth t.
output + LIPMix
Sample mixing weights w1,...,wg ~ Dirichlet(a,...,a)
Sample weights m ~ Beta(a,«)
Generate x,;x = Zerolikes(x)
fori < 1tokdo
Generate ZTpixeq = x.copy()
Randomly choose method *meth’ from M
if 'meth’ == ’P-level’ then
for j = 1 to random.choose([1,...,t]) do
Random sample size s from Pj,e // Psize = x.size — Pixel-level op
Sample operations p,, from P
if random.random() > 0.5 then
‘l Tmixed = Patch mixing(Tmixed> Tfractal> > Po) // See Sec.4.2
else
Sample operations ¢,, from 1 // For diversity increase
Laug = 1o()
Tmixed = patch mixing(Tmixeds Laug, S, Do)
else
for j = 1 to random.choose([1,...,t]) do
Sample operations ¢, from I
Tmixed = to(Tmixed)
Tmix += W; * Tmixed // w; from Dirichlet(a,...,a)
return Tpyix = M - Tmix + (1 —m) -z // m from Beta(o,a)

E Generating Fractal Images

While prior works have exclusively utilized Iterated Function Systems (IFS) to generate fractal data
[19L 20|, various other fractal-generating programs can also be employed. To further enhance the
structural complexity and diversity, we have ventured beyond IFS and incorporated the Escape-time
Algorithm to generate ’orbit trap’ complex fractals. The most common ’orbit trap’ fractal images,
Mandelbrot and Julia fractals, can be derived from Eq. @):

F(z)=2"+¢ )
In Eq. (I), z represents a complex number, and c is a constant value. In the case of the Mandelbrot
set, we initialize z at 0, with ¢ corresponding to the specific coordinate in the complex plane that is

under examination. Conversely, when generating the Julia set, ¢ remains constant throughout the set,
and z is initiated as the particular coordinate that is currently being tested.

Moreover, guided by the approach of [20], we create an additional 3000 fractals, each rendered with
a unique, randomly generated background and color scheme using IFS. Furthermore, we supplement
our dataset with an additional fractals obtained from DeviantAr{'| These images, exhibiting greater

"https://www.deviantart.com/
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complexity than those generated via IFS or the Escape-time Algorithm, significantly enhance dataset
diversity. Besides, we collect 4000 feature images to improve diversity. In total, we assemble a
collection of 13000 images named IPMix set for increasing data diversity and structural complexity
when mixed with clean images.

F The Details about Combination Experiments

In this section, we show that simply combining different levels of approaches can degrade model
performance across various metrics. Building upon these findings, in this part, we want to examine
the impact of the order of operations on combination experiments.

In our experiments, we adopt MixUp [6], CutMix [8]], and AugMix [9] as representative techniques
for pixel-level, patch-level, and image-level augmentation, respectively. In all experiments, we apply
AugMix first, followed by CutMix or MixUp. The rationale behind this order is that AugMix is
commonly used in PIL images to enhance data diversity. In contrast, MixUp and CutMix interpolate
and mix images after images conversion into tensors. Furthermore, applying Mixup/CutMix before
AugMix could lead to unnatural transformations, as AugMix operations would distort the mixed
images, counteracting the aim of preserving the individual image context during interpolation.

We have adopted several different combinations as follows.

* First, we apply AugMix, then MixUp, and finally CutMix.

* First, we apply AugMix, then CutMix, and finally MixUp.

* We apply AugMix first, followed by either CutMix or MixUp, chosen randomly.

* We apply AugMicx first. Depending on the training epochs, we use either CutMix or MixUp.

Table 6: The combination experiments of different levels of data augmentation on CIFAR-100.

Classification Robustness Calibration

Methods Error(}) mCE())  RMS())
Vanilla 21.3 50 14.6
MixUp 20.5 459 10.5
CutMix 20.3 50 9.3
AugMix 20.6 333 6.3
AugMix—MixUp—CutMix 23.4 50.1 25.6
AugMix—CutMix—MixUp 27 51.4 26.7
Chosen Randomly (p = 0.5) 22.6 40.6 19
Epoch-Dependent 21.1 37.6 7.2

In all experiments, we use the optimal hyperparameters specified in the original papers. We set k = 3
for AugMix and o = 1 for MixUp and CutMix. The results are demonstrated in Table [6}

We set the total number of training epochs to 100 on 40-4 Wide ResNet for all experiments. In
our Epoch-Dependent combination experiments, we found that employing MixUp for the initial 50
epochs and transitioning to CutMix for the rest yielded the best performance. Nevertheless, it doesn’t
perform as well as the individual augmentation techniques. This underperformance might be due
to the increased complexity in the synthesized training instances, possibly impeding the extraction
of discriminative feature representations by models. Further experiments could explore different
combinations of these techniques to improve their effectiveness.

In order to thoroughly analyze the influence of the augmentation strength of each method, we have
conducted experiments considering various hyperparameter combinations. Specifically, we evaluated
k=1,3,5 (for AugMix) and o = 0.2, 0.5, 1 (for MixUp and CutMix). We opted to exclude k = 3 and
« = 1, the original optimal hyperparameters in their papers, thereby reducing the total combinations
from 27 to 8. From the experimental results in Table [/, combining different hyperparameters does
not significantly improve the model performance. We set the total number of training epochs to 100
for all experiments with WRN40-4 on CIFAR-100.



Table 7: Could decreasing the augmentation strength of each method yield better performance?

Classification Robustness Calibration

Combination Error(}) mCE(]) RMS())
a=02,a=02k=1 23.9 51.2 25.3
a=02,a=02k=5 24.5 51 25.3
a=02,a=05k=1 26 50.7 24.9
a=0.2,a=0.5k=5 24.4 50.6 25.7
a=05a=02k=1 25.8 50.8 25.4
a=0.5,a0a=02k=5 25 49.1 24.8
a=05a=05k=1 25.5 50.5 25.1
a=0.5,a0a=0.5,k=5 26 51.2 25.9

G Training Time

In this section, we present a comparative analysis of the training time. The results in Table [§]show
that IPMix adds only a modest training overhead over Vanilla, which is advantageous for its practical
use in real-world scenarios.

Table 8: We test IPMix on two NVIDIA GeForce RTX 3090 GPUs with ResNet18 for 90 epochs.
The training time of IPMix is acceptable by comparison with other data augmentation methods.

Method Time(sec/epochs)

Vanilla 3764
MixUp [6] 3913
CutOut [7] 3870
CutMix [8] 4139
AugMix [9] 4762
PixMix [10] 4310
AugMax [4] 7564

IPMix 4380

H Full Results of IPMix across Architectures

In Table[9] we show the full results of IPMix across architectures on CIFAR-10 and CIFAR-100.

Table 9: Full results for IPMix on CIFAR-10 and CIFAR-100. We test the ability of [PMix on accuracy,
robustness, consistency, adversaries, and calibration across different models. Top: CIFAR-10. Bottom
: CIFAR-100.

Classification Robustness Consistency Adversaries Calibration

Error(]) mCE(]) mFR({) Error({) RMS(])
WideResNet40-4 4 8.6 1.3 74.4 2.3
WideResNet28-10 3.3 7.5 1.1 76.4 1.9
ResNeXt-29 3.8 8.6 1.4 93.2 2
ResNet-18 4.2 8.4 1.7 80 2.4
Mean 3.8 8.3 1.4 81 2.2
WideResNet40-4 194 28.6 4.3 89.4 2.8
WideResNet28-10 17.4 26.6 4.2 91.3 6.4
ResNeXt-29 18.3 28.1 5 96.9 3.8
ResNet-18 21.6 29.9 54 95.6 6.3
Mean 19.2 28.3 4.7 93.3 49




Image Vanilla AugMix PixMix CutMix

Figure 1: More CAM visualizations of IPMix. Input images come from ImageNet-A, the most
challenging dataset to verify the performance of model classifiers against distribution shifts.

I More CAM Visualizations

In this section, we demonstrate more CAM visualizations of IPMix, as shown in Figurem

J The Analysis of Ablation Experiments

In this section, we will detailed analyze the impact of each part on different safety metrics through
ablation experiment results shown in Table

Accuracy: The image-level augmentation has the most substantial effect on accuracy, aligning with
current findings [21} 22]] that image-level methods are commonly used to boost accuracy.

Robustness: Both pixel-level and image-level augmentations improve robustness. Since pixel-
level introduces fine-grained variations for pattern recognition, while image-level increases dataset
diversity, preventing the model from merely memorizing fixed augmentations.



Table 10: Ablation results of different components of IPMix on CIFAR-100. Mean and standard
derivation over three random seeds is shown for each experiment. Bold is the best.

Classification Robustness Consistency Adversaries Calibration

Error(]) mCE(]) mFR(]) Error(]) RMS(])

IPMix 19.4(:|:0_17) 28.6(:‘:02) 89'4(:|:0.18) 4.3(:‘:0.09) 2"8(:|:0.07)
w/opatch — 19.7(+0.13) 30 (10.21) 917 (w015 4.7 (20.02) 4.6 (£0.07)
w/o.p1xe1 19.6 (10.09) 33 (+0.35) 92.6 (+0.200 3.2 (+0.05) 8.2 (+0.12)
w/o 1mmage 20.1 (£0.27) 34 (40.65) 87.8 (£0.22) 5.5 (40.11) 8.6 (40.21)

Calibration and Consistency: The Image-level part significantly influences calibration and consis-
tency, which increases diversity to improve the prediction calibration across scenarios and ensures
consistency in responses to minor perturbations.

Adversarial Attacks: Without the image-level component, adversarial performance improves,
implying diverse data might weaken defense against attacks. Conversely, removing pixel-level
methods will degrade adversarial robustness, given their inherent resistance to perturbations.

K The Experiment Results on Transformer Architecture

In this section, we will evaluate the performance of [IPMix on Vision Transformer. We trained a small
ViT for 300 epochs on CIFAR-10 and CIFAR-100. This step aimed to confirm IPMix’s potential on
smaller datasets using Transformer architectures. In future work, we plan to expand our experiments
with transformer architectures. The experiment results in Table [TT]and Table [I2] show that IPMix
achieves the best performance on ViT.

Table 11: Experiments on CIFAR-10. Bold is the best.

Classification Robustness Consistency Adversaries Calibration
Error({) mCE(]) mFR(]) Error(]) RMS)
Vamlla 19.5(:‘:0'07) 27.7(:‘:0'14) 91.3(:‘:0'13) 5.9(:|:0'02) 10
MixUp Lto.11) 34.7(+0.21)  89.3(+0.21) 6(+0.05) 9.9(+0.03)
CutMix  193(x0.08) 343 (010  8%l(zoa4)  3S5x00s) 73 (0.02)
PIXMI.X 28‘4(i0.14) 33-(i0.24) 91(i0.12) 6.5(i0'11) 4-4(i0.07)
AugMix  20.3(10.14)  25.6(x02)  80.3(x0.a6)  S-l(x0.09) 6(+0.08)
IPMix 19.2(:‘:0'12) 23.7(:‘:0.2) 75-8(:t0.13) 3.7(:|:0‘07) 5.3(:|:0‘07)
Table 12: Experiments on CIFAR-100. Bold is the best.
Classification Robustness Consistency Adversaries Calibration
Error(]) mCE(]) mFR(]) Error(]) RMS(])
Vanllla 40‘1(j:0.12) 56-3(j:0.1) 96~2(j:0.14) 12'4(i0.04) 14~8(i0,02)
MixUp 40(40.14) 56 (018 92.5(+0.18)  9.8(x0.03) 9.5 (+0.02)
C'utM'lX 39.5(:‘:011) 56.3 (£0.15 6.2(:‘:0'17) 10(:|:O‘03) 9.8 (£0.03)
PIXMI.X 48'7(i0.14) 54'3(i0.21) 93'2(i0.14) 10'9(i0.17) 4'9(i0.04)
Aungx 35-3(10.17) 42-4(10.21) 84-6(:t0.16) 6~9(j:0.03) 64(10.07)
IPMix 32'6(i0.11) 39'6(i0.23) 83'2(i0.15) 6'3(i0.04) 5'3(i0.05)

L. The Drawbacks of Different Levels of Methods

In this section, we will reveal the drawbacks of different levels of approaches and explain how IPMix
solves these problems.



The drawbacks of label variant methods:

Pixel-level: Mixing images with distinct labels and linearly interpolating between them will impose
certain “local linearity” constraints on the model’s input space beyond the data manifold, which may
lead to "manifold intrusion". Consider one experiment on MNIST. If we use MixUp to linearly mix
two numbers, such as "1" and "5", the generated image will show the characteristics of "8". When
the generated "8" collides with a real "8" in the data manifold, there will be a problem of manifold
intrusion. Since the two samples have similar characteristics, one is the real label and the other is a
soft label ("1" and "5"). This will interfere with its ability to understand and classify categories and
degrade model performance.

Patch-level: The problem of manifold intrusion also occurs in the patch-level method, termed "label
mismatch." This occurs when the chosen source patch doesn’t accurately represent the source object,
leading the interpolated label misleads the model to learn unexpected feature representation. For
example, using CutMix to mix images of a cat and a dog. CutMix might select 20 % of the background
area from the cat image without information about the object (cat). However, their interpolated
labels encourage the model to learn both objects’ features (dog and cat) from that training image and
degrade model performance.

The drawbacks of image-level methods:

Image-level data augmentation increases data diversity by applying label-preserving transformations
to the whole image. Notable among these are search-based methods like AutoAugment, RandAug-
ment, and FastAugment. While they improve performance effectively, the computationally expensive
search for an optimal augmentation policy often exceeds the training process’s complexity. Thus,
efforts to minimize the search space, optimize search parameters, and uncover potential universal
pipelines are central to the effectiveness of these methods.

In conclusion, we solve these questions by:

¢ Incorporate structural complexity from synthetic data at various levels to produce more diverse
images. Our method is label-preserving, ensuring it is not affected by manifold intrusion.

¢ Randomly sample operations from PIL (e.g., brightness, sharpness) and randomly sample strengths
to enhance the diversity of training data without expensive searching.

* Integrate three levels of data augmentation into a single framework with limited computational
overhead, demonstrating that these approaches are complementary and that a unification among
them is necessary to achieve robustness.

M Limitation and Broader Impact

While IPMix has shown promising results, the theoretical foundation of IPMix requires further
development to gain deeper insights into its underlying principles. Meanwhile, our approach primarily
focuses on CNN, and its effectiveness on Visual Transformers requires additional experimental
validation. Additionally, the experiments conducted on a limited set of safety metrics, and the
performance of IPMix in real-world scenarios with more comprehensive safety measures warrants
future investigation [23]]. In continuing our efforts to refine and enhance the IPMix methodology, we
will focus on addressing these limitations in future works.

Since IPMix improves various safety measures, it can generate many beneficial effects in real-world
environments, improving the robustness against attacks and the calibrated prediction confidence
of models. Moreover, IPMix integrates three levels of data augmentation into a single framework,
demonstrating that these approaches are complementary and necessary to achieve better performance.
We believe the improvements in safety metrics and the coherent framework of combining various
techniques will shed light on this field.
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